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Abstract 11 

Maintaining acceptable groundwater levels, particularly in arid areas, while protecting 12 

ecosystems, are key measures against desertification. Due to complicated hydrological 13 

processes and the uncertainty of the effects of anthropogenic activities, investigations of 14 

groundwater recharge conditions are challenging, particularly in arid areas under climate 15 

changing conditions. To assist the planning to protect against desertification, a fault tree 16 

methodology, in conjunction with fuzzy logic and Bayesian data mining, is applied to Minqin 17 

Oasis, a highly vulnerable region in northern China.  A set of risk factors is employed within 18 

the fault tree framework, with fuzzy logic translating qualitative risk data into probabilities. 19 

This study provides a novel approach to utilize Bayesian data mining in conjunction with data 20 

transfer technology in validating the model with observation data. The framework of fault tree 21 

and Bayesian data mining approach have effectively quantify the causative effects between 22 

climate factors and human activities. A long series observation data ensures the model 23 

validated for a broad spectrum of changing conditions and therefore, it is satisfactory to be 24 

used in assessing the future projection of climate change on groundwater recharge conditions. 25 

Both the historical and future climate trends are employed for temperature, precipitation and 26 

potential evapotranspiration (PET) to assess water table changes under various future 27 

scenarios. The findings indicate that water table levels will continue to drop at the rate of 28 

0.6m/yr in the future from climatic effects alone, if agricultural and industrial production 29 
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capacity remain at 2004 levels. It is necessary to plan water consumption of Minqin 30 

scientifically and effectively through management measures. 31 

 32 
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1 Introduction 35 

The Shiyang River Basin is located in the eastern portion of the Hexi corridor in Gansu 36 

Province of northwest China, as shown in Fig. 1. Minqin Oasis lies at the lower reach of 37 

Shiyang River, which is the only oasis within both the Tenggeli and Badanjilin Deserts. This 38 

area is poised to become the largest desert in the world if the two deserts join together (Sun et 39 

al., 2006). Annual precipitation for Minqin Oasis has varied between 34~202 mm, with 40 

potential evaporation rates around 2600 mm, Runoff from upstream is the only source of 41 

renewable water supply for the Oasis to meet the increasing water needs due to population 42 

growth. Economic growth has led to the drilling of thousands of irrigation wells, resulting in 43 

withdrawals beyond recharge rates, causing groundwater mining (Tong et al., 2006). Falling 44 

water levels are adversely affecting land productivity. Further, ecological problems have 45 

intensified over recent decades, including soil desertification, due to the destruction of 46 

forestland and the groundwater mining (Zhang 2004). The water table at the edge of Minqin 47 

Oasis has dropped from 1~2m below ground surface (bgs) in 1950 to 16~24m bgs in 2008. 48 

Between 1998 and 2008, the groundwater table dropped 6.25 m on average, and even –49 

dropped 3.25m/year in some locations (Hu et al., 2009). In addition to human-related water 50 

needs, the potential for climate change may worsen water security. For example, rising 51 

temperatures may boost evaporation rates and alter rainfall patterns, intensifying issues of 52 

water availability; additionally, rising temperatures may accelerate the glacier melting, which 53 

has been observed in nearby Qiling Mountain (Shi, et al., 2002 and 2007). 54 

Investigation is needed to assess climate change impacts on water tables to provide a clearer 55 

picture of the potential for ecosystem failure and to provide insights into selection of optimal 56 

measures for improving the environment. This research estimates the likelihood of future 57 

climate change impacts on groundwater levels based on a lengthy record of historical data as 58 

well as using a general circulation model (GCMs), CGCM 3.1, for the projections of global 59 

climate change. The projection of future climate change is also used below in the risk 60 

assessment arising from water table changes in Minqin Oasis.  61 
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Since a declining groundwater level is an indication of potential ecosystem failure, a fault tree 62 

methodology for risk assessment of this failure is employed, to identify the contributing 63 

factors that impact water level changes. The risks of falling water table levels under changing 64 

climate conditions are assessed by applying the projected climate data along with the fault 65 

tree model.  66 

Several studies have focused on the effects of climate change and the impacts of human 67 

activities on water resources in the Minqin Basin. For example, Wang et al.(2002) 68 

investigated environmental effects such as water quality deterioration, vegetation degradation, 69 

soil salinization and land desertification caused by human activities in the Basin. Kang et al. 70 

(2004) investigated the influence of human activities and global climate change on 71 

precipitation and runoff, together with a trend analysis of runoff in each tributary. Ma et al. 72 

(2008) showed that large-scale water resource development associated with dramatic 73 

population growth, led to large changes in groundwater regimes over the last 50 years. Li et al. 74 

(2007 and 2008) and Wang et al. (2009) explored the impact of land-use change on water 75 

resources. Huo et al. (2008) used a double cumulative curve and a multi-regression method to 76 

investigate the changes in streamflows under changing climates and human activities. These 77 

research findings indicate the water resources (surface and groundwater) in Minqin Basin are 78 

highly vulnerable to climate change. However, the quantification of the ineraction between 79 

changing climates and human activities have not been fully understood.  80 

Due to complicated hydrologic processes and the uncertainty of the effects of human 81 

activities, investigations of groundwater recharge conditions are challenging, particularly in 82 

arid areas because of the interaction between climate factors and human activities. In order to 83 

identify and quantify the causes of the water table drop in Minqin, this study utilizes a 84 

modelling framework involving use of a coupled approaches of Fault tree and Bayesian data 85 

mining to quantify the effects of human activities and the influence of climate factors; the 86 

coupled model is validated by historical data and further was used in assessing the impact of 87 
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climate change. A fuzzy number approach is very common in association with the use of a 88 

Fault tree in quantifying the risk associated with each risk factor as well as quantifying the 89 

consequence factor for each parent node. The fuzzy number in association to the fault tree 90 

provides an effective measure to quantify risk. However, it also raises the challenges in 91 

validating the model due to the lack of a mechanism for validating against historical data. 92 

This paper provides a methodology to use a data mining approach (WinBUGS) in conjunction 93 

with a data transfer technology to solve this validation problem. Section 3 explains the data 94 

transfer technology in details. This methodology allows the use of cumulative frequency to 95 

validate the model. Additionally, all the fuzzy numbers were calibrated by the cumulative 96 

frequency obtained from a long series of historical data, which makes the model valid for a 97 

wide spectrum of changing conditions.   98 

2 Materials and methods 99 

2.1 Fault tree methodology and fault 100 

tree model construction 101 

The Fault Tree methodology is a graphical method for system reliability analysis. Among 102 

a variety of methodologies in the realm of probabilistic risk assessments, Fault Tree 103 

methodologies have been widely used and proven to be a versatile tool for modeling complex 104 

component behaviour (Lee et al., 2009; Singh et al., 2014; ). For instance, Lee et al. (2009) 105 

assessed the risk of drinking water supply failure for small system by fault tree and fuzzy 106 

algorithm; Jurado et al.(2012) utilized fault tree methodology to assess the probability of 107 

groundwater related risk for the construction of underground structures; Singh et al.(2014) 108 

evaluated the seasonal effects and human activities on groundwater contamination using a 109 

modified fault tree methodology with ensemble machine learning approaches. The Fault Tree 110 

framework is a relatively straight-forward task; each risk item consists of a risk factor R and 111 
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its “offspring” (contributing factors) Rc. Risk items with no further offspring are termed 112 

“basic risk items”, while the risk item without a ‘parent’ is the ‘top risk item’. Those between 113 

the top and bottom events are termed middle risk events. As a result, all critical paths for 114 

occurrence of an undesired state can be identified through the analysis and construction of the 115 

Fault Tree model. 116 

There are two types of evaluations in Fault Tree Analyses, namely (i) qualitative 117 

evaluation and (ii) quantitative evaluation. The task of qualitative evaluation is to derive a 118 

logical structure amongst different events, while the objective of the quantitative evaluation is 119 

to assess the risk factor R(l, c) with the likelihood of a failure l and the consequence of failure 120 

c. In this paper, a quantitative evaluation is utilized for the risk assessment. 121 

2.2 Bayesian data mining 122 

methodology 123 

Bayesian Data Mining Methodology (BDMM) is a method of reasoning, based on a well-124 

defined probabilistic theory, namely Bayes’ theorem. BDMM searches the results that best 125 

reflect the dependent relationships in a database of cases and provides a framework for 126 

handling probabilistic events. It has been proven to be a powerful formalism for expressing 127 

complex dependencies between random variables. In the presence of evidence, Bayes’ 128 

Theorem is used to compute the posterior probability distribution of a random variable and is 129 

here used to estimate the consequences of failure c for each risk factor R. Under the context of 130 

the Fault Tree Model, Bayes’ Theorem can be written in the following form: 131 

),(
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          (1) 132 

where, 133 

R, Rc = observed risk factor data, which is the occurrence probability for each risk item; 134 
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c = a vector of parameters (c1, c2, c3, … cn) or consequence of a failure or a risk factor in this 135 

study under the fault tree model framework;  136 

P(c | Rc, R) = the conditional probability or so-called marginal probability, is in effect the 137 

consequence of a risk factor Rc in the matter of R, estimated based on observed Rc and R; 138 

P(c) = the prior probability, where the domain knowledge is applied; 139 

P(Rc, R | c) ×P(c) = the joint probability or so-called likelihood; 140 

P(Rc, R) = the density function of Rc and R. 141 

where P(c) is the prior distribution of the possible c values, P(Rc) is the prior distribution of 142 

the observed data Rc, P(Rc|c) is the probability of Rc, and P(c|Rc) is the posterior distribution 143 

of c given the observed data Rc. 144 

Due to improvements in sample-based Markov Chain Monte Carlo (MCMC) methods, recent 145 

work has led to sophisticated and efficient algorithms for computing and inferring 146 

probabilities in Bayesian analysis (Huang and McBean, 2007). The primary objective of the 147 

Bayesian parameter estimation method is to estimate the marginal probability P(c | Rc, R) 148 

based on two components, the observed data Rc, R and the prior distribution gained from 149 

domain knowledge, P(c). The results are given as the confidence intervals for model 150 

parameters based on predefined confidence levels. Sampling methods based on the Markov 151 

Chain principle incorporate the required search aspect in a framework where it can be proven 152 

that the correct distribution is generated at least in the limit, as the length of the chain grows. 153 

MCMC requires a large number of iterations (normally>10,000) to get convergence (Huang 154 

and McBean, 2008). This heavy computation requires a highly efficient program to undertake 155 

the computations. WinBUGS v1.4.3, open source software developed by MRC Biostatistics 156 

Unit, Cambridge, UK, was employed for this research to conduct the Bayesian data mining 157 

analysis utilizing the Markov Chain methodology. 158 

2.3 Fuzzy logic methodology 159 

In the traditional scientific view, uncertainty is regarded as undesirable and should be avoided. 160 

However, in many engineering systems, uncertainty is unavoidable and even essential (Lee et 161 

al., 2009 and Sadiq et al., 2004). Fuzzy set theory (Zadeh, 1965) was introduced to analyze 162 

objects that are not distinct and computed with words (Zadeh, 1996) as Fuzzy Logic is applied 163 

to explain reasoning linguistically rather than numerically (Sadiq 2004a). Fuzzy logic was 164 
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initially implemented in control systems and programming by Bellman (1970) and is now 165 

extensively employed in engineering evaluations (e.g. Lee et al., 2009, Sadiq, 2004 b). 166 

When risk items are evaluated, linguistic variables contain descriptive fuzzy terms such as 167 

high, medium, low, and so on. One linguistic variable can be defined by a term set, e.g., if 168 

there is a linguistic variable, ‘High’, can be defined more specifically by the term set 169 

‘Extremely high’, ‘Very high’, ‘Moderately high’: each of which is a fuzzy set. The number 170 

of fuzzy sets is usually between three and seven (Lee et al., 2009). 171 

Fuzzy sets are distributed as ‘R’, and each fuzzy set is mapped into a membership function, 172 

‘m’, which ranges from 0 to 1. ‘m’ shows how strongly the ‘R’ is associated with the 173 

linguistic term, for example, a percentage of ‘R’ belongs to high. In the relationship between 174 

‘R’ and ‘m’, a grade of membership is calculated using a membership function shape. To 175 

represent linguistic variables, Triangular Fuzzy Numbers (TFN) are used herein. There are 176 

three parametric variables for TFN, which are recorded as TFN= (ma，mb，mc). ‘ma’ 177 

represents the min. possible value of the fuzzy event, while ‘mb’ is the most likely value and 178 

‘mc’ is the max possible values. The membership function of l and c to its respective granular 179 

are defined as: 180 

       (2) 181 

Risk is assessed in seven grades here, namely, extremely low, low , moderately low, medium, 182 

moderately high, high and extremely high (Table 2). The membership function represents a 183 

means to convert a fuzzy number into a number, or vice versa. A crisp number differs from a 184 

fuzzy number such that the crisp number represents a real value and a fuzzy number 185 

represents only the relationship of the membership grades. For example, assuming the 186 

likelihood of a risk factor is between low (2), and moderately low (3) but much closer to 3 187 

than 2, a crisp number of 0.31 may be chosen to represent the scenario. 188 

Failure risk R is quantified as the product of risk likelihood and its consequence, which can be 189 

expressed as TFNlc=TFNl×TFNc = (mal∙mac, mbl∙mbc, mcl∙mcc). When combining fuzzy sets, 190 

different fuzzy arithmetic mechanisms may be used within a rule-based system. Following 191 
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this procedure is “defuzzification” which is a process to define a fuzzy set as a crisp number. 192 

The most common method is the Centre of Gravity approach, based on Bayesian probability. 193 

Aggregation of fuzzy sets is performed by combining several fuzzy numbers to produce a 194 

single fuzzy number. Many different methods and operators may be used as an aggregation 195 

process, including fault tree analysis, means (e.g., arithmetic, geometric, or generalized), 196 

ordered-weighted averaging operators (OWA), and so on. The risk assessment starts from the 197 

‘leaves’ of the tree (the ‘children’ risk items) and aggregates toward the ‘root’ (the top 198 

‘parent’ risk item) through the “defuzzification” process. 199 

2.4 Risk assessment for the water 200 

table decline for the Minqin Oasis construction of the fault tree model 201 

During the 1950’s and 1960’s, prior to the introduction of large-scale groundwater withdrawal 202 

in Minqin Oasis, groundwater levels were near the surface. This allowed growth of significant 203 

natural vegetation. The annual water demand of natural vegetation is reported to be 204 

approximately 500 mm for healthy growth, while if constrained to 350 mm, growth would be 205 

inhibited. If decreasing groundwater levels occur, there will be vegetation die-off and reduced 206 

vegetation coverage, which will cause further soil erosion and intensified desertification. 207 

Therefore, the decline of groundwater levels provides an important indicator of ecosystem 208 

failure. The hierarchical fault tree shown in Fig. 2 indicates the top risk item of the Fault Tree 209 

model is identified as “decline of the water table”.    210 

Since water consumption in the middle and upper portions of Minqin Basin has increased 211 

dramatically, the inflow to the lower basin (Minqin Oasis) has reduced substantially. The flow 212 

into the lower reaches of Hongyashang desert has decreased by 74%, although the discharge 213 

of the Shiyang River at the mouth of the mountain valley has remained at a level of 1.58 214 

km
3
/yr since the 1950s (Ma et al., 2005). In response, in order to maintain farmland 215 

production, groundwater has been exploited extensively since the 1970s. The annual 216 

groundwater exploitation has grown from 1.5×10
8
 m

3
 in the 1950s to 9.8×10

8
 m

3
 in the 217 

1980s and to 11.16×10
8
 m

3
 in 1995 (Kang et al., 2004). Therefore, the fault tree components 218 

identified in the second layer of Fig. 2 are “total water consumption” and “supply from upper 219 

reaches”, the results of which drive the groundwater mining.  220 

Water consumption is divided into three water use sectors, namely: “Agricultural 221 

Consumption”, “Domestic and Industrial Consumption”, and “Ecosystem Water 222 
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Consumption”. Therefore, in the fourth layer of Fig. 2, there are three contributing risk factors 223 

identified as “Agricultural Consumption” including “Agriculture GDP”, “PET” and 224 

“Precipitation”. Similar to “Agricultural Consumption”, the “Ecosystem Water Consumption” 225 

refers to water demand for the healthy growth of the natural vegetation, and is impacted by 226 

PET and precipitation. Since the primary goal herein is to investigate climate change impacts 227 

on the water balance, impacts of climate change on domestic and industrial water 228 

consumption are considered negligible and hence not further investigated. 229 

 230 

3 Data analysis 231 

Fault Tree Analysis was conducted based on fuzzy logic, which could provide an efficient 232 

way to quantify the risk likelihood and its consequence. The risk likelihood and its 233 

consequence were further validated against the data obtained from observation data by 234 

utilizing Bayesian Analysis and MCMC Analysis by WinBUGS. To assess the risk of the 235 

water table decline, the first step is to identify quantitative relationships between the variables. 236 

Although observation data of each variable are available, it is difficult to carry out the 237 

calculation due to different dimensions and magnitudes of the different data types. By 238 

applying the cumulative frequency of each variable as the quantitative criteria, each variable 239 

can be represented by normalized values between 0 and 1. 240 

As an example of how this is accomplished, the mean value  is calculated for the observation 241 

of each variable, as the parameter estimate μ and standard deviation s as the parameter 242 

estimate of σ in the normal distribution. The cumulative frequency F(xi) for each xi is the 243 

likelihood in Fault Tree. Precipitation influences on the decline of water table in a different 244 

manner than from that of other variables; precipitation is a negative relevant relation, as the 245 

greater precipitation, the less the water table will decline. Thus 1-F(xi) is taken as the 246 

likelihood for precipitation. 247 

Water-saving measures involving reducing cultivated land and abandoning groundwater wells 248 

have been taken place in Minqin since 2005. Thus, the year 2004 has been taken as the base 249 

year. Substituting precipitation data and PET between 2001 and 2100 into the Fault Tree 250 

model for the variance of water table, the risk parameter for the water table decline is 251 

calculated and compared with that of 2004. Data for agriculture GDP, water supply from 252 
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upper reaches, and domestic & industrial water consumption of 2004 have been applied in the 253 

calculation. 254 

The CGCM3.1 (Coupled Global Climate Model 3.1) has been applied to forecast the 255 

projected climate. In the model, Scenarios A2, A1B and B1 are chosen as three climate 256 

scenarios. Hargreaves and Samani (1982) proposed a methodology to estimate the potential 257 

evapotransporation (PET).  The method was applied in this study to evaluate the PET based 258 

on the metrological data for Wushaoling and Minqin. The Gumbel Distribution has been 259 

demonstrated as the most effective distribution in the evaluation of extreme events (Wang and 260 

McBean, 2014). Hence, the return period is calculated assuming the Gumbel Distribution in 261 

this study. For the risk assessment for water table variance, Fault Tree Analysis (FTA) is 262 

introduced. 263 

In the Fault Tree, data for agricultural GDP are from the Almanac of Gansu. Data of water 264 

supply from upper reaches, water table and consumption are from the Gansu Research 265 

Institute for Water Conservancy. The agricultural water consumption, domestic & industrial 266 

water consumption and the water supply from upper reaches between 2001 and 2008 were 267 

obtained from Gansu Research Institute for Water Conservancy together with the data of 268 

ecological water consumption as well as the data characterizing water table levels between 269 

1998 and 2008. 270 

Agricultural water consumption is the predominant factor of Minqin’s total water 271 

consumption in 2000. Taking 2000 as the base year, the total water consumption before 2000 272 

is calculated according to the annual gradient of agricultural water consumption. Thus, a 273 

complete series of consumption data between 1951 and 2008 is available. Table 1 lists the 274 

observed data used in the Fault Tree Analysis. 275 

3.1 The model for climate change 276 

The model utilized for climate projections is CGCM3.1 (Coupled Global Climate Model 3.1), 277 

developed by the Canadian Centre for Climate Modeling and Analysis (CCCMA). The 278 

climate scenarios that are most widely used are A2 (high degree of greenhouse-gas emission), 279 

middle degree A1B, and low degree B1, Committed degree (equal to that of the year 2000) 280 

and principal degree (on the premise of de-industrialization).  281 
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3.2 Fault tree analysis 282 

FTA is a graphical analytical method to evaluate system reliability. When there is an 283 

undesired state or a failure, all factors that directly lead to the undesired state or failure will be 284 

identified. Then, the identifying causes for the lower event are investigated until a root or 285 

controllable cause is obtained. At the end, all critical paths for the occurrence of the undesired 286 

state will have been identified. In FTA, the undesired event is called the “top event”, while 287 

the event where the failure rates and probabilities enter the Fault Tree is termed the “bottom 288 

event” or “base event”; those between the top and base events are the middle events. The 289 

relationship or logic of the Cause-Effect events is identified. By applying logic gates (AND 290 

and OR gates), a tree derivation is structured with these events, which are represented by 291 

standard logic symbols.  292 

 293 

3.2.1 Fault Tree construction of water table level in Minqin 294 

In the analysis, the decline of the water table in Minqin could be inferred to be an issue 295 

caused by the combination of human and natural factors. In the system, “decline of water 296 

table in Minqin” is classified as the top event. The causes for the decline are the increase in 297 

local water consumption and the decrease of water supply from the Hongyangshan Reservoir. 298 

Local water consumption consists of four parts, including agricultural water, domestic and 299 

industrial water, and consumption by the ecological system components. 300 

Agricultural water consumption is influenced by the variability of the cultivated area, as well 301 

as local PET and the precipitation. Domestic and industrial water consumption are used as the 302 

“bottom” event because these are essentially immune from the natural factors indicated above. 303 

Ecological water is used for irrigation of local vegetation, in order to prevent further 304 

desertification. This water consumption is influenced by PET and precipitation. FT for 305 

groundwater in Minqin is shown in Fig. 2. 306 

3.2.2 Transformation of observation data for variables in Fault Tree 307 

In the risk assessment for decline of the water table, the first step is to establish the 308 

quantitative relationships of individual variables. Although observed data for each variable 309 

are available, it is difficult to carry out the calculation due to different dimensions and 310 

magnitudes. A new flexible approach is to rely upon the cumulative frequency of each 311 
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variable as the quantitative criteria. In this way each variable can be represented by values 312 

between 0 and 1. 313 

The experimental results follow the normal distribution based on the Central Limit Theorem 314 

(McBean and Rovers, 1998) if the results do not influence each other, despite different 315 

distributions for alternative random variables. The cumulative frequency F(xi) for each xi is 316 

determined as the likelihood in the Fault Tree. 317 

3.2.3 Bayesian Data Mining Methodology for Fault Tree Model Validation 318 

The system for characterizing the decline of the water table in Minqin can be divided into four 319 

subsystems, including the subsystem “water supply from upper reaches/total water 320 

consumption in Minqin → decline of water table”, “agricultural water consumption/domestic 321 

& industrial water consumption/ecological water consumption → total water consumption”, 322 

“agricultural GDP/PET/precipitation → agricultural water consumption” and 323 

“PET/precipitation → ecological water consumption”. 324 

In the subsystem “agricultural water consumption/domestic and industrial water 325 

consumption/ecological water consumption→ total water consumption”, values of c equal the 326 

percentage of each type of water consumption. In the other three subsystems, values of c are 327 

functions of position and are calculated from available data by WinBUGS. 328 

The Bayesian models to represent the three subsystems are constructed using WinBUGS, 329 

respectively. These models apply the likelihoods derived from the cumulative frequency 330 

above. In each subsystem model, the length of the input data equals that of the shortest series. 331 

Comparison of the observed and calculated data (for the cumulative frequency) was 332 

conducted to verify the three sub models in WinBUGS. 333 

 334 

4 Results and discussion 335 

4.1 Climate change trends for the past 336 

several decades 337 

4.1.1 Average annual temperature 338 

The average temperature in Wushaoling has shown an upward trend (Fig. 3a). Applying trend 339 

line fitting, we can see an increase of 0.021°C/yr for the average temperature is defined, while 340 
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after the 1980s, the rate of increase reached 0.062°C/yr. The average annual temperature in 341 

Minqin is also showing an upward trend (Fig. 3b). The average annual temperature increase is 342 

0.059°C/yr, which is about the two times the rate of increase observed for Wushaoling for the 343 

entire time period. Minqin and Wushaoling, show a similar increasing trend in temperature 344 

after the 1980s, at rates of 0.06°C/yr. Temperature increases are at a lesser rate in Wushaoling 345 

for the past 50 years. In other words, increases in temperature along the lower reach of 346 

Shiyang River are more apparent than for the middle and upper reaches. 347 

4.1.2 PET 348 

PET data in Wushaoling and Minqin are shown in Fig. 4. PET in Wushaoling has a slight 349 

upward trend. The mean value of PET is 1580.3mm, with a standard deviation of 73.0mm and 350 

rate of change of 1.15mm/yr.  PET in Minqin also has a slight upward trend. The mean value 351 

of PET is 2644.0mm with a standard deviation of 66.0mm and rate of change of 1.36mm/yr. 352 

4.1.3 Precipitation 353 

Precipitation data in Wushaoling and Minqin are shown in Fig. 5. The annual average 354 

precipitation in Wushaoling is 374mm with a standard deviation of 78.9mm. The maximum 355 

precipitation is 543mm in 2003 and the minimum is 176mm in 1962. Precipitation has shown 356 

a downward trend and then upward, not simply one-directional. In the 1960s, there was a 357 

reduction of precipitation, which lasted into the 1980s and then recovered to the previous 358 

level. The annual average precipitation in Minqin is 111mm with a standard deviation of 359 

33.4mm. The maximum precipitation is 202mm in 1994 and the minimum is 38mm in 1962. 360 

It has shown a mild upward trend，with fluctuations around the mean value. 361 

4.2 Projected climate change trends 362 

given by CGCM 363 

Fig. 7 and 8 show the annual temperature change, PET and precipitation given by CGCM3.1. 364 

Comparing all of these curves, the average temperature, PET and precipitation in the three 365 

different scenarios all have fluctuating upward trends. The climate elements have different 366 

rates of increase. Except for the PET of the A1B scenario, the other rates of increase have all 367 

shown a relationship of A2>A1B>B1. 368 
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4.3 Risk assessment for water table 369 

variance 370 

4.3.1 Results of Bayesian data mining methodology  371 

Results of observed data-based methodology for Fault Tree calculation are shown in Tables 4.  372 

In the tables, CL is the unknown parameter c, and τ which is used to evaluate the closeness of 373 

the fit (the larger τ, the better the fit). Sigma represents parameter σ, another parameter to 374 

evaluate the closeness of fit and σ=1/  . It can be seen from Table 3 through 6, the mean 375 

values of CL range between 0 and 1, and values of τ are 73.51, 14.63 and 84.4. The value of τ 376 

in the subsystem for “PET/precipitation→ ecological water consumption” is a little smaller, 377 

perhaps due to the short data series (only seven years). Risk probability of each node is listed 378 

in Table 4. 379 

The values of cumulative frequency for the decline of the water table as well as for 380 

agricultural water consumption and ecological water consumption were calculated by 381 

WinBUGS. In order to demonstrate the validity of the models, the results from WinBUGs 382 

were plotted with the observation data. As shown in Fig. 9, it was observed that there are 383 

significant linear correlations between computed values and observed data for agricultural 384 

water consumption as well as for the decline of the water table. The correlation coefficients 385 

(R
2
) are 0.894 and 0.875 for these two nodes. There is no obvious correlation between 386 

computed values and observed data for the cumulative frequency of ecological water 387 

consumption as a result of the short data series, the significance analysis is carried out at the 388 

confidence level of 90% where α=0.1. Values of R
2
 and F were obtained from regression 389 

analysis as shown in Fig. 9. 390 

For the decline of the water table, there are 49 observed data points, the critical value of 391 

F1,51≅2.81, while for agricultural water consumption and ecological water consumption, there 392 

are 20 and 8 data points, respectively, with the corresponding critical value of F are 3.01 and 393 

3.78 respectively. The F values shown on Fig. 9 are all far in excess of the critical values. 394 

Therefore, the correlations between computed values and observed values are statistically 395 

significant.  396 

Therefore, the model can be regarded as valid and can be used for predictions for the future 397 

due to climate change. 398 
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4.3.2 Results of Fuzzy-based methodology  399 

Importance degrees calculated according to fuzzy numbers are shown in Table 5, comparing 400 

the risk factor g(l,c) for the decline of water table, ecological water consumption and 401 

agricultural water consumption with the cumulative frequency calculated by WinBUGS. The 402 

comparison results are shown in Fig. 10. Values of R
2
 reach as high as 0.965, 0.996 and 0.987 403 

respectively, which indicate an obvious correlation between the risk factor g(l,c) and the 404 

cumulative frequencies. As the validity of cumulative frequencies has been proven, the 405 

importance degrees derived from the fuzzy numbers are also valid and can be used for the risk 406 

assessment. 407 

4.3.3 Risk Assessment for the water table fault tree in Minqin 408 

Risk parameters for the variance of water table calculated in the three climate scenarios are 409 

shown in Fig. 11, where the risk parameter of 2004 is represented by the dashed line and 410 

equals 0.835. 411 

Comparing risk factors of the three climate scenarios, a fluctuation between 0.78 and 0.83 is 412 

observed. In scenarios of A2 and A1B, the magnitude of the fluctuation gradually declines, 413 

which indicates that the effect imposed by climate factors on the water table is diminishing. 414 

The risk parameters for most years are lower compared with that of 2004. Only the risk 415 

parameter of the year 2023 in scenario B1 is similar to that of 2004, equal to 0.824. 416 

According to the definitions by IPCC (2007), the greenhouse gas emissions for scenario A2 417 

are high, while they are lower for scenario A1B and the lowest for scenario B1. For the three 418 

scenarios, the mean risk of the water table drop is 0.799, 0.798 0.798 for scenarios A2, A1B 419 

and B1, respectively. Thus, there is a slightly higher risk of inducing water table decline in 420 

scenario A2 compared with the risks in scenarios A1B and B1, but the differences among the 421 

three scenarios are fairly negligible. 422 

There are two reasons for risk factors in the three scenarios being lower than the year 2004. 423 

First, the year 2004 suffered a serious drought with the observation data of precipitation 424 

100.2mm and PET 2808.8mm. The mean decline of water table levels reached as high as 425 

0.835m. Second, the consequences of precipitation are greater than that of PET for the event 426 

of the same level in the Fault Tree model, which indicates that the effect of precipitation 427 

imposed on water table change is greater than that of PET when considering climatic 428 

conditions only. According to the features of precipitation in the three scenarios, the mean 429 
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value of precipitation between 2001 and 2100 is high and showed an upward trend. Thus the 430 

water table decline risk is low despite the increasing PET. 431 

Risk factors for the decline of water table levels in the three scenarios could be transformed to 432 

the rate of descent in water table levels by looking up the value at the cumulative frequency 433 

curve for the decline of the water table. It can be seen from Table 7 that the decline of the 434 

water table levels in Minqin will reach as high as about 63m in 96 years (between 2004 and 435 

2100) under the assumption of no water saving measures being taken and that the agricultural 436 

and industrial production capacities remain at the same level with that of 2004. The impact of 437 

climatic conditions is the only factor being investigated in this study. It reveals a decline rate 438 

of 0.6m per year for the groundwater, which is an important index when planning water 439 

resources and allocating the domestic and industrial water. 440 

5 Conclusions 441 

5.1 Climate change trends 442 

Changing trends of average temperature, PET and precipitation on the upper-middle reaches 443 

and lower reaches of Shiyang River are evident. The climate change trends of Scenarios A2, 444 

A1B and B1 in Minqin given by CGCM show significant increasing trends in average 445 

temperature and PET in Wushaoling on the upper-middle reaches and Minqin on the lower 446 

reaches. Meanwhile, there are also increasing trends in precipitation in Wushaoling and 447 

Minqin. The magnitude of increases for average temperature and PET are larger, while that of 448 

precipitation is smaller. The average temperature in scenario A2 increases at a rate of 449 

0.061°C/yr, similar to the observed data in Minqin. The ascending speeds of PET in the three 450 

scenarios have all exceeded the observed data with a rate of 1.15mm/yr. As for the 451 

precipitation, the ascending speed of observation data equals 0.517mm/yr, between those in 452 

scenarios A2 and A1B. 453 

5.2 Risk assessment of water table 454 

levels 455 

The Fault Tree model as applied to the water table fluctuation in Minqin, demonstrates the 456 

risk factors for the water table fluctuation in the three projected climate scenarios, and 457 

demonstrates that precipitation has a greater effect on the water table than that of PET. The 458 
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consequences approximate those calculated by the fuzzy algorithm and Bayesian data mining 459 

approach, providing evidence of the validity of the model.  460 

The risk assessment shows that the declining rate of ground water levels will reach 0.6m/yr to 461 

2100 considering the climatic effects only and under the assumption that the agricultural and 462 

industrial production capacity are maintained at the levels of 2004. 463 

With climate change alone, the water table in Minqin may continue to decline, resulting in 464 

increasing challenges in dealing with ecological problems in the Minqin Oasis. It is necessary 465 

to plan water consumption of Minqin scientifically and effectively through management 466 

measures. 467 

5.3 The Bayesian and fault tree 468 

methodology 469 

This study provides the evidence that the coupled model with data transfer technology can not 470 

only assess the risk likelihood but also assess the interactive impacts of climate factors and 471 

anthropogenic activities. Additionally, the new method on the validation of the model against 472 

the long-series historical observation data makes the model more valuable. It provides an 473 

efficient and effective way in assessing the climate change impacts on groundwater 474 

recharging condition.     475 
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Table 1. Available data for Fault Tree Model. 567 

Variables/unit Time series(duration) Notes 

Meteorological data 

(historical Records) 
1950-2009 

China Metrological Data Sharing 

Service System 

Agricultural GDP/10
8
 RMB 1985~2004 Yearbook of Gansu Province  

Water Supply from 

upstream/10
8
 m

3
 

1956~2008 
Gansu Research Institute for Water 

Conservancy  

Precipitation 1960~2008 
Gansu Research Institute for Water 

Conservancy 

Total water consumption 

/10
8
 m

3
 

1951~2008 
Gansu Research Institute for Water 

Conservancy  

Agricultural water 

consumption/10
8
 m

3
 

1951~2008 
Gansu Research Institute for Water 

Conservancy  

Domestic & industrial water 

consumption/10
8
 m

3
 

1951~2008 
Gansu Research Institute for Water 

Conservancy  

Ecology water 

consumption/10
8
 m

3
 

2001~2008 
Gansu Research Institute for Water 

Conservancy 

Water table/m 1951~2008 
Gansu Research Institute for Water 

Conservancy  

568 
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Table 2. Triangular fuzzy number for granular. 569 

Granular (p) 
Qualitative scale for 

likelihood of risk (l) 

Qualitative scale for 

peril of risk (c) 
TFNl or TFNc 

1 Extremely low Extremely unimportant (0.0, 0.0, 0.17) 

2 Quite low Quite unimportant (0.0, 0.17, 0.33) 

3 Low Unimportant (0.17, 0.33, 0.50) 

4 Medium Neutral (0.33, 0.50, 0.67) 

5 Quite high Quite important (0.50, 0.67, 0.83) 

6 High Important (0.67, 0.83, 1.0) 

7 Extremely high Extremely important (0.83, 1.0, 1.0) 

Source: (Lee et al., 2009) 570 

571 
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Table 3. Results of consequences for each node. 572 

Nodes Mean values Notes 

CLaw1 0.9562  agriculture GDP → agricultural water consumption 

CLaw2 0.007455 PET → agricultural water consumption 

CLaw3 0.0403 Precipitation → agricultural water consumption 

Taugw 73.51  

sigmagw 0.1249  

CLew1 0.2833 Node of “PET → agricultural water consumption” 

CLew2 0.673 Node of “precipitation → agricultural water consumption” 

Taugw 14.63  

sigmagw 0.3176  

CLgw1 0.3616 
Nodes of “water supply from upper reaches → the decline of water 

table” 

CLgw2 0.5758 
Nodes of “total water consumption in Minqin → the decline of 

water table” 

Taugw 84.4  

sigmagw 0.1115  

573 
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Table 4. Risk probability of each node. 574 

Numbers Nodes 
Risk 

Probability 

4.1 Agriculture GDP→agricultural water consumption 0.9562 

4.2 PET→ agricultural water consumption 0.007455 

4.3 Precipitation→agricultural water consumption 0.0403 

4.4 PET→ecological water consumption 0.2833 

4.5 Precipitation→ ecological water consumption 0.673 

3.1 agricultural water consumption→total water consumption 0.7898 

3.2 
Domestic and industrial water consumption→ total water 

consumption 
0.0414 

3.3 Ecological water consumption→ total water consumption 0.1302 

2.1 Total water consumption→ decline of water table 0.3616 

2.2 Water supply from upper reaches→ decline of water table 0.5758 

575 
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Table 5. Fuzzy numbers for consequences. 576 

Items Nodes Consequences 

4.1 Agricultural GDP → agricultural water consumption 7 

4.2 PET → agricultural water consumption 1 

4.3 Precipitation → agricultural water consumption 1 

4.4 PET → ecological water consumption 3 

4.5 Precipitation → ecological water consumption 5 

3.1 Agricultural water consumption → total water consumption 6 

3.2 
Domestic and industrial water consumption → total water 

consumption 
1 

3.3 Ecological water consumption → total water consumption 2 

2.1 Total water consumption → decline of water table 3 

2.2 Water supply from upper reaches → decline of water table 4 

577 
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Table 6. Forecast for variance of water table in Minqin considering climatic conditions only. 578 

 A2 A1B B1 

The decline of water table between 2004 and 2100 (m) 63.632 63.499 63.469 

Water table in 2100 (m) -86.583 -85.451 -86.421 

579 
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 580 

 581 

Figure 1. The Shiyang River Watershed and Minqin Oasis. 582 

583 
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 584 

 585 

Figure 2. Fault tree of groundwater table drop for Minqin Oasis. 586 

587 
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 588 

(a) Wushaoling 589 

 590 

(b) Minqin 591 

Figure 3. The trend of average annual temperature. 592 

593 
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 594 

(a) Wushaoling 595 

 596 

(b) Minqin 597 

Figure 4. The trend of average annual PET. 598 

599 
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 600 

(a) Wushaoling 601 

 602 

(b) Minqin 603 

 604 

Figure 5. The trend of annual precipitation. 605 
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 608 

 609 

 610 

Figure 6. The trend of average temperature given by CGCM 3.1. 611 
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 614 

 615 

 616 

Figure 7. The trend of average PET given by CGCM 3.1. 617 
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 620 

 621 

 622 

Figure 8. The trend of annual precipitation given by CGCM 3.1. 623 

624 
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 626 

 627 

Figure 9. Comparison results of cumulative frequency between computed values and the 628 

observation data. 629 

630 



 36 

      631 

 632 

 633 

Figure 10. Comparison results between two methods. 634 

 635 
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 638 

 639 

 640 

Figure 11. Comparison results for cumulative frequencies in different climate scenarios. 641 


