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Abstract 8 

The purpose of this investigation is to study the propagation of meteorological uncertainty 9 

within a cascade modelling approach to inundation prediction. The methodology is comprised 10 

of a Numerical Weather Prediction Model (NWP), a distributed rainfall-runoff model and a 11 

standard 2D hydrodynamic model. The cascade of models is used to reproduce an extreme 12 

flood event that took place in the Southeast of Mexico, during November 2009. The event is 13 

selected as high quality field data (e.g. rain gauges; discharge) and satellite imagery are 14 

available. Uncertainty in the meteorological model (Weather Research and Forecasting 15 

model) is evaluated through the use of a multi-physics ensemble technique, which considers 16 

twelve parameterization schemes to determine a given precipitation. The resulting 17 

precipitation fields are used as input in a distributed hydrological model, enabling the 18 

determination of different hydrographs associated to this event. Lastly, by means of a 19 

standard 2D hydrodynamic model, hydrographs are used as forcing conditions to study the 20 

propagation of the meteorological uncertainty to an estimated flooded area. Results show the 21 

utility of the selected modelling approach to investigate error propagation within a cascade of 22 

models. Moreover, the error associated with the determination of the runoff, is shown to be 23 

lower than that obtained in the precipitation estimation suggesting that uncertainty associated 24 

to rainfall predictions does not necessarily increase within a model cascade.  25 

 26 

 27 

  28 
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1 Introduction 1 

Hydro-meteorological hazards can have cascading effects and far-reaching implications on 2 

water security, with political, social, economic and environmental consequences. Millions of 3 

people worldwide are forcibly displaced as a result of natural disasters, creating political 4 

tensions and social needs to support them. These events observed in developed and 5 

developing nations alike, highlight the necessity to generate a better understanding on what 6 

causes them and how we can better manage and reduce the risk (Kunreuther et al., 2013).  7 

The assessment of flood risk is an activity that has to be carried out under a framework full of 8 

uncertainty. The source of this uncertainty may be ascribed to the involvement of different, 9 

and often rather complex models and tools, in the context of environmental conditions that are 10 

at best, partially understood (Hall, 2014). In addition to this, flooding systems are dynamic 11 

over a range of timescales, due to for example climate variability and socio-economic 12 

changes, which further increases the uncertainty in the projections. Therefore, numerous types 13 

of uncertainty arise when using formal models in the analysis of risks.  14 

Uncertainty is often categorised between aleatory and epistemic uncertainty (Hacking, 2006): 15 

aleatory is an essential, unavoidable unpredictability, and epistemic uncertainty reflects lack 16 

of knowledge or the inadequacy of the models to represent reality.  In the context of any 17 

modelling framework, epistemic uncertainties may be ascribed to the definition of model 18 

parameters and to the model structure itself (limited knowledge).  19 

In a technological era characterised by the advent of computers, there is an increased ability 20 

of more detailed hydrological and hydraulic models. Their use and development has been 21 

motivated as they are based on equations that have (more or less) physical justification; and 22 

allow a more detailed spatial representation of the processes, parameters and predicted 23 

variables (Beven, 2014). However, there are also disadvantages, these numerical tools take 24 

more computer time and require the spatio-temporal definition of initial, boundary conditions 25 

and parameter values.  Generally, at a level of detail for which information is not available 26 

even in research studies. Moreover, these models may be subjetc to numerical problems such 27 

as numerical difussion and instability (Reeve et al., 2010). All of these disadvantages can be 28 

interpreted as sources of uncertainty in the modelling process. 29 

Due to wide range of uncertainty sources in the flood risk assessment process, it is of great 30 

interest to investigate the propagation and behaviour of the different uncertainties, from the 31 

start of the modelling framework to the result. The size of registered damages and losses in 32 
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recent events around the world, reveal the urgency of doing so, even under a context of 1 

limited predictability. 2 

In September 2013, severe floods were registered in Mexico as a result of the exceptional 3 

simultaneous incidence of two tropical storms, culminating in serious damage and widespread 4 

persistent flooding (Pedrozo-Acuña et al., 2014). This unprecedented event is part of a recent 5 

set of extreme flood events over the last decade caused by record-breaking precipitation 6 

amounts across Central Europe (Becker and Grünewald, 2003), United Kingdom (Slingo et 7 

al., 2014), Pakistan (Webster et al., 2011), Australia (Ven den Honert and McAneney, 2011), 8 

Northeastern US (WMO, 2011), Japan (WMO, 2011) and Korea (WMO, 2011). In all cases, 9 

the immediate action of governments through the implementation of emergency and action 10 

plans was required. The main aim of these interventions was to reduce the duration and 11 

impact of floods. In addition, risk reduction measures were designed to ensure both a better 12 

flood management and an increase in infrastructure resilience.  13 

One key piece of information in preventing and reducing losses is given by reliable flood 14 

inundation maps that enable the dissemination of flood risk to the society and decision-15 

makers (Pedrozo-Acuña et al., 2013). Traditionally, this task requires the estimation of 16 

different return periods for discharge (Ward et al., 2011) and their propagation to the 17 

floodplain by means of a hydrodynamic model. There is currently a large range of models that 18 

can be used to develop flood hazard maps (Horrit and Bates, 2002; Horrit et al., 2006). 19 

The aforementioned accelerated progress of computers has given way to the development of 20 

model cascades to produce hydrological forecasts, which make use of rainfall predictions 21 

from regional climate models (RCMs) with sufficient resolution to capture meteorological 22 

events (Bartholomes and Todini, 2005; Demerrit et al., 2010). Within this approach, the 23 

coupling of different operational numerical models is carried out, using numerical weather 24 

prediction (NWP) with radar data for hydrologic forecast purposes (Liguori and Rico-25 

Ramirez, 2012; Liguori et al., 2012), or NWP with hydrological and hydrodynamic models to 26 

determine inundation extension (Pappenberger et al., 2012; Cloke et al., 2013; Ushiyama et 27 

al., 2014).   28 

The use of RCMs in climate impact studies on flooding has been reported by Teutschbein and 29 

Seibert (2010) and Beven (2011), noting that despite their usefulness, the spatial resolution of 30 

models (~25km) remains coarse to capture the spatial resolution of precipitation. This is 31 

particularly important, as higher resolution is needed to effectively model the hydrological 32 
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processes essential for determining flood risk. To overcome this limitation, the utilisation of 1 

dynamic downscaling in these models has been significantly growing (Fowler et al., 2007; 2 

Leung and Qian, 2009; Lo et al., 2008).  3 

Significant challenges remain in the foreseeable future, among these, the inherent 4 

uncertainties in the predictive models are likely to have an important role to play. For 5 

example, it is well known that the performance skill of NWPs deteriorates very rapidly with 6 

time (Lo et al., 2008). To overcome this, the long-term continuous integration of the 7 

prediction has been subdivided into short-simulations, involving the re-initialisation of the 8 

model to mitigate the problem of systematic error growth in long integrations (Giorgi, 1990; 9 

Giorgi, 2006; Qian et al., 2003). Moreover, the use of ensemble prediction systems to obtain 10 

rainfall predictions for hydrological forecasts at the catchment scale is becoming more 11 

common among the hydrological community as they enable the evaluation and quantification 12 

of some uncertainties in the results (Buizza 2008; Cloke and Pappenberger, 2009; Bartholmes 13 

et al. 2009). In these studies, an ensemble is a collection of forecasts made from almost, but 14 

not quite, identical initial conditions.   15 

A key question that arises when using a cascade modelling approach to flood prediction or 16 

mapping is: how uncertainties associated to meteorological predictions of precipitation 17 

propagate to a given flood inundation map? Previous work has been devoted to the 18 

examination of uncertainties in the results derived from different ensemble methods, which 19 

address differences in the initial conditions in the NWP or even differences in using a single 20 

model ensemble vs. multi-model ensemble (Pappenberger et al. 2008; Cloke et al., 2013; Ye 21 

et al., 2014). However, less attention has been paid to the behaviour of errors within a model 22 

chain that aims to represent a flood event occurring at several spatial scales.  In order to  23 

understand how errors propagate in a chain of models, this investigation evaluates the 24 

transmission of uncertainties from the meteorological model to a given flood map. For this, 25 

we utilize a cascade modelling approach comprised by a Numerical Weather Prediction 26 

Model (NWP), a rainfall-runoff model and a standard 2D hydrodynamic model. This 27 

numerical framework is applied to an observed extreme event registered in Mexico in 2009 28 

for which satellite imagery is available. The investigated uncertainty is limited to the model 29 

parameter definition in the NWP model, by means of a multi-physics ensemble technique 30 

considering several multi-physics parameterization schemes for the precipitation (Bukosvky 31 

and Karoly, 2009). The resulting precipitation fields are used to generate spaghetti plots by 32 
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means of a distributed hydrological model, enabling the propagation of meteorological 1 

uncertainties to the flood hydrograph. Hence, the resulting hydrographs represent the runoff 2 

associated to each precipitation field estimated with the NWP model. In order to complete the 3 

propagation of the hydro-meteorological uncertainty through the cascade of models to the 4 

flood map, the hydrographs are used as forcing in a standard 2D hydrodynamic model. 5 

On the other hand, it is acknowledged that each of the other models (hydrological and 6 

hydrodynamic) within the model cascade, will introduce other epistemic and random 7 

uncertainties to the result. In order to reduce their influence, the numerical setup of both these 8 

models is constructed with the best available data (e.g. LiDAR for the topography) and 9 

following recent guidelines for the assessment of uncertainty in flood risk mapping (Beven et 10 

al. 2011). In this way, the uncertainty associated to the meteorological model outputs is 11 

propagated through the model cascade from the atmosphere to the flood plain. Thus, the aim 12 

of this investigation is to study the uncertainty propagation from the meteorological model 13 

(due to multi-physics parameters), to the determination of an affected area impacted by a 14 

well-documented hydro-meteorological event.   15 

This work is organised as follows: Section 2 provides a description of both, the study area and 16 

the extreme hydro-meteorological event, which are employed to test our cascade modelling 17 

approach; Section 3 introduces the methodology, incorporating a brief description of the 18 

selected models setup. Additionally, we incorporate a description of the multi-physics 19 

ensemble technique used to quantify and limit the epistemic uncertainty in the NWP model. 20 

The resulting precipitation fields, hydrographs and flood maps are compared with available 21 

field data and satellite imagery for the event. In Section 4, a discussion of errors along the 22 

model cascade, is also presented with some conclusions and future work. 23 

 24 

2 Case Study 25 

The selected study area is within the Mexican state of Tabasco, which in recent years has been 26 

subjected to severe flooding as reported by Pedrozo-Acuña et al. (2011; 2012).  This region 27 

comprises the area of Mexico with the highest precipitation rate (2000-3000 mm/year), which 28 

mostly occurs during the wet season of the year between May and December. The rainfall 29 

climatology is also influenced by the incidence of hurricanes and tropical storms arriving 30 

from the North. 31 
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In this paper, the extreme hydro-meteorological event selected for the analysis corresponds to 1 

that registered in the early days of November 2009 in the Tonalá river. As it is shown in 2 

Fig.1, the river is located in the border of Tabasco and Veracruz and during the event, the 3 

substantial rainfall intensity provoked its overflowing leaving extensive inundated areas along 4 

its floodplain. Top panel of Fig. 1 shows the geographical location of the catchment, with an 5 

area of 5,021 km2, as well as the location of 18 weather stations installed within the region by 6 

the National Weather Service.  The event was the result of heavy rain induced by the cold 7 

front #9, which persisted for four days along Mexico's Gulf Coast, forcing more than 44,000 8 

people to evacuate their homes and affecting more than 90 communities.  High intensities in 9 

rainfall were recorded in rain gauges from the 31st October to 3rd November, with 10 

cumulative daily precipitation values reporting more than 270 mm.  The river is 11 

approximately 300 km long and before discharging into the Gulf of Mexico, the stream 12 

receives additional streamflow from other smaller streams such as Agua Dulcita in Veracruz, 13 

and Chicozapote in Tabasco. The bottom panel of the same Figure illustrates the lower Tonalá 14 

River, where severe flooding was registered as it is shown in the photographs on the right. 15 

The yellow, blue and red dots on the panel represent the location at which the photographs 16 

were taken.  17 

The hydrometric data in combination with the satellite imagery for the characterisation of the 18 

affected areas, enabled an accurate investigation of the causes and consequences that 19 

generated this flood event. The high quality of the available information, allowed the 20 

application of a cascade modelling approach comprised by state-of-the-art meteorological, 21 

hydrological and hydrodynamic models. This numerical approach is utilised with the intention 22 

to carry out an assessment of the modelling framework, with particular emphasis on the 23 

propagation of the epistemic uncertainty from the meteorological model to the spatial extent 24 

of an affected area. Such investigation paves the road towards a more honest knowledge 25 

transfer to decision-makers, whom consider the reliability of the model results.  26 

 27 

3 Methodology and Results 28 

The methodology is comprised of a Numerical Weather Prediction Model (NWP), a 29 

distributed rainfall-runoff model and a standard 2D hydrodynamic model. It is anticipated that 30 

the selected modelling approach will support the advance of the understanding of the 31 

connections among scales, intensities, causative factors, and impacts of extremes. This model 32 
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cascade with state-of-the-art numerical tools representing a hydrological system, enables the 1 

development of a framework by which an identification of the reliability of simulations can be 2 

undertaken. This framework is utilised to explore the propagation of epistemic uncertainties 3 

from the estimation of precipitation in the atmosphere to the identification of a flooded area. 4 

Therefore, the aim is not to reproduce an observed extreme event, but to investigate the 5 

effects of errors in rainfall prediction by a NWP on inundation areas.  6 

The proposed investigation is important as uncertainties are cascaded through the modelling 7 

framework, in order to provide better understanding on how errors propagate within models 8 

working at different temporal and spatial scales. It is acknowledged that this information 9 

would enhance better flood management strategies, which would be based on the honest and 10 

transparent communication of the results produced by a modelling system constrained by 11 

intrinsic errors and uncertainties.  12 

The NWP model was implemented in a small computer cluster equipped with 64 processors, 13 

where six simultaneous model runs were performed (simulating 16 days of the event). This 14 

process took 12 hours per batch (24 hours for all members). The hydrologic and 15 

hydrodynamic models were run in a standard PC with an Intel® i7 processor 16Gb RAM, 16 

where the first model took only few seconds to run per member, and the hydrodynamic model 17 

took 8 hours per member.  18 

 19 

3.1 Meteorological model  20 

Simulated precipitation products from numerical weather prediction systems (NWPs) 21 

typically show differences in their spatial and temporal distribution. These differences can 22 

considerably influence the ability to predict hydrological responses. In this sense, in this study 23 

we utilise the advanced research core of the Weather Research and Forecasting (WRF) model 24 

Version 3.2. The WRF model is a fully compressible non-hydrostatic, primitive-equation 25 

model with multiple nesting capabilities (Skamarock et al., 2008).  26 

As it is shown in Fig. 2, the model setup is defined using an interactive nested domain inside 27 

the parent domain. This domain is selected in order to simulate more realistic rainfall, with 28 

the inner frame enclosing the Tonalá river catchment within a 4 km resolution. The 4 km 29 

horizontal resolution is considered good enough to compute a mesoscale cloud system 30 

associated to a cold front. It is shown that this finer grid covers the central region of Mexico, 31 
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while in the vertical dimension, 28 unevenly spaced sigma levels were selected. The initial 1 

and boundary conditions were created from the NCEP Global Final Analysis (FNL) with a 2 

time interval of 6 hours for the initial and boundary conditions.  Each of the model 3 

simulations was reinitialised every two days at 1200 UTC, considering a total simulation time 4 

from the 27th October 2009 until the 13th November 2009. 5 

Epistemic uncertainty is considered in the WRF model by means of the sensitivity of the 6 

results for precipitation, due to variations in the model setup. For this, we utilise a multi-7 

physics ensemble technique proposed by Bukovsky and Karoly (2009), where the sensitivity 8 

of simulated precipitation in the model results is examined with twelve different 9 

parameterisation schemes. The comparison of computed precipitation fields against real 10 

measurements from weather stations within the catchment, enabled the quantification of 11 

uncertainty in the meteorological model for this event. It should be noted that different 12 

sources of errors are also associated to observations with rain gauges. However, these errors 13 

are mostly ascribed to the quantification of the spatial variability of rainfall (Morin et al., 14 

2006; Yilmaz et al., 2005), resulting in underestimation of the true rainfall. However, the 15 

influence of these errors is limited on rainfall intensity estimates (Molini et al., 2005),  16 

Table 1 shows a summary of the different multi-physics parameters used in the WRF model 17 

to generate the physics ensemble. In this approach, the multi-physics ensemble runs of the 18 

model represent a plausible and equally likely state of the system in the future.  19 

Fig. 3 illustrates the cumulative precipitation fields computed for each of the 12 selected 20 

members of the multi-physics ensemble, where differences in the spatial distribution and 21 

intensity of precipitation were evident. These results suggested that for this event, the 22 

precipitation field estimated with the WRF was highly sensitive to the selection of multi-23 

physics parameters. To revise in more detail the performance of the WRF in reproducing this 24 

hydro-meteorological event, the estimated cumulative precipitation by each member of the 25 

multi-physics ensemble was compared against measurements at the eighteen weather stations 26 

located within and close to the Tonalá catchment.  27 

Table 2 presents a summary of the most well-known error metrics calculated at each weather 28 

station and for each member of the ensemble. Among these are the: Normalised Root-Mean 29 

Square Error (NRMSE), BIAS, Nash-Sutcliffe Coefficient (NSC), and the Correlation 30 

coefficient (Cor). The columns show the local value of each coefficient for a given member of 31 

the ensemble (M1, …, M12). As shown in all columns (i.e. member runs), the error metrics 32 
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have a great spatial variability, hence, indicating the regions of the study area where the 1 

model performs better.  To illustrate the performance of this ensemble technique at each 2 

weather station, the ensemble average of these error metrics is introduced in the last column 3 

and indicated by <  >. Again, the spatial variability of the metrics is evident. The two bottom 4 

rows in each sub-table correspond to the average of the ensemble averages for the whole 5 

catchment and for the all the stations. It is shown, that when the average of all stations is 6 

taken into account, the skill decreases. However, in this investigation the error that is of 7 

interest is the one corresponding to the average of those weather stations located within the 8 

catchment, as these will be used as input in the hydrological model. This will enable the 9 

propagation of errors in the meteorological model within the model cascade. For clarity, in the 10 

same table the stations within the catchment are highlighted in blue.  11 

Additionally, results per station are also illustrated for four different cases and are presented 12 

in Fig. 4, and they confirmed that the range of spatial uncertainty in the WRF predictions is 13 

high and variable. To give an example, at Station No. 27075, the spread of the estimated 14 

cumulative precipitation curves is limited and quantified by a NSC=0.917 and a NRMSE = 15 

10.7%, indicating a good skill of the WRF precipitation estimates at this point. In contrast, at 16 

Station No. 27007 the spread of the cumulative precipitation is large and characterised by a 17 

NSC=0.766 and a NRMSE=19.4%, showing less skill in the model performance than that 18 

observed in the previous case. The observed differences of estimated precipitation for this 19 

event, highlight the importance of incorporating ensemble techniques in the reproduction of 20 

precipitation with this type of models.  21 

A question that has been seldom explored in the literature, is how the uncertainty in the 22 

prediction of the precipitation (i.e. errors described in this section), cascade into an estimated 23 

flood hydrograph determined by a distributed hydrological model. In this sense, the next step 24 

in this work, considers the non-linear transfer of rainfall to runoff using a distributed rainfall-25 

runoff model. For this, we employ each one of the 12 precipitation fields derived from the 26 

WRF as input to determine the associated river discharge with the hydrological model.  27 

 28 

3.2 Hydrological model  29 

The hydrological model used in this study was applied to the Tonalá River catchment in an 30 

early work presented by Rodríguez-Rincón et al. (2012). This numerical tool was developed 31 
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by the Institute of Engineering – UNAM (Domínguez-Mora et al., 2008), and comprises a 1 

simplified grid-based distributed rainfall–runoff model. The model has been previously 2 

applied with success in other catchments in Mexico (e.g. Pedrozo-Acuña et al., 2014).  3 

This paper only describes an overview and key components of the hydrologic model. 4 

Interested readers can find detailed descriptions in Domínguez-Mora et al. (2008). The model 5 

is based on the method of the Soil Conservation Service (SCS) with a modification that 6 

allows the consideration of soil moisture accounting before and after rainfall events. The 7 

parameters that are needed for the definition of a runoff curve number within the catchment 8 

are the hydrological soil group, land use, pedology and the river drainage network.  Fig. 5 9 

shows for the Tonalá River catchment, the spatial definition of the river network (center 10 

panels) and the runoff curve (right panels). The model is forced with the precipitation 11 

calculated from the WRF considering the 12 members of the multi-physics ensemble.  12 

It is well known that both the amount and distribution of rainfall can significantly affect the 13 

final estimated river discharge (Ferraris et al. 2002; De Roo et al., 2003; Cluckie et al., 2004). 14 

In consequence, the propagation of meteorological uncertainty to the rainfall-runoff model is 15 

carried out using WRF rainfall precipitation ensembles as an input in the hydrological model.  16 

For this purpose, free-parameters in the hydrologic model are fixed, assuming that the 17 

selected parameters are the best at representing the physical conditions of the catchment for 18 

this event. The selection of these parameters is carried out following the results presented by 19 

Rodríguez-Rincón et al. (2012) for the same catchment. For the numerical setup of the 20 

hydrological model, we employ topographic information from a LiDAR data set, from which 21 

a 10m resolution Digital Elevation Model (DEM) is constructed.  22 

Fig. 6 illustrates for the Tonalá River catchment the spaghetti plot of hydrographs computed 23 

for this event, these are shown along with the measured discharge by a streamflow gauge. The 24 

uncertainty bounds illustrated by the grey shaded area indicate that errors in the predicted 25 

rainfall are indeed propagated to the hydrological model, which uses a finer spatial resolution 26 

(1 km). It has been established that, in some cases, an error in the meteorological model can 27 

be compensated by an error in the hydrological model and vice-versa. To illustrate this in 28 

more detail, Table 3 presents a summary of the error metrics for the hydrographs shown in 29 

Fig. 6. It is shown that on average (last column in the Table) the hydrological model has a 30 

NSC=0.84, Cor=0.96, BIAS=1.01 and NRMSE=38.12%. Differences between members of 31 

the multi-physics ensemble are also illustrated at this stage, especially by the NSC. For 32 
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instance, member M11 indicates a NSC=0.68 showing poor skill at reproducing the river 1 

discharge with the precipitation derived from this member, in contrast member M3 has a 2 

greater skill with NSC=0.93. The change in the values of the NSC indicates that results from 3 

the regional weather model can be enhanced or weakened by the performance of the 4 

hydrological model. 5 

The use of these hydrographs in a 2D hydrodynamic model, enables the study of the 6 

propagation of errors within the cascade of models. In particular, for estimating the flood 7 

extent during this extreme event.  8 

 9 

3.3 Flood inundation model  10 

Several 2D hydrodynamic models have been developed for simulating extreme flood events. 11 

However, any model is only as good as the data used to parameterise, calibrate and validate 12 

the model. 2D models have been regarded as suitable for simulating problems where 13 

inundation extent changes dynamically through time as they can easily represent moving 14 

boundary effects (e.g. Bates and Horritt, 2005). The use of these numerical tools has become 15 

common place when flows produce a large areal extent, compared to their depth and where 16 

there are large lateral variations in the velocity field (Hunter et al., 2008).  17 

In this study, given the size of the study area the modelling system utilised is comprised by 18 

the flow model of MIKE 21 flexible mesh (FM). This numerical model solves the two 19 

dimensional Reynolds-averaged Navier–Stokes equations invoking the approximations of 20 

Boussinesq and hydrostatic pressure (for details see DHI, 2014). The equations are solved at 21 

the centre of each element in the model domain. 22 

The numerical setup is based on a previous work on the study area (Pedrozo-Acuña et al. 23 

2012), with selected resolutions for the elements of the mesh with a size that guarantees the 24 

proper assimilation of a 10 m DEM to characterise the elevation in the floodplain. The 25 

topographic data has been regarded as the most important factor in determining water surface 26 

elevations, base flood elevation, and the extent of flooding and, thus, the accuracy of flood 27 

maps in riverine areas (NRC, 2009). Therefore, the elevation data used in this study 28 

corresponds to LiDAR data provided by INEGI (2008). The hydraulic roughness in the 29 

floodplain is assumed to be uniform and different from the main river channel, in this sense 30 

two values for the Manning number are used, one for the main river channel (M=32 m1/2s-1) 31 
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and another for the floodplain (M=28 m1/2s-1).  The choice of a 10-m DEM is based on 1 

recommendations put forward by the Committee on Floodplain Mapping Technologies, NRC 2 

(2007) and Prinos et al. (2008), as such a DEM ensures both accuracy and detail of the ground 3 

surface. The model domain is illustrated in Fig. 7, along with the numerical mesh and 4 

elevation data, it comprises the lower basin of the Tonalá River and additional main water 5 

bodies. The colours represent the magnitude of the elevation and bathymetric data assimilated 6 

in the numerical mesh, where warm colours identify high ground areas and light blues 7 

represent bathymetric data. The numerical mesh considers three boundary conditions 8 

represented in the Figure by dots as follows: where the input hydrograph from the rainfall-9 

runoff model is set (red dot); the Tonalá's river mouth, where the astronomical tide occurs for 10 

the period of the event (27th October – 12th November 2009) (yellow dot) and the Agua 11 

Dulcita river set where a constant discharge of 100 m3/s is introduced (blue dot).  12 

It is acknowledged that topographic information is key for the reduction of uncertainty in 13 

flood hazard mapping. Therefore, in order to minimise this source of error, the integration of 14 

high quality topographic information in a 2D model with enough spatial resolution, will 15 

enable the investigation of the propagation of the meteorological uncertainty to the 16 

determination of the flood extent.  17 

Fig. 8a introduces the result of the hydrodynamic simulation for each of the 12 hydrographs, 18 

which resulted from the utilisation of the rainfall-runoff model using as input the WRF multi-19 

physics ensemble output. The illustrated flood map summarises the 12 different possibilities 20 

of the inundation area that could result from the characterisation of precipitation with the 21 

WRF model. Differences in the size of these areas, illustrate the propagation of epistemic 22 

errors from the meteorological model to the flood map. In this sense, the analysis of 23 

uncertainty has been restricted to its propagation along the model chain (atmosphere-24 

catchment-river floodplain).  Each of these flood maps can also be associated to a probability 25 

enabling the representation of a probabilistic flood map, shown in the figure. This allows the 26 

identification of the areas highly vulnerable to flooding from this event. Additionally, Fig. 8b 27 

introduces the infrared SPOT satellite image of the 12th of November 2009, which is used for 28 

comparison against the produced flood maps using all the ensemble members. Notably, in the 29 

numerical results, the blue area identifies the region of the domain that is most likely to be 30 

flooded (90%), the comparison of this area with the observed inundation in the satellite 31 

a) b) 
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image, show a good skill of the model chain at reproducing the registered flood in the study 1 

area.  2 

To better quantify the performance of each of the model runs in reproducing the observed 3 

flood extent, the estimation of several error metrics in these results was also performed, 4 

among these are: BIAS, False Alarm Ratio (FAR), Probability of Detection (POD), 5 

Probability of False Detection (POFD), Critical Success Index (CSI) and the True Skill 6 

Statistics (TSS). Table 4 introduces the results by member and metric. Clearly, there is some 7 

variability in the performance of the model for each of the ensemble members, showing that 8 

there has been some propagation of the error to the flood map.  The ensemble average of these 9 

quantities is also illustrated in the last column of the table, where a BIAS=0.964, FAR=0.453, 10 

POD=0.799, POFD=0.154; CSI=0.831 and TSS=0.645 are reported. These results indicate a 11 

good skill of the model chain at reproducing the flood extension, due to the incidence of this 12 

extreme event.  13 

Current approaches to inundation prediction, have pointed out that in order to produce a 14 

scientifically justifiable flood map, the most physically-realistic model should be utilised (Di 15 

Baldassarre et al., 2010). Nevertheless, even with these models the amount of uncertainty 16 

involved in the determination of an affected area is important and should be quantified.  17 

 18 

4 Discussion and Conclusions 19 

It has been largely acknowledged in the literature, that flood risk mapping and assessment are 20 

highly difficult tasks due to the inherent complexity of the relevant processes, which occur in 21 

several spatial and temporal scales. As pointed out by Aronica et al. (2013), the process is 22 

subject to substantial uncertainties (epistemic and random), which emerge from different 23 

sources and assumptions, from the statistical analysis of extreme events and from the 24 

resolution and accuracy of the DEM used in a flood inundation model.  25 

By acknowledging that all models are an imperfect representation of the reality, it is 26 

important to quantify the impact of epistemic uncertainties on a given result. The numerical 27 

approach utilised in this investigation enabled an assessment of a state-of-the art modelling 28 

framework, comprised by meteorological, hydrological and hydrodynamic models. Emphasis 29 

was given to the effects of epistemic uncertainty propagation from the meteorological model 30 

to the definition of an affected area in a 2D domain. Ensemble climate simulations have 31 
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become a common practice in order to provide a metric of the uncertainty associated with 1 

climate predictions. In this study, a multi-physics ensemble technique is utilised to evaluate 2 

the propagation of epistemic uncertainties within a model chain. Therefore, the assessment of 3 

hydro-meteorological model performance at the three stages is carried out through the 4 

estimation of skill scores.  5 

Fig. 9 presents a summary of the propagation of two well-known error metrics, BIAS (top 6 

panel) and NSC/TSS (bottom panel). These metrics are selected, as they enable a direct 7 

comparison of their values at each of the stages within the model cascade. In both metrics, the 8 

evolution of the confidence limits is illustrated by the size of the bars. Their evolution from 9 

the meteorological model to the hydrological model results, show a clear decrease in both 10 

cases. This result may point towards an enhancement of meteorological uncertainties in the 11 

rainfall-runoff model. However, the skill of the hydrological model is considerably improved 12 

from a mean value of 0.65 in the meteorological model, to 0.834. In the last stage of the 13 

model chain, the confidence limits of the results at the hydrodynamic model results, show a 14 

small improvement. Nevertheless, the mean value of the skill is reduced to TSS=0.645. The 15 

results provide a useful way to evaluate the hydro-meteorological uncertainty propagation 16 

within the whole modelling system.  17 

BIAS and NSC/TSS error metrics (Fig. 9) revealed discrepancies between observations and 18 

simulations throughout the model cascade. For instance, an increase in the NSC from the 19 

rainfall to the flood hydrograph has a double implication: first, it implies that the hydrological 20 

model is more sensitive (wider uncertainty bars) to its main input (precipitation) than the 21 

WRF model is to the set of micro-physics parameterisations. Second, despite such large 22 

amount of uncertainty, the ensemble of flood hydrographs is closer to the reality (high NSC) 23 

than the ensemble of hyetographs provided by the NWP model. On the other side, it implies 24 

that the hydrological model used in this study is quite sensitive to climatic forcing.  Such 25 

attenuation in the error could be explained by the fact that the mean flood hydrograph 26 

obtained from the ensemble members is quite close to the measured hydrograph as shown in 27 

Fig. 6. This type of error and uncertainty propagation within the first step in the model 28 

cascade (a simultaneous rise in the model accuracy and uncertainty), suggests that the error in 29 

the hydrological model is reduced as a consequence of the non-linear rainfall-runoff transfer 30 

in the watershed. Whereas the error reached in the meteorological model may reflect a spatial 31 
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scaling issue (comparing observations from rain gauges to simulations at the meso-scale) and 1 

thus widening the gap.  2 

The propagation of uncertainty and error from the hydrological model to the inundation area 3 

reveals a reduction in the uncertainty but also an increase in the error. This last modelling step 4 

is quite important given the consequences for issuing warning alerts to the population at risk. 5 

This work shows that the estimated inundation extent is strongly insensitive to the input flood 6 

hydrograph. While this can be explained by the limited effect that the volume overflowing the 7 

riverbanks and reaching the floodplain will have on the maximum inundation area, the 8 

difference between the observed and ensemble of the flooded area remains important 9 

(TSS=0.65). 10 

It should be pointed out, that this methodology contains more uncertainties that were not 11 

considered or quantified in the generation of flood extent maps for this event. To quantify the 12 

epistemic uncertainty in the larger scale (i.e. atmosphere), a mesoscale numerical weather 13 

prediction system was used along with a multi-physics ensemble. The ensemble was designed 14 

to represent our limited knowledge of the processes generating precipitation in the lower 15 

troposphere. It was shown that a large amount of uncertainty exists in the NWP model, and 16 

this is indeed propagated over the catchment and floodplain scales. Members of the ensemble 17 

were shown to differ significantly in terms of cumulative precipitation, its spatial distribution, 18 

river discharge and the size of the affected area by the event. Therefore, epistemic 19 

uncertainties from each step in the hazard analysis chain can be accumulated in the final 20 

outputs.  21 

The evaluation of the skill in the model cascade shows further potential for improvements of 22 

the model system. Consequently, future work is planned to include the remaining 23 

uncertainties as adopted by, e.g. Pedrozo-Acuña et al. (2013). Special attention should be paid 24 

to the interaction between hydro-meteorological uncertainty and hydrological uncertainty. 25 

The assessment of the error propagation within the model cascade is seen as a good step 26 

forward, in the communication of uncertain results to the society. However, as shown in this 27 

work, an improvement in model prediction during the first cascade step (rainfall to runoff) 28 

can be reverted during the second cascade step (runoff to inundation area) with important 29 

consequences for early warning systems and operational forecasting purposes. Finally, the 30 

proposed numerical framework could be utilised as a robust alternative for the 31 

characterisation of extreme events in ungauged basins.  32 
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