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Abstract. In our answer to the comments by two anonymous reviewers, we perform numerical simu-

lations of the full nonlinear Boussinesq equation. Our proposed modification to the Brutsaert-Nieber

recession analysis can then be compared with those solutions. We show that our analytical approx-

imations provide a significant improvement in the estimation of the aquifer physical parameters ne

and k0.5

1 Introduction

We give our answers in a single file. All equation and figure arabic numbers still refer to the previous

version of our manuscript. Added equation and figure numbers are given as (i), (ii), etc., to avoid

confusion. Renumbering will be performed if the manuscript is accepted for HESS.

2 Answer to Referee #110

We thank Referee #1 for the valuable comments. In our original manuscript, we believed that our

analytical results might alone be enough to carry our argument. In retrospect, we agree that an

independent verification can strengthen it.

Indeed, our previous version shows results from estimates that amend the original BN77 theory

for φ0 6= 0, but still rely on Boussinesq (1903)’s linearized solution. It is well worth comparing how15

our (still approximate) estimates in Eqns (10) and (11) perform against true values resulting from

the more physically accurate Boussinesq nonlinear differential equation.

However, we do not believe that field data exist where independent values of ne and k0 can be

obtained with enough confidence — i.e. small enough uncertainty. After the reviewer’s comments,
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it has come to our attention that some laboratory experiments have been performed that might be20

useful as validation sets (Hewlett and Hibbert, 1963; Sanford et al., 1993; Mizumura, (2002),but

we haven’t yet looked at those data in detail. Moreover, and importantly, it is not clear that a wide

enough range of carefully controlled values of φ0 would be available to validate our results.

Therefore, we have decided to run an extensive set of numerical simulations of the full nonlinear

Boussinesq equation. We would like to argue that this is a valid alternative, that has been used in25

important research related to the theme (see Szilagyi et al., 1998; Rupp and Selker, 2006)

We describe our simulations here; the description is also relevant to our answers to Referee #

2. With an implicit finite-difference method, we solved the fully nonlinear Boussinesq equation in

dimensionless form, i. e.

∂φ

∂τ
=

∂

∂η

(
φ
∂φ

∂η

)
; φ(η,0) = 1, φ(0, τ) = φ0,

∂φ

∂η
(1, τ) = 0, (i)30

with

φ≡ h

H
, (ii)

η ≡ x

B
, (iii)

τ ≡ k0H

neB2
t. (iv)

35

Before anything else, we checked (with excellent results) the numerical solution against the only

known analytical solution of the nonlinear PDE, which is valid for φ0 = 0, as was obtained by

Boussinesq (1904). We do not show the comparison here, but it is available upon request. Then we

varied φ0 from 0 to 0.95 in increments of 0.05. For each φ0, a Brutsaert-Nieber recession analysis

was performed and k0 and ne were estimated against their true values k0 and ne using Equations (10)40

and (11). The evident advantage of the dimensionless form is economy: one need not “vary” k0 and

ne (which are kept at nominal unity values, as well as H and B), but only φ0: all that matters are the

ratios of the estimates, namely ne/ne and k0/k0. In order to be consistent with the estimates given

by equations (10) and (11), the slopes of the recession analyses were fixed at β1 = 3 (early time) and

β2 = 1 (late time), and only α1 and α2 were estimated using a nonlinear Levenberg-Marquardt least45

squares method.

We now re-plot our Figure 2 in the manuscript as two new figures, one for ne and the other for

k0, in Figures i and ii. Notice the change in the choice of (for instance) k0/k0 instead of the former

k0(BN)/k0, which avoids the log scale of Figure 2 and allows a more clear picture to emerge.

Moreover, while our Figure 2 was actually the ratio of two estimates, we are now able (after our50

numerical simulations) to plot the results against true known values ne and k0.

As can be seen, the k0 estimate using the original equations remains “robust” up to φ0 = 0.4

approximately. On the other hand, there is a more or less linear trend in ne estimated with the

original equations all the way from φ0 = 0. Our modified equations (10) and (11) give estimated
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Figure i. Performance of ne/ne using the proposed equation (10) (solid line), and error incurred by the tradi-

tional BN77 analysis (dotted line and symbols).
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Figure ii. Performance of k0/k0 using the proposed equation (11) (solid line), and error incurred by the tradi-

tional BN77 analysis (dotted line and symbols).

values of k0 and ne that differ very little from the true ones for the whole φ0 range, and as such55

represent a considerable improvement over the original equations.

The small kinks between φ0 = 0.7 and φ0 = 0.8 are an artifact of the choice of the range of the

streamflowQ for fitting α1 and α2 used in the recession analysis. This (to the best of our knowledge)

is still a subjective part of the BN77 analysis: the ranges were chosen to fit the recession plots

dQ/dt×Q reasonably well, but they were not “fudged” to “optimize”, in any way, the estimated k060

and ne. Our recession data are also available so that these results can be verified independently.

We now address specific comments by Reviewer 1.

Section 1: “... can be compared to the predictions from analytical solutions...” The authors may

want to extend this paragraph by showing explicitly which analytical solutions they have in

mind and how they are used.65
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We suggest to rewrite this as:

can be compared to the predictions from the above-mentioned analytical solu-

tions by Polubarinova-Kochina (1962), Boussinesq (1903) and Boussinesq (1904),

among many others (see Rupp and Selker, 2006). In this work, the first two are

used, and they are detailed in the sequence.70

Section 1: “... does not account for that case.” and “... is not strictly true ...” The two statements

seem to contradict each other and need clarification.

We were being tactful! We suggest the alternate text:

If one wishes to estimate only the soil hydraulic conductivity k0 and the drainable

porosity ne, two of the three aforementioned solutions can be used. However, the75

solution by Polubarinova-Kochina (1962) is only valid for the case H0 = 0: it is

therefore important to assess how much this assumption affects the estimate of k0

and of ne for cases where it does not hold.

Section 2: As the solutions of Chor (2013) and Dias (2014) are essential in this paragraph it may be

worth noting the equations together with one or two sentences of explanation. This will give80

the reader the possibility to focus on the text rather than getting distracted by consulting the

references to understand what follows.

We suggest to extend the text right after our Eqn (3) with

where h(x,t) is the water table height, x is the horizontal distance from the wa-

ter stream and t is the time. Under the above change of variables, the Boussinesq85

equation is reduced to the dimensionless ordinary differential equation

d

dξ

(
φ
dφ

dξ

)
+2ξ

dφ

dξ
= 0 (v)

together with the boundary conditions φ(0) = φ0 and φ(∞) = 1. Due to the second

boundary condition, the solution is only valid for the initial phase of aquifer draw-

down. For φ0 = 0, as already noted, the solution by Polubarinova-Kochina (1962)90

suffices for the BN77 analysis; for φ0 6= 0, a series solution of the form

φ(ξ) =

∞∑
n=0

anξ
n (vi)

has been proposed by Dias et al. (2014), with a recursion relation for the an’s. An

important result in that work is an empirical equation, fitted to numerically obtained

values of a1 in the series above, for the value of ψ0, defined below. This is given as95

equation (12) in the present work.
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After eq. 12: Where do the numerical values for eq 12 come from? Please clarify.

After the values have been given, we propose to extend the text with:

As explained in Dias et al. (2014), even after a general recursion rela-

tion for the an’s in (vi) has been obtained, the values of the an’s still100

cannot be obtained analytically, essentially because the series’ radius of

convergence is limited so that the boundary condition φ(∞) = 1 cannot

be imposed analytically. Instead, they must be obtained numerically with

the aid of numerical solutions of (v). The coefficients above have been

obtained in Dias et al. (2014) by curve fitting with a large number of nu-105

merical solutions.

3 Answer to Referee # 2

We thank the referee for his comments. It appears to us that the Referee believes that the Brutsaert-

Nieber analysis is now somewhat outdated, or rendered inapplicable, due to recent findings.

We believe that most of the criticism by the Referee can be traced back to the paper by Rupp and110

Selker (2006): because it is well known by us, and because it is already in our list of references, we

would like, in the following, to argue on the basis of this reference.

First of all, we realize that our choice of words may lead to the optimistic impression that our

results are all that is needed to “fix” the BN77 recession analysis. We know better than that, and are

ready to admit that the issue of φ0 6= 0 that we address in this manuscript does not, by any means,115

exhaust the subject.

As Rupp and Selker (2006) argue convincingly, there are at least two other issues that can com-

pond the difficulty of BN77 recession analyses considerably: steep slopes and the k0 dependency on

aquifer depth h. The latter leads to an even more general non-linear equation than (i).

We also note, however, that exactly as we do here, Rupp and Selker (2006) resorted to numerical120

simulations. This may well have been chosen wisely, as (sadly!) real field data are bound to com-

plicate the picture even more with measurement error, the existence of many more flow components

contributing to the measured streamflow, complicated geometry, etc..

At any rate, Rupp and Selker (2006) results do not by any means sound a death knell on BN77. In

particular, we call attention to their conclusions in paragraphs 60 and 62, reproduced in part below:125

§ 60 “A definition for the recession parameter a was also derived for late time, meaning that in

theory the Brutsaert and Nieber method can be used to determine the hydraulic properties of

a sloping aquifer.”

§ 62 “In the case of a horizontal or very mildly sloping aquifer, Szilagyi et al. [1998] found the

assumption of a representative single rectangular aquifer to be robust, based on numerical130
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solutions of the 2-D Boussinesq equation in a synthetic catchment. The general shape of the

recession slope curve for catchment discharge was similar to that for discharge from a 1-D rect-

angular aquifer, though with a smoother transition between the early and late time domains.

Furthermore, the basin-scale hydraulic and geometric aquifer parameters were reasonably es-

timated by recession slope analysis using (2), including cases where the saturated hydraulic135

conductivity varied across the catchment. As of yet, however, we are not aware of numerical

experiments similar to that of Szilagyi et al. [1998] for catchments composed of hillslopes of

moderate to steep gradient.”

In short, it seems to us that these remarks: (i) do not by any means consider BN77’s idea to be

discarded, but only call our attention, very correctly, to possible complicating factors and (ii) also140

call our attention to the fact that there is good evidence supporting the approach for mild slopes.

None of the aforementioned complications dishearten us, and on a fundamental level we believe

that they should not be used as arguments against conducting research using simplifying assump-

tions. In our manuscript, we chose a very simple approach: we studied a zero-slope, constant k0

aquifer. These assumptions may, to varying degrees, not correspond to real watersheds, and we are145

more than ready to acknowledge this. Of course, such caveats will be incorporated in the manuscript

if it is accepted. On the other hand, these simplyfying assumptions allow us to concentrate on the

issue of how φ0 6= 0 affects the estimates of the physically-based parameters k0 and ne. Again, we

would like to argue strongly, but cordially, that the simplifications are valid if one is — for the first

time — investigating a new issue.150

4 Conclusions

With the numerical results reported here we believe that we have a valid point that should be consid-

ered in recession analyses for recovering physical parameters of watersheds — a possibility which

we think is still open, and potentially valid.
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