
Dear Referee #1, 

Thank you very much for your comments on our manuscript that will certainly be considered in a revised 

version and that will help to improve our contribution. At the current stage, we would like to reply and 

address a few of these comments:  

---------- 

 “(2) The methods appear rather complicated, except for the PCA which is well established and applicable 

in this context. Are the other methods also established or are they applied for the first time here? I do not 

understand why and how these methods were chosen. Further, I do not understand the benefit of 

investigating the persistence; and the added value of the behavioural measure analysis over the PCA.” 

Authors reply:  

Our main intention using all of the presented methods is to strengthen the reliability of our results. The 

first part on “persistency measures” is to our knowledge novel and our own contribution in terms of a 

new methodology of spatial data exploration.  By applying these persistency methods we are able to 

confirm the existence of spatially and temporally consistent patterns within the time series of images.  

This finding supports the application of a principle component analysis (PCA) where the most dominant 

patterns (in the form of independent principle components) within the time series are extracted and 

information on explained variance by that PC is given.  

It could be argued, that a PCA resulting in PCs with a significant high percentage of explained variance 

would be sufficient to confirm pattern persistency. However, there might be situation where 2 (or more) 

PCs with a high percentage of explained variance exist, but where e.g. some oscillating landscape 

behavior might result in non-persistent time series. 

The part on behavioral measure analysis is a new approach to classify the dataset into functional units 

(or hydrological response units, here only under radiation driven condition, see Zehe et al. 2014 for an 

extended discussion).  We assume that different loading values derived from PCA are related to a 

dominance of a different PC and therefore a different control on land surface temperature (LST) (and 

hence related to the  functioning of the land and sub-surface  as a reaction to the differing 

meteorological short time history and surface states). In this way we can choose a limited set of LST-

images showing most distinct patterns. The derived classification by using the 5 most distinct LST-images 

is a representation of the spatio-temporal dynamics of LST and therefore of the “real landscape 

functioning”. We are currently not in the situation to evaluate this procedure as superior to other 

classification methods (e.g. using the first 5 PCs, deviding them into a number of classes and intersecting 

them). Such an approach would involve a catchment scale hydro-meteorological modelling exercise, 

where different classification methods are compared with regard to effectiveness of parameterization 

and the quality of modelling results.  While this is beyond the scope of this paper, it is motivation for 

current research and we will briefly add that in the outlook part of the paper.  



Overall, we belief that the persistency analysis is a very helpful additional tool needed to avoid biased 

handling of the dataset. The behavioral measure is used to complete the PCA to spatially classify the 

catchment concerning the compartments’ functioning.  

-------- 

“(1) Whereas the approach is useful as mentioned above, I am missing information on its novelty. Has 

anybody done this before? If not, why not outlining clearly that this is a novel approach. The introduction 

references studies by Anderson and Steenpass but differences and similarities to the present study remain 

unclear.” 

Answer:  

As of our knowledge, neither in thermal remote sensing nor in catchment hydrology where the 

delineation of hydrological response units or functional units including their parameterization is subject 

to research is there any publication on the use of complex time series analysis of TIR data in combination 

with PCA as used here. In this sense, our approach is new. However, we recently got aware of the 

application of empirical orthogonal functions (EOF) that seem to be frequently used in oceanography 

and atmospheric research (e.g. Denbo & Allen, 1984; Hamlington et al., 2011; Lorenz, 1956). The 

approach is similar to PCA with an adjustment considering the extent of a single spatial data point/model 

output due to calculations on a global coordinate system and therefore occurring contortions. 

Nevertheless, the used data and the suggested applications differ largely. We will add a short section on 

the EOF in a revised version of the manuscript.  

Anderson et al. (2011) and Steenpass et al. (2010) are both using similar thermal RS data within their 

work. However, Anderson et al. focus on the translation of thermal data into evapotranspiration data 

and, therefore, are limited to real data transformation based on the knowledge of physical processes.  

Steenpass et al. use the data to derive hydrological properties by the use of inversion. These two 

approaches differ largely from ours. They are mainly quoted to note different appliances of TIR data, as 

noted. 

---------- 

Further, we tried to address all specific comments in a way the problems are solved. Also, we will 

address for a language check by a native speaker. 

We also improved the remarked images. You can find them on the following pages. 

For any other changes, we want to wait for the second nominated referee’s comments. 

We acknowledge for the comments and we are disposed to add your suggestions. All issues will be 

revised in a new version of the manuscript. 

---------- 

B. Müller on behalf of all authors 



---------- 
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Figure 2:  a) Examples of single band top-of-atmosphere (TOA) temperature time series covering winter 

(1), spring (2), summer (3) and autumn (4). b) Basic temporal and statistical information (mean, ranges) 

of the image time series. 

  



 

 

Figure 3: Analysis for the coefficient of correlation for a designed spatial dataset. We added small normal 

distributed noise to a concentric spatial pattern I1 to construct I2 and show the correlation for an 

extracted window w (red) around the central pixel Pc (blue) in the same position (a), in different 

positions (b) and for the whole image I2 within the maximum ranges [-3,+3] (c). 

  



 

 

Figure 5: Analysis of the coefficient of variation via an “environment assessment” for a designed dataset. 

The data are generated in the same way as in the previous analysis (see Fig. 3). Subfigure (a) illustrates 

the derivation of a single summary value for the central pixel Pc (blue) from the data of the surrounding 

environment w (red). The example here investigates how many values within the environment are larger 

than the central value. This is repeated for all image pixels (except for boundary pixels) resulting in the 

leftmost picture. 

  



 

 

Figure 5 continued: Subfigures (b-e) illustrate the procedure from dataset (b, left) to the 

environment measures (c-e, left), to the coefficients of variation for different environments (c-e, 

right) and to the final describing average pattern (b, right). 



 

 

Figure 8: The first 5 components of the PCA for the LST time series data. 

  



 

 

Figure 9: The first and second component of the PCA for the LST time series data (left) next to the 

patterns of the illustration of Corine land cover and geology data (right) of the Attert catchment. 

  



 

 

Figure 11: Construction of “binary word” classification for a designed dataset. The data are the same as 

for Fig. 5. On the left, the three images are binarized (BIN) from the upper to the lower panel. Values 

larger than the median are converted to 1 (blue), values lower are converted to 0 (green). The right 

panel shows the aggregated words for the three datasets. Not every possible occurrence of words is 

produced (maximum: 23=8). 

 

 


