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Abstract

Many studies bias correct daily precipitation from climate models to match the observed
precipitation statistics, and the bias corrected data are then used for various modelling
applications. This paper presents a review of recent methods used to bias correct
precipitation from regional climate models (RCMs). The paper then assesses four bias
correction methods applied to the weather research and forecasting (WRF) model simulated
precipitation, and the follow-on impact on modelled runoff for eight catchments in southeast
Australia. Overall, the best results are produced by either quantile mapping or a newly
proposed two-state gamma distribution mapping method. However, the differences between
the methods are small in the modelling experiments here (and as reported in the literature),
mainly because of the substantial corrections required and inconsistent errors over time
(non-stationarity). The errors in bias corrected precipitation are typically amplified in
modelled runoff. The tested methods cannot overcome limitations of the RCM in simulating
precipitation sequence, which affects runoff generation. Results further show that whereas
bias correction does not seem to alter change signals in precipitation means, it can
introduce additional uncertainty to change signals in high precipitation amounts and,
consequently, in runoff. Future climate change impact studies need to take this into account
when deciding whether to use raw or bias corrected RCM results. Nevertheless, RCMs will
continue to improve and will become increasingly useful for hydrological applications as the
bias in RCM simulations reduces.

1 Introduction

Downscaling is a technique commonly used in hydrology when investigating the impact of
climate change. It is a way of bridging the gap between low spatial resolution global climate
models (GCMs) and the regional-, catchment- or point-scale hydrological models (Fowler
et al., 2007). Dynamical downscaling techniques derive regional-scale information by using
a high-resolution climate model over a limited area and, forcing it with lateral boundary
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conditions from GCMs or reanalysis products. In brief, it is modelling with a regional
climate model, or RCM. With advances in RCMs and the increasing availability of RCM
simulations, this type of downscaling is gaining more and more popularity in hydrological
impact studies (Dosio et al., 2012; Argueso et al., 2013; Seaby et al., 2013; Teutschbein
and Seibert, 2010; Maraun et al., 2010; Bennett et al., 2012). A drawback, however, is that
precipitation simulations from RCMs are “biased”: in addition to errors inherited from the
driving GCM, there are systematic RCM model errors, due to imperfect conceptualization
and parameterization, inadequate length and quality of reference data sets, and insufficient
spatial resolution (Wilby et al., 2000; Wood et al., 2004; Piani et al., 2010b; Chen et al.,
2011a; Christensen et al., 2008; Teutschbein and Seibert, 2010). Various “bias correction”
methods have been developed in an attempt to minimize these errors (Boe et al., 2007;
Piani et al., 2010a; Johnson and Sharma, 2012; Schmidli et al., 2006; Lenderink et al.,
2007).

There have been extensive discussions in the climate change literature on the definition
of “bias”, and some have recommended limiting its use to refer to the correspondence
between a mean forecast and the mean of the observations averaged over a certain area
and time (Ehret et al., 2012); others have tried to distinguish model biases from model
shortcomings and model errors (Teutschbein and Seibert, 2013). For clarity, in this paper
we define bias as the systematic distortion of a statistical outcome from the expected value,
and we use “error” or “difference” to refer to the discrepancy between a model output and
observations.

Many studies have compared and evaluated different bias correction methods; Table 1
summarizes some recent ones and their main conclusions. Most of these studies
investigated the impact of bias correction on precipitation and temperature (see column
6, Table 1), yet only Teutschbein and Seibert (2012) and Chen et al. (2013) tested the
effect of bias correction on the outputs of hydrological models. Nearly all studies agree
that distribution-based bias correction methods (both parametric and non-parametric) give
the best performance in terms of reproducing the observed climate, whereas means-based
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methods, in particular linear scaling (LS), are almost always ranked as the least-skilled bias
correction method.

Building on the knowledge gained from previous comparison studies, we have assessed
in more detail the best performing bias correction technique – distribution mapping –
and compared its performance in several forms against the linear scaling (LS) method
as a benchmark (other names of the distribution mapping technique include quantile
matching, distribution transformation, probability mapping, and histogram equalisation).
Our main interest is to examine the effect of bias correction on modelled runoff. The
bias correction methods were applied on modelled precipitation, as it is the most critical
and difficult-to-model variable in hydrological studies (Vaze et al., 2011), and evaluated on
both precipitation and runoff using a cross-validation method. The raw and bias-corrected
precipitation data were used to drive the hydrological models. The key precipitation and
runoff characteristics were compared to those of observations to investigate how bias
correction affects RCM precipitation, and its follow-on impact on runoff propagating through
hydrological models.

Previous studies have shown mixed results in ranking the different types of distribution
mapping methods, suggesting that there may be only marginal differences between
the methods. For example, some studies have shown that distribution mapping based
on theoretical distributions outperforms other bias correction methods (Teutschbein and
Seibert, 2013, 2012; Yang et al., 2010). Others have shown that theoretical distribution
mapping performs similar to, or only marginally better than, empirical quantile mapping
(Berg et al., 2012; Chen et al., 2013). Some studies, on the other hand, show that
empirical quantile mapping demonstrates higher skill than theoretical distribution mapping
in systematically correcting RCM precipitation (Gudmundsson et al., 2012; Gutjahr and
Heinemann, 2013; Li et al., 2010; Lafon, 2013). In view of the discrepancy in the literature,
we compared three distribution mapping techniques, each with increasing degree of
dependency on the calibration data, in order to evaluate the methods based on both
accuracy and robustness.
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Berg et al. (2012) found that 30 years of calibration data are required to produce
reasonable accuracy for the estimate of precipitation variance. Due to the difficult
parameterisation and expensive computational costs associated with RCMs, this
requirement is not easily met in impact studies. In the main modelling experiments, we
chose two 8 year long periods of RCM data (16 years split in half), with significant climatic
difference between them, to examine whether the bias correction method derived from one
period works for another period, and if not, what causes it to fail. We then validated the
generality of our conclusion using two 30 year long RCM precipitation data (60 years split
in half).

Chen et al. (2013) concluded that bias correction performance is location dependent
and that virtually no bias correction method succeeds in catchments having low coherence
between RCM simulated and observed precipitation sequences. We challenged (and
confirmed) this conclusion by evaluating the precipitation sequence simulated by the RCM
and quantifying the effect of precipitation sequence on modelled runoff.

The impact of bias correction on the change signals (one period vs. another) in both
precipitation and runoff was also explored. There were two possible outcomes from this
investigation: if bias correction does not alter the change signals in the hydro-climatic
projections, then the use of bias correction should be considered either unnecessary or
safe to use, depending on the circumstance (Muerth et al., 2013). If it does alter the change
signal, bias correction could be reducing or increasing errors in the change signals, either
way, it introduces an extra level of uncertainty in the modelling chain.

This paper contributes to the present lively discussion on whether bias correction
methods should be applied to global and regional climate model data, a conversation
initiated by Christensen et al. (2008), stimulated by Ehrel et al. (2012), and continued by
more recent studies such as Muerth et al. (2013) and Teutschbein and Seibert (2013).
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2 Study area and data

2.1 Study area

The study area was located in the southern Murray–Darling Basin, Australia (Fig. 1).
Beginning in the mid-90s, this area experienced a prolonged drought, a so-called
“Millennium Drought”, for 10–15 years (Chiew et al., 2010). While the mean annual
rainfall over the Millennium Drought was 10–20 % below the long-term mean, in some
places the mean annual runoff declined by over 50 %, a reduction unprecedented in
historical records (Potter and Chiew, 2011). Eight catchments from the Loddon, Campaspe,
and Goulburn River Basins, with areas from 250 to 1033 km2, were selected for this
study. The catchments were mostly unregulated, with continuous climate and streamflow
measurements available for 1985–2000, as such the assessment period was chosen. An
8 year period unaffected by the drought (1985–1992) was used as the calibration period,
and another 8 year period strongly affected by the drought (1993–2000) was used as the
validation period. Subsequently, they were switched for cross-validation. The observations
and RCM simulations are aggregated to each catchment and compared at this level.

2.1.1 Observations

Observed daily precipitation data were derived from 0.05◦ (∼ 5 km) gridded climate surfaces
and averaged over each catchment. The source of this dataset was the SILO Data Drill (http:
//www.longpaddock.qld.gov.au/silo) of the Department of Science, Information Technology,
Innovation and the Arts, Queensland, Australia (Jeffrey et al., 2001). The SILO gridded
climate datasets provide surfaces of daily rainfall and other climate data interpolated from
high quality point measurements provided by the Australian Bureau of Meteorology. The
daily potential evapotranspiration (PET) sequences used in the hydrological modelling were
calculated from SILO climate variables using Morton’s wet environment algorithms (Chiew
and McMahon, 1991). Measured daily streamflow data were sourced from a previous study
(Vaze et al., 2010) and used to calibrate the hydrological models.
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2.1.2 RCM data

Most of the analysis in this study was carried out using daily precipitation series for
the period 1985–2000, which were simulated by Evans and McCabe (2010) using the
weather research and forecasting (WRF) model. Another 60 year long (1950–2009) WRF
precipitation dataset (Evans et al., 2014) was used to validate the conclusion reached by
using the shorter dataset. For both datasets, WRF was implemented on a 10 km grid using
lateral boundary conditions taken from the National Centers for Environmental Prediction
(NCEP)/National Center for Atmospheric Research (NCAR) reanalysis dataset (Kalnay
et al., 1996, see http://www.cdc.noaa.gov/cdc/reanalysis). The WRF simulations have
been found capable of capturing the drought experienced over the study area in another
study (Evans and McCabe, 2010). The daily precipitation series for each catchment were
aggregated from the WRF simulation by averaging all the grid cells over the catchment.

3 Method

3.1 Bias correction methods

In this study daily precipitation was the main variable subjected to bias correction. Typically,
bias correction methods aim to correct the mean, variance, and/or distribution of the
modelled precipitation by using a function h:

p̂obs = h(pmod) (1)

so that the transformed precipitation matches the observed data more closely than the
modelled precipitation.

3.1.1 Linear scaling (LS)

The simplest choice for h is probably a linear transformation

p̂obs = apmod (2)
7
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where a is a free parameter that is subject to calibration. This simple form of bias correction
is widely used to adjust precipitation from GCMs, RCMs, and statistical downscaling
methods (Maraun et al., 2010; Teng et al., 2012a). It can efficiently correct the means
but does not account for the higher moments. In this study, this method served as the
benchmark as LS has been identified in various studies as the least skilful bias correction
method (Gudmundsson et al., 2012; Lafon, 2013; Chen et al., 2013; Teutschbein and
Seibert, 2012). The LS parameter a was optimized for each season: DJF (December–
February), MAM (March–May), JJA (June–August), and SON (September–November) to
account for precipitation seasonality. Similarly, seasonal optimization was also applied for
all the other bias correction methods used in this study.

3.1.2 Distribution mapping using the gamma distribution (DMG)

The relation in Eq. (1) can also be modelled so that the distribution of the modelled
precipitation matches that of the observations:

p̂obs = F−1
obs(Fmod(pmod)) (3)

where Fmod is the cumulative distribution function (CDF) of Pmod and F−1
obs is the inverse CDF

corresponding to Pobs. These CDFs can be either theoretical distributions fitted to the data,
or empirical distributions estimated by sorting the data. The gamma distribution with shape
parameter α and rate parameter β (Eq. 4) is often used to represent non-zero precipitation
amounts (Piani et al., 2010a; Lafon, 2013), as it has the ability to approximate the positively
skewed distributions (Yang et al., 2010). The probability density function (PDF) for a gamma
random variable is given by:

f(p) =
βαpα−1e−βp

Γ(α)
(4)

where Γ(α) is the gamma function evaluated at α.
When estimating parameters for the gamma distribution, we used the method of

maximum-likelihood estimation as it is more accurate (i.e. the standard error of the
8
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estimates is lower) compared to the method of moments or least-squares estimation (e.g.
Piani et al., 2010a).

Given an occurrence of non-zero precipitation amount pi > 0 for i= 1, . . . ,n, the log-
likelihood function of the gamma distribution can be written as:

l(α,β) =
n∑
i=1

logf(pi;α,β). (5)

The maximum-likelihood estimates for α and β are chosen to maximise this log-likelihood
function. To account for dry days, we define the PDF for zero and non-zero precipitation days
f0(p) as a mixed distribution with an atom of probability at p= 0 and a gamma distribution
for p > 0 so that:

f0(p) =

{
q0, p= 0
(1−q0)βαpα−1e−βp

Γ(α) , p > 0
(6)

The maximum likelihood estimate of q0 depends only on the relative number of zero-
precipitation days (n0):

q0 = n0/n. (7)

The shape and rate parameters α and β are calculated on the non-zero precipitation
amounts.

3.1.3 Distribution mapping using a double gamma distribution (DM2G)

Daily precipitation distributions are typically heavily skewed towards high-intensity values.
As a result, when fitting a single gamma distribution, the distribution parameters will be
dictated by the most frequently occurring values, but may then not accurately represent the
extremes. To capture normal precipitation values as well as extremes, different approaches
have been tried, but the most common is to divide the precipitation distribution into

9
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segments and fit separate distributions to each segment (Yang et al., 2010; Grillakis et al.,
2013; Gutjahr and Heinemann, 2013; Smith et al., 2014). Instead of introducing arbitrary
cut-offs, we propose what can be interpreted as a two-state distribution. It is a mix of two
gamma distributions which can model non-zero precipitation amounts:

f(p) = λ
βα1

1 pα1−1e−β1p

Γ(α1)
+ (1−λ)

βα2
1 pα2−1e−β2p

Γ(α2)
(8)

with 0< λ < 1. The parameter λ is the relative occurrence of the states, and, fitted
correctly, the two gamma distributions represent rainfall occurring in high and low rainfall
states. The advantage of this approach compared to segmenting the distribution is that all
parameters can be estimated simultaneously using maximum-likelihood estimation. Thus,
six parameters – q0, α1, β1, α2, β2, and λ – were estimated from observations and from the
RCM output for the calibration period; they were then used to correct the RCM output for
the validation period.

The Kolmogorov–Smirnov (KS) test (Chakravarti and Laha, 1967) performed on both
observations and RCM simulations confirmed that the double gamma distribution gives
better fittings compared to the gamma distribution (a table of KS test results is provided as
the Supplement). Figure 2 compares the empirical distribution, gamma, and double gamma
distribution for one catchment. A significant improvement in fit is achieved by the double
gamma distribution compared to the gamma distribution, especially at the high end.

3.1.4 Empirical quantile mapping (QM)

Apart from using theoretical distributions, the empirical CDF is also commonly used to solve
Eq. (3) (Themeßl et al., 2011; Gudmundsson et al., 2012; Boe et al., 2007; Bennett et al.,
2014). Here the empirical CDFs of observed and modelled precipitation were estimated
using empirical percentiles. Values in between the percentiles were approximated using
linear interpolation. In cases where new RCM values (such as from the validation period)
were larger than the calibration values used to estimate the empirical CDF, a linear

10
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regression fit on the last five data points was used to extrapolate beyond the range of
observations and allow for possible “new extremes”.

3.2 Hydrological modelling (HM)

Two lumped conceptual daily rainfall–runoff models – GR4J (Perrin et al., 2003) and
Sacramento (Burnash et al., 1973) – were used to model runoff. The model versions were
very similar to those described in foregoing references and in Vaze et al. (2010). Both
models have interconnected soil moisture stores and algorithms that mimic the hydrological
processes of water moving into and out of soil moisture stores. The choice of models did
not have a large effect on the conclusions of this study because the errors associated
with hydrological models are relatively small compared to errors in GCM/downscaling (Teng
et al., 2012b; Chen et al., 2011b). In this study, four and 14 parameters were calibrated for
GR4J and Sacramento respectively. The models were calibrated against observations for
the two periods separately, with the model parameters optimised to maximise the NSE-bias
objective function; this function is a weighted combination of the Nash–Sutcliffe Efficiency
(Nash and Sutcliffe, 1970) and a logarithmic function of bias in the modelled mean annual
streamflow (Viney et al., 2009). The models were run at a daily time step. To estimate the
impact of bias correction on runoff, the models were driven by WRF precipitation before
and after bias correction using the optimised parameters derived from the calibrations
described above. The same PET dataset calculated using observed climate variables was
used throughout the hydrological modelling. By keeping PET the same, the possible impact
of PET and the correlation between RCM precipitation and PET was not considered in this
study to isolate the impact of precipitation.

3.3 Evaluating performance

Comparison of the bias correction methods was based on a split-sample cross-validation
approach. The 16 years of data (1985–2000) were split into two periods of 8 years each
(1985–1992 and 1993–2000). The bias correction methods were trained using one period

11
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and tested against the same period (“same”) as well as against the other period (“cross”),
and vice versa. Similarly, the hydrological models were calibrated using one period and the
parameters were used in the “cross” experiments, treating the validation period as though
there were no other information except climate from RCM, like a future period. Compared
to studies that have used “odd-year/even-year” or “leave-one-out” validation methods, the
design of this experiment puts the bias correction methods to a stricter test (contrasting
between wet and dry) so that the impact of different climatic conditions can be clearly
identified.

To gauge the impact of bias correction methods on precipitation, we compared the
RCM precipitation before and after bias correction with the observations using salient
metrics: annual and seasonal means, 99th percentile precipitation as an indicator of high
precipitation events, number of dry days (daily precipitation less than 0.1 mm) per year as an
indicator of low precipitation, and 99th percentile of 3 and 5 day cumulative precipitation as
indicators of runoff-generating events. The runoff modelled using RCM precipitation before
and after bias correction was also evaluated against key runoff characteristics: annual and
seasonal means, 99th percentile runoff as an indicator of high-flow events, and number of
low-flow days (daily runoff less than 0.01 mm) as an indicator of low-flow conditions. We
also looked at the effect of bias correction methods on change signals by comparing the
relative difference in precipitation and runoff between the two periods derived from various
methods.

4 Results

Figure 3 shows the percentage difference in raw RCM and bias corrected RCM precipitation
relative to observations for annual and seasonal means, 99th percentile precipitation, 99th
percentile 3 and 5 day cumulative precipitation, and the difference in number of dry days per
year. Generally, the raw RCM precipitation exhibits negative errors in annual and seasonal
means, with the median errors in raw RCM annual means being −9.1 and −22.5 % for the
two periods respectively. There are larger (further away from zero) errors in the drier period

12
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(1993–2000). The 99th percentile precipitation is mostly overestimated in one period (1985–
1992) and underestimated in the other. The raw RCM performs quite well in reproducing
99th percentile 3 and 5 day cumulative precipitation but slightly overestimates number of
low precipitation (< 0.1 mm) days.

4.1 Impact on precipitation

The calibration results in Fig. 3 (denoted by “_same”) show that, as expected, all the bias
correction methods are able to match the annual and seasonal means of precipitation
when validating on the same period as the calibration period, (see LS_same, DMG_same,
DM2G_same, and QM_same in the boxplots of annual and seasonal means in Fig. 3). For
instance, LS perfectly corrects the median errors in annual means for the two periods (0
and 0 %), followed by DM2G (−0.3 and −0.2 %), QM (0.4 and 0.6 %), and DMG (−0.7
and −0.7 %). Only the distribution mapping methods (DMG, DM2G, and QM) are able
to reduce the errors in the high- and low-precipitation characteristics; QM in particular
performs exceptionally well in reproducing 99th percentile precipitation and number of dry
days per year. LS is not only unable to reduce the errors in high- and low-precipitation
characteristics, but also increases the errors in some cases, as seen in the 99th percentile
precipitation for 1985–1992 (period I, left panels) and number of dry days per year for 1993–
2000 (period II, right panels). This is consistent with the findings from previous studies
(Chen et al., 2013; Teutschbein and Seibert, 2012).

By contrast, the cross-validation results (denoted by “_cross”) seem to depend on the
period, with most of the bias correction methods reducing the raw RCM errors (closer to
zero) in period II but increasing the raw RCM errors (away from zero) in period I. The
exception is DJF mean precipitation, where all the bias correction methods increase the
errors in both periods. Although DM2G performs better compared to other bias correction
methods for nearly all precipitation characteristics (shown by lower median errors given
by DM2G_cross in Fig. 3), the difference between the bias correction methods is small
compared to the overall large overestimation in period I and underestimation in period II.
The cause of this “period dependency” is discussed in Sect. 5.1. It is notable that the errors

13
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in DJF and MAM mean precipitation are generally larger than in other seasons; the reason
is that the amounts of precipitation in DJF and MAM are smaller in these catchments since
they are dominated by winter precipitation, with more than 60 % of the precipitation coming
from JJA and SON.

4.2 Impact on runoff

Figure 4 presents the relative differences in runoff characteristics simulated by GR4J
using raw RCM and bias corrected precipitation when compared to those modelled using
observed precipitation. The layout is similar to Fig. 3 except, for perspective, two boxes are
added to each panel to show the conventional hydrological model errors: “HM_calib”, which
represents the calibration error (when runoff from GR4J driven by observed precipitation
is compared with observed streamflow); and “HM_cross”, which represents the cross-
validation error (when GR4J runoff driven by observed precipitation and using parameters
calibrated to the same period is compared with those using parameters calibrated to
a different period).

The errors in runoff show a similar pattern to those for precipitation, but are much larger.
They are also considerably larger than the hydrological model errors. For instance, the
median errors in mean annual runoff simulated using raw RCM precipitation increase to
−33.1 % (period I) and −69.5 % (period II). The calibration results show that LS is no
longer able to correct the errors in annual and seasonal mean runoff to zero due to errors
in high-percentile precipitation (see the 99th percentile precipitation plot in Fig. 3) and,
consequently, in high runoff. QM does not perform very well in correcting the high- and low-
runoff characteristics as it was able to do for the high- and low-precipitation characteristics
which may relate to its weakness (as shown in Fig. 3) in reproducing 3 day and 5 day
cumulative precipitation. These results highlight the importance of precipitation sequence
in runoff production, as discussed in Sect. 5.3.

The cross-validation results show that, after bias correction, the median errors in period
I are increased to 62–84 % by various bias correction methods. While the median errors
in period II are decreased, an error of −34 to −48 % is still considered large compared

14
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to the conventional hydrological model error of less than 10 % as shown by HM_calib and
HM_cross.

Figure 5 shows the same results as for Fig. 4 but using the Sacramento hydrological
model. Similar observations can be made from this figure but with a larger range of the
errors, probably because the Sacramento model errors (HM_calib and HM_cross) are larger
in some seasons. Sacramento does better in reproducing observed low flows in period I but
slightly worse than GR4J in reproducing high flows. In general, the bias correction affects
two hydrological models similarly, although the magnitude of impact can be different. As the
focus of this study is on the impact of bias correction method, only results from GR4J are
presented and discussed in the following sections.

4.3 Impact on change signals

Figure 6 presents the differences in precipitation change signals when comparing raw RCM
simulation and bias corrected RCM simulations to observations. Here, the “change” (∆P )
is defined as the relative difference of various charachteristics between period II and period
I (Eq. 9):

∆P =
PII −PI

PI
· 100%. (9)

The baseline in Fig. 6 is the change derived from observations (∆Pobs); the “difference”
is between the baseline and the change derived from the raw RCM (∆PRCM −∆Pobs) and
bias-corrected RCM simulations (∆PBC −∆Pobs). The ∆PBC values used to plot the left
panel of each plot in Fig. 6 were derived assuming period I is the validation period and
period II the calibration period:

∆P I
BC =

PII_same −PI_cross

PI_cross
· 100%. (10)
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Similarly, the ∆PBC values used to plot the right panel were derived assuming period II is
the validation period and period I the calibration period:

∆P II
BC =

PII_cross −PI_same

PI_same
· 100%. (11)

For the majority of precipitation characteristics, all bias correction methods seem to produce
similar range and median of differences as given by the raw RCM, except for 3 and
5 day cumulative precipitation, where the raw RCM does better than the bias-corrected
simulations. To take a closer look, we altered the baseline from change in observations
(∆Pobs) to change in raw RCM (∆PRCM), and the results (∆PBC −∆PRCM) are presented
in Fig. 7. While the bias correction methods do not seem to affect changes in precipitation
means, they do modify changes in high precipitation characteristics as shown in Fig. 7
as a large range of differences given by LS, DMG, DM2G, and QM in 99th percentile
precipitation, and 99th percentile 3 and 5 day cumulative precipitation plots.

The follow-on effects on runoff can be seen in Figs. 8 and 9 which show differences
in runoff changes (substitute P with Q in Eqs. 9–11) corresponding to Figs. 6 and 7.
The differences in runoff changes are much larger compared to those in precipitation
changes. The bias correction methods affect change signals in every runoff characteristic
(Fig. 9), especially high flows. This finding is consistent with Hagemann et al. (2011),
Cloke et al.(2013), and Gutjahr and Heinemann (2013), who showed that bias correction
can alter climate change signals, a result slightly different from that of Muerth et al. (2013)
who concluded that the impact of bias correction on change signals in flow is weak (except
for the timing of the spring flood peak).

5 Discussion

5.1 Non-stationarity of the RCM bias

As shown in Figs. 3–5, the cross-validation results are period-dependent. When the errors in
the calibration period are larger than, or in a different direction to, the errors in the validation

16



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

period, all the bias correction methods over-correct the errors in the validation period. When
the errors in the calibration period are smaller than, and in the same direction as, the errors
in the validation period, all the bias correction methods can reduce errors somewhat even
though the under-correction can still be substantial. This is mainly due to the inconsistent
errors over time. The large magnitude of errors to be corrected amplifies the differences
in the bias correction relationships and results in clear under-correction in one period and
over-correction in another.

The differences in errors from the two periods may be a result of insufficient length of data
to achieve robust calibration (Berg et al., 2012), or it could be due to the non-stationarity
of RCM bias. It is difficult to assess the non-stationarity of biases because time series
long enough to achieve robust calibration and validation are rare (Maraun, 2012), and the
definition of “long enough” varies for dry and wet regions. However, the probability of bias
non-stationarity is high (Ehret et al., 2012). Thus, the results shown here serve as a good
indicator for what could happen if bias were to vary over time.

Using a longer record is likely to improve the outcome because it better represents the
complete variability, and has less likelihood of calibration and validation periods being very
different. To test this, we repeated the same analysis on precipitation using a 60 year long
RCM simulation split in half – 30 years for calibration and 30 years for cross-validation.
The results (Fig. 10) show improved cross-validation performance across bias correction
methods and across characteristics. Nevertheless, the under-correction in the first period
(1950–1979), and the over-correction in the second (1980–2009) are still apparent in most
of the characteristics. Note that the runoff experiments cannot be repeated using the longer
dataset due to limited streamflow data, but it is reasonable to assume that this tendency will
have larger manifestation in modelled runoff.

The results suggest that non-stationarity of the RCM bias is one of the main obstacles
preventing bias correction from achieving good outcomes, which makes the choice of bias
correction method a secondary issue. When applying bias correction to a future period
(as in most climate change impact studies), it is better to calibrate using a long dataset
(30 years or more), or at least a data period that best reflects the future (e.g. calibrate
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over a dry period and apply to a dry future RCM simulation, and vice versa). As the bias
correction relationship is unlikely to be the same for two periods, the more different the
periods are (different means, extremes, low-frequency variability, etc.), and the larger the
magnitude of bias to be corrected, the smaller the chance of getting satisfactory results
from bias correction. These problems have implications on the application of bias correction
to climate model outputs in hydrological impact studies and related sectors (even more
so at extremes like floods). Projections derived from bias corrected climate input should
therefore be interperated cautiously and/or combined with other approaches (Cloke et al.,
2013; Smith et al., 2014).

5.2 Performance of the bias correction methods

Figure 11 shows a selected example comparing daily CDF of the four bias correction
methods (LS, DMG, DM2G, and QM) for calibration and cross-validation experiments. The
LS performs poorly in both calibration and cross-validation as it under-estimates small and
medium rainfall values (< 95th percentile) and over-estimates the very high rainfall values
(> 95th percentile). The DMG performs significantly better than the LS because it attempts
to correct the distribution rather than simply scaling the data with one factor. The DM2G
performs better than DMG for its better representation of distribution, especially at the high
end (as shown in Fig. 2). By definition, the QM will always give perfect results in calibration
but the over-fitting can lead to poorer performance in cross-validation, particularly when the
errors in the two periods are very different.

In general, the best results are produced by either QM or DM2G in this study. The non-
parametric QM fits every part of the entire distribution and performs the best when the
errors in the two periods are similar. When the errors are different in the two periods, the
DM2G is likely to be more robust (theoretical distribution with 6 parameters) and has less
chance of over-fitting like QM is liable to do. Nevertheless, the difference between the three
distribution mapping methods are very small in our modelling experiments (and as reported
in the literature) because of the large corrections required which are then amplified by the
inconsistent errors in different periods, as discussed in Sect. 5.1.
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5.3 Importance of precipitation sequence

The errors in the bias corrected precipitation are significantly amplified in modelled runoff.
The choice of hydrological models does not have big impact because of the relatively
small errors associated with hydrological models. Although the RCM precipitation can be
bias corrected to practically match the observed precipitation means and high precipitation
amounts (see calibration results in Fig. 3), there can still be considerable errors in the
modelled runoff (see calibration results in Fig. 4).

Apart from precipitation intensity, other aspects of precipitation can also affect runoff.
Precipitation sequence is one of them as runoff generation is driven by high precipitation
events that last over several days, and preceding events influence runoff by changing
soil moisture content. The importance of precipitation sequence can be quantified in our
modelling experiments by analysing calibration results for the QM. As shown in calibration
plot (left) in Fig. 11, QM corrects the RCM daily precipitation to perfectly match the observed
daily precipitation distribution; therefore the errors in the modelled runoff should mainly
reflect the differences in the precipitation sequences between RCM and observations. To
examine whether this is the case, we compared the wet spell histograms of observations,
RCM and QM corrected RCM precipitation. Figure 12 shows the results for one of the study
catchments. Compared to observations, the raw RCM simulation shows a lack of short
events and an excess of very long events. This is the widely reported “drizzle effect” – RCMs
simulate too many low-intensity precipitation events and too few high-intensity precipitation
events (Gutowski et al., 2003). Although the QM is able to break long events into many
shorter ones by reducing the “drizzles” with intensity below probability q0 (Eq. 7) to zero, as
shown by the increased number of short events, there are still differences in the wet spell
frequencies. These differences are due to the lack of short wet spells followed by long dry
spells, as seen in the scatter plots in Fig. 13, which show length of dry spells on the y-axes
and the following wet spells on the x axes.

The runoff errors in the QM calibration results, for the eight catchments in the two
calibration periods, range from −17 to 24 % (median of 5 %) for the 99th percentile runoff
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and −7 to 7 % (median of 1 %) for mean annual runoff (“QM_same” in Fig. 4). These
errors are significant considering that the precipitation distribution perfectly matches that
of the observations. But they are relatively small compared to the errors in runoff from bias
correction for cross-validation periods.

These results show that the bias correction methods tested here are unable to overcome
the discrepancy in the precipitation sequence. It is important for the RCMs to better simulate
the number and length of storms, and the dry periods that intersperse them. After all, the
ultimate approach to reduce errors in models is to improve the models themselves. This will
require better process descriptions and implementations, higher spatiotemporal resolution,
and perhaps using multi-model/multi-physics ensembles, as seen in recent development in
this area (Ji et al., 2014; Evans et al., 2012; Flaounas et al., 2011).

6 Conclusions

This paper reviewed recent studies comparing various bias correction methods as applied
to RCM simulated precipitation. The distribution mapping techniques were selected to
remove errors (relative to observations) in daily precipitation series simulated by the
weather research and forecasting (WRF) model for eight catchments in southeast Australia.
The performance of three different techniques – DMG, DM2G, QM – and a linear scaling
method (LS) as a benchmark, was evaluated with the focus on the follow-on impact on
runoff modelling.

The results confirm the relatively higher skill of the distribution-based methods, compared
to the linear scaling method, in correcting key precipitation characteristics. The best results
are produced by either QM or DM2G. The non-parametric QM fits every part of the entire
distribution and performs the best when the errors in the calibration and validation periods
are similar. When errors in the two periods are different, DM2G can be more robust as it
has a smaller number of parameters and so there is less chance of over-fitting. However,
the difference between the distribution mapping methods tested here is small because of
the large corrections required and the inconsistent errors in the calibration and validation
periods (non-stationarity).
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The errors in bias corrected precipitation lead to amplified errors in modelled runoff.
The bias correction methods tested here cannot overcome the limitations of the RCM in
simulating all precipitation features that influence runoff, in particular, daily precipitation
sequence. The errors in modelled runoff are strongly influenced by the inconsistent RCM
errors over time, although this can be partially overcome by using a long calibration dataset.

Results further show that whereas bias correction does not seem to affect the change
signals in precipitation means, it can introduce extra uncertainty to the change signals
in high precipitation amounts, and consequently, in runoff. Future climate change impact
studies need to take this into account when deciding whether to use raw or bias corrected
RCM results.

These problems associated with bias correction in general have implications on its
application to climate model outputs in hydrological impact studies. Projections derived from
bias corrected climate input should therefore be interperated with caution and/or combined
with other approaches. Nevertheless, the bias in RCM simulations will continue to reduce as
RCM accuracy improves and RCMs will become increasingly useful for hydrological studies.

The Supplement related to this article is available online at
doi:10.5194/hessd-0-1-2014-supplement.
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Table 1. Recent studies comparing different RCM bias correction methods.

Study Study area Spatial
resolution

Validation period Number of
bias
correction
methods
assessed
on precipi-
tation

Variable(s)
assessed

Statistics evaluated Metric(s) used Conclusion

Themeßl et al.
(2011)

Domain cov-
ering the
Alpine region
including Aus-
tria

Modelled at
10 km
resolution
Validated at
station scale

11 years of data
(1981–1990, 1999)
were used in a 11-
fold “leave one out”
cross-validation

Seven Precipitation mod-
elled by
RCM MM5 forced
with the ERA-40
reanalysis data

Median, variability, and
indicators for extremes

Bias Quantile mapping shows the best
performance, particularly at high
quantiles.

Berg et al.
(2012)

Domain
covering
entire
Germany
and its near
surrounding
areas

Modelled
at 7 km
resolution
Validated
against 1 km
gridded
observations

30 years of data
(1971–2000)
Two realisations
were used for
calibration and vali-
dation respectively

Three Precipitation,
temperature
modelled by
RCM COSMO-
CLM driven by
a GCM (ECHAM5-
MPIOM)

Mean and variance of
temperature and precipi-
tation

Bias Histogram equalisation (HE)
method corrects not only means
but also higher moments, but
approximations of the transfer
function are necessary when
applying to new data. About 30 year
long calibration period is required
for a reasonable approximation.

Teutschbein
and Seibert
(2012, 2013)

Five catch-
ments in
Sweden

Modelled at
25 km
resolution
Validated at
catchment
scale (taken
from one grid
cell)

40 years of data
(1961–1990) were
used for calibration
and validation in the
first study and split
into warm/cold years
and dry/wet years for
cross-validation in
the second study

Six Precipitation, tem-
perature modelled
by 11 RCMs driven
by different GCMs
Streamflow
simulated by
hydrological model
HBV

Mean, standard devia-
tion, 10th and 90th per-
centile daily temperature
during summer and win-
ter
Mean, standard
deviation, coefficient of
variation, 90th percentile,
probability of wet days,
and average intensity of
wet days during summer
and winter
Mean monthly stream-
flow, Spring flood peak,
Autumn flood peak, total
flows, and annual 15 day
low flows.

Mean Ab-
solute Error
(MAE) on
temperature
and pre-
cipitation
CDFs

Distribution mapping perform the
best for both climate projections and
hydrological impact qualifications. It
performs especially well in terms
of the simulation of hydrological
extremes. It also shows the best
transferability to potentially changed
climate conditions.

Gudmundsson
et al. (2012)

Domain cov-
ering Norway
and Nordic
Arctic

Modelled at
25 km
resolution
validated at
station scale

41 years of data
(1960–2000) split
into 10 subsam-
ples for a 10-fold
“leave one out”
cross-validation

11 Precipitation
modelled by RCM
HIRHAM forced
with the EAR40
reanalysis data

Precipitation at 0.1,
0.2,. . . 1.0 percentile

Mean
Absolute
Errors (MAEs)
at equally
spaced
probability
intervals

Nonparametric methods perform
the best in reducing systematic
errors, followed by parametric trans-
formations with three or more free
parameters, with the distribution
derived transformations rank the
lowest.
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Table 1. Continued.

Study Study area Spatial
resolution

Validation period Number of
bias
correction
methods
assessed
on precipi-
tation

Variable(s)
assessed

Statistics evaluated Metric(s) used Conclusion

Lafon et al.
(2013)

Seven catch-
ments in
Great Britain

Modelled at
25 km
resolution
Validated at
catchment
scale

40 years of data
(1961–2000)
split into moving
window of 10 year
subsamples for a 31-
fold “leave one out”
cross-validation

Four Precipitation
modelled by
RCM
HadRM3-PPE-
UK driven
by
a GCM
(HadCM3)

Mean, standard devia-
tion, Coefficient of varia-
tion, skewness, kurtosis

Average of
the Relative
Differences (ARD)

If both precipitation data sets (mod-
elled and observed) can be approx-
imated by a gamma distribution,
the gamma-based quantile mapping
method offers the best combination
of accuracy and robustness. Other-
wise, the nonlinear method is more
effective at reducing the bias. The
empirical quantile mapping method
can be highly accurate, but results
are very sensitive to the choice of
calibration time period.

Chen et al.
(2013)

10 catch-
ments in
North
America

Modelled at
50 km
resolution
Validated at
catchment
scale

20 years of data
(1981–2000) split
into odd years
and even years for
cross-validation

Six Precipitation
modelled by
four RCMs
(CRCM,
HRM3, RCM3,
and WRFG)
driven by
NCEP reanaly-
sis data
Flow dis-
charge
simulated
using the
hydrological
model HSAMI

Mean, standard devia-
tion, and 95th percentile
wet-day precipitation
Mean daily discharge,
the mean of 95th per-
centile spring high flow,
and the mean of 5th
percentile summer low
flow

Absolute Relative
Error (ARE) on
precipitation and
discharge
Nash–Sutcliffe
model Efficiency
coefficient (NSE),
Root Mean
Square Error
(RMSE), and
Transformed Root
Mean Square
Error (TRMSE)
for daily discharge

The performance of bias correc-
tion is location dependent. The
distribution-based methods are con-
sistently better than the mean-
based methods for both precipi-
tation projections and hydrological
simulations.

Gutjahr and
Helnemann
(2013)

A German
state and its
surrounding
areas

Modelled at
4.5 km
Validated at
station scale

Ten years of data
(1991–2000), with
each year used in a
“leave-one-out”
cross-validation
resulting in 81
combinations

Three
distribution-
based
methods

Precipitation,
temperature
modelled by
RCM
COSMO-CLM
driven
by a GCM
(ECHAM5)

Precipitation at 0.1,
0.2,. . . 1.0 percentile

Mean Absolute
Errors (MAEs) at
equally spaced
probability
intervals

The empirical method outperforms
both parametric alternatives.
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Figure 1. Map showing the eight study catchments (white with red outline, large map), and their
locations within the major river basins devised by the Australian Water Resources Council (AWRC).
The unique symbols in each catchment identify the catchments and will be used in later figures.
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Figure 2. CDF plot comparing a gamma distribution (red) and a double gamma distribution (green),
which consists of two gamma distributions (blue and yellow), fitted to the same precipitation data for
one study catchment. The empirical distribution is shown in black.
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Figure 3. Relative bias of precipitation characteristics, expressed as percentage differences relative
to observations between raw RCM and bias corrected RCM precipitation. Each panel displays
a different characteristic (title at top of panel) and the percentages were calculated after applying four
different bias correction methods (key at bottom) to eight catchments over two periods (1985–1992,
left; 1993–2000, right). The bias correction methods were LS, DMG, DM2G, and QM (see text), and
the “_same” suffix denotes calibration and the “_cross” refers to cross-validation. Boxes indicate
interquartile range; markers indicate the numbers from each catchment (markers are constrained
to the edges of the plotting area if the values exceed the range of plotting); the symbol for each
catchment can be found in Fig. 1.
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Figure 4. Relative bias in runoff characteristics derived from precipitation-driven hydrological model
GR4J. Values are percentage differences, relative to runoff modelled from observed precipitation,
when GR4J was driven by raw RCM precipitation and bias corrected RCM precipitation. Same layout
as Fig. 3, with additional HM_calib and HM_cross, which represent calibration errors and cross-
validation errors from GR4J alone.
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Figure 5. As for Fig. 4 but using results from hydrological model Sacramento.
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Figure 6. Differences between RCM simulations and observations in change signals in precipitation
characteristics between periods 1985–1992 and 1993–2000. The left and right panels indicate the
validation periods in each case.
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Figure 7. Differences between bias-corrected RCM and raw RCM simulations in change signals in
precipitation characteristics between periods 1985–1992 and 1993–2000. The left and right panels
indicate the validation periods in each case.
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Figure 8. As for Fig. 6, but showing runoff characteristics modelled by GR4J.
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Figure 9. As for Fig. 7, but showing runoff characteristics modelled by GR4J.
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Figure 10. As for Fig. 3, but showing results from the long-term (two 30 year long) experiments.
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Figure 11. Comparison of CDFs derived from observed, raw RCM, and bias-corrected RCM daily
precipitation data for one study catchment. The left plot shows calibration results (note that the
observed precipitation is completely hidden by QM in this plot) and the right plot shows cross-
validation results.
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Figure 12. Histograms of consecutive wet days for observed, raw RCM, and QM bias-corrected
RCM precipitation for one study catchment.
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Figure 13. Scatter plots showing the length of each dry spell on y axes and the length of the
following wet spell on x axes for observed, raw RCM, and QM bias-corrected RCM precipitation
for an example catchment.
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