
Response to Simon Zwieback’s interactive comment on “Multi-scale analysis of 

bias correction of soil moisture” 

We thank our colleague Simon Zwieback for his interest and comments on our manuscript. We take 

this opportunity to consider his invaluable comments (copied here and identified by [SZ]) and improve 

the clarity of this work. In particular we extended our discussions to reflect upon the insights provided 

by our colleague. Our responses are identified by [A] while extracts of the specific changes made in the 

revised manuscript are shown in quotations and in blue. 

[SZ] The authors present a framework within which soil moisture time series (as derived from e.g. models or 

remote sensing instruments) can be analysed and compared at different temporal scales. Such data commonly 

exhibit complex scale-dependent behaviour: a fact to which only cursory attention is usually paid when soil 

moisture products are assessed or compared. The manuscript is thus certainly relevant for HESS - and the 

hydrological community at large. I also find it well written and generally carefully argued, but I would like to 

mention a few points that the authors might want to consider: 

[A] Indeed our work attempts to address this gap by describing a more systematic approach (wavelet-

based multi-resolution analysis in the temporal domain) to analyse the time scale-dependent variability 

between different data sets such as of soil moisture variable. It is also prospective to consider multi-

resolution analysis in the spatial domain, but at this stage, multiple independently-derived high-

resolution soil moisture data sets (e.g., from Sentinel satellites) are yet to be available for comparisons. 

 

[SZ] 1. Previous work 

p 8998, 1-12: this is mostly based on hydrological principles, previous empirical work (e.g. [1], [2], [3]) not 

being mentioned 

[A] We agree that an alternative approach undertaken by Loew and Schlenz (2011) [1], Su et al. (2014) 

[2] and Zwieback et al. (2013) [3] is to consider (moving) windowed statistics. In these approaches, the 

underlying assumptions are that the biases or errors have somewhat seasonal characteristics. We 

amended the manuscript to read, 

“One possible remedy is to apply bias correction, either TC or statistical-moment matching, only to anomaly 

timeseries (Miralles et al., 2011; Liu et al., 2012; Su et al., 2014), but it remains unclear how these methods 

affect the signal and noise components in the corrected data. Alternatively a moving window can be used to 

examine the time-varying statistics of timeseries (Loew and Schlenz , 2011; Zwieback et al., 2013; Su et 

al., 2014).” 

 

[SZ] 2. Interpolation and interpretation of the results 

p 9000, 1-2: how sensitive are the results to the choice of interpolation algorithm? I would expect it to be 

particularly relevant at fine temporal scales, but this is not included in the analysis of Section 4 (e.g. lines 14-

15 on p 9004).  

[A] This is a legitimate concern, especially for AMSR-E that had a revisit time of 1-2 day and limited 

sensor swath. The different influence of different interpolation algorithms will be most apparent over 

extended gaps. We show below the relative frequency of gaps of different lengths (1/2-day, ≤1-day, ≤2-

day). Over 95% of the gaps in AMSR-E data at most regions of Australia have lengths of 1-day or less 

(b). By contrast, most of the gaps in the in situ data are considerably much longer but infrequent and 

the interpolated values were not included in statistical analyses.  

 

Figure 1: Analysis of the length of gaps in the AMSR-E data over Australia. 

 

Hence we focus on the gap-filling of the AMSR-E data. Below we compare four interpolation 

algorithms, namely discrete cosine transform (DCT) algorithm reported in Wang et al. (2012) [cited in 



the paper], nearest-neighbour, linear interpolation, and piecewise spline, and they were applied to gaps 

of length ≤5 days. Note that DCT and the 5-day threshold were adopted in our study. We observed that 

DCT interpolated data show greatest similarity with linear interpolation, largely due to the short 

lengths of the gaps and the frequent occurrence of gaps. The nearest-neighbour interpolation is 

expected to introduce more errors to the data, while cubic spline interpolation algorithm is observed to 

produce spurious peaks. While we expect our results are sensitive to the choice of the interpolation 

methods, we argue that DCT and linear interpolation are better methods to use for AMSR-E data. 

 

 
Figure 2: Comparisons of discrete cosine transform (DCT) based interpolation method (Wang et al., 2012) and 

traditional methods, namely nearest-neighbour, linear and spline interpolations. The differences between DCT 

and the traditional methods are quantified using root-mean-square difference (RMSD) and Pearson’s linear 

correlation. 

To make note of this consideration, we amended the manuscript with the following text, 

“For use in wavelet analysis (Sect. 4), a one-dimensional (1-D in time) interpolation algorithm (Garcia, 2010) 

based on discrete cosine transform (DCT) (Wang et al., 2012) was applied to infill gaps of lengths ≤ 5 days in 

AMSR-E. Other interpolation methods were trialled; e.g., linear interpolated AMSR-E shows great 

similarities to the DCT interpolated data while cubic spline interpolation leads to spurious peaks.” 
 

[SZ] More generally, the whole discussion seems to be based on a model that can represent discrepancies 

between two soil moisture products by noise and multiplicative biases, which has not been introduced at that 

point. I think that the section, and similarly Sec. 5, would be improved by clarifying this aspect, as well as by 

considering different descriptions of the discrepancies, as the assumption of temporal stationarity at any scale 

seems to be not easily tenable (e.g. apparent presence of secular trends). 

[A] Indeed in this section we adopt the viewpoint that the correlations between different data are 

diminished by the presence of noise, while differences in spread (i.e., std) are influenced by noise as 

well as multiplicative bias. Of course, presences of extraneous signals and nonlinearity will also 

influence the observed correlations and std. Our adopted model is therefore a simplification, and there 

is a need to also highlight its limitation in the paper. We added the following text to Section 4 to reflect 

these. 

“… we recall that weak R indicate presence of noise and/or presence of nonlinear correlation between any 

pairs of the data, while differences in standard deviation (std) can also indicate presence of noise, extraneous 

signal and/or multiplicative bias. Typically one invokes a linearity assumption and assumes an affine relation 

between the signal components of the different data and an additive noise model (more later in Section 5), so 

that these differences between the data are attributed to an overall additive bias E(X) – E(Y), multiplicative 

biases, and noise. While we adopt this simplistic viewpoint here, its limitations to properly account for 

variable lateral and vertical measurement supports should be noted. For instance, short-time scale SM 

dynamics shows increasingly attenuated in amplitude but also delayed in time in deeper soil columns (e.g., 

Steelman et al., 2012). Additionally SM is physically bounded between field capacity and residual content and 



these thresholds can vary with soil texture, location and depths. These effects can give rise to temporal 

autocorrelation in errors and undermine the linearity assumption between coincident measures. Finally, the 

non-stationary characteristic of noise in satellite SM (Loew and Schlenz , 2011; Zwieback et al., 2013; Su et 

al., 2014a) due to e.g., seasonal dynamical land surface characteristics such as soil moisture (Su et al., 2014b), 

is not treated here.” 

 

These trends, as well as more general additive biasses such as seasonal variations, could also furnish a 

parsimonious description for the discrepancies between products, e.g in Fig. 8a) in [4]; so would 

autocorrelated noise, the two being quite closely related [3]. They might not be easily incorporated into the 

framework, but by virtue of this, the analysis of such cases could aid future interpretation of data within this 

framework: how would, for instance, a seasonal additive bias be represented if such data were analysed with 

this model? These issues are only briefly touched upon in the conclusions. 

[A] We agree with our colleague. The perception of discrepancies between any two time series can vary, 

depending on the time-scale of the analysis. For instance, a short time window can be used to observe 

temporally varying additive bias. Using a long time window, such additive bias may manifest as 

multiplicative bias, e.g. differences in the amplitudes of the seasonal signal in the two data. This 

equivocal definition of additive or multiplicative bias is inherently a scale issue. The strength of wavelet 

analysis is decomposing a timeseries of no mean (additive) bias into multiple (with different frequency) 

timeseries with no mean additive bias, but only with multiplicative bias. At a given scale j, because the 

detail timeseries pj does not contain variations of time scale >j, the weak-sense stationarity conditions for 

TC analysis with long timeseries can be better satisfied. 

Further, often subjective adoption of different signal and noise models may lead one to interpret the 

multiplicative bias as autocorrelated noise; e.g., a coincident signal model c.f. a non-coincident signal 

model, and the presence of extraneous signal unique to one data.  

In sum, the chosen time-scale of analysis and chosen signal/noise model therefore influence our 

interpretation of the discrepancy between data. In our work (by using the MRA model in Eqs. 4-5 and 

near-decade long time-scale analysis), we assume that time-varying additive bias manifests as an overall 

multiplicative bias, and we also assumed coincident signal model, orthogonal error, cross-correlated 

error, and absence of extraneous signal. The latter three assumptions are often used in triple collocation 

analysis of soil moisture. Of course, these assumptions are yet rigorously tested, until more recently by 

Yilmaz and Crow (2014). These viewpoints are now added to the manuscript in Section 5. 

“…However in this work, we consider only variability across j and assume stationarity at each scale. 

Pearson’s linear correlation R and variance analyses (see Appendix A) are performed on the Kyeamba’s INS, 

AMS and MER SM (as p in Eq. 2) detail (pj) and approximation (p
(a)

j ) timeseries in Fig. 3. The strength of 

MRA is that since the detail timeseries pj at a given scale j does not contain variations at time scales > j, 

the weak-sense stationarity conditions can be better met. 

… 

The interpretation of the discrepancies between X and Y can vary depending on the time period of the data and 

the analysis, and the adopted signal/noise model. By using entire 9-year record of INS, AMS and MER data in 

MRA, the MS model does not observe time-varying additive bias (e.g., from using the moving-window 

approach (Su et al., 2014a)) and autocorrelated errors (from using lagged covariance (Zwieback et al., 2013)). 

Rather, MRA and the MS model enable a description of the systematic differences to be wholly based in 

terms of multiplicative biases at individual time scales, and the random differences in terms of additive 

noise.  Specifically, this contrasts with the short time-window approach (≤ 32d), where multiplicative bias 

existing at coarse scales (e.g., p
(a)

6) will manifest as both time-varying additive and multiplicative biases. 

… 

The standard assumptions of orthogonal and mutually uncorrelated errors are used, so that the covariance 

cov(fj ,p,j) = 0, cov(f′,′p) = 0, covp,j, q,j) = 0, cov(p,j , ′q) = 0 and cov(′p,′q) = 0 for p ≠ q, p,q ∈{X,Y}.” 

 

[SZ] 3. Definition of model and relevant quantities 

Sec. 5: which quantities are random and which are deterministic? If the time series are assumed to be 

realizations of stochastic processes (what kind of expectations are understood by the operator E?), which 

properties are attributed to these stochastic processes, esp. with regards to the wavelet representations, cf. [5] 

but also Appendix A, where they seem to be treated as deterministic. Are E(p) and E(f) time-variant? 

[A] From a measurement and sensor point of view, f is a deterministic signal such as soil moisture, but p 

is stochastic due to the random nature of measurement noise from radiometric inaccuracy or 

background contamination, etc. Note that serially uncorrelated noise (as assumed in our model) will be 

represented by serially uncorrelated coefficients in wavelet domain. Hence from data inter-comparison 



viewpoint then, f and its associated wavelet coefficients are interpreted as deterministic. By contrast, p 

and its associated wavelet coefficients are interpreted as probabilistic. 

This should however be distinguished from a physical viewpoint: f is a single physical realisation of the 

stochastic process (soil moisture is driven by stochastic forcing from rainfall, plant absorption, solar 

radiance/land surface temperature fluctuations). From the MRA, f contains high to low frequency 

components, and it is our viewpoint that all the components of f are stochastic. As we only have a single 

realization of the process, the statistical properties of the process can only be inferred from the statistics 

of p and f.  

 

[SZ] 4. Error structure 

p 9010, 8-20: you present the modification of the error-structure by scale-dependent bias correction as an 

unwelcome side effect. I do not think this is necessarily the case: it depends on which 

representation/transformation of the time series one is primarily interested in. As the careful analysis of 

diverse patterns of soil moisture time series is a great asset of this manuscript, I would welcome a slightly 

more detailed discussion. 

[A] We agree with our colleague. Our focus was the representation of the timeseries and the error on 

the whole after reconstruction.  If the focus was one of the detail timeseries, one may not worry about 

the amplification of the error as the associated signal-to-noise ratio remains unchanged after linear 

rescaling. Furthermore, in response to the question whether the modification of the error structure is 

desirable, it depends on the specific use of the bias-corrected data. We revised the text to highlight our 

desirable outcome of the bias correction: 

“On the other hand, the A/S-based and MS methods can modify the original error profiles in the data across 

the scales, by amplifying (or suppressing) errors in individual components (either Yj , YS, or YA) with less-than 

(greater-than) unity pre-correction ’s. This may be considered undesirable for an objective to produce 

more physically representative data with a simple error structure on the whole. Therefore arguably, none 

of these methods is entirely satisfactory, in manners of not removing the multiplicative biases completely 

and/or changing error characteristics. From this viewpoint, the task of bias correction is seen as inseparable 

from that of noise reduction when considering MS (or A/S) bias correction, unless certain components in 

MRA were explicitly ignored. 

… 

The last example presents an impetus to consider noise removal prior to bias correction and produce a 

simpler error structure in the bias corrected data Y∗.” 

Please also refer to our response to the comment about the chosen optimality criterion below. 

 

5. Minor points 

[SZ] p 9001: please clarify the meaning of j, j0, and J: N = 2j , but then it seems to be 2J 

[A] This is a typographical mistake. It should read “N=2
J
”. 

 

[SZ] p 9002: is the (evenly sampled) time t dimensionless or not? The temporal location of jk is stated as k*2
j
, 

which is dimensionless. 

[A] For clarity, we include a term t to represent the sampling interval of the timeseries and rewrote the 

text as follows, 

“The 1-D orthogonal discrete wavelet transform (DWT) enables MRA of a timeseries p(t) of dyadic length 

N=2
J and a regular sampling interval t by providing 

… 

with scale of variability 2
j
t and temporal location k2

j
t. The weighting or wavelet coefficients,…” 

 

[SZ] p 9002, 23: the significance being based on what test and significance level? 

[A] The analysis aims to illustrate that the trends in the three data show differences, in particular in 

terms of their gradients. We adopt the simplest method of fitting (using least-square) a linear trend line 

to the coarsest approximation time series, and statistical testing was not conducted to test for the 

significance of the trend. To clarify, we revised the text as follows. 

“…Fitting a trend line to their coarsest scale approximation series suggests that the trends (magneta 

lines) in the three data show different gradients, with the trend in INS showing the smallest positive 

gradient. The differences in dynamic ranges of their detail and approximation timeseries, together with their 

mismatch in shape and trend, are indicative of multiplicative biases and noise. …” 

 

[SZ] p 9005, 23: that is rather consistency (and it is a limit in probability) 

[A] Yes, to clarify this, we revised the text slightly as follows, 



“Within the operating assumptions of TC, TC estimates are unbiased and consistent; that is, the estimated 

jYjY ,,
ˆ    as the asymptotic limit.” 

 

[SZ] p 9006, 14: is not the identity of the signal components (treated as a deterministic or random variable) the 

criterion by which optimality (or ideality) is defined? 

p 9006, 14: different justifications for the estimation of  have been provided (consistent estimation of the 

slope between signal and measurement; matching of the magnitude of the signal component; orthogonality 

principle based on LMSE estimation, etc.). They depend on i) what one wants to actually estimate and ii) 

whether the signal component is treated as a random variable or a deterministic one. Which point of view is 

adopted in the manuscript? 

[A] This is a very good point. The criterion for a matching Y to X depends on some choice of the 

optimality criterion. Here we define our optimality criterion based on matching the first two moments 

of the signal components in X and Y. As pointed out, this contrasts with matching the statistics of X and 

Y, and minimizing the differences between Y* and X. To make clear this viewpoint, we revised the 

manuscript as follows: 

“Consider now the bias correction of Y to produce a corrected data Y* that “matches” X. Different 

interpretations of a “match” and assumptions about signal and noise statistics lead to different bias correction 

schemes. To describe matching, there are different choices of optimality criterion. First is based on 

matching the statistics of the signal-only component of Y*  to that of X. This approach requires 

consistent estimate of slope parameters ’s and the resultant statistics of Y* and X may differ due to 

different noise statistics. Second is the based on the matching of the statistical moments between Y* and 

X (e.g., VAR matching), although the statistics of their constitutive signal components may differ for the 

same reason. Third is based on the minimum-variance principle of minimizing the least-square 

difference between Y* and X (i.e., the OLS estimation), but as already noted the estimator becomes 

inconsistent when there are measurement errors in X and Y.  

Here we define our optimality criterion based on the first criterion of matching the first two moments of 

the signal components in X and Y so that Y∗ is suitable for bias-free data assimilation. In particular, 

Yilmaz and Crow (2013) have shown that residual multiplicative biases due to sub- optimal bias 

correction scheme will cause filter innovations to contain residual signal and sub-optimal filter 

performance. Thus within the paradigm of the MS model, our goal of bias correction is to minimize the 

difference |αY∗,j −1| for αX,j = 1, so that the multiplicative bias terms in Eq. 6 are eliminated.” 

 

[SZ] p9015, 5: what are physically meaningful results? There are many additional reasons why e.g. negative 

variances could be obtained, such as inadequate rescaling or cross-correlation. 

[A] Indeed we require that the covariance are positive, while negative covariance can occur due to weak 

instrument (i.e., the signal components are too weak relative to the noise components), or cross 

correlation, or the inadequacy of the proposed affine signal and orthogonal error models. To make this 

point clear, we wrote the text as follows: 

“When TC does not produced physically meaningful estimates from negative covariance due to weak 

instruments and possible inadequacy of the considered signal and noise model, the OLS estimator was 

used, 
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