

Drivers of Spatial and Temporal Variability of Streamflow in the Incomati River Basin

A.M.L. Saraiva Okello^{1,3}, I. Masih¹, S. Uhlenbroek^{1,2}, G. P. W. Jewitt³, P. van der Zaag^{1,2}, E. Riddell³

¹ UNESCO-IHE, Institute for Water Education, PO Box 3015, 2601 DA Delft, The Netherlands;

e-mail: a.saraiva@unesco-ihe.org

² Delft University of Technology, Department of Water Resources, PO Box 5048, 2600 GA Delft, The Netherlands

³ Centre for Water Resources Research, School of Agriculture, Earth and Environmental Science, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa

Abstract

13 The Incomati is a semi-arid trans-boundary river basin in southern Africa, with a high variability of
14 streamflow and competing water demands from irrigated agriculture, energy, forestry and industries.
15 These sectors compete with environmental flows and basic human water needs, resulting in a 'stressed'
16 water resources system. The impacts of these demands, relative to the natural flow regime, appear
17 significant. However, despite being a relatively well-gauged basin in South Africa, the natural flow
18 regime and its spatial and temporal variability are poorly understood and remain poorly described,
19 resulting in a limited knowledge base for water resources planning and management decisions. Thus,
20 there is an opportunity to improve water management, if it can be underpinned by a better scientific
21 understanding of the drivers of streamflow availability and variability in the catchment.

22 In this study, long-term rainfall and streamflow records were analysed. Statistical analysis, using annual
23 anomalies, was conducted on 20 rainfall stations, for the period ~~of 1950 to~~ 2011. The Spearman Test was
24 used to identify ~~any~~ trends in the records at annual and monthly time scales. The variability of rainfall
25 across the basin was confirmed to be high, both intra- and inter-annually. The statistical analysis of
26 rainfall data revealed no significant trend of increase or decrease ~~on for the studied period~~. Observed flow
27 data from 33 gauges was screened and analyzed, using the Indicators of Hydrologic Alteration (IHA)
28 approach. ~~Long term analyses were conducted to identify temporal/spatial variability and trends in~~
29 ~~streamflow records~~. Temporal variability was high, with the coefficient of variation of annual flows in the

1 range of 1 to 3.6. Significant declining trends in October flows, and low flows indicators were also
2 identified at most gauging stations of the Komati and Crocodile sub-catchments, however no trends were
3 evident on the other parameters, including high flows. The trends were mapped, using GIS and were
4 compared to historical and current land use. These results suggest that land use and flow regulation
5 are larger drivers of temporal changes in streamflow than climatic forces. Indeed, over the past 40
6 years, the areas under commercial forestry and irrigated agriculture have increased over four times.

7

8 **1. Introduction**

9 Global changes, such as climate change, population growth, urbanization, industrial development and the
10 expansion of agriculture, put huge pressure on natural resources, particularly water (Jewitt, 2006a;Milly et
11 al., 2008;Vörösmarty et al., 2010;Miao et al., 2012;Montanari et al., 2013). In order to manage water in a
12 sustainable manner, it is important to have a sound understanding of the processes that control its existence,
13 the variability in time and space and our ability to quantify that variability (Jewitt et al., 2004;Hu et al.,
14 2011;Montanari et al., 2013;Hughes et al., 2014).

15 Water is critically important to the economies and social well-being of the predominantly rural
16 populations within southern Africa, where environmental sustainability issues are increasingly coming
17 into conflict with human development objectives and where data are also scarce. The local economies and
18 livelihoods of many southern African communities are strongly dependent on rain-fed, or irrigated,
19 agriculture and fisheries, and water availability remains one of the main constraints to development in
20 Africa (Jewitt, 2006a;Pollard and du Toit, 2009). Hydro-power is also locally important, while a
21 substantial amount of foreign income is derived from wildlife tourism in some countries of the region
22 (Hughes et al., 2014).

23 Climate change intensifies the global hydrological cycle, leading to more frequent and variable extremes.
24 For southern Africa, recent studies forecast an increase in the occurrence of drought due to decreased
25 rainfall events (Shongwe et al., 2009;Rouault et al., 2010;Lennard et al., 2013). Furthermore, it is
26 expected that temperatures will rise, and thus the hydrological processes driven by it will intensify
27 (Kruger and Shongwe, 2004;Schulze, 2011). Compounding the effect of climate change are the increased
28 pressures on land and water use, owing to increased population and the consequent requirements for food,
29 fuel and fibre (Rockström et al., 2009;Warburton et al., 2010;Warburton et al., 2012). Areas of irrigated
30 agriculture and forestry have been expanding steadily over the past decades. Urbanization also brings
31 with it an increase in impervious areas and the increased abstraction of water for domestic, municipal and
32 industrial purposes (Schulze, 2011).

1 In southern Africa, these pressures have led to ~~dramatic~~ changes in natural streamflow patterns. However,
2 not many studies are available concerning the magnitude of such changes and what the main drivers are
3 (Hughes et al., 2014). Projections on the impact of climate change on the water resources of South Africa
4 were investigated by Schulze (2012) and ~~some research has been done (Fanta et al., 2001; Love et al., 2010), analysing~~ streamflow trends ~~in other of some~~ southern Africa rivers ~~have been analysed~~ (Fanta et
5 al., 2001; Love et al., 2010), but no such studies are available for the Incomati Basin.
6

7 The Incomati is a semi-arid trans-boundary river basin in southern Africa, which is water-stressed
8 because of high competing demands from, amongst others, irrigated agriculture, forestry, energy,
9 environmental flow and basic human needs provision (DWAF, 2009b; TPTC, 2010). The impact of these
10 demands, relative to the natural flow regime, is significant. Hence, there is an opportunity to improve
11 water management, if a better scientific understanding of water resources availability and variability can
12 be provided (Jewitt, 2006a).

13 The goal of this paper is to determine whether or not there have been significant changes in rainfall and
14 streamflow ~~dynamics~~ during the time of record, and what the potential reasons and implications of such
15 changes are. The main research questions are:

16 • Does the analysis of precipitation and streamflow records reveal any persistent trends?
17 • What are the drivers of these trends?
18 • What are the implications of these trends for water management?

19 The variability and changes of rainfall and streamflow records were analysed and the possible drivers of
20 changes were identified from the literature, ~~as well as from the further analysis of the water resources~~
21 ~~assessment reports previously conducted in the area~~. The spatial variation of trends on streamflow and
22 their possible linkages with the main drivers are analysed. Based on the findings, approaches and
23 alternatives for improved water resources management and planning are proposed.

24

25 **2. Methodology**

26 **2.1 Study area**

27 The Incomati River Basin is located in the south-eastern part of Africa and it is shared by the Kingdom of
28 Swaziland, the Republic of Mozambique and the Republic of South Africa (Figure 1). The total basin area
29 is approximately 46 750 km², of which 2 560 km² (5.5%) is in Swaziland, 15 510 km² (33.2%) in
30 Mozambique and 28 681 km² (61.43%) in South Africa. The Incomati watercourse includes the Komati,

1 Crocodile, Sabie, Massintonto, Uanetze and Mazimechopes Rivers and the estuary (TIA, 2002). The
2 Komati, Crocodile and Sabie are the main sub-catchments, contributing about 94% of the natural
3 discharge, with an area of 61% of the basin. The Incomati River rises in the ~~mountains~~Highveld and
4 escarpment (2000 metres above sea level) in the west of the basin and drops to the coastal plain in
5 Mozambique. The general climate in the Incomati River Basin varies from a warm to a hot humid climate
6 in Mozambique to a cooler dry climate in South Africa in the west. The mean annual precipitation of
7 about 740 mm a^{-1} falls entirely during the summer months (October to March). The Incomati (see-Figure
8 1) can be topographically and climatically divided into three areas (TPTC, 2010):

- 9 • High-lying escarpment, with a high rainfall (800 to 1600 mm a^{-1}), low temperatures (mean annual
10 average of 10 to 16°C) and lower potential evaporation (1600 to 2000 mm a^{-1});
- 11 • Highveld and middle Lowveld, which lies between the Drakensberg and the Lebombo Mountains,
12 warmer than the escarpment (mean annual average of 14 to 22°C), with rainfall that reduces
13 towards the east (400 to 800 mm a^{-1}) and high potential evaporation (2000 to 2200 mm a^{-1});
- 14 • Coastal plain, located mostly in Mozambique, with higher temperatures (mean annual average of
15 20 to 26°C) and lower rainfall (400 to 800 mm a^{-1}) in the west, increasing eastward towards the
16 coast, where there is also high potential evaporation (2200 to 2400 mm a^{-1}).

17 The ~~complex~~ geology is complex, of the basin is characterized by sedimentary, volcanic, granitic and
18 dolomitic rocks, as well as quaternary and recent deposits (Van der Zaag and Vaz, 2003). The soils in the
19 basin are highly variable, ranging from moderately deep clayey loam in the West, to moderately deep
20 sandy loam in the Central areas and moderately deep clayey soils in the East. The dominant land uses in
21 the catchment are commercial forestry plantations of exotic trees (pine, eucalyptus) in the escarpment
22 region, dryland crops (maize) and grazing in the Highveld region and irrigated agriculture (sugarcane,
23 vegetables and citrus) in the Lowveld (DWAF, 2009b;Riddell et al., 2013). In the Mozambican coastal
24 plains, sugarcane and subsistence farming dominate. A substantial part of the basin has been declared a
25 conservation area, which includes the recently established Greater Limpopo Transfrontier Park (the
26 Kruger National Park in South Africa and the Limpopo National Park in Mozambique are part of it) and
27 the recently established Great Limpopo Transfrontier Park (TPTC, 2010).

28 The level of water abstraction in the Incomati River is very high and the actual water demand is projected
29 to increase in the future, as a result of further economic development and population growth (Nkomo and
30 van der Zaag, 2004;LeMarie et al., 2006;Pollard et al., 2011). The consumptive use of surface water
31 amounts to more than $1,880$ million cubic metres per annum ($10^6 \text{ m}^3 \text{ a}^{-1}$), which represents 51% of the
32 average amount of surface water generated in the basin (Van der Zaag and Vaz, 2003). The major water

1 consumers (see Table 1 and Table 2), accounting for 91% of all consumptive water uses, are the irrigation
2 and forestry sectors, followed by inter-basin water transfers to the Umbeluzi Basin and the Olifants
3 Catchment in the Limpopo Basin (Van der Zaag and Vaz, 2003;DWAF, 2009b;TPTC, 2010). Since the
4 1950s the area of irrigated agriculture and forestry has increased steadily, particularly in the Komati and
5 Crocodile systems,as can be seen on Table(Table 2).

6 2.2 Data and Analysis

7 2.2.1 Rainfall

8 Annual, monthly and daily Rainfall data of the annual, monthly and daily rainfall for Southern Africa
9 for the period of 1905 to 2000 was extracted from the Lynch (2003) database. The database consists of
10 daily precipitation records for over 12000 stations in Southern Africa, and data quality was checked and
11 some data was patched. The main custodians of the rainfall data are SAWS (South Africa Weather
12 Service), SASRI (South Africa Sugarcane Research Institute) and ISCW (Institute for Soil Climate and
13 Water). About 20 stations out of 374 available for Incomati were selected for detailed analysis. The
14 selection criteria were, with the best the quality of -data, evaluated by the percentage of reliable data in
15 the database, and the representative spatial coverage of the basin. (evaluated by the percentage of reliable
16 data indicated on the database) and the representative spatial coverage of the basin were selected for
17 detailed analysis. The percentage of reliability represents the percentage of good observed data over the
18 entire time series. Eight of the 20 stations time series were extended up to 2012, using new data collected
19 from the SAWS.

20 The spatial and temporal heterogeneity in rainfall across the study area was characterised using statistical
21 analysis and annual anomalies. The time series of annual and monthly rainfall from each station was
22 subjected to the Spearman Test, in order to identify any trends for the period of 1950-2000 and 1950-
23 2011. Two intersecting periods were chosen, to evaluate the consistency of the trends. Due to natural
24 climatic variability, there are sequences of wetter and drier periods, so some trends appearing in a specific
25 period might be absent when a longer or shorter period is considered. The Pettitt Test (Pettitt, 1979) is
26 used to detect abrupt changes in the time series. Potential change points divide the time series in two sub-
27 series. Then the significance of change of mean and variance of the two sub-series is evaluated by F and
28 T-tests. Potential change points were evaluated with a 0.8 probability threshold and significance of
29 change was assessed with F and T-test at 95% confidence level. was also used, to detect abrupt changes in
30 hydrological series. The test determines the timing of a change in the distribution of a time series, known
31 as a 'change point' (Zhang et al., 2008;Love et al., 2010). The change point divides the series into 2 sub-
32 series. The significance of the change point is then assessed by F and T tests on the change in the mean

1 and the variance. A probability threshold of $P = 0.8$ was used, followed by F and T tests at 2.5%
2 significance level. The annual and monthly time series were also analysed for the presence of serial
3 correlation. Tests were carried out using SPELL-stat v.1.5.1.0B (Guzman and Chu, 2004).

4 **2.2.2 Streamflow**

5 Streamflow data of In the Incomati Basin, DWA (Department of Water Affairs) is the custodian of 104
6 gauging stations in South Africa (obtained from the Department of Water Affairs DWA)- and two
7 gauging stations i-n Mozambique, (obtained from ARA-Sul) is the custodian of gauging stations and
8 flow data from two gauges was acquired for used in this study. Long time series of flow data was not
9 available in SwazilandThe discharge data from the gauging stations from the DWA database, with time-
10 series lengths ranging from 1909 to 2012, was collected and screened. Based on the quality of data, time
11 series length, influence of infrastructure (dams, canals) and spatial distribution, 33 stations were selected
12 for detailed analysis (see Table 3 and Figure 2). As this catchment is highly modified, very few stations
13 could be considered least not impacted by human interventions. Data from pristine catchments can reveal
14 the dynamics of natural variability of streamflow, and isolate the impacts of climate change on
15 streamflow. An analysis of the 33 indicators of hydrologic alteration was conducted and summarized, to
16 identify patterns and trends of the streamflow record (a single period analysis for the entire time series
17 and for the period of 1970-2011), as well as to assess the impact of infrastructure on the streamflow (two-
18 period analysis, before and after the major infrastructure development).

19 **2.2.3 Indicators of Hydrologic Alteration**

20 The US Nature Conservancy developed a statistical method software program known as the "Indicators of
21 Hydrologic Alteration" (IHA), for assessing the degree to which human activities have changed flow
22 regimes. The IHA method (Richter et al., 1996; Richter et al., 2003; Richter and Thomas, 2007) is based
23 upon the concept that hydrologic regimes can be characterized by five ecologically-relevant attributes,
24 listed in Table 4: (1) magnitude of monthly flow conditions; (2) magnitude and duration of extreme flow
25 events (e.g. high and low flows); (3) the timing of extreme flow events; (4) frequency and duration of
26 high low flow pulses; and (5) the rate and frequency of changes in flows. It consists of 67 parameters,
27 which are subdivided into two groups-33 IHA parameters and 34 Environmental Flow Component
28 parameters. These hydrologic parameters were developed based on their ecological relevance and their
29 ability to reflect human-induced changes in flow regimes across a broad range of influences including
30 dam operations, water diversions, ground-water pumping, and landscape modification (Mathews and
31 Richter, 2007).

1 Table 4 shows the hydrological parameters analysed within each indicator group. Analyses are based on
2 availability of daily flow data, so 33 selected gauges from the Incomati Basin were analysed with this
3 method using daily flow data. Many studies successfully applied the methodology of "Indicators of
4 Hydrologic Alteration", in order to access assess impacts on streamflow caused by anthropogenic drivers
5 (Maingi and Marsh, 2002; Taylor et al., 2003; Mathews and Richter, 2007; De Winnaar and Jewitt,
6 2010; Masih et al., 2011). In the case of the present study, the indicators of magnitude of monthly water
7 conditions flow, magnitude and duration of extreme flow water conditions, as well as timing were analysed
8 in for the same period (1970-2011), to assess whether consistent trends of increase or decrease of the flow
9 hydrological metrics indicators were present.

10 The IHA software was used to identify linear trends of the streamflow time series, based on the regression
11 of least squares. This trend is evaluated with the P value, and only trends with $P \leq 0.05$ were considered
12 significant trends. The value of the slope of the trend line indicated indicating whether the trend was
13 increasing or decreasing trend. This information was compiled and mapped for the various hydrological
14 indicators and plotted spatially, using ArcGIS 9.3.

15 2.2.4 Land use analysis

16 Land use was analysed was conducted, based on secondary data, as remote sensing maps are only
17 available only from a period when since most of the current forestry plantations were already established.
18 Additionally, a map of current land use (2011) (Jarmain et al., 2013) and land use of 2004-2000 (Van den
19 Berg et al., 2008) were compared with the maps of trends of indicators of hydrologic alteration. Where
20 the occurrence of trends in flow regime was consistent with the changes in land use, this was further
21 investigated, by looking at the temporal evolution on of the land use changes were further investigated.

23 3. Results

24 3.1 Rainfall

25 Data series of Statistical analysis was conducted on the 20 rainfall stations were statistically analysed
26 described in Table 5, for the period of 1950 to 2011 (Table 5). The variability of rainfall across the basin
27 was confirmed to be high, both intra- and inter-annually, with a wide range between years. It is interesting
28 to note that this variability is higher for highest for the stations located on in the mountainous areas, due
29 to the elevation gradient. The variability across the basin is also significant, as illustrated by the box plot
30 of Figure 3.

1 The Spearman Trend Test investigation of trends on the annual time series revealed ~~no significant trends~~
2 ~~on most stations using the Spearman Trend Test, at 95% confidence level, that~~ Only 5 of the 20
3 investigated stations showed significant trends of increase (2 stations) and decrease (3 stations). However,
4 the stations that presented significant trends are also stations with ~~lower~~ percentage of reliability, thus it is
5 possible that the trend identified could be affected by data infilling procedures. ~~The existence of a~~ There
6 ~~was no~~ serial correlation ~~on of~~ annual and monthly time series ~~was also investigated, but was not found to~~
7 ~~be present~~. Some change points were identified using the Pettitt Test, mostly ~~on in~~ the years ~~1978-1971~~
8 and ~~1971-1978~~ (Table 5). ~~The significance of the change was assessed with T Test and F Test in the~~
9 ~~change of mean and the variance of the sub-series obtained from the change points, at 2.5% significance~~
10 ~~level~~. Only ~~2~~ two stations out of the twenty studied showed significant change towards a wetter regime
11 (Riverbank and Manhica).

12 ~~Figure 4 shows, for example, the anomalies of annual rainfall and the moving average for the stations of~~
13 ~~Machadodorp and Alkmaar~~. Monthly rainfall also does not exhibit any clear trend ~~of an increase or~~
14 ~~decrease~~ in most ~~of the~~ stations. This is consistent with the larger scale analyses conducted by Schulze
15 (2012) for South Africa and Shongwe et al. (2009) for Southern Africa.

16 Mussá et al. (2013) studied the trends of annual and dry extreme rainfall, using the Standardized
17 Precipitation Index (SPI) and also found no significant trends ~~on the~~ in annual rainfall ~~precipitation~~
18 extremes across the Crocodile sub-catchment.

19 3.2 Variability of streamflow

20 The metrics of the different hydrologic indicators were compiled as an output of the IHA analysis, which
21 is illustrated. The results for the gauging stations located at the outlet (or the most downstream) of each
22 main sub-catchment ~~are presented~~ in Table 6, ~~as an example~~. The variability is described, using non-
23 parametric statistics (median and coefficient of dispersion), because the hydrological time series are not
24 normally distributed, but positively skewed. The coefficient of dispersion (CD) is defined as $CD = (75\text{th}$
25 percentile - 25th percentile) / 50th percentile. The ~~higher larger~~ the CD, the ~~higher larger~~ the variation of
26 the parameter will be.

27 The flow patterns are consistent with the summer rainfall regime, with highest flow and rainfall events
28 associated with tropical cyclone activity in January-March.

29 A comparison of the flow normalized by area (Figure 4Figure 5) for the main sub-catchments reveals that
30 Sabie yields a higher runoff than Komati and Crocodile. This is the case because the observed
31 streamflows include the impact of water abstractions and streamflow reduction activities, which are more

1 intense in the Komati and Crocodile sub-catchments (Hughes and Mallory, 2008;Mallory and Hughes,
2 2012).

3 Another aspect to note is that the flows of February are likely to be higher than observed records, but ~~are~~
4 ~~buffered due to flow regulation, or because~~ high streamflow extremes are not fully captured by the current
5 monitoring network, due to gauge limits.

6 3.3 Trends in streamflow

7 ~~In Figure 5~~Figure 6, ~~the~~presents a spatial plot of trends ~~indicated by the slope of the trend line is presented~~
8 ~~perfor~~ selected hydrological indicators. ~~For comparison, the same indicators are plotted~~ for the periods
9 1970-2011 (Figure ~~5~~6a) and ~~for~~ 1950-2011 (Figure ~~5~~6b). The significant trends are highlighted with a
10 circle. Table 7 presents the slope of the trend lines and P values for the gauges located at the outlet, or the
11 most downstream point of each main sub-catchment. The ~~first observation re~~ is a significant trend of
12 decreasing mean flow in October in almost all stations, especially the ones located on the main stem of
13 the Crocodile and the Komati. ~~This means that along the entire basin the month of~~ October is ~~when more~~
14 ~~water stress is experienced, which is explained by the fact that this is~~ the month of the start of the rainy
15 season, when the dam levels are lowest and irrigation water requirements ~~are~~ highest (DWAF,
16 2009a;ICMA, 2010).

17 This trend is consistent with the decreasing trends of minimum flows, as exemplified by the 7-day
18 minimum. In contrast, it can be seen that the count of low pulses increased significantly in many gauges,
19 which indicates the more frequent occurrence of low flows. Another striking trend is the significant
20 increase of the number of reversals ~~of at~~ almost all stations. Reversals are calculated by dividing the
21 hydrologic record into "rising" and "falling" periods, which correspond to periods in which daily changes
22 in flows are either positive or negative, respectively. The number of reversals is the number of times that
23 flow switches from one type of period to another. The observed increased number of reversals, indicating
24 is likely due to the effect of flow regulation and water abstractions ~~(reversals occur when an increasing~~
25 ~~flow trend changes to a decreasing flow trend)~~.

26 The significant trends (95% confidence level) ~~occurring on~~of the various indicators were counted per
27 station and plotted on ~~the a~~a map ~~(Figure 6) in (Figure 7)~~. ~~The salient pattern on the map is that more~~Most
28 significant decreasing trends occur in the Komati and Crocodile systems, which are also the most stressed
29 sub-catchments. ~~Another~~ interesting aspect is that some of the trends cross-compensate each other. Some
30 of the positive trends occurring on the tributaries of the Crocodile, for example, the October Median Flow
31 and baseflow are cancelled out as we when move moving downstream the main stem of the river.

1 The cross-compensation can also be observed at basin-scale on the Sabie, where the trends of decreasing
2 flows are not so frequent or significant. It is likely that this occurs because the majority of the Sabie falls
3 under the conservation area of the Kruger National Park (KNP) and therefore ~~no major~~~~fewer~~ abstractions
4 occur ~~here compared to other sub-catchments, as illustrated in Table 1~~. The KNP has been playing an
5 important role in the catchment management fora set up by the Inkomati Catchement Management
6 Agency (ICMA), which concern the provision of environmental minimum flows, in order to ~~ensure the~~
7 ~~maintain~~~~of~~ ecosystem services and biodiversity in the Park (Pollard et al., 2012; Riddell et
8 al., 2013).

9 Table 7 illustrates that many of the trends observed in the Sabie sub-catchment ~~are contrary to contrast~~
10 those observed in the Komati and Crocodile sub-catchments. Thus, ~~it is likely that~~ the trends observed in
11 downstream ~~E43~~—Magude (station E43), in Mozambique, are ~~as~~~~at~~ the result of a combination of the
12 positive effect of the conservation approach of KNP on the Sabie, and the negative effect of flow
13 reductions in the Crocodile and the Komati.

14 ~~From Table 7 and Figure 7, it can be seen that~~ The Komati sub-catchment (at Tonga ~~g~~Gauge, X1H003) is
15 where most negative trends occur, particularly significant during the months of October, June and July
16 (Table 7 and Figure 6). ~~At the downstream end of~~ In the Crocodile (at Tenbosch ~~Gauge~~gauge, X2H016)
17 ~~the similar~~ trends are not visible, because ~~a lot~~ of cross-compensations: ~~have already occurred~~. ~~To~~ the Kaap
18 and Elands tributaries both of the Crocodile River have significant decreasing trends ~~of~~in their mean
19 monthly flows, as well as ~~on~~ the low flows; ~~On the other hand,~~ the Kwena Dam, ~~which is~~ located on the
20 main stem of the Crocodile, on the other hand, is managed in a way to augment the flows during the dry
21 season. ~~This results in increasing flows during the low flow months.~~

22 It is important to note that these trends are even more pronounced, when longer time series are
23 considered. Two examples from the Crocodile Basin are presented below.

24 **3.3.1 Example of decreasing trends: Noord Kaap X2H010**

25 The Noord Kaap ~~Gauge~~gauge (X2H010), located on a tributary of the Crocodile sub-catchment, ~~showed~~
26 ~~displays~~ the most intriguing trends. Out of the 33 IHA indicators ~~(IHA)~~, this gauge had 12 significant
27 trends, 10 of ~~them~~which negative, ~~which indicate~~indicating a major shift in flow regime ~~over the period~~
28 ~~of analysis~~. ~~The decreasing trends occur in all months, but are more pronounced during low flow months,~~
29 ~~particularly September (Figure 8) and October. There is a significant decrease of high flows and small~~
30 ~~floods and an increase of extreme low flows.~~ However, there is no record of ~~the presence of~~ a dam or
31 major infrastructure ~~being constructed~~ (DWAF, 2009d). The ~~records of nearby areal~~ rainfall ~~station of~~
32 ~~Kaapsehoop (0518455W) for the drainage area of this gauge does~~ not show a significant ~~decreasing~~ trend

1 of decrease of rainfall, which suggests that the reduction observed in streamflow could should be a result
2 of land use change, namely, conversion to forestry and irrigated land. The decreasing trends occur in all
3 months, but are more pronounced during low flow months, particularly September (Figure 9) and
4 October. There is a significant decrease of high flows and small floods and an increase of extreme low
5 flows. The annual flow duration curve for the periods 1949-1974 and 1978-2011 shows a dramatic
6 decrease in annual flows. Figure 9Figure 10 illustrates the comparison of median monthly flows for the
7 two periods. From the analysis of land use changes over time (Table 2), it can be seen that the sharp
8 decrease of mean monthly flows during the 1960s coincides with an increase of the area under irrigated
9 agriculture. During the 1970s there was also a great increase of area under forestry, namely, Eucalyptus
10 (DWAF, 2009a). Commercial forestry consumes more water through evaporation than the native
11 vegetation it replaces, therefore, under the South African NWA, it must be licensed as a water user, which
12 is termed a Streamflow Reduction Activity (SFRA) (Jewitt, 2002;Jewitt, 2006b). A recent study by van
13 Eekelen et al. (2015) finds that stream flow reduction due to forest plantations may be twice or even three
14 times more than allowed by the Interim IncoMaputo Agreement(TPTC, 2010).

15 3.3.2 Impact of the Kwena Dam on streamflows of the Crocodile River

16 The Kwena Dam is the main reservoir on the Crocodile system, located upstream in the catchment,
17 commissioned in 1984. The dam is used to improve the assurance of supply of water for irrigation
18 purposes in the catchment. The Montrose gGauge (X2H013) is located a few a kilometres downstream of
19 this dam. The two-period (1959-1984 and 1986-2011) analysis illustrated the main impacts of
20 Kwena Dam on the river flow regime, which are reversed seasonality,namely the dampening of peak
21 flows and an increase of low flows and base flow indices. These results are consistent with the analysis
22 conducted by Riddell et al. (2013), which found significant alterations of natural flow regime in the
23 Crocodile Basin over the past 40 years. They developed a methodology to assess historical compliance
24 with environmental water allocations, and reported that there is a high incidence of non-compliance,
25 reduction of low flows and some homogenisation of the flow regime, as a result of dam operation. Similar
26 impacts were found in studies in different parts of the world (Richter et al., 1998;Bunn and Arthington,
27 2002;Maingi and Marsh, 2002;Birkel et al., 2014).

28 It can be seen that this reservoir is managed to augment the low flows and attenuate floods. This change
29 in the flow regime influences the streamflow along the main stem of the Crocodile River, but as
30 tributaries join it, and water is abstracted, the effect is reduced. At the outlet in at Tenbosch gauge,
31 X2H016 (Figure 7Figure 6 and Table 7), the effects of flow regulation and water abstractions have
32 already counter-balanced the contrasting trends observed upstream.

1 **3.3.3 Impact of anthropogenic actions**

2 As can be seen from water use information, the impacts of land use change and water abstractions are the
3 main drivers of changes in the flow regime on the Incomati. However, the situation is variable along the
4 catchment. In the Sabie system, in spite of ~~great large~~ areas of commercial forestry in the headwaters, the
5 indicators of mean, annual and low flows do not show significant trends (~~see~~ Table 7). This can be
6 explained by the fact that most of the forestry area was already established during the period of analysis
7 ~~for trends~~ (1970-2011)(DWAF, 2009c). The fact that a large proportion of the Sabie sub-catchment is
8 under conservation land use (KNP and other game reserves) also plays an important role in maintaining
9 the natural flow regime.

10 On the Crocodile, however, irrigated agriculture, forestry and urbanization were the most important
11 anthropogenic drivers. They affect the streamflow regime, the water quantity and possibly the water
12 quality as well (beyond the scope of this analysis). This has important implications when environmental
13 flow requirements and minimum cross-border flows need to be adhered to. Pollard and du Toit (2011) and
14 Riddell et al. (2013) have demonstrated that the Crocodile River is not complying to environmental flow
15 requirements during most of the dry season at the outlet.

16 On the Komati, the strategic water uses, which have first priority (such as the water transfers to ESKOM
17 plants in the Olifants Catchment and to irrigation schemes in the Umbeluzi) (Nkomo and van der Zaag,
18 2004;DWAF, 2009b), have a high impact on streamflows. Because of other water allocations, for
19 irrigation, forestry and other industries, steady trends of decreasing flows could be identified. This is
20 another system where the environmental flows and cross-border requirements are often not met during the
21 dry season (Pollard and du Toit, 2011;Mukororira, 2012;Riddell et al., 2013).

22
23 **4. Discussion**

24 **4.1 Limitations of this study**

25 The available data series ~~had have~~ some gaps, especially during high flow periods. Because of this, the
26 analysis of high flow extremes is highly uncertain. For the trend analysis, the period of common data
27 followed the construction of ~~a lot of several~~ impoundments and other developments.

28 Another challenge is the disparity of data availability across the different riparian countries. In
29 Mozambique, only two gauges had reliable flow data for this analysis, representing the entire Lower
30 Incomati system. The rivers Massintonto, Uanetze and Mazimechopes, in Mozambique do not have active

1 flow gauges. There is definitely a need to strengthen the hydrometric monitoring network in the
2 Mozambican part of the basin, as well as on the tributaries originating in the Kruger National Park.

3 ~~Some gauges are from nested catchments. A lot of trends and alterations counter balance each other, as~~
4 ~~can be seen clearly in the Crocodile system. However, some cases of contradictory trends that occurred~~
5 ~~could possibly be explained by the change of measurement equipment and the adjustment of the flow~~
6 ~~rating curves. An analysis of the best quality stations and a number of stations in the same system was~~
7 ~~conducted, to avoid this pitfall.~~

8 4.2 What are the most striking trends and where do they occur?

9 The analysis resulted in the identification of major trends, ~~such as including~~:

- 10 • Decreasing trends of the magnitude of monthly flow (significant for low flow months, e.g.
11 October), minimum flow (1-, 3-, 7-, 30 and 90-day minimum) and the occurrence of high flow
12 pulses;
- 13 • Significant increasing trends of the magnitude of monthly flow (August and September) in some
14 locations in the Crocodile and Sabie, and on the occurrence of flow reversals basin wide;
- 15 • Some gauges showed no significant change or no clear pattern of change on the parameters
16 analyzed. These are mainly gauges located on the Sabie, which by 1970 had already established
17 the current land use ~~seen to the present day~~.

18 In the Komati system, the flow regulation and water abstractions have ~~very~~ strong impacts on streamflow.
19 Most gauges are ~~already~~ severely impacted and it is quite difficult to characterize natural flow conditions.
20 Flow regulation has ~~highest the largest~~ impact on low flow and minimum flows. In the Komati, ~~there is~~
21 ~~significant~~ irrigated agriculture is significant, particularly sugar-cane. The upstream dams of
22 Nooitgedacht and Vygeboom are ~~also~~ mainly used to supply cooling water to ESKOM power stations
23 outside the basin; thus, ~~the this~~ water is exported and not used within the basin.

24 In the Crocodile system, ~~the~~ flow regulation, ~~through the operation of by~~ the Kwena Dam, ~~for example~~,
25 has ~~impacted on the attenuation attenuated of~~ extreme flow events. The high flows are reduced and the
26 low flows generally increase, leading to reverse seasonality downstream ~~of the Kwena Dam~~. Reverse
27 seasonality is the change in timing of hydrograph characteristics, for example the occurrence of low flows
28 in the wet season or high flows in the dry season. The Kwena dam is used to improve the assurance of the
29 supply of water for irrigation purposes in the catchment. However, ~~on X2H010~~ Noord Kaap gauge
30 X2H010, a headwater tributary of the Crocodile, ~~there is experiences~~ a significant and dramatic reduction
31 of flows, shown in the monthly flow, the flow duration curves and the low flow parameters. This change

1 ~~is was compared with the increase in the area under forestry in the sub-catchment, as well as with the~~
2 ~~increase in irrigation. The comparison revealed that the land use change was the main driver of the flow~~
3 ~~alteration, by inference, using land use data, with the increase in the area under forestry in the sub-~~
4 ~~catchment, as well as with the increase in irrigation.~~

5 In the Sabie system, most gauges did not show ~~varied~~ significant trends. This is most likely due to fewer
6 disturbances ~~compared to the other main catchments~~: lower water demands, ~~less~~ ~~fewer~~ water abstractions
7 and larger areas under conservation. During the period ~~from 1970 to~~ 2011, there were no clear impacts of
8 climatic change (in terms of rainfall) on ~~the~~ streamflow.

9 4.3 Implications of this findings for water resources management

10 ~~The results of this study illustrate some hotspots where more attention should be put in order to ensure~~
11 ~~provision of water to society and the environment.~~ When the analysis of trends is combined with the land
12 use of the basin (Figure 7), it is clear that the majority of gauges with decreasing trends are located in
13 areas where forestry or irrigated agriculture dominate the land use and where conservation approaches are
14 less prevalent. The presence of water management infrastructure (dams) highly influence the flow regime.

15 For the management of water resources in the basin, it is important to note ~~that there are~~ some clear
16 patterns, illustrated by the Sabie, Crocodile and Komati. The Sabie flows generated in the upper parts of
17 the catchment persist ~~until the outlet~~, whilst in other rivers ~~flows are highly modified, where the Kruger~~
18 ~~National Park or the Catchment Management Agency Forum is less of an influence, flows are highly~~
19 ~~modified.~~ This suggests that the use of the conservation approach through the Strategic Adaptive
20 Management of the Kruger National Park (KNP) and Inkomati Catchment Management Agency (ICMA),
21 which are stronger on the Sabie. can be very beneficial to keep environmental flows in the system. It is
22 important to consider not only the magnitude of flows, but their duration and timing as well.

23 ~~To some extent, dams do provide storage, generate hydropower and attenuate floods in the basin, but~~
24 ~~have impacts downstream, such as the change of mean monthly flows and, the reversal of~~ seasonality,
25 ~~and the trapping of sediments, which can all hamper the health of downstream ecosystems downstream of~~
26 ~~the dams. The recently concluded Mbombela Reconciliation Strategy (Beumer and Mallory, 2014)~~
27 ~~strongly recommends the construction of new dams in South Africa, including one at Mountain View in~~
28 ~~the Kaap subcatchment. The plans of these developments happen when Swaziland is not yet fully utilizing~~
29 ~~its allocation under the Piggs Peak Agreement and Interim IncoMaputo Agreement (TPTC, 2010).~~
30 ~~Experiences of other countries around the world shows that dam construction has many, often wide-~~
31 ~~ranging and long-term social and ecological impacts that often are negative and that frequently are~~

1 irreversible, including the social upheaval caused by the resettlement of communities, loss of ecosystems
2 and biodiversity, increased sediment trapping, irreversible alteration of flow regimes and the prohibitive
3 cost of decommissioning (see for an overview (Tullos et al., 2009;Moore et al., 2010)). It is therefore
4 important to fully explore alternative options before deciding of the construction of more large dams. So
5 other alternative possibilities of restoring natural stream flows and/or increasing water storage capacity
6 should be further investigated and adopted. These alternatives could include in the basin in future, such
7 as aquifer storage, artificial recharge, rainfall harvesting, decentralized storage, and reducing the water
8 use of existing uses and users, including irrigation, industry and forest plantations etc. The design of
9 operation rules of existing and future for dams should also include objectives to better aim at mimicking
10 crucial aspects of the system's natural variability.

11 Given the likely expansion of water demands, due to urbanization and industrial development, it is also
12 important that water demand management and water conservation measures are better implemented in the
13 basin. For example, there could be systems to reward users that use technology to improve their water use
14 efficiency and to municipalities that encourage their users to have lower water demandsuse.

15 This study also shows the complexity of water resource availability and variability. This The complexity
16 is even more relevant, considering that this is a transboundary basin and that there are international
17 agreements regarding minimum cross-border flows and maximum development levels that have to be
18 adhered to (Nkomo and van der Zaag, 2004;Pollard and Toit, 2011;Riddell et al., 2013).

19 There is a great discrepancy of data availability between different riparian countries. It is very important
20 that Mozambique, in particular, improves its monitoring network, in order to better assess the impact of
21 various management activities occurring upstream on the state of water resources. The monitoring of
22 hydrological extremes should receive more attention, with focus on increasing the accuracy of recording
23 the flood events. The improvement of the monitoring network can be achieved by various means, such as:

- 24 Water management institutions collaborate more intensely with academic and consultant
25 institutions;
- 26 Develop realistic plans to improve monitoring and data management;
- 27 Learn from other countries/institutions that have adequate monitoring in place;
- 28 Use modern ICT and other technologies, which may become cheaper and more accessible;
- 29 Involve more stakeholders and citizens in data collection.

5. Conclusions

The research conducted ~~shows important interactions of~~ reveals the dynamics of streamflow ~~that are complex and intertwined, often working simultaneously within~~ and their drivers in a river basin.

The statistical analysis of rainfall data revealed no consistent significant trend of increase or decrease for the studied period. The analysis of streamflow, on the other end, revealed significant decreasing trends of streamflow indicators, particularly the median monthly flows of September and October, and low flow indicators. This study concludes that land use and flow regulation are ~~the largest~~ str drivers of ~~trends in the~~ streamflow trends in the basin. Indeed, over the past 40 years the areas under commercial forestry and irrigated agriculture have increased over four times, increasing the consumptive water use, basin wide.

The study therefore recommends that ~~conservation approaches to water management, such as~~ strategic adaptive management adopted by the Kruger National Park and Inkomati Catchment Management Agency, should be further ~~deployed~~ employed in the basin. Water demand management and water conservation should be alternative options to the development of dams, and should be further investigated and established in the basin. Land use practices, particularly forestry and agriculture, have a significant impact on water quantity of the basin; therefore, stakeholders from these sectors should work closely with the water management institutions, when planning for future developments and water allocation plans, to keep flow regime close to the natural variability.

Considering the high spatial variability in the observed changes, no unified approach will work, but ~~the~~ specific tailor-made interventions are needed for the most affected sub-catchments and main catchments. Future investigations should conduct a careful basin-wide assessment of benefits derived from water use ~~should be done, and in order to assess if~~ the first priority water uses, including commercial forest plantations which by default are priority users, are indeed the most beneficial; ~~this should be done basin wide.~~

Acknowledgements

The authors would like to thank UNESCO-IHE Partnership Research Fund (UPaRF), through the RISKOMAN project, for funding of this research. The Water ~~Resources~~ Research Commission of South Africa, through Project K5/1935 also contributed additional funding, which is appreciated. All partners of the RISKOMAN project (University of KwaZulu-Natal UKZN, ICMA, Komati Basin Water Authority KOBWA, UEM Eduardo Mondlane University) including the reference group are thanked for their valuable inputs. Streamflow and rainfall data was kindly provided by DWA, UKZN and SAWs.

1 **References**

2 Beumer, J., and Mallory, S.: Water Requirements and Availability Reconciliation Strategy for the
3 Mbombela Municipal Area. Final Reconciliation Strategy, Department of Water Affairs, South Africa,
4 2014.

5 Birkel, C., Soulsby, C., Ali, G., and Tetzlaff, D.: Assessing the cumulative impacts of hydropower
6 regulation on the flow characteristics of a large atlantic Salmon river system, River Research and
7 Applications, 30, 456-475, 10.1002/rra.2656, 2014.

8 Bunn, S. E., and Arthington, A. H.: Basic Principles and Ecological Consequences of Altered Flow
9 Regimes for Aquatic Biodiversity, Environmental Management, 30, 492-507, 10.1007/s00267-002-2737-
10 0, 2002.

11 De Winnaar, G., and Jewitt, G.: Ecohydrological implications of runoff harvesting in the headwaters of
12 the Thukela River basin, South Africa, Physics and Chemistry of the Earth, Parts A/B/C, 35, 634-642,
13 <http://dx.doi.org/10.1016/j.pce.2010.07.009>, 2010.

14 DWAF: Inkomati Water Availability Assessment Study. Water Requirements Volume 1, 2009a.

15 DWAF: Inkomati Water Availability Assessment Study: Main Report, 2009b.

16 DWAF: Inkomati Water Availability Assessment Study: Hydrology of Sabie River Volume 1, 2009c.

17 DWAF: Inkomati Water Availability Assessment Study. Hydrology of Crocodile River Volume 1, 2009d.

18 Fanta, B., Zaake, B. T., and Kachroo, R. K.: A study of variability of annual river flow of the southern
19 African region, Hydrological Sciences Journal, 46, 513-524, 10.1080/02626660109492847, 2001.

20 Hu, Y., Maskey, S., Uhlenbrook, S., and Zhao, H.: Streamflow trends and climate linkages in the source
21 region of the Yellow River, China, Hydrological Processes, 25, 3399-3411, 10.1002/hyp.8069, 2011.

22 Hughes, D. A., and Mallory, S. J. L.: Including environmental flow requirements as part of real-time
23 water resource management, River Research and Applications, 24, 852-861, 10.1002/rra.1101, 2008.

24 Hughes, D. A., Tshimanga, R. M., Tirivarombo, S., and Tanner, J.: Simulating wetland impacts on stream
25 flow in southern Africa using a monthly hydrological model, Hydrological Processes, 28, 1775-1786,
26 10.1002/hyp.9725, 2014.

1 ICMA: The Inkomati Catchment Management Strategy: A First Generations Catchment Management
2 Strategy for the Inkomati Water Management Area., Inkomati Catchment Management Agency,
3 Nelspruit, 2010.

4 Jarmain, C., Dost, R. J. J., De Bruijn, E., Ferreira, F., Schaap, O., Bastiaanssen, W. G. M., Bastiaanssen,
5 F., van Haren, I., van Haren, I. J., Wayers, T., Ribeiro, D., Pelgrum, H., Obando, E., and Van Eekelen, M.
6 W.: Spatial Hydro-meteorological data for transparent and equitable water resources management in the
7 Inkomati catchment, Pretoria, South Africa, 2013.

8 Jewitt, G.: Integrating blue and green water flows for water resources management and planning, Physics
9 and Chemistry of the Earth, Parts A/B/C, 31, 753-762, <http://dx.doi.org/10.1016/j.pce.2006.08.033>,
10 2006a.

11 Jewitt, G.: Water and Forests., in: Encyclopedia of Hydrological Sciences, John Wiley & Sons, Ltd,
12 2006b.

13 Jewitt, G. P. W.: The 8%-4% debate: Commercial afforestation and water use in South Africa, Southern
14 African Forestry Journal, 1-6, 2002.

15 Jewitt, G. P. W., Garratt, J. A., Calder, I. R., and Fuller, L.: Water resources planning and modelling tools
16 for the assessment of land use change in the Luvuvhu Catchment, South Africa, Physics and Chemistry of
17 the Earth, Parts A/B/C, 29, 1233-1241, 2004.

18 Kruger, A. C., and Shongwe, S.: Temperature trends in South Africa: 1960–2003, International Journal of
19 Climatology, 24, 1929-1945, 10.1002/joc.1096, 2004.

20 LeMarie, M., van der Zaag, P., Menting, G., Baquete, E., and Schotanus, D.: The use of remote sensing
21 for monitoring environmental indicators: The case of the Inkomati estuary, Mozambique, Physics and
22 Chemistry of the Earth, Parts A/B/C, 31, 857-863, 10.1016/j.pce.2006.08.023, 2006.

23 Lennard, C., Coop, L., Morison, D., and Grandin, R.: Extreme events: Past and future changes in the
24 attributes of extreme rainfall and the dynamics of their driving processes, Climate Systems Analysis
25 Group University of Cape Town, 2013.

26 Love, D., Uhlenbrook, S., Twomlow, S., and van Der Zaag, P.: Changing hydroclimatic and discharge
27 patterns in the northern Limpopo Basin, Zimbabwe, Water SA, 36, 335-350, 2010.

1 Lynch, S. D.: The Development of a Raster Database of Annual, Monthly and Daily Rainfall for Southern
2 Africa., Water Research Commission, South Africa, Rep. 1156/1/04Rep. 1156/1/04, 2003.

3 Maingi, J. K., and Marsh, S. E.: Quantifying hydrologic impacts following dam construction along the
4 Tana River, Kenya, Journal of Arid Environments, 50, 53-79, <http://dx.doi.org/10.1006/jare.2000.0860>,
5 2002.

6 Masih, I., Uhlenbrook, S., Maskey, S., and Smakhtin, V.: Streamflow trends and climate linkages in the
7 Zagros Mountains, Iran, Climatic Change, 104, 317-338, 10.1007/s10584-009-9793-x, 2011.

8 Mathews, R., and Richter, B. D.: Application of the Indicators of Hydrologic Alteration Software in
9 Environmental Flow Setting1, JAWRA Journal of the American Water Resources Association, 43, 1400-
10 1413, 10.1111/j.1752-1688.2007.00099.x, 2007.

11 Miao, C. Y., Shi, W., Chen, X. H., and Yang, L.: Spatio-temporal variability of streamflow in the Yellow
12 River: possible causes and implications, Hydrological Sciences Journal, 57, 1355-1367,
13 10.1080/02626667.2012.718077, 2012.

14 Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P.,
15 and Stouffer, R. J.: Stationarity Is Dead: Whither Water Management?, Science, 319, 573-574,
16 10.1126/science.1151915, 2008.

17 Montanari, A., Young, G., Savenije, H. H. G., Hughes, D., Wagener, T., Ren, L. L., Koutsoyiannis, D.,
18 Cudennec, C., Toth, E., Grimaldi, S., Blöschl, G., Sivapalan, M., Beven, K., Gupta, H., Hipsey, M.,
19 Schaeefli, B., Arheimer, B., Boegh, E., Schymanski, S. J., Di Baldassarre, G., Yu, B., Hubert, P., Huang,
20 Y., Schumann, A., Post, D., Srinivasan, V., Harman, C., Thompson, S., Rogger, M., Viglione, A.,
21 McMillan, H., Characklis, G., Pang, Z., and Belyaev, V.: “Panta Rhei – Everything Flows”: Change in
22 hydrology and society – The IAHS Scientific Decade 2013–2022, Hydrological Sciences Journal, null-
23 null, 10.1080/02626667.2013.809088, 2013.

24 Moore, D., Dore, J., and Gyawali, D.: The World Commission on Dams+ 10: Revisiting the large dam
25 controversy, Water Alternatives, 3, 3-13, 2010.

26 Mukororira, F.: Analysis of water allocation in the Komati catchment downstream of Maguga and
27 Driekoppies Dams, MSc Thesis WM 12.18, Water Management, UNESCO-IHE, Delft, 2012.

1 Mussá, F., Zhou, Y., Maskey, S., Masih, I., and Uhlenbrook, S.: Trend analysis on dry extremes of
2 precipitation and discharge in the Crocodile River catchment, Incomati basin. , 14th WaterNet/
3 WARFSA/GWP-SA symposium, 30 Oct-1 Nov 2013, Dar es Salaam, Tanzania, 2013,

4 Nkomo, S., and van der Zaag, P.: Equitable water allocation in a heavily committed international
5 catchment area: the case of the Komati Catchment, Physics and Chemistry of the Earth, Parts A/B/C, 29,
6 1309-1317, 2004.

7 Pettitt, A.: A non-parametric approach to the change-point problem., *Appl. Statist.*, 28 (2), 126-135, 1979.

8 Pollard, S., and du Toit, D.: Integrated water resource management in complex systems: How the
9 catchment management strategies seek to achieve sustainability and equity in water resources in South
10 Africa, *Water SA*, 34, 671-680, 2009.

11 Pollard, S., and du Toit, D.: Towards the sustainability of freshwater systems in South Africa: An
12 exploration of factors that enable and constrain meeting the ecological Reserve within the context of
13 Integrated Water Resources Management in the catchments of the lowveld, Water Research Comission,
14 Pretoria, South Africa. Report No. TT 477/10, 2011.

15 Pollard, S., Du Toit, D., and Biggs, H.: River management under transformation: The emergence of
16 strategic adaptive management of river systems in the Kruger
17 National Park, *Koedoe*, 53, Art. #1011, 1014 pages, 10.4102/koedoe.v53i2.1011, 2011.

18 Pollard, S., and Toit, D.: Towards Adaptive Integrated Water Resources Management in Southern Africa:
19 The Role of Self-organisation and Multi-scale Feedbacks for Learning and Responsiveness in the Letaba
20 and Crocodile Catchments, *Water Resources Management*, 25, 4019-4035, 10.1007/s11269-011-9904-0,
21 2011.

22 Pollard, S., Mallory, S., Riddell, E., and Sawunyama, T.: Towards improving the assessment and
23 implementation of the reserve : real-time assessment and implementation of the ecological reserve : report
24 to the Water Research Commission, Water Research Commission, Pretoria, South Africa, 2012.

25 Richter, B. D., Baumgartner, J. V., Powell, J., and Braun, D. P.: A Method for Assessing Hydrologic
26 Alteration within Ecosystems, *Conservation Biology*, 10, 1163-1174, 1996.

27 Richter, B. D., Baumgartner, J. V., Braun, D. P., and Powell, J.: A Spatial Assessment of Hydrologic
28 Alteration within a River Network, *Regulated rivers.*, 14, 329, 1998.

1 Richter, B. D., Mathews, R., Harrison, D. L., and Wigington, R.: Ecologically sustainable water
2 management: managing river flows for ecological integrity, *Ecological Applications*, 13, 206-224,
3 10.1890/1051-0761(2003)013[0206:eswmmr]2.0.co;2, 2003.

4 Richter, B. D., and Thomas, G. A.: Restoring environmental flows by modifying dam operations, *Ecology*
5 and Society, 12, 12, 2007.

6 Riddell, E., Pollard, S., Mallory, S., and Sawunyama, T.: A methodology for historical assessment of
7 compliance with environmental water allocations: lessons from the Crocodile (East) River, South Africa,
8 *Hydrological Sciences Journal*, 59, 831-843, 10.1080/02626667.2013.853123, 2013.

9 Rockström, J., Falkenmark, M., Karlberg, L., Hoff, H., Rost, S., and Gerten, D.: Future water availability
10 for global food production: the potential of green water for increasing resilience to global change, *Water*
11 *Resources Research*, 45, 2009.

12 Rouault, M., Fauchereau, N., Pohl, B., Penven, P., Richard, Y., Reason, C., Pegram, G., Phillippon, N.,
13 Siedler, G., and Murgia, A.: Multidisciplinary analysis of hydroclimatic variability at the catchment scale,
14 University of Cape Town; CRC, Universite de Dijon; UBO, Universite de Bretagne Occidentale;
15 University of Kwazulu Natal; IMF, University of Kiel; LTRE, Universite de Grenoble, 2010.

16 Schulze, R.: A 2011 perspective on climate change and the South African water sector, *WRC Report TT*
17 518/12, Gezina, South Africa, 2012.

18 Schulze, R. E.: Approaches towards practical adaptive management options for selected water-related
19 sectors in South Africa in a context of climate change, *Water SA*, 37, 621-645, 2011.

20 Shongwe, M. E., van Oldenborgh, G. J., van den Hurk, B. J. J. M., de Boer, B., Coelho, C. A. S., and van
21 Aalst, M. K.: Projected Changes in Mean and Extreme Precipitation in Africa under Global Warming.
22 Part I: Southern Africa, *Journal of Climate*, 22, 3819-3837, 10.1175/2009jcli2317.1, 2009.

23 Taylor, V., Schulze, R., and Jewitt, G. P. W.: Application of the Indicators of Hydrological Alteration
24 method to the Mkomazi River, KwaZulu-Natal, South Africa, *African Journal of Aquatic Science*, 28, 1-
25 11, 10.2989/16085914.2003.9626593, 2003.

26 TPTC: Tripartite Permanent Technical Committee (TPTC) between, Moçambique, South Africa,
27 Swaziland, 2010. PRIMA : IAAP 3 : Consultancy Services for Integrated Water Resources Management.

1 Baseline evaluation and scoping report: Part C. Report No.:IAAP 3: 03C - 2010. Prepared for TPTC by
2 Aurecon, Pretoria, 2010.

3 Tullos, D., Tilt, B., and Liermann, C. R.: Introduction to the special issue: Understanding and linking the
4 biophysical, socioeconomic and geopolitical effects of dams, *Journal of Environmental Management*, 90,
5 Supplement 3, S203-S207, <http://dx.doi.org/10.1016/j.jenvman.2008.08.018>, 2009.

6 Van den Berg, E., Plarre, C., Van den Berg, H., and Thompson, M.: The South African national land
7 cover 2000, Agricultural Research Council (ARC) and Council for Scientific and Industrial Research
8 (CSIR), Pretoria. Report No. GW/A/2008/86, 2008.

9 Van der Zaag, P., and Vaz, A. C.: Sharing the Incomati waters: cooperation and competition in the
10 balance, *Water Policy*, 5, 349-368, 2003.

11 van Eekelen, M. W., Bastiaanssen, W. G. M., Jarmain, C., Jackson, B., Ferreira, F., van der Zaag, P.,
12 Saraiva Okello, A., Bosch, J., Dye, P., Bastidas-Obando, E., Dost, R. J. J., and Luxemburg, W. M. J.: A
13 novel approach to estimate direct and indirect water withdrawals from satellite measurements: A case
14 study from the Incomati basin, *Agriculture, Ecosystems & Environment*, 200, 126-142,
15 <http://dx.doi.org/10.1016/j.agee.2014.10.023>, 2015.

16 Vörösmarty, C. J., McIntyre, P., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S.,
17 Bunn, S. E., Sullivan, C. A., and Liermann, C. R.: Global threats to human water security and river
18 biodiversity, *Nature*, 467, 555-561, 2010.

19 Warburton, M. L., Schulze, R. E., and Jewitt, G. P. W.: Confirmation of ACRU model results for
20 applications in land use and climate change studies, *Hydrol. Earth Syst. Sci.*, 14, 2399-2414,
21 10.5194/hess-14-2399-2010, 2010.

22 Warburton, M. L., Schulze, R. E., and Jewitt, G. P. W.: Hydrological impacts of land use change in three
23 diverse South African catchments, *Journal of Hydrology*, 414-415, 118-135,
24 <http://dx.doi.org/10.1016/j.jhydrol.2011.10.028>, 2012.

25 Zhang, X., Zhang, L., Zhao, J., Rustomji, P., and Hairsine, P.: Responses of streamflow to changes in
26 climate and land use/cover in the Loess Plateau, China, *Water Resources Research*, 44, W00A07,
27 10.1029/2007wr006711, 2008.

1 **Tables**

2 **Table 1. Summary of estimated natural streamflow, water demands in the Incomati Basin in 10^6 m^3 per year**
3 **(TPTC, 2010) and major dams ($> 10^6 \text{ m}^3$) (Van der Zaag and Vaz, 2003)**

	Natural MAR	First Priority Supplies	Irrigation Supplies	Afforestation	Total Water Use
Komati	1332	141.5	621	117	879.5
Crocodile	1124	74.7	482	158	714.7
Sabie	668	30	98	90	218
Massintoto	41	0.3	0	0	0.3
Uanetse	33	0.3	0	0	0.3
Mazimechopes	20	0	0	0	0
Lower Incomati	258	1.5	412.8	0	414.3
Mozambique	325		412.8		
South Africa	2663		961		
Swaziland	488		240		
Total	3476	248	1614	365	2227

Tributary	Country	Major dam	Year commissioned	Storage capacity (10^6m^3)
Komati	South Africa	Nooitgedacht	1962	81
Komati	South Africa	Vygeboom	1971	84
Komati	Swaziland	Maguga	2002	332
Komati	Swaziland	Sand river	1966	49
Lomati	South Africa	Driekoppies	1998	251
Crocodile	South Africa	Kwena	1984	155
Crocodile	South Africa	Witklip	1979	12
Crocodile	South Africa	Klipkopje	1979	12
Sabie	South Africa	Da Gama	1979	14
Sabie	South Africa	Injaka	2001	120
Sabie	Mozambique	Corumana	1988	879
Total				1989

4 ***First priority supplies include domestic and industrial uses**

1 **Table 2. Land use and water use change from 1950's to 2004 in Komati, Crocodile and Sabie sub-catchments.**

2 **Source: adapted from TPTC (2010)**

		1950's	1970's	1996	2004
Komati	Irrigation area (km ²)	17.6	144.1	385.1	512.4
	Afforested area (km ²)	247	377	661	801
	Domestic water use (10 ⁶ m ³ a ⁻¹)	0.5	7.7	15.5	19.7
	Industrial and mining water use (10 ⁶ m ³ a ⁻¹)	0	0	0.5	0.5
	Water Transfers out (10 ⁶ m ³ a ⁻¹):				
	To Power stations in South Africa	3.4	103	98.1	104.7
Crocodile	To irrigation in Swaziland <u>outside Komati</u>	0	111.8	122.2	121.8
	Irrigation area (km ²)	92.8	365.8	427	510.7
	Afforested area (km ²)	375	1550	1811	1941
	Domestic water use (10 ⁶ m ³ a ⁻¹)	3	12.2	33.6	52.4
Sabie	Industrial and mining water use (10 ⁶ m ³ a ⁻¹)	0.1	7.5	19.8	22.3
	Irrigation area (km ²)	27.7	68.4	113.4	127.6
	Afforested area (km ²)	428	729	708	853
	Domestic water use (10 ⁶ m ³ a ⁻¹)	2.4	5.3	13	26.7
	Industrial and mining water use (10 ⁶ m ³ a ⁻¹)	0	0	0	0

1 **Table 3. Hydrometric stations analyzed, location, catchment area, data length and missing data**

	Station	Latitude	Longitude	River and location	Catchment Area (km ²)	Data Available	Period analysed for trends	Missing Data
Komati	X1H001	-26.04	31.00	Komati River @_ Hooggenoeg	5499	1909 -	2012	1970-2011 (42 years)
	X1H003	-25.68	31.78	Komati River @_ Tonga	8614	1939 -	2012	1970-2011 (42 years)
	X1H014	-25.67	31.58	Mlumati River @_ Lomati	1119	1968 -	2012	1978-2011 (34 years)
	X1H016	-25.95	30.57	Buffelspruit @_ Doornpoort	581	1970 -	2012	1970-2011 (42 years)
	X1H021	-26.01	31.08	Mtsoli River @_ Diepgezet	295	1975 -	2012	1976-2011 (36 years)
Crocodile	X2H005	-25.43	30.97	Nels River @_ Boschrand	642	1929 -	2012	1970-2011 (42 years)
	X2H006	-25.47	31.09	Krokodil River @_ Karino	5097	1929 -	2012	1970-2011 (42 years)
	X2H008	-25.79	30.92	Queens River @_ Sassenheim	180	1948 -	2012	1970-2011 (42 years)
	X2H010	-25.61	30.87	Noordkaap River @_ Bellevue	126	1948 -	2012	1970-2011 (42 years)
	X2H011	-25.65	30.28	Elands River @_ Geluk	402	1956 -	1999	1957-1999 (43 years)
	X2H012	-25.66	30.26	Dawsons Spruit @_ Geluk	91	1956 -	2012	1970-2011 (42 years)
	X2H013	-25.45	30.71	Krokodil River @_ Montrose	1518	1959 -	2012	1970-2011 (42 years)
	X2H014	-25.38	30.70	Houtbosloop @_ Sudwalaskraal	250	1958 -	2012	1970-2011 (42 years)
	X2H015	-25.49	30.70	Elands River @_ Lindenau	1554	1959 -	2012	1970-2011 (42 years)
	X2H016	-25.36	31.96	Krokodil River @_ Tenbosch	10365	1960 -	2012	1970-2011 (42 years)
	X2H022	-25.54	31.32	Kaap River @_ Dolton	1639	1960 -	2012	1970-2011 (42 years)
	X2H024	-25.71	30.84	Suidkaap River @_ Glenthorpe	80	1964 -	2012	1970-2011 (42 years)
	X2H031	-25.73	30.98	Suidkaap River @_ Bornmans Drift	262	1966 -	2012	1966-2011 (46 years)
	X2H032	-25.51	31.22	Krokodil River @_ Weltevreden	5397	1968 -	2012	1970-2011 (42 years)
	X2H036	-25.44	31.98	Komati River @_ Komatiportoort	21481	1982 -	2012	1983-2011 (28 years)
	X2H046	-25.40	31.61	Krokodil River @_ Riverside	8473	1985 -	2012	1986-2011 (26 years)
	X2H047	-25.61	30.40	Swartkoppiespruit @_ Kindergoed	110	1985 -	2012	1986-2011 (26 years)
Sabie	X3H001	-25.09	30.78	Sabie River @_ Sabie	174	1948 -	2012	1970-2011 (42 years)
	X3H002	-25.09	30.78	Klein Sabie River @_ Sabie	55	1963 -	2012	1970-2011 (42 years)
	X3H003	-24.99	30.81	Mac-Mac River @_ Geelhoutboom	52	1948 -	2012	1970-2011 (42 years)
	X3H004	-25.08	31.13	Noordsand River @_ De Rust	200	1948 -	2012	1970-2011 (42 years)
	X3H006	-25.03	31.13	Sabie River @_ Perry's Farm	766	1958 -	2000	1970-1999 (30 years)

	X3H008	-24.77	31.39	Sand River at Exeter	1064	1967	-	2011	1968-2011 (43 years)	15.5%
	X3H011	-24.89	31.09	Marite River at Injaka	212	1978	-	2012	1979-2011 (32 years)	7.6%
	X3H015	-25.15	31.94	Sabie River at Lower Sabie Rest Camp	5714	1986	-	2012	1988-2011 (24 years)	8.2%
	X3H021	-24.97	31.52	Sabie River at Kruger Gate	2407	1990	-	2012	1991-2011 (21 years)	10.8%
Lower Incomati	E23	-25.44	31.99	Incomati River at Ressano Garcia	21200	1948	-	2011	1970-2011 (42 years)	9.0%
	E43	-25.03	32.65	Incomati River at Magude	37500	1952	-	2011	1970-2011 (42 years)	3.5%

1 **Table 4. Hydrologic parameters used in Range of Variability Approach (Richter et al., 1996)**

Indicators of Hydrologic Alteration Group	Regime Characteristics	Hydrological parameters
Group 1: Magnitude of monthly water conditions	Magnitude timing	Mean value for each calendar month
Group 2: Magnitude and duration of annual extreme water conditions	Magnitude duration	Annual minima and maxima based on one, three, seven, thirty and ninety day(s) mean
Group 3: Timing of annual extreme water conditions	Timing	Julian date of each annual 1-day maximum and minimum
Group 4: Frequency and duration of high/low pulses	Frequency and duration	No. of high and low pulses each year
		Mean duration of high and low pulses within each year (days)
Group 5: Rate/Frequency of water condition changes	Rates of change of frequency	Means of all positive and negative differences between consecutive daily values
		No. of rises and falls

2

1 **Table 5. Description of rainfall stations analyzed for trends, also the long term Mean Annual Precipitation (MAP) in mm a^{-1} , the standard variation, and**
 2 **detection of trend (confidence level of 95% using Spearman Test) and occurrence change point (using Pettitt Test followed by T-test of stability of mean**
 3 **and F-test of stability of variance)**

Analysis for the period 1950 to 2011										
Name	Station ID	Latitude	Longitude	Altitude [MASL]	MAP [mm]	P				
						Reliable [%]	Mean [mm a^{-1}]	St.Dev. [mm a^{-1}]	Trend Spearman	Pettitt
Machadodorp	0517430 W	-25.67	30.25	1563	781	79.6	773	134		
Badplaas (Pol)	0518088 W	-25.97	30.57	1165	829	90.6	817	153		
Kaapsehoop	0518455 W	-25.58	30.77	1564	1443	78.5	1461	286		Decr (1975)
Mac Mac (Bos)	0594539 W	-24.98	30.82	1295	1463	75.1	1501	287		
Spitskop (Bos)	0555579 W	-25.15	30.83	1395	1161	68.5	1197	266	Decr	Decr (1978)*
Alkmaar	0555567 W	-25.45	30.83	715	830	95.2	874	172		
Oorschot	0518859 W	-25.80	30.95	796	787	92.2	775	185		
Bosbokrand (Pol)	0595110 W	-24.83	31.07	778	982	82.4	919	297		Decr(1978)*
Pretoriuskop	0556460 W	-25.17	31.18	625	707	60.0	734	188		
Riverbank	0519310 W	-25.67	31.23	583	683	70.5	782	163	Incr	Incr (1977)**
Piggs Pig	0519448 A	-25.97	31.25	1029	1024	40.1	1075	315	Decr	Decr (1978)*
Skukuza	0596179 W	-25.00	31.58	300	560	63.1	566	140		
Riverside	0557115 W	-25.42	31.60	315	547	66.5	520	187		
Satara	0639504 W	-24.40	31.78	257	568	42.1	602	151	Incr	Incr (1971)
Fig Tree	0520589 W	-25.82	31.83	256	591	63.4	594	145	Decr	Decr (1978)*
Tsokwane	0596647 W	-24.78	31.87	262	540	66.1	544	134		Incr (1971)*
Krokodilbrug	0557712 W	-25.37	31.90	192	584	62.9	590	147		
Moamba	P821 M	-25.60	32.23	108	632	63.9	633	185		
Xinavane	P10 M	-25.07	32.87	18	853	76.2	773	241		
Manhica	P63 M	-25.40	32.80	33	883	86.2	903	275		Incr (1970)**

* Significant change with 2.5% significance level with T-Test of stability of mean

** Significant change with 2.5% significance level with T-Test of stability of mean and F-Test of stability of variance

1 *Explanatory Note: MAP is the Mean Annual Precipitation, and P reliable is the percentage of reliable data for the rainfall station, as assessed by Lynch (2003) for the period*
2 *1905 to 1999. The mean refers to the average of total annual precipitation for the period of 1950 to 2011. On the column trend Spearman only stations that had trend significant at*
3 *95% confidence level are indicated with Decr or Incr, corresponding to decreasing or increasing trend, respectively. On the column Pettitt, the direction of change and year are*
4 *indicated, as well as the significance of the change point*

5

1 **Table 6. Hydrological indicators of main sub-catchments**

STREAMFLOW INDICATORS	UNITS	KOMATI		CROCODILE		INCOMATI		SABIE		INCOMATI	
		X1H003 - TONGA	X2H016 - TENBOSH	X2H036 - KOMATIPOORT	X3H015 - LOWER SABIE	E43 - MAGUDE					
Period of Analysis:		1970-2011 (42 years)	1970-2011 (42 years)	1983-2011 (28 years)	1988-2011 (24 years)		1970-2011 (42 years)				
Drainage area	km ²	8614	10365	21481	5714		37500				
		Median	CD**	Median	CD**	Median	CD**	Median	CD**	Median	CD**
Annual*	m³s⁻¹	16.94	2.14	21.35	1.97	34.28	2.11	17.35	2.31	47.44	2.01
October	m ³ s ⁻¹	3.95	1.47	2.54	1.88	2.24	1.87	3.08	0.92	8.72	1.21
November	m ³ s ⁻¹	5.72	1.94	5.75	2.35	7.09	3.88	4.81	1.09	16.14	1.49
December	m ³ s ⁻¹	11.46	2.09	15.07	1.48	18.79	2.63	10.83	1.49	22.91	2.90
January	m ³ s ⁻¹	17.26	1.82	20.68	1.47	34.47	1.52	18.52	1.35	37.96	1.35
February	m ³ s ⁻¹	25.09	1.95	31.37	2.01	29.77	2.80	16.33	1.84	45.09	3.21
March	m ³ s ⁻¹	18.33	1.74	27.15	1.63	42.15	1.90	19.51	2.30	51.75	2.32
April	m ³ s ⁻¹	11.64	1.74	19.82	1.37	24.10	2.13	13.69	1.13	34.90	2.03
May	m ³ s ⁻¹	8.03	1.41	9.11	1.68	9.98	2.16	7.04	1.64	17.85	1.86
June	m ³ s ⁻¹	4.96	1.90	5.66	1.62	7.10	2.45	5.64	1.25	14.04	1.44
July	m ³ s ⁻¹	3.77	1.98	4.56	1.48	4.72	2.28	3.79	1.18	10.41	1.47
August	m ³ s ⁻¹	2.67	1.63	2.63	1.71	2.51	1.35	3.40	1.08	8.46	1.41
September	m ³ s ⁻¹	2.43	1.47	2.08	1.81	2.24	1.51	2.69	1.15	7.06	1.11
1-day minimum	m ³ s ⁻¹	0.31	4.04	0.24	2.64	0.14	5.29	1.45	1.13	2.49	1.48
3-day minimum	m ³ s ⁻¹	0.38	3.38	0.32	2.16	0.25	3.76	1.53	1.08	2.71	1.76
7-day minimum	m ³ s ⁻¹	0.59	2.55	0.40	2.88	0.33	4.35	1.60	1.16	3.01	1.61
30-day minimum	m ³ s ⁻¹	1.46	2.13	1.52	1.79	1.29	2.08	2.01	1.12	4.84	1.37
90-day minimum	m ³ s ⁻¹	3.69	1.47	3.45	1.34	3.17	2.09	3.02	1.23	8.14	1.38
1-day maximum	m ³ s ⁻¹	134.4	1.26	142.2	1.38	274.3	1.00	113	2.51	381.5	1.80

3-day maximum	m^3s^{-1}	102.9	<i>1.50</i>	126.9	<i>1.33</i>	232.9	<i>1.15</i>	87.62	<i>2.60</i>	344.1	<i>1.74</i>
7-day maximum	m^3s^{-1}	81.79	<i>1.59</i>	107.4	<i>1.20</i>	201.4	<i>1.13</i>	62.55	<i>2.27</i>	273.7	<i>1.56</i>
30-day maximum	m^3s^{-1}	54.39	<i>1.45</i>	76.98	<i>1.28</i>	109.6	<i>1.33</i>	37.66	<i>1.93</i>	156.7	<i>1.45</i>
90-day maximum	m^3s^{-1}	39.19	<i>1.33</i>	45.08	<i>1.16</i>	68.69	<i>1.71</i>	28.06	<i>1.47</i>	102	<i>1.32</i>
	Julian										
Date of minimum	Date	275	<i>0.10</i>	274	<i>0.12</i>	281.5	<i>0.15</i>	278.5	<i>0.06</i>	290.5	<i>0.21</i>
	Julian										
Date of maximum	Date	38.5	<i>0.16</i>	33	<i>0.11</i>	35.5	<i>0.19</i>	20.5	<i>0.17</i>	39.5	<i>0.14</i>
Low pulse count	No	6	<i>1.63</i>	4	<i>1.63</i>	5	<i>1.55</i>	4	<i>1.00</i>	3	<i>1.33</i>
Low pulse duration	Days	5.5	<i>1.41</i>	5	<i>1.60</i>	3.5	<i>0.71</i>	6.5	<i>1.69</i>	6.75	<i>2.09</i>
High pulse count	No	6	<i>0.75</i>	4	<i>1.25</i>	5	<i>0.95</i>	4	<i>0.69</i>	4	<i>0.75</i>
High pulse duration	Days	4	<i>1.31</i>	4	<i>2.13</i>	4.5	<i>1.28</i>	5	<i>2.10</i>	8.5	<i>1.03</i>
Rise rate	m^3s^{-1}	0.7095	<i>1.39</i>	0.64	<i>0.98</i>	1.161	<i>1.38</i>	0.404	<i>1.12</i>	1.058	<i>1.43</i>
Fall rate	m^3s^{-1}	-0.7295	<i>-0.98</i>	-0.61	<i>-0.78</i>	-1.38	<i>-1.28</i>	-0.2398	<i>-1.10</i>	-0.6278	<i>-2.31</i>
Number of reversals	No	111.5	<i>0.26</i>	113	<i>0.42</i>	121	<i>0.18</i>	95	<i>0.29</i>	86	<i>0.49</i>

* On the annual statistics mean and coefficient of variation were used

**CD is the coefficient of dispersion. More details about it are available in text.

1

2

1 **Table 7. Trends of the hydrological indicators for the period 1970-2011. In bold are significant trends at 95% confidence level.**

2

STREAMFLOW INDICATORS	KOMATI		CROCODYLE		SABIE		INCOMATI		INCOMATI	
Period of Analysis:	X1H003 - TONGA		X2H016 - TENBOSH		X3H015 - LOWER SABIE		X2H036 - KOMATIPOORT		E43 - MAGUDE	
Drainage area [km ²]	8614		10365		5714		21481		37500	
	Slope	Pvalue	Slope	Pvalue	Slope	Pvalue	Slope	Pvalue	Slope	Pvalue
October	-0.285	0.05	-0.052	0.5	0.017	0.5	-0.017	0.5	-0.313	0.25
November	-0.254	0.1	-0.006	0.5	0.263	0.5	0.020	0.5	-0.165	0.5
December	-0.194	0.5	-0.090	0.5	0.199	0.5	0.783	0.5	-0.087	0.5
January	-0.437	0.5	-0.023	0.5	1.493	0.25	1.979	0.25	-0.960	0.5
February	-1.027	0.1	-0.927	0.25	0.544	0.5	-0.486	0.5	-2.847	0.05
March	-0.360	0.5	-0.397	0.5	0.390	0.5	-0.112	0.5	-1.346	0.5
April	-0.082	0.5	-0.007	0.5	0.899	0.25	1.532	0.25	-0.195	0.5
May	-0.225	0.1	-0.045	0.5	0.416	0.5	0.788	0.5	-0.365	0.5
June	-0.215	0.025	0.059	0.5	0.270	0.5	0.470	0.5	-0.045	0.5
July	-0.179	0.005	0.060	0.5	0.219	0.5	0.171	0.5	-0.039	0.5
August	-0.074	0.1	0.105	0.5	0.134	0.25	0.312	0.5	0.090	0.5
September	-0.029	0.5	0.134	0.5	0.081	0.5	0.218	0.5	0.166	0.25
1-day minimum	-0.027	0.025	-0.015	0.25	0.061	0.1	0.003	0.5	0.139	0.001
3-day minimum	-0.029	0.025	-0.015	0.25	0.061	0.1	0.004	0.5	0.127	0.005
7-day minimum	-0.038	0.05	-0.015	0.5	0.064	0.1	0.004	0.5	0.094	0.05
30-day minimum	-0.069	0.025	-0.025	0.25	0.058	0.25	0.033	0.5	0.054	0.5
90-day minimum	-0.115	0.01	-0.059	0.25	0.131	0.1	0.038	0.5	-0.054	0.5
1-day maximum	-5.143	0.25	-5.425	0.25	-2.743	0.5	-12.070	0.25	-10.580	0.025
3-day maximum	-3.749	0.25	-3.670	0.25	-1.379	0.5	-8.171	0.5	-9.254	0.025
7-day maximum	-2.361	0.25	-2.427	0.25	0.014	0.5	-3.742	0.5	-6.722	0.05
30-day maximum	-1.022	0.25	-1.023	0.25	0.662	0.5	0.092	0.5	-3.400	0.1

90-day maximum	-0.671	0.25	-0.576	0.5	0.789	0.5	0.934	0.5	-2.147	0.25
Number of zero days	0.690	0.25	-0.005	0.5	0	0.5	0.032	0.5	-0.080	0.5
Base flow index	-0.001	0.25	0.000	0.5	0.004	0.5	0.001	0.25	0.007	0.001
Date of minimum	-0.686	0.5	0.354	0.5	0.548	0.5	-0.420	0.5	1.374	0.5
Date of maximum	0.817	0.5	0.347	0.5	-3.222	0.5	0.288	0.5	0.617	0.5
Low pulse count	0.132	0.1	0.238	0.001	-0.045	0.5	0.185	0.5	0.043	0.25
Low pulse duration	0.068	0.5	-0.140	0.5	-0.669	0.1	-0.297	0.25	-0.602	0.5
High pulse count	-0.127	0.005	0.007	0.5	-0.023	0.5	-0.096	0.25	-0.068	0.05
High pulse duration	0.029	0.5	-1.263	0.01	1.081	0.25	0.144	0.5	-0.103	0.5
Rise rate	-0.007	0.5	-0.008	0.5	0.005	0.5	0.017	0.5	-0.034	0.05
Fall rate	0.003	0.5	-0.013	0.05	-0.007	0.5	-0.012	0.5	-0.007	0.5
Number of reversals	0.574	0.1	1.083	0.01	0.723	0.5	0.560	0.5	0.764	0.005

1 **Figures Captions**

2 Figure 1. Map of location of the study area, illustrating the main sub-catchments, the hydrometric and rainfall
3 stations analyzed, and the basin topography and dams

4 Figure 2. Streamflow data used on this study, with indication of time series length, data quality, missing data. Major
5 developments in the basin, such as dams, are on the top horizontal line on the year they were commissioned;
6 indication is made of the gauges affected by the developments by the initial letter of the dam.

7 Figure 3. Box plot illustrating the spatial variation of annual rainfall across the Incomati Basin (median, 25%, 75%
8 are shown by the green and red boxes; the lines illustrate the range). The stations are presented from west to east,
9 along the basin profile.

10 ~~Figure 4. Annual rainfall anomalies (blue bars), computed as the deviation from the long term average 1950-2010
11 and the 5 year moving average of annual rainfall (black line, legend on the right).~~

12 Figure 4. Median of observed daily streamflow for the gauges located at the outlet of major sub-catchments Komati,
13 Crocodile, Lower Sabie and Incomati (based on daily time series from 1970 to 2011)

14 Figure 5. Trends of different indicators of streamflow: a) for period 1970-2011; b) for period 1950-2011

15 Figure 6. Count of significant trends. Declining trends are in red and increasing trends in green. The size of the pie is
16 proportional to the total number of significant trends.

17 Figure 7. Land use land cover map of Incomati (ICMA, 2010;TPTC, 2010) and streamflow trends in the month of
18 October

19 Figure 8. Plot of median monthly flows for September for the entire time series (1949-2011) on the Noord Kaap
20 Gauge, located on the Crocodile sub-catchment.

21 Figure 9. Plot of median monthly flows for 2 periods (1949- 1974 and 1978-2011) on the Noord Kaap Gauge,
22 located on the Crocodile sub-catchment.

23 Figure 10. Impact of Kwena Dam (commissioned in 1984) on streamflows of the Crocodile River, Montrose Gauge
24 X2H013