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Fig. SC2.1: Temporal evolution of effort under a time constant transpiration rate
before (A) and after (B) switching from constant flow to constant potential at the
root collar (upon reaching the limiting collar potential of -150 m, see vertical line).
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Fig. SC2.2: Cumulative transpiration (top) and water yield (bottom) for root

systems with different hydraulic properties and under a sinusoidal flux boundary

condition. Filled areas indicate the occurrence of water stress in homogeneous

young (red), mature (blue) and a heterogeneous (green) root system. Note that the

water yield does not increase during times of water stress
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Fig. SC2.3: Electrical circuits and their equivalent circuits with a Thevenin
resistance (Rrs) analogue for (a) a root network surrounded by homogenous soil
water potential, s and (b) a root network surrounded by heterogenous soil water
potentials s;.



; . (b) [=e= case A: Wet root collar
0.0105 g oo S -#= case B: Wet root tip
1 : : =»= Both (A and B)

SUFD [

Pl = SUFD -0 [m]

281 — S T— S—

P [m)

M2
|

0 0.1 0.2 0.3 0.4 0.5
Distance from root collar [m]

Fig. SC2.4: Boundary conditions and results for the same single un-branched root
surrounded by two different heterogeneous soil water potential profiles. The
parameters are the same as in the discussion paper for a mature root. Modeled are
100 segments. (a) Assumed soil water content surrounding the root, (b) SUF for
this root, calculated according to Appendix 2, (c) Effective soil water potential,
which is the product of SUF; and ys; at each segment, (d) resulting profiles in xylem
water potential. The collar potential is the one at zero distance from the collar.
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A.1 The temporal evolution of effort under water stress

In this section we will explain in a mathematical way why the effort increases slowly
under water stress, although collar potential is high (see also Fig. 1 of this reply).
Basically the slow increase of effort is caused by the decrease of overall root water
uptake under water stress which shows that effort is not a temporal average but a flux
weighted collar potential (see eq. (A.1-14)).

Like in the simulations used within our manuscript we consider a drying scenario and
assume an initially time constant flux boundary condition Q(7) = @ (m?%/s), which
switches to a potential boundary condition ¥ (7) = . (m) when collar potential
drops below the critical value .;; (m). Under our assumptions the occurence time of
water stress is unique, we denote it with £ (s).

In order to calculate effort at a time ¢ > £ (s), we use the general definition of effort
and split the integrals in the enumerator and the denominator at ¢:

w(t) = fT:():/)(T) -Q(7)dr _ fT:(] ¢(7'~) -Q(T)dT + f ~(T) -Q(T)dT (A1)

S Q(r)dr [, Q(rydr + [, @ 7)

We can now insert Q(7) = Q for times 7 = 0...% and ¥(7) = e for times 7 =
t...t. We thus obtain

Q ) Jf:o ¢(T)d7 + wcm't . f::£Q<T>dT
Q-+ [ Q(r)dr

w(t) = (A.1-2)

We can transform the integrals in the stress periods by substituting 7 = ¢...t by
7 =0...Atin which At =t — t is the time since the occurence of water stress.

Q f‘r 0 w dT + z/}crit ' fTA:tO Q(£+ T)dT

t+ At - A.1-3
Han = Q-t+f5062(t+r)d¢ N
By defining
C:=Q- Y(7)dT = const. (A.1-4)
7=0

=Q-t=V(t) = const. (A.1-5)

At
Vi(At) = Q(t + 7)dr (A.1-6)

=0

the last equation reads as



U)(t) — C + 77Z)c7‘it ' ‘/s
Vut+ Vs

Please note that C is the enumerator of effort used within our manuscript under a
time constant flux boundary condition, that V,, equals the total amount of water that
was extracted in unstressed conditions and thus is the denominator of effort in our
manuscript and that V; equals the cumulative amount of water that was taken up in
stressed conditions (between ¢ and t). The variables C, V, and 1).,;; are constant under
the assumptions made here, only V; depends on the duration of water stress.

In order to give a mathematical explanation of the slow increase of effort under water
stress, we will use a first order taylor approximation of w(Vj) around V;(At) = 0 <
At = 0. We will use the first terms

= w(Vi(At)) (A.1-7)

wly, _o=C/V, =0 (A.1-8)
aw . 2ﬂcrit C

= - — A.1-9
Wl ™ Va V2 (A19)

_ wcm't Q : fgzo ¢(T)d7'

o Sl (A.1-10)
t

_ @”;”’t _ Q1. - Je=o wg(T)dT (A.1-11)

_ —‘”C”‘t/_ w (A.1-12)

in which w denotes the effort as calculated in our manuscript. The first-order approxi-
mation is thus given by

Vi(At)
v,

f UQt+T
Va

Wt + At) = D + (e — W) - (A.1-13)

(d]cmt (A 1 - 14)
Equation (A.1-14) shows that in a first order approximation the effort w(t) does further
increase after water stress occurs, w(t) would even reach t..; as soon as the water
uptake V under stressed conditions is equal to V,,. But as the water uptake rate Q()
decreases quickly under a constant potential boundary in the drying scenario, effort
increases very slowly and an equilibration would take durations At of water stress that
would be much longer than duration of unstressed water uptake .
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A.2 Dependence of (compensatory) root water uptake on soil water status and root hy-
draulic properties

Couvreur et al. (2012) presented an approach to quantify the redistribution of root water uptake with respect to heterogeneities in soil
matric potential in an explicit root water uptake model. We apply this approach to a simple unbranched topology which allows to derive
explicit solutions of the “standard uptake fraction” SU F' [-] (distribution of root water uptake along roots within a soil with homogeneous
matric potential) and the “compensatory root water uptake” o [m?3/s] (deviation from these root water uptake patterns in homogeneous
conditions). We will in particular show that to no surprise RWU rates and “compensatory root water uptake” along the root strand depend
on the soil water status. However it will become clear that the local “compensatory root water uptake” at segment 7 does furthermore
depend on the entire root hydraulic architecture. For that reason, K, does not include the entire information about root hydraulic
properties under heterogeneous water potentials.

Within the first section the algorithm is given that is used to calculate SUF and ¢ for root strands with arbitrary (heterogeneous)
hydraulic properties and soil water statusses. In the second section we apply the algorithm to derive properties of unbranched roots with
homogeneous root hydraulic properties. In particular we will show that the SUF®) decrease from the root base towards the root tip (see
eqgs. (A.2-6-A.2-8)). The proof the correctness of this algorithm is given in the third section.

A.2.1 Algorithm to determine SU F' and ¢ in an unbranched root strand

We consider an unbranched root strand (with generally heterogeneous root hydraulic properties), which is discretized into n segments. All
segments have cylindrical shape, but may possess different length and radius. Root water uptake is driven by gradients in xylem water



potentials A x e and soil water potentials hg,;;. Actual values of roots radial and axial resistances can be derived from root geometry and
root hydraulic resistivities as given in our manuscript. These resistivities are considered to be constant within each individual segment, but
are allowed to differ between segments. The algorithm works as follows:

1. Collect/Calculate the roots radial and axial resistances R%l ; [s/m?] and R(j; [s/m?] as well as the soil matric potentials hg?m [m].

2. Calculate the corresponding o, 5, §® and v(*) defined fori = 2...n:

i—1 )
o B )

(i)
RRad
4 R(i)
(1) — Az _
50 = -]
Rad
i i i1
o = h(s()n‘l - hgoil) [m]
‘ 5@
) = - [m?/s].
RRad
3. ”Backward* calculate the auxiliary variables C”) and D) which are recursively defined fori =n —1,...,1by
1+
C(n—l) __ "7 .
T+ a0 -
(i) C(nf’i‘Fl) 4 6(n7i+l)
C - C/(n—i+1) + an—i+l) [_]
(n)
(n-1) _ 7 3
D = am [m/s]
D(n—i) B D(n—i+1) _|_,y(nfi+1) [m3/8]

— (O(n—itl) + q(n—it1)

4. ”Forward* calculate the soil water status independent “standard uptake fraction” SUF) as well as the soil water status dependent



auxiliary variable () fori = 1,...,n via

SUF®M = c® ]
SUF® =@ .surt) — @ [—]

i—2

SUF® = gl . ZSUF(j) + o . SUFGE-D — g -]
j=1

s = pW [m?/s]

¢® =@ . p1) _~2) [m?/s]

e = gl Z GV 4 o . =D _ A0 [m?/s].
j=1

5. Calculate the soil water status dependent “compensatory root water uptake” ) and the root water uptake rates di as follows:

()
(OIS 3
QY =T.SUF® 4 50

= SUF® (T + o) [m?/s].

A.2.2 Important properties of SUF) and ¢ in unbranched homogeneous root strands

In a homogeneous unbranched root strand, the axial and radial resistivities do not change along the root. Thus, if the root is discretized
into n equally long segments, the radial and axial resistances Rfﬁc = R4, and Rgld = Rpaq are constant. If we substitute this into the
above mentioned algorithm, we obtain:

o — a(z) _ RRad + RAx
' ‘ RRad
B = 6(1) = RAx/RRad [_]

=14 Ras/RRad [—]



Since the resistances R 4, and Rp,q are greater zero, we obtain

l<a=8+1 (A.2-1)
0<B=a—1 (A.2-2)

a and (3 both are dimensionless and greater than zero. They only depend on the time constant root hydraulic properties R, and R4, .
These information are also part to D and thereof (). However, since soil water status is arbitrary, it is impossible to derive any similar
results for 5@, v, D@ or 3. Thus we are only able to deduce properties of C'?) and the thereof derived SUF®. It follows from the
recursive definition of C'*) that

I+8 pB+1  «

0<Ct = = = <1 A2-3
l+a B+2 1+a (A.2-3)

0 C(n—z) B C(n—i—i—l) 4 ﬁ(n—i-&-l) B C(n—i-i—l) 4 6 B C(n—i+1) +ta-1 . 1 . Ao
- (C/(n—i+1) + a(n—i+1) - C(n—i+1) + « - C/(n—i+1) + o - (C/(n—i+1) + o < (A.2-4)

Please note that C'*) depends on the root hydraulic parameters of all successive segments j > k. In particular, C") contains the time
independent information about root hydraulic properties of the entire root strand. Please note further that the recursive definitions of the
D@ do also contain this information, therefore the “compensatory root water uptake” $(*) combines soil water status and the root hydraulic
properties of the entire root system. However, we are not able to deduce results for D or ¢} which are valid under arbitrary soil water
statusses.

Nevertheless we can proof that the SUF®) have to decrease from the collar towards the tip in this specific topology by using the result

Z SUF® =1 (A.2-5)
=1

(all SUFs sum to one, giving the total transpiration in homogeneous soils (Couvreur et al., 2012).



SUFW —SUF® =C® —a.CY +8=(1-a)-CY+3=5-(1-CH) >0 (A.2-6)

SUF® — SUF® = SUF® —3.SUFY —a-SUF® + 3=SUF®.(1-a)+3-(1-SUFWY)
= —3-SUFP 4+ 3. (1-SUFMY)=8-(1-SUFY — SUF®) >0 (A.2-7)

i—2
SUFY _ sUF® — qUuFt-1 _ (5(2') . ZSUF(J') + . gUFLE-Y _ 5(0)

Jj=1

i—2 i—1
=(1—a)-SUF™Y 4 3. <1 - SUF(j)> =3- (1 -y SUF(j)> >0 (A.2-8)
j=1 j=1

A.2.3 Correctness of the algorithm

In this section we will give the scetch of a proof that shows the correctness of the above mentioned algorithm. Please remark that we
consider an unbranched root strand which is composed of n segments. Within this proof we are following the approach presented in
Couvreur et al., 2012.

Root water uptake is driven by gradients between hggil [m] and the xylem water potential within segment 7, denoted by hg?ylem
[m]. The actual value of root water uptake Q%Zld [m3/s] along this gradient is given by the segments radial resistance R%ld [s/m?],
according to Ohm’s law. Water uptake is supposed to occur at the ends of each segment (thus water has to traverse the entire axial pathway
and thus the entire axial resistance R% [s/m?]). If the number of segments is sufficiently large, this assumption is not causing artifacts
(see also Figure 2 of our first reply). Root water uptake from the successive segments confluences in the direction of the root collar, the

axial rates of water transport within the segments are denoted with Q% [m?/s].

(0)

Similar to Couvreur et. al 2012 there are 3n + 1 unknown variables: The collor potential hy,.,,.

each node hg?ylem, the n root water uptake rates ng 4 and the n axial rates of water transport Qg?p. This set of unknown variables can be
determinded if 3n + 1 linearly independent (linear) equations are given. These are given using the drops in water potential along the axial

resistances, along radial resistances and in terms of mass conservation laws, the corresponding equations are the following:

the n xylem water potentials in



Ba-D 0

R(z) _ Xylem Xylem

A - 1=1,...,n
QY
i hg? lem hgc)n'l .
Qggd:yT izl
RRad
I;—H) QRad 1=1,...,n—1
b =

As these are only 3n equations, one variable remains unknown. Closure of the system of equations can be achieved in terms of a boundary
condition, which we decide to be of constant flux type:

Tact =T = QS;

We eliminate the Q U and Y Xylem DY rearranging and recombining our equations. This results in a set of n equations for the le 4- We do
this as follows:

1) (1) .
h_(Xylem - Rad QRad Sozl 1=1
i—1 i—1 7 .
hg(ylem - thlem - (QRad) RRad) Rad Rg%ad) (hSml hSozZ) L= 27 -y 1
0 1 1 1
hg(i/lem - hg(z/lem = Rf%)c ’ E4g)c 1=1
1—1 i 7 .
hg(yle)m - h‘Xylem - Rﬁll ’ A(Azc t= 27 N
Q=T i=1
(1)
ZQRad T — ZQ%Ld Z:27 1
j=1



Combining the equations for 7 = 2. ..n, we obtain

i—1 i—1 % 7 i—1 % % % 7 % 7 j
(Ria’ * Qhtad’ — Ritna* Qitna) T (Mo’ = Mioi) = W\ = Wyemn = Bty Qi = Ry T = Ry~ >~ Qg
By using the equations belonging to ¢« = 1 we obtain
) .
g%id =T- Z Qgrja);d
=2
We can bring these eqs. into a shape which is convenient to calculate Q%ZL 4 With the help of Gauss Algorithm. Firstly, we split

Z QRad = ZQ%M + Qéadl) fori > 2

and
i—1)
. . .
Z Q%C)Ld = Q%id for i = 2.
j=1

Secondly, we collect all Q%ZL , on the left hand side. We thus obtain

Z Q W =T (A.2-9)
(R(l) + Rfi) ) Qg;d Rgc)bd gzd - R( T+ <hgozl - hSozl) (AZ—IO)
(Réadl) + R ) : ga_dl) - R%Ld : Q%Bzd + R Z QRad = Aa: T + (hA(S'()nl - hSozl ) (Az_ll)

By defining () := hgiﬂ — hg;ll ) [m] for ¢ >= 2, we can rewrite this set of equations in matrix notation
MQ=7¢ (A.2-12)

7



in which M has the special structure which we will use to derive an explicit solution

1
RO+ R
RY
R

R
R
R, "
RY)

T

1
(2
N RRid

Rgid + R(/i;):

RY)

Ry
e
R

T

@ contains the n unknown variables le i

1 1
0 0
— R, 0
3 4 4
Ripoa + Bty —Riaa
Ry YRGS
Ry ”  RL”
Ry R
RL o RD
5

1
0
0
0
(n-3)
_?’RRad )
Rid” + Riy
R
R
1)
Rad
(2)
Rad
(3)
@
QRad
(n-3)
(s
Qf?adl
QRad
(n)
Rad>

o O O

o O O =

o O O




and ¢ contains the right hand sides of the equations

T
RY T + 6@
RY . T 4§
Rﬁf‘;-T+54

o)
I

Ry T 4 509

R(” DT 452

Rﬁ(;‘” T + 5
R T+ 5™

We now apply Gauss Algorithm to bring this set of equations into diagonal form and to derive an explicit solution.

(1) 1 1 1 1 1 1 1 1 T

2) RW4+RY  _rP 0 0 0 0 0 0 R®) . T+ 6@

(3) Ry RY, +RY  —RY, 0 0 0 0 0 | RY.T+46®

(4) R Ry R;:?;d +RY) R, 0 0 0 0 | RY-T+s®
(n—3) R R RX‘;?’) R —Ri—9) 0 0 0 |RY .7 4503
(n—2) RYY Ry Ry Ry RS R( 2 _gip-? 0 0 |RP?.T 4502
(n - 1) R,(4nx_1) R.(}x_l) REI:L‘_I) Rz(4nz_1) e R.(}x 1) Rgladg) + R.(Aa: g RE’;’L dl) 0 Rxlx_l) T + 5(71 b

n n n n n n n—1 n n n

W R ED AR R AR A R R R T

We will normalize the diagonals to in lines 2,...,n to -1 by dividing the respective lines by RY Rraq- FOr convenience we introduce the



following variables :

RGD 1)

ol = 0 [—] (A.2-13)
Rad
. RY
B = R(; = (A.2-14)
Rad
. 0 3
7= [m?/s] (A.2-15)
RRad

Please note that o'”) and 3() are dimensionless, strictly greater than zero and depend on the local, time invariant root hydraulic properties,
whereas 7 has units of a root water uptake rate and depends on soil water status as well as roots radial resistance. The system of equations
now reads as

(1) 1 1 1 1 1 1 1 1 T

(2) a® 1 0 0 0 0 0 0| BP.T+43

(3) A a® 1 0 0 0 0 0| BO.T44®

(4) £H S a@® 1 0 0 0 0 BT 4~
(n—3) pr=3 pr=3) pO=3) O3 -1 0 0 B=3) . T 4 o(n=3)
(n—2) =2 g2 gn-2) gn-2) a2 _q 0 Br=2) . T 4 H(n=2)
(n—1) pr=b g1 gh=1) o1 gh=1) 401 1 0 gD .7 4 0D

(n) B pm gm g gm g o) 1| g gy

Please note that both sides of the equation are well defined, the left hand side is dimensionless and the solution () g, indeed has units of a
root water uptake rate. We will derive explicit solutions from this matrix by bringing it into a diagonal form. After adding line (n) to line
(1), the system gets

10



(1) 1480 140 145m 1480 0 1480 1480 14a™ 0 |(14B8M). T4~
(2) al® ~1 0 0 ... 0 0 0 0| B -T+4@
(3) s a® ~1 0 ... 0 0 0 0 CRANINC)
(4) s s o -1 ... 0 0 0 0 BW T 4 4@
(n — 3) ﬁ(n—S) B(n—?’) B(n—i’)) B(n—?)) o -1 0 0 0 5(71—3) T + ,y(n—?,)
(n—2) [£n=2) [fn=2) [n=2) gn=2 . g2 1 0 =2 . T 4 ,y(n—2)
(TL _ 1) 6(n—1) ﬁ(n—l) B(n—l) B(n—l) o ﬂ(n—l) a1 -1 0 6(n—1) T + ,y(n—l)
(n) E) ) ) g g E) a® 1| BT 4 Am

Please note that the last entry in the first line has vanished while all other lines remained unaltered. In order to continue the diagonalization
of the matrix, we now divide the first line by 1 + o™ and define for convenience

1+ 30
CrY = - A2-16
1+ a® ] ( )
(n)
(n—l) — "}/ 3 )
D =1 am [m?/s] (A.2-17)
We obtain
(1) -1 cor-1) -1 c0-1) k-1 oh-1) 1 0 |ctn=1) .7 4 p-1)
2 o® -1 0 0 0 0 0 0] BO.T+,O
3  B®  a® 1 0 0 0 0 0| B®.T4+4®
(4) & 1S o@® -1 0 0 0 0 BW . T 4 ~®)
(n—3) ﬁ(n.—?’) B(n=3) 5(71'—3) 5(11.—3) L _.1 0 0 0 |pn-3. T 4 (n=3)
(n—2) p=2 pr=2 gr=2) gr=2) = 402 ] 0 0 |B0=2.7 402
(n—1) ,B(n_l) B(n—l) 5(71—1) ﬁ(n—l) o 5(71—1) N VI | 0 B(n_l) T+ 7(,1_1)
(n) B B B g g JE 1SN CO N I ICUCO I AR CO)

We now add line (n — 1) to line (1), the second entry in the first line vanishs:

11



(1) ¢ 4 =1

(2) o
(3) B®
(n—3) pn=3)
(n—2) pn=2)
(n-1)  poY
(n) B

c(n=1) 4 gln-1)
-1

o®

n=9)
B(n=2)

5(71—1)
5(")

C(n—1) + ﬂ(nfl) C(n—1) + ar—1)
0 0
0 0
-1 0
am=2) -1
IB(n_l) a(n_l)
B B

o

o O

0
0
-1

n)

o

e}

—1

The following recursive definitions and steps of calculations lead the way to an recursive construction of an diagonal matrix and thus the
desired solution: We divide by C"~1) + o(*~1 define for convenience

and the system becomes

cn2 .=

D=2 .—

Cc(n=1) 4 pln=1)

C(n—-1) + aln—1)
D= 4 A(n-1)

C—1) + qn1)

=2 ((n=2)
0 0
-1 0
o -1

c=2 1

0 0

0 0

0 0

—1 0
aln=2 1

/B(nfl) Oé(nfl)
5(n) 5(%)

12
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(A.2-18)

(A.2-19)



We can now add line n — 2 to line one and continue with this procedure by using the recursive definitions

C(n—i-‘rl) 4 5(77,—7;-‘1-1)

(n—1i) ._ _ -
C T C(n—i+1) + a(n—i+1) [ ] (A.2-20)
) D(’nfiﬁ’l) + ,Y(nfiJrl)
(n—1) ._ 3 _
D = G T at /5 (a221)
Finally we obtain
(1) 1 0 0 0 0 0 0 o cW.T4+DW
(2) a? -1 0 0 0 0 0 0| B@.T+43
(3) BE a® 1 0 0 0 0 0| BO.T 44O
(4) S LS a@® 1 0 0 0 0 B T 4 4@
(n—3) B3 -3 gon-3) gu-y 10 0 0|0 .y ey
(n—2) B2 pn-2) gr-2) gn-2) a2 0 0 |82 . T 4 (-2
(n—1) pr=1  pr=1)  pr-1) -1 fn=1 qn=1) 1 0 [p=D.T 4+ ,.y(n—l)
(n) [ [ [ Q) [ g o 1| gl T 4 ,.y(n)
We can derive solutions Q(i) by forward substitution. In accordance with (Couvreur et al., 2012), we define
Rad
SUF®Y .= cW [—] (A.2-22)
¢M .= pW [m3/s] (A.2-23)

and obtain for the first root water uptake rate
QR = SUFW . T 4+ W

For the second root water uptake we obtain
@ —a®.Q0 _g®.7_ 4O
=a® . (SUFY . T4+ ¢W) - g@ .7 _ A3
=T (a® . SUFM — @) 4 o . 51 _ 43

13



We can express this in notation similar to (Couvreur et al., 2012) by defining

SUF® .= o® . syr® — 52 [—]
52— 0@ . 51 _ [m?/s]

and obtain
Qg = SUF® T + ¢

The solutions for ¢+ >= 3 share a common structure. If we introduce

SUF® .= B . SUFW 4 o3 Syup® — 56)
P =B . g 4 o). 5@ _ ~6)

the solution for Qg’g 4 1s given by

QB = 5® . QW L o®. QP _ 56 . _ 6
=3 (SUFY . T+ W) +a® . (SUF® . T 4 ¢®) — & .7 — 4B
—T- (8% . SUFM £ o®SUF® — g0)) 4 5O . 50 4 ®) . 5@ _ 4O
=T-SUF® +3®
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(A.2-24)
(A.2-25)

(A.2-26)
(A.2-27)



Observation of solution 4 unveils the general structure of the solutions for le gandi > 2

4 3
=03 G -0 507 =

=g 'QRad"'ﬁ QRad+a gc)zd_ﬁ(4)'T_7(4)
=W . (SUFY . T + ~(1)+5 (SUF® . T4+ @) 4 oW . (SUF® . T+<p(3)) W . T — A&
T- (Y. SUF® + W . SUF® + oW . SUF® — g0y 4 g0 . 50 4 g0 . 52) 4 4@ . 56 _ 4@

2 2
T- (89 . S SUFD 4 o® . SUF® — g@) 4 (58 .37 50 4 ol . g — )
=1

j=1

=T.SUF® 4 g

in which we use the recursive definitions

i—2

SUF® = 0.3 "SUFY 4 o® . SUFC=Y — g0 [] (A.2-28)
7j=1

o0 = g Z@(j) +a® . 0D 0 (3] (A.2-29)

Please note that the SU F' are dimensionless and depend only on the time invariant plant hydraulic parameters, whereas the ¢ have units
of a flux rate and depend on the transient soil water statusses. For a full accordance with the notation from Couvreur et al. (2012), we
rearrange the equations using the “compensatory root water uptake” ¢ as follows

(i) L 3 A.2-30
= S [m?/s] (A.2-30)
QM =T.SUF® = SUFY (T + oY) [m?/s]
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