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Reply to John Kochendorfer (referee)

Dear Dr. Kochendorfer,

Many thanks for your review and the provided comments on our paper. We are very pleased that
you value the scientific relevance of our research. Please find the answer to your specific comments
below:

The writing needs improvement. [...]. Specific suggestions are given below in the Technical
Corrections portions of this comment, but they are not comprehensive. A complete review of the
manuscript for such issues needs to be performed by the authors.

We appreciate the time you spent correcting the language. We’ll follow your technical corrections
and revise the manuscript accordingly. We will also ask a native-speaker for a complete language-
review before sending the revised manuscript.

Although references are provided, more care and detail should be provided describing the wind
speed and air temperature measurements. These measurements are central to the manuscript and
merit description within the manuscript itself.

The following paragraph, describing shortly the temperature and wind measurements, will be added
in section 2.1 (Setting).

[...] as one of currently 20 host-sites worldwide.

Additionally, measurements of numerous other meteorological parameters are performed to
support the analysis of the precipitation data. Air-temperature is measured with a pt100
element (1/10 DIN) protected by a standard Norwegian radiation screen, installed at gauge
height on a tower close to the DFIR.

Wind is measured by different sensors at several places around the measurement site.
Standard 10 m wind measurements are performed at the tower close to the DFIR with an
ultrasonic wind sensor from Gill (Windobserver Il with extended heating). Three wind sensors
are directly mounted to the precipitation gauges for measuring wind at gauge height
(Windobserver Il at precipitation gauge inside DFIR, and Young Wind Monitor SE at the two
closest precipitation sensors (X1 and X2, see layout)). In 2013, a Thies Ultrasonic Wind
Anemometer 3 D was installed on a separate mast at 4.5 m (gauge height) to allow
measurements undisturbed by the precipitation sensor installations (see section 3.1.2).

A complete list of the instruments and an evaluation of the homogeneity of the test-site can
be found in Wolff et al. (2010, 2013).



The chosen function (eq. 9) is quite complex, making it difficult to test on new datasets without
employing sophisticated statistical tools. Are there simpler functions that also performed well? In the
selection process was any consideration given to the number of parameters or the complexity of the
function?

Deriving the functional form objectively was one of the main methodological issues in the paper.
Setting the balance between a parsimonious model and good fit to the available data is always a
problematic issue. Often, this key procedure is overlooked in studies.

Having decided the general characteristic of the R-V-T relationship by the half bell function and the
associated temperature dependent parameter functions (with up to three levels), we set out to
choose the most appropriate model of the 81 possible combinations. Note that we formulated the
two-level parameter functions as simple as possible with four parameters describing only the major
attributes: the two levels, the value of transition and the fuzziness of this. For model selection, we
applied the Bayesian Model Likelihood (BML), which is described in section 3.4.2, first to third
paragraph. In our case it was as mentioned 81 competing models, and no one was favoured a priori,
at least not directly using explicit prior information. The Bayesian machinery focused in on a model
that was far from the most complex one, considering that the most advanced version of Eq. (7)
contains 24 unknown parameters. Note that the simplest model is also represented and tested by the
BML framework, but yielding low posterior probability. The simplest model function is the one with
constant values for (z, B, 6). Furthermore, within this model form, a version seen in the literature
where v=0and B = 1 is in fact also included.

Note also that eq. 7 appears extra formidable since we here describe the 7(T) explicitly, which appears
two places in the equation.

On the question whether any assumptions on the numbers of parameters or functional complexity
was given in the model selection process, one might answer: “Yes, we applied the BML”. Bayesian
model comparison has the so-called Occam’s razor built into it, as described for instance in Jefferys et
al. (1991): “...a hypothesis with fewer adjustable parameters will automatically have an enhanced
posterior probability, due to the fact that the predictions it makes are sharper...”

We will make some adjustments in the manuscript to highlight the model selection:

Line 10, page 10058: Replace “Furthermore, it is assumed that the properties of Eq. (4) vary
with temperature” with “Furthermore, it is assumed that each of the characteristics of Eq. (4)
can vary with temperature. But for each property we also consider whether it might be
constant for all temperatures.”

Line 12, page 10060: Add “It is known that using Bayesian model comparison, more
parsimonious models are preferred to more complicated ones (see for instance Jefferys et al.,
1991).

Line 8, page 10071:
Jefferys, W. H., and Berger, J. O. (1991). "Ockham's Razor and Bayesian Statistics” (Preprint
available as "Sharpening Occam's Razor on a Bayesian Strop"). American Scientist 80: 64—72.

As the authors note themselves in Sec. 5.3, pg 10067, In. 21-23, the function developed in the
manuscript must be inverted before being applied to actual precipitation data (eq. 11 and 12 are
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raised to the power of -1). With the stated goal of creating a function available to correct measured
precipitation, why was the transfer function fit to catch efficiency (PM/PT) data, rather than the
inverted correction factor (PT/PM) data? Are there any significant differences between the two
approaches that might affect the form of the chosen function or the uncertainty of the correction?

Due to tradition, we considered the classical catch efficiency. This is also in line with former studies, so
that comparisons could be made easily. It is also worth mentioning that p, is the measured
precipitation and pr was considered to be the true precipitation, implying that it was natural to
consider py as a noisy function of the true precipitation rather than vice versa. It also made the
process of making models more intuitive. Unfortunately, this approach turned out to make inference
and uncertainty analysis unreliable.

A clear scope of the study was to express the measured response as a function of the true one. We
believe that this is addressed in the paper. But it also seemed fair to point out that care is needed
when in using this relationship in an inverted form, as we stated in section 5.3. A multivariate model
would have served this purpose better than a regression formula. This would permit the modeling to
proceed as before, except that not only measured response as a function of true response, but also
true response would be associated with a distribution. Such a multivariate distribution could then be
used both for expressing the distribution of measured response as a function of true response and
vice versa. We will now mention this in section 5.3 (see next comment), but we also note that this was
beyond the scope of the analysis.

In Sec. 5.3, pg 10067, In. 23-26 the authors state that the results of the uncertainty analysis were
unreliable. This is disappointing, especially considering the significant statistical expertise that is
demonstrated in the manuscript. Could the uncertainty be better quantified (in mm and/or percent
of hourly precipitation) by applying the correction to the actual PM data and comparing it to the
standard PT results? | realize this may be beyond the scope of the current manuscript, but would a
bootsrapping-type technique be appropriate for quantifying correction uncertainties using the
available dataset?

The bootstrap is used in classical statistics for analysing the effect of parameter uncertainty in
prediction. Firstly, bootstrap methods have no equivalents in the Bayesian perspective. Here all
inference is based on the posterior distribution, which in our case is formulated through the MCMC
samples. Secondly, we saw from these samples that parameter uncertainty contributed little to the
total uncertainty of the response (the catch ratio R). We saw quite clearly that the uncertainty of the
individual measurements, the error term in the regression, dominated the net effect. This fact proved
to contain more complexity than our modelling framework (formulating p,; /pr as the response and T
and V as determinants in the regression) allowed for. To shed some more light on the distributional
aspects we would like to insert some more text in section 5.3 (Regression noise and uncertainty
analysis), p. 10067, line 27 :

[...], makes uncertainty analysis about the true precipitation estimate substantially unreliable
at this stage.

“While it may be sensible to model the distributional properties of the measured
precipitation as a function of wind speed, temperature and the true precipitation, the
objective is to use this to predict true precipitation given wind speed, temperature and
measured precipitation, like formulated in in Eq. (11) and Eq. (12). These formulas however,



only relate to estimates of R and the measured precipitation, and do not consider the
distributional aspects. A multivariate model for true and measured precipitation would allow
for expressing one as a distribution of the other, whether true or measured precipitation was
of interest. It is also worth noting that even with a normally distributed R as the denominator,
the resulting distribution will be the rather unfamiliar reciprocal normal distribution, which is
heavy-tailed and bimodal. The bimodality might not be a problem as long as we require a
positive R, but the tails are so heavy that the expectation are not available, making it difficult
to evaluate bias. If a distribution with heavier tails was considered for the noise terms, such
as the t-distribution, even more inflated tails can be expected. Medians are however
preserved during monotone transformations, which should make Eq. (11) and Eq. (12) valid as
median estimates.”

In order to correct operational precipitation measurements, operational anemometers must be
installed so that are unaffected by nearby obstructions to the wind (such as wind shields). This
important point is clearly inferred from your work, but it should be stated explicitly.

We will mention that in a separate paragraph in the conclusions, section 6:

Analyses showed the importance of good data quality for successfully retrieving and applying
the adjustment functions. Some of the wind measurements at Haukeliseter could be shown to
be highly influenced by nearby installations, which had a negative impact on the analysis.
Before having installed a less disturbed wind sensor at gauge height, an extended number of
data had to be refused for the analysis. It is therefore highly recommended to use only wind
measurements from sensors installed separately and undisturbed when applying the
adjustment functions on precipitation measurements.

Best regards,

Mareile Wolff and co-authors.



