
Authors response to the referee report C5106 of the anonymous referee #2 

We would like to thank the anonymous referee #2 for the very helpful comments on our 
manuscript (hess-2014-400). We have carefully considered the reviewer’s comments and will 
include them into the revised version of the manuscript. Please find below a point by point 
response to the reviewer’s comments. 

Comment 1: Page 10861, line 13 (P61, L13): As the sink term is defined as water extraction, 
and increasing water extraction decreases water storage, it seems more appropriate to have the 
sign “-“ in front of S(z,t). 
 
Response: We agree with the reviewer and we will change equation (1) (P61, L13) according to 
the reviewer’s suggestion to: 

 

 

 

Comment 2: P62, L13: This method does not specifically neglect “vertical” soil water flow, it 
neglects soil water flow more generally. 
 
Response: Here, we also agree with the reviewer. The sentence will be changed as follows: 
 
Old: 
However, a disadvantage is that the depletion of soil water is assumed to occur only by root 
water uptake and soil evaporation, and vertical soil water fluxes are negligible (Hupet et al., 
2002).  
 
New: 
However, a disadvantage is that the depletion of soil water is assumed to occur only by root 
water uptake and soil evaporation, and soil water fluxes are negligible (Hupet et al., 2002).  
 
 
Comment 3: P62, L27: The cited studies do not fit parameters of “time constant RWU 
profiles” as their RWU profiles are not time constant. Their RWU model parameters are time 
constant but as soil matric potential and transpiration vary, their RWU profiles change. The 
following (“whereas …” L27-29) does not contradict the cited studies then. 
 
Response: Yes, this is right fort he cited studies. We have changed the sentence accordingly 
and to show that the models implicitly assume relations between observables (like root 
distribution, soil water content) and root water uptake profiles, when uptake profiles depend on 
other biotic regulations as well. 
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Old: 
Another problem is that the applied models for soil water flow ignore biotic processes. For 
example Musters et al. (2000) and Hupet et al. (2002) tried to fit parameters of time constant 
root water uptake profiles, whereas empirical data strongly suggest that plants adjust the 
distribution of root water uptake dynamically depending on soil moisture storage (Green and 
Clothier, 1995; Lai and Katul, 2000; Li et al., 2002; Garrigues et al., 2006). 
 
 
New: 
Another problem is that the applied models for soil water flow potentially ignore biotic 
processes. For example Musters et al. (2000) and Hupet et al. (2002) tried to fit parameters for 
root distributions in a model determining uptake profiles from water availability whereas 
empirical and modeling studies suggest that adjustment of root water uptake 
distribution may also be from physiological adaptations (Jackson et al., 2000; 
Zwieniecki et al., 2003; Bechmann et al., 2014). 
 
 
Comment 4: P64, L18: Here it could also be mentioned that a RWU model is used in addition 
of a soil water flow model. 
 
Response: Thank you for the useful hint. We will change the sentence as follows: 
 
Old: 
In this study, synthetic time series of volumetric soil water content generated by a soil water 
flow model (section 2.3), were treated as measured data and are used as the basis for all 
methods (section 2.2) estimating the sink term 𝑆 �(𝑧) and total evapotranspiration 𝐸 � . 
 
New: 
In this study, synthetic time series of volumetric soil water content generated by a soil water 
flow model coupled with a root water uptake model (section 2.3), were treated as 
measured data and are used as the basis for all methods (section 2.2) estimating the sink term 
𝑆 �(𝑧) and total evapotranspiration 𝐸 � . 
 
 
Comment 5: P65, L20: During dry periods, non-null “q” may occur as capillary rise (q is then 
negative), especially if the water table is no deeper than 2 meters. A possible justification to 
prevent capillary rise from happening in the synthetic dataset would be to define the “water 
table” as the bottom of a lysimeter. Didn’t capillary rise occur during dry periods in the 
synthetic dataset? 
 
Response: Yes, there is capillary rise in our synthetic dataset from the shallow water table, 
which is also realistic for our scenario. Overall, the capillary rise flux is smaller than drainage 
in magnitude, but it does introduce uncertainty to the method (Fig. AC2.1). However, our aim 
was to generate a scenario as realistically as possible to evaluate the particular methods and 
also show their drawbacks, and we therefore prefer to not make the proposed adjustment. It is 



true that this introduces an additional error to the ssml method, and we will point this out in 
the revision. 
 
 
Comment 6: P66, L2: A more precise definition of dry period should be provided here. I believe 
that later in the manuscript it is mentioned that the dry periods start 24 hours after the end of 
rain events. Was there no leaching later than that? I insist on these points (5 and 6) because 
they could be a major reason why the method ssml fails to predict accurate evapotranspiration. 
 
Response: We are aware that percolation can occur also up to several days after a rainfall 
event, especially in deeper layers. This is the case for the investigated summer period, which 
started one day after a rainfall event, and percolation was considerable for more than a week in 
the deep soil layers (Fig AC2.1 c). However, this period was chosen deliberately to investigate 
whether the particular data-driven methods can deal with leaching fluxes.  
This is also discussed in section 4, P79, L13-20: “In those simpler soil water balance methods 
any change in soil moisture is assigned only to root water uptake (Rasiah et al., 1992; Musters 
et al., 2000; Hupet et al., 2002). However, even several days after a rainfall event the vertical 
matrix flow within the soil can be similar in magnitude to the root water uptake (Schwärzel et 
al., 2009) and this leads to considerable overestimation of the sink term, when soil water flow is 
not accounted for. This error sums up, when the sink term is integrated over depth and leads 
to a great bias in 20 the evapotranspiration estimate.” 
We agree with the reviewer’s comment that a more precise definition of the applied dry period 
should be provided. We will change sentence P66, L2 accordingly: 
 
Old: 
Additionally, rainfall measurements are required to select dry periods. 
 
New: 
Additionally, rainfall measurements are required to select dry periods, where no percolation 
occurs. These could start several hours up to several days after a rainfall event 
(Breña Naranjo et al., 2011), whereas it depends on the amount of rainfall and the 
site-location parameters like soil type and vegetation. In this study we waited 24 
hours after the end of the precipitation event, before applying the model.  
 
We also approve that the statement in sentence P78, L22-24: “For the same reason, none of the 
water balance methods can be applied during times of fast soil water flow, for example during 
or shortly (one day) after a rainfall event.”, could be confusing and we will edit the sentence to: 
 
New: 
“For the same reason, none of the water balance methods can be applied during times of fast 
soil water flow, for example during or after a rainfall event.” 
 
We agree that it is important to point the drawback of the ssml more out in the manuscript 
and we will specifically refer to the ssml in the above mentioned section in the revised 
manuscript. 



 

Comment 7: P67, L20: The assumption that mflow does not change significantly between day 
and night is interesting and could be directly illustrated from the synthetic dataset as mflow is 
known at all times. 
 
Response: Indeed, the manuscript would benefit from an illustration of the basic assumption of 
the msml method, that invariance of mflow during day and night. We correlated the mean 
fluxes in the nights before and after one particular day with the mean fluxes of the respective 
day, and found a strong correlation (R²=0.99, p<0.001) (Fig. AC2.2). We will include this 
figure in the revised manuscript. 
 
 
Comment 8: P67, L21: Here it is not clear to me which nights are included in mflow. Is 
“antecedent and preceding nights” limited to two nights? In case daytime mflow would be 
correlated to night-time mflow, I would expect that the highest correlation would be with mflow 
from the most recent night. What additional pieces of information would other preceding nights 
provide?  
 
Response: Yes, “antecedent and preceding nights” is limited to one night before and after the 
considered day. We will make this more clear in the revised manuscript as follows: 
 
Old: 
The sink term can be calculated from Eq. (8a), assuming that mflow can be estimated from Eq. 
(8b) and using the average of the antecedent and preceding nights mflow,i .  
 
 
New: 
The sink term can be calculated from Eq. (8a), assuming that mflow during the day can be 
estimated from Eq. (8b) and using the average of the antecedent and the preceding night. 
 
 
Comment 9: P68, L22: I found the inverse model section quite confusing. It seems like the 
method of Zuo and Zhang is first explained, then for some reason a second method is 
explained. The first method would not be implemented though. I understand from the first 
sentences that the sink terms are optimized at each depth and each time step (while usually the 
RWU model parameters are optimized). Hopefully what follows can be clarified and made more 
concise. 
 
Response: Obviously, this section leads to confusions and misunderstandings, for example that 

the method after Zuo and Zhang was not implemented. However, the method after Zuo and 

Zhang was implemented but we modified the termination process of the original iterative 

procedure. We agree that this section would benefit from a more concise and structured 



explanation. We restructured this section (Section 2.2.4 Inverse Model (im), P68, L6 - P70, L8) 

as follows (changes in bold letters) and will replace it in the revised manuscript.  

New: 

The fourth approach is the most complex. The inverse model (im) estimates the average root 

water uptake by solving the Richards' equation (Eq. 1) and iteratively searching the sink term 

profile for each time step, which produces the best fit between the numerical solution and 

measured values of soil moisture content (Zuo & Zhang, 2002). The advantage of this 

method is the estimation of root water uptake without the a priori estimation of 

rooting profile function parameters since they are highly uncertain as elucidated in 

the introduction. We implemented the inverse water balance approach after Zuo 

and Zhang (2002) with the Fast Richard's solver (Ross, 2003), which is available 

as FORTRAN 90 code. We modified the original method by changing the 

convergence criterion.  

In this section, we first introduce the iterative procedure as proposed by Zuo and 

Zhang (2002) and then explain the modification, which we conducted. 

The iterative procedure by Zuo and Zhang (2002) runs the numerical model over a 

given time step (Δt) in order to estimate the soil water content profile 𝜃�i
(v=0) at the end of the 

time step, and assuming that the sink term (�̃�𝑖𝑖,𝑖
(𝑣=0)) is zero over the entire profile. Here ~ 

depicts the estimated values at the respective soil layer i, and v indicates the iteration step. 

Next, the sink term profile �̃�𝑖𝑖,𝑖
(𝑣=1) is set equal to the difference between previous approximation 

𝜃�i
(v=0)and measurements 𝜃i while accounting for soil layer thickness and length of the time step 

for units.  

In the following iterations, �̃�𝑖𝑖,𝑖
(𝑣)  is used with Richards' equation to calculate the new soil water 

contents 𝜃�i
(v). The new average sink term �̃�𝑖𝑖,𝑖

(𝑣+1) is then determined with Eq. (10).  
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This iteration process continues until a specified decision criterion εZZ is reached:  
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where n is the number of soil layers in the soil column. 

Since εzz is a normalized root mean square error over depth, good and poor estimations cancel 

between layers. This leads to termination of the iterative procedure even if the estimation of 

the sink term is very poor in several layers. We therefore propose a slightly adapted 

termination process, which applies to separate soil layers, as follows. The estimation 

of the sink term in general is applied as proposed by Zuo and Zhang (2002). 

 

(1) Calculate the difference between the estimated and measured soil water content (Eq. 

12) and compare the change of this difference to the difference of the previous iteration 

(Eq. 13). 
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(2) In soil layers where ε𝐺𝐺
(𝑣) < 0: Set the root water uptake rate back to the value of the 

previous iteration (S�𝑖𝑖,i
(𝑣+1) =  S�𝑖𝑖,i

(𝑣−1)), since the current iteration was no improvement. 

Only if ε𝐺𝐺,i
(𝑣)  ≥ 0: go to step (3). This prevents acceptance of the estimated sink term  

S�𝑖𝑖,i
(𝑣)  even if it leads to a worse fit than the previous iteration.  

(3) If 𝑒i
(𝑣)

 > 1.0e-4: Calculate S�𝑖𝑖,i
(𝑣+1) according Eq. (10); else the current iteration sink term 

(S�𝑖𝑖,i
(𝑣+1) =  S�𝑖𝑖,i

(𝑣) ) is retained as it results in a good fit between estimated and measured 

soil water contents. 

The iteration process continues until the convergence criterion ε𝐺𝐺
(𝑣)  (Eq. 13) does not change 

anymore between iterations (i.e. all layers have reached a satisfactory fit), or after a specified 

number of iterations (we chose 3000).  

The required input information are besides the soil water content measurements and the 



rainfall, the soil hydraulic parameters.  

 
 
Comment 10: P70, L21: Here I did not find the spatial resolution of the simulation (1 cm?). 
 
Response: The spatial resolution of the simulation is according to the measurement depths 15-
15-30-40-40-40-40 cm. The advantage of the applied soil water flow model is that the water 
fluxes are calculated with the matrix flux potential (Kirchhoff transformation), which allows a 
spatial discretization with large nodal spacing (Ross, 2006). The inversion of the soil model to 
estimate root water uptake benefits from this lower spatial discretization, which reduces 
computation times. This was the reason to choose this model. 
We compared the model results for simulated soil water contents of the applied spatial 
discretization and one model with 1 cm spatial resolution. The obtained R² = 0.98 between 
both datasets justified the application of the coarse spatial resolution.  
We will include a comment on the spatial resolution in the revised manuscript. 
 
Old: 
The model was set up for a one dimensional homogeneous soil profile, 220 cm deep. 
Measurement points were set in depths of 15, 30, 60, 100, 140, 180 and 220 cm. We used a 
maximum rooting depth of 140 cm, with 60% of root length density located in the top 15 cm of 
the root zone, which corresponds to mean values measured on the field site (Ravenek et al., 
2014). 
 
New: 
The model was set up for a one dimensional homogeneous soil profile, 220 cm deep. 
Measurement points were set in depths of 15, 30, 60, 100, 140, 180 and 220 cm. The spatial 
resolution of the soil model is according to the measurement points 15-15-30-40-40-
40-40 cm. The advantage of the applied soil water flow model is that the water 
fluxes are calculated with the matrix flux potential (Kirchhoff transformation), 
which allows a spatial discretization with large nodal spacing (Ross, 2006). We used 
a maximum rooting depth of 140 cm, with 60% of root length density located in the top 15 cm 
of the root zone, which corresponds to mean values measured on the field site (Ravenek et al., 
2014). 
 
 
Comment 11: P72, L4-5: This sentence could be removed as its content is repeated in more 
detail in the next sentence. 
 
Response: Thank you for the useful hint. We will remove the indicated sentence in the revised 
manuscript. 
 
Comment 12: P74, L16: According to Table 2 the best result (b=0.89%) corresponds to the 
measurement frequency of 12h, not 24h. The captions of Table 2 and 4 do not specify what 
variable prediction is evaluated. From the rest of the text I believe it is the daily averaged ET 
though. 



 
Response: Yes, 0.89 % is for the frequency of 12 h (according to Table 2). We apologize for the 
typing error and we will change it to 12 h in the indicated sentence in the revised manuscript. 
 
We will change the captions of Table 2 and 4 in the revised manuscript as follows: 
 
Old: 
Table 2: Comparison of the model performance of the four data-driven methods regarding time 
resolution of soil moisture measurements. The model performance is expressed as correlation 
coefficient R, relative variability in simulated and reference values RV and relative bias (b) for 
the period 25 July to 26 August 2009. Days at which rainfall occurs were excluded for the data 
analysis. 
 
Table 4: Comparison of the model performance of the Multi Step Multi Layer Regression and 
the Inverse Model regarding soil moisture measurement uncertainty. The model performance is 
expressed as correlation coefficient R, relative variability in simulated and reference values RV 
and relative bias (b) for the period 25 July to 26 August 2009. The precision uncertainty is 
abbreviated by prec err, the calibration uncertainty by cali err and the combined uncertainty 
by com err. 
 
 
New: 
Table 2: Comparison of the model performance of the four data-driven methods for 
reproducing daily evapotranspiration for the particular time resolution of soil 
moisture measurements. The model performance is expressed as correlation coefficient R, 
relative variability in simulated and reference values RV and relative bias (b) for the period 25 
July to 26 August 2009. Days at which rainfall occurs were excluded for the data analysis. 
 
Table 4: Comparison of the model performance with considering soil moisture 
measurement uncertainties for the Multi Step Multi Layer Regression and the 
Inverse Model for reproducing daily evapotranspiration. The model performance is 
expressed as correlation coefficient R, relative variability in simulated and reference values RV 
and relative bias (b) for the period 25 July to 26 August 2009. The precision uncertainty is 
abbreviated by prec err, the calibration uncertainty by cali err and the combined uncertainty 
by com err. 
 
 
Comment 13: P75, L14: “The results show that lesser complex methods better reproduce ET”. 
Isn’t it the opposite, more complex methods (msml and im) better predict ET? 
 
Response: The reviewer is right, more complex methods better predict ET. The focus of the 
indicated sentence was more on the temporal resolution of the applied soil moisture data rather 
than a comparison between the methods. Lesser complex methods perform better when using 
soil water measurements with higher temporal resolution (e.g. of 1 and 3 h).  
 
We rephrased this section to make this more obvious. 



 
Old: 
The results show that lesser complex data-driven methods, except the ssml, bet- 15 ter 
reproduce the actual evapotranspiration, when using soil water measurements with higher 
temporal resolution of 1 and 3 h. 
 
New: 
Our results also show that lesser complex data-driven methods, also perform 
better at higher temporal resolution (1 and 3 h), except for the ssml. 

 
Comment 14: P75, L27: It is explained that the standard deviation of z_25%, z_50% and 
z_90% from the synthetic dataset is almost 0. In consequence the RV index tends to values too 
high to be indicative, and its numerator (std dev of estimated z_25%, z_50% and z_90%) is 
used instead. Smaller std dev of estmations then become indicator of quality of fit, which makes 
sense. I am surprised though that the authors (i) insist in the introduction and discussion on 
the dynamism of RWU which adapts itself to soil moisture distribution, (ii) use a RWU model 
that has compensation implemented, but eventually generate a synthetic dataset that does not 
seem to have significant variations of RWU relative distribution… 
 
Response: Our aim was to generate a realistic scenario from a known experimental field site to 
evaluate the particular methods. In the case study there was no water stress and thus there 
was no redistribution of water uptake within the soil layers necessary although the applied 
model can reproduce different root water uptake patterns. Nevertheless, the uniformity of the 
root water uptake patterns has no technical influence on the application of the investigated 
data-driven methods. We will add this as a comment in the method section of the revised 
manuscript. 
 
 
Comment 15: P80, L17: The word “uptake” probably missing between “root water” and 
“model”. 
 
Response: We apologize for the typing error and we will add “uptake” in the indicated sentence 
in the revised manuscript. 
 
 
Comment 16: P81, L12: The word “and” between “calibration error” and “but”… 
 
Response: Thank you for the hint. We will delete the word “and” in the indicated sentence in 
the revised manuscript. 
 
 
Comment 17: P95: More results could be provided in Table 4, if not within the body of the 
article, it could be added in appendix. 
 



Response: We will add the values of the mean relative bias between synthetic and predicted 
values of evapotranspiration and the depths where 25, 50, 90 % of water extraction occurs, 
according to Fig. 6 of the manuscript. 
 
New: 
Table 4: Comparison of the model performance with considering soil moisture measurement uncertainties 

for the Multi Step Multi Layer Regression and the Inverse Model for reproducing daily 

evapotranspiration and the mean depths where 25 %, 50 % and 90 % water extraction occurs. The model 

performance is expressed as correlation coefficient R, relative variability in simulated and reference 

values RV and relative bias (b) for the period 25 July to 26 August 2009. The precision uncertainty is 

abbreviated by prec err, the calibration uncertainty by cali err and the combined uncertainty by com 

err. The relative bias for reproducing evapotranspiration is abbreviated with bET and for reproducing 

mean depths where 25 %, 50 % and 90 % water extraction occurs is abbreviated with b25%, b50% and b90%, 

respectively.  

 

Time resolution of 

measurements 

Multi Step Multi Layer Regression 

 

1h 

Inverse Model 

 

24h 

Criterion prec err cali err com err prec err cali err com err 

R 0.90 0.89 0.91 -0.027 0.847 -0.054 

RV 1.35 1.50 1.35 1.51 1.25 1.85 

Median bias bET (%) -6.2 -4.9 -6.1 -10.3 498.1 483.3 

Median bias b25% (%) 19.6 3.6 19.5 25.2 531.1 405.1 

Median bias b50% (%) 28.0 5.4 27.7 42.0 622.4 659.1 

Median bias b90% (%) 80.8 27.7 84.7 128.5 757.6 569.0 

       

 
Comment 18: P98: If found the successive grey and white bands for respectively day and night 
to be sort of confusing as dark is commonly associated to night. 
 
Response: We agree that the distribution of the grey bands is confusing. Indeed, the figure 
would benefit from a change of the grey and white bands (grey=night, white=day). We will 
edit the figure accordingly in the revised manuscript (Fig. AC2.3). 



 
Comment 19: Page 10901: The coloured bands are not all visible due to overlapping. 
 
Response: We agree that Figure 5 does not show clearly the coloured bands. We adjusted the 
figure so that the bands for the precision error is now visible (Fig. AC2.4). The bands for the 
combined and the calibration error do really overlap almost completely. We will mention this 
in the figure legend to improve reading the figure. 
 
 
General comment: An illustration displaying what goes wrong with the im method for an 
isolated simulation would be helpful in addition to the confidence intervals of Fig. 5. 
 
Response: Thank you for the useful suggestion. We included a Figure showing the evolution of 
the inverse procedure (im) for the simulation with undisturbed soil moisture data (Fig. AC2.5) 
and for one isolated simulation with soil moisture data including a randomly selected 
calibration uncertainty (Fig. AC2.6). From figure AC2.6 it is evident that the inverse 
procedure is unable to close the water balance for the entire soil profile, especially if the sensors 
in the measurement transect have a different uncertainty range. The im fit the simulated soil 
moisture on the imprecise measured values at the expenses of the root water uptake, and thus 
overestimates the root water uptake in individually layers (Fig. AC2.6 d, e) and 
evapotranspiration. We will include figure AC2.6 as Figure 7 in the revised manuscript in 
addition to the discussion on page 88, line 27 to page 89, line 1 as follows. 
 
Old: 
This “calibration error” renders the evolution of the vertical potential gradients inconsistent 
with the evolution of the vertical sink term distribution, and thus introduces forbidding 
overestimation of evapotranspiration for the considered time steps 
 
New: 
This “calibration error” renders the evolution of the vertical potential gradients and soil 
moisture profile inconsistent with the evolution of the vertical sink term distribution, and 
thus introduces forbidding overestimation of root water uptake and evapotranspiration for 
the considered time steps (Fig. 7). 
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Figures for „Author comment - response to referee #2“ 

 

 
 
Figure AC2.1: Precipitation (P) and actual evapotranspiration (ETa) from 25th July to 28th August (a), 
temporal and spatial evolution of soil water content (b) and drainage flux out of the soil column in 220 
cm. Positive drainage indicate outflow and positive drainage indicate capillary rise.  
 
  



 
Figure AC2.2: Correlation between the mean fluxes of the respective day and the mean fluxes in the 
nights before and after one particular day. The analysis was conducted with the LinearModel.fit function 
of the Statistics toolbox in Matlab R2012.b. 
  



 
Figure AC2.3: Short term fluctuations of soil moisture in 15 cm depth during August 2009, showing the 
rewetting of soil at night times (blue line) and the water extraction at the day (red line); dashed lines 
depict the change between times with soil water extraction (white) and rewetting of soil (grey). 
  



 

Figure AC2.4: Influence of soil moisture uncertainty on evapotranspiration estimated with the Multi 
Step Multi Layer Regression (Regression Model - msml) (a) and the Inverse Model (im) (b). The red line 
is the evapotransiration from the synthetic data (Reference). The colored bands indicate the 95% 
confidence intervals. 



 

 

Figure AC2.5: Evaluation of the inversion process with undisturbed soil water content data of the im method (daily resolution). Subplot a) shows the difference of 
simulated (θsim) and observed soil water content (θobs) for each conducted iteration step in each depth. Suplot b) shows the evolution of the decision criteria εZZ at 
each iteration step and c) depicts the convergence criteria Δ εZZ and εGH for each iteration step until the reach their value for termination. Subplot d) shows the 
reference soil water content profile (θref) which is in this case equal to θobs and the respective iterations. Subplot e) shows the reference sink term and the evaluation 
of the estimated sink term over depth for each conducted iteration. 



 

Figure AC2.6: Evaluation of the inversion process with disturbed soil water content data (calibration uncertainty) of the im method (daily resolution). Subplot a) 
shows the difference of simulated (θsim) and observed soil water content (θobs) for each conducted iteration step in each depth. Suplot b) shows the evolution of the 
decision criteria εZZ at each iteration step and c) depicts the convergence criteria Δ εZZ and εGH for each iteration step until the reach their value for termination. 
Subplot d) shows the reference soil water content profile (θref), the perturbed soil moisture profile (θcalierror) and the respective iterations. Subplot e) shows the 
reference sink term and the evaluation of the estimated sink term over depth for each conducted iteration. 

 


