1 We thank the Reviewer for the comments and suggestions to improve our paper. We feel the changes and

2 additions we have made have improved the paper and provide a much better manuscript for the HESS

3 audience. We have addressed each comment individually, below:

4 ANONYMOUS REFEREE #3

5 RECEIVED AND PUBLISHED: 1 SEPTEMBER 2014

6 Summary: This is a welcome paper that addresses the difficult problem of parameterizing urban

7 canopy models for use in gridded LSM simulations. Analysis and writing are clear throughout, and I

- 8 have only minor corrections/comments that I would ask the authors to address before final
- 9 publication.

10 MINOR COMMENTS:

- 11 p.7475 line 7: "2033" should be "2003"
- 12 We appreciate the reviewer's comment. The change is made.

13 p.7476 Equation 3: Are there no street trees in the study area? In many cities the canopy cover of

street trees—which would show up as GVF—far exceeds the impervious area associated with tree pits, suggesting that Eq 3 would significantly underestimate impervious area.

16 We agree with the reviewer's comment. The assumption that the remote sensing based GVF is

17 equivalent to impervious fraction is associated with errors induced by non-vegetated pervious areas and

18 tree canopies that cover areas larger than underlying pervious surfaces. However, as mentioned in the

manuscript the non-vegetated previous surfaces are rare and offset the impact of trees canopies oversmall impervious areas.

To address the reviewer's comment the following is added to the manuscript (section 3: Remotely
 Sensed Parameters):

"We speculate that one cause that may contribute to the high accuracy of this assumption is that ISA
overestimation, induced by non-vegetated pervious surfaces, is offset by tree canopies that cover areas

25 larger than underlying pervious surfaces."

p. 7476 line 14: If ISA is defined as a continuous variable, what does it mean to have an accuracy of 95%? Was a threshold applied to distinguish between pervious and impervious pixels?

28 In the Noah-UCM modeling framework, each pixel consists of pervious and impervious fractions. The

29 impervious fraction is called impervious surface area (ISA) or urban fraction. The mentioned comparison,

30 in the current study, is based on spatial averages of ISAs over the entire study domain using the remote

- sensing data and a very high resolution land cover map of Los Angeles produced by McPherson et al.
- 32 [2008].
- 33 References:

- 34 McPherson, E. G., Simpson, J. R., Xiao, Q., Wu, C.: Los Angeles 1-million tree canopy cover assessment,
- 35 Gen. Tech. Rep. PSW-GTR-207, Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific
- 36 Southwest Research Station, 52 p, 2008.

37 p. 7485 line 12: MOSID should be MODIS

38 We appreciate the reviewer's comment. The change is made.

p. 7487 line 20: Presumably the authors mean that the lookup tables over or underestimate albedo relative to estimates calculated using RS data. This should be stated.

41 We agree with the reviewer's comment and **added** the following (underlined) to the manuscript (section6.2):

43 "The Noah-UCM parameters, based on look-up tables, underestimate surface albedo values over highly 44 urbanized pixels, when compared with remote sensing data (Fig. 3i and 3j)."

45 p. 7491 line 6: The large errors in LST estimation are one of the more interesting results of this study.

46 While the authors attribute this to structural model issues that are addressed in other papers, I

47 wonder how sensitive the result is to choice of forcing data. The station-based forcing used in this

48 study probably fails to capture fine scale variability in 2m air temperature within the urban canopy.

49 This variability could have an impact on simulated LST in an offline simulation. Could the authors

50 comment on this possibility?

51 We agree with the reviewer's comment and did further investigation on the LST underestimation 52 problem. Guided by a study by Li and Bou-Zeid [2014], we realized that this is due to the fact that in the 53 current Noah-UCM code, the turbulent transfer coefficient (C_h) for the whole pixel is calculated using 54 only momentum and thermal roughness lengths of vegetated portion, ignoring the developed surface 55 impact on C_h. In the current resubmission, we re-ran the simulations, adopting the revised calculation of 56 LST proposed by Li and Bou-Zeid [2014]. Using the new approach, the LST values over highly developed 57 surfaces are significantly increased. This solves the LST underestimation problem in these areas (see 58 revised Figs. 5 and 6). To implement the revised LST calculation, the following changes are made to the

- 59 manuscript:
- 60 The following section is **ADDED** to the manuscript:
- 61 "4.3. Improving the UCM-simulated LST
- 62 The calculation of the impervious surface temperature in the UCM version used in this study has been
- 63 shown to be inaccurate [Li and Bou-Zeid, 2014]. This is due to the fact that the turbulent transfer

 $coefficient (C_h)$ for the whole pixel is calculated using only momentum and thermal roughness lengths of

- 65 vegetated portion, ignoring the developed surface impact on C_h. Li and Bou-Zeid [2014] showed that this
- 66 inconsistency could result in large biases in simulated LST values. In the current study, an alternative LST
- 67 calculation, proposed by Li and Bou-Zeid [2014], is used as follows. First, a revised surface temperature of

68 the impervious part of the pixel (T_s) is calculated based on canyon temperature (T_c) and roof surface 69 temperature (T_r):

70
$$T_s = f_r \times T_r + (1 - f_r) \times T_c \qquad \text{Eq. (12)}$$

where f_r is the roof fraction of the impervious surface. Note that the T_c calculated by the UCM is an

72 equivalent aerodynamic surface temperature aggregated for canyon surfaces, including walls and roads.

73 Next, the LST for the whole grid cell is computed as a weighted average based on the T_s and surface

74 temperature of pervious part (T_1) :

75

$$LST = f_{urb} \times T_s + (1 - f_{urb}) \times T_1 \qquad \text{Eq. (13)}$$

76 where f_{urb} is the urban fraction of the pixel."

77 The following is **REMOVED** from the manuscript (abstract):

"However, the model still underestimates remotely sensed LST values over highly developed areas. We
 hypothesize that the LST underestimation is due to structural formulation in the UCM and cannot be

80 *immediately solved with available parameter choices.*"

81 The followings are **REMOVED** from the manuscript (section 7.2):

82 "Further analysis (not shown here) indicates that underestimation of LST values is due to a fundamental

83 problem in the UCM and cannot be immediately solved with available parameter choices. This problem is

84 discussed in a related study investigating different schemes for LST and conductive heat fluxes in the

85 UCM [Wang et al. 2011b]. Their study shows that the current UCM formulation results in a phase lag and

86 cold biases in simulated surface temperature when compared to observations. The discussed cold biased

87 could potentially be resolved utilizing a spatially-analytical scheme introduced by Wang et al. [2011b]."

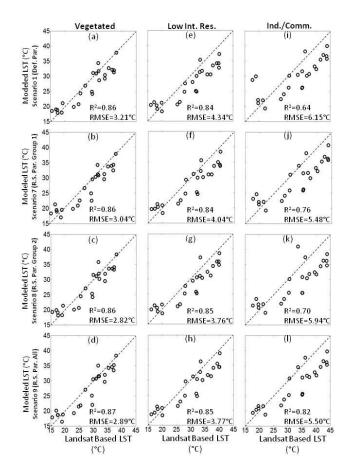
88 "Regardless of the parameterization processes, cold biases are persistent in all simulations, particularly

89 over high intensity residential and industrial/commercial pixels (Fig. 6). As explained above, this

90 underestimation of LST values is consistent with the literature and is reported to be due to a fundamental

91 problem in the UCM which produces a phase lag and cold biases in simulated LST [Wang et al., 2011b]."

92 The following is **REMOVED** from the manuscript (section 8):


93 "Nevertheless, the model still underestimates remotely sensed LST values, over highly developed areas.

94 We speculate that the underestimation of LST values, particularly over high intensity residential and

95 industrial/commercial areas, is due to structural parameterization in the UCM and cannot be

96 immediately solved with available parameter choices."

97 The following figure is **REMOVED** from the manuscript:

98

99Figure 5. Scatter plots of observed (Landsat-based) versus simulated LSTs averaged over different land cover100types using different urban surface parameterizations, including scenarios 1 (first row), 7 (second row), 8 (third101row), and 9 (forth row) in Table 1.

102

103 The following figure is **ADDED** to the manuscript:

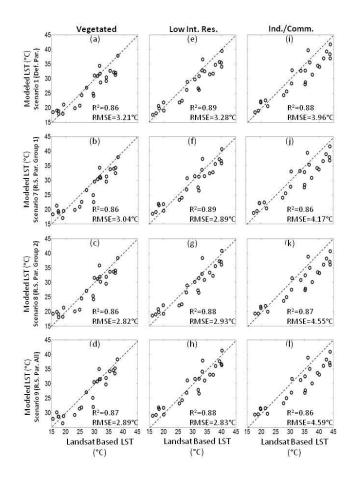
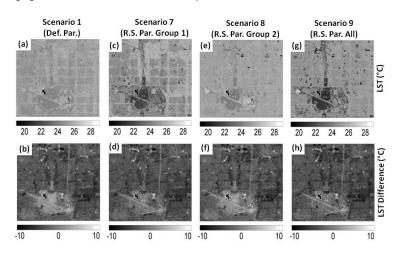
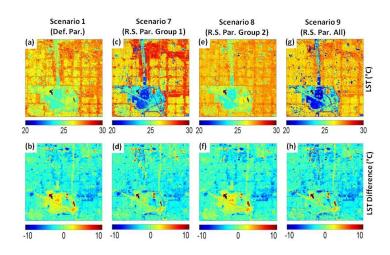



Figure 5. Scatter plots of observed (Landsat-based) versus simulated LSTs averaged over different land cover types using different urban surface parameterizations, including scenarios 1 (first row), 7 (second row), 8 (third row), and 9 (forth row) in Table 1.


114 The following figure is **REMOVED** from the manuscript:

115

116Figure 6. Noah/UCM simulated LST maps using different urban surface parameterizations: scenarios 1, 7, 8, and1179 from Table 1 (top row) as well as differences between simulated and observed land surface temperature at1181100 LST on 14 April 2011 (bottom row).

119 The following figure is **ADDED** to the manuscript:

120

121Figure 6. Noah/UCM simulated LST maps using different urban surface parameterizations: scenarios 1, 7, 8, and1229 from Table 1 (top row) as well as differences between simulated and observed land surface temperature at1231100 LST on 14 April 2011 (bottom row).

125 References:

- 126 Li, D., E. Bou-Zeid, 2014: Quality and Sensitivity of High-Resolution Numerical Simulation of Urban Heat
- 127 Islands. Environmental Research Letters, 9, 055001 doi:10.1088/1748-9326/9/5/055001

128

129 Discussion/Conclusions: It would be useful if the authors could provide some comment on how their 130 choice of urban canopy model affects their results. The Noah-UCM is widely used in offline and 131 coupled simulations, so it makes perfect sense to focus on it. But given the challenge of ascribing 132 physical meaning to parameters in a singlelayer urban canopy model it would be interesting to include 133 some reflection on how the RS parameterization problem would map onto multilayer urban canopy models like the Building Effect Parameterization (BEP), which is now a standard option in WRF. My 134 135 understanding is that single layer urban canopy models still outperform multilayer models in many 136 applications, but given the greater realism of multilayer representations one might think that 137 improved parameterization methods (such as those described in this paper) could also be usefully 138 applied to multilayer models.

We agree with the reviewer's comment and **added** the following to the manuscript (section 8:Conclusions):

141 "Although this study focuses on the widely used single layer UCM, we speculate that implementation of

142 the more accurate remote sensing based parameters (particularly, GVF and ISA) may also enhance

143 performance of the Noah-BEP [Martilli et al., 2002], which is currently the most sophisticated urban

scheme in WRF. In this multi-layer UCM a similar approach to the single layer UCM is used based on an

urban fraction (or ISA) parameter that couples the Noah outputs over pervious portion of pixels and UCM
 outputs over developed surfaces."

148	High Resolution Land Surface Modeling Utilizing Remote Sensing Parameters and the Noah-	
149	UCM: A Case Study in the Los Angeles Basin	
150		
151	P. Vahmani ¹ and T.S. Hogue ^{2,1}	
152	¹ University of California, Los Angeles, CA	
153	² Colorado School of Mines, Golden, CO	
154		
155	<u>Re-submission</u> to HESS	Deleted: Submitted
156	<u>October</u> 2014	Deleted: April
157		
150	Corresponding Author	

158 Corresponding Author:

159 Terri S. Hogue

160 Civil and Environmental Engineering

161 Colorado School of Mines

162 1500 Illinois Street

163 Golden, CO 80401

164 <u>thogue@mines.edu</u>

165 303-384-2588

169 ABSTRACT

170	In the current work we investigate the utility of remote sensing based surface parameters in the Noah-
171	UCM (urban canopy model) over a highly developed urban area. Landsat and fused Landsat-MODIS data
172	are utilized to generate high resolution (30 m) monthly spatial maps of green vegetation fraction (GVF),
173	impervious surface area (ISA), albedo, leaf area index (LAI), and emissivity in the Los Angeles
174	metropolitan area. The gridded remotely sensed parameter datasets are directly substituted for the
175	land-use/lookup-table-based values in the Noah-UCM modeling framework. Model performance in
176	reproducing ET (evapotranspiration) and LST (land surface temperature) fields is evaluated utilizing
177	Landsat-based LST and ET estimates from CIMIS (California Irrigation Management Information System)
178	stations as well as in-situ measurements. Our assessment shows that the large deviations between the
179	spatial distributions and seasonal fluctuations of the default and measured parameter sets lead to
180	significant errors in the model predictions of monthly ET fields (RMSE= 22.06 mm/month). Results
181	indicate that implemented satellite derived parameter maps, particularly GVF, enhance the Noah-UCM
182	capability to reproduce observed ET patterns over vegetated areas in the urban domains (RMSE= 11.77
183	mm/month). GVF plays the most significant role in reproducing the observed ET fields, likely due to the
184	interaction with other parameters in the model. Our analysis also shows that remotely sensed GVF and
185	ISA improve the model capability to predict the LST differences between fully vegetated pixels and
186	highly developed areas.

 187
 Key words: Noah LSM, UCM, remote sensing, urban hydrology, evapotranspiration, Los Angeles

Deleted: However, the model still underestimates remotely sensed LST values over highly developed areas. We hypothesize that the LST underestimation is due to structural formulation in the UCM and cannot be immediately solved with available parameter choices.

193 1. Introduction

194 Urbanization introduces significant changes to land surface characteristics that ultimately perturb land-195 atmosphere fluxes of sensible heat, latent heat, and momentum which, in turn, alter atmospheric 196 properties as well as local weather and climate [Landsberg, 1981; Kalnay and Cai, 2003; Miao et al., 197 2009; Ridder et al., 2012]. Urban surfaces are covered with variety of materials with distinct thermal, 198 radiative, and moisture properties influencing surface energy and water budgets [Arnfield, 2003]. 199 Moreover, contrasting aerodynamic properties of buildings significantly change surface roughness 200 [Cotton & Pielke, 1995]. The effects associated with modified urban landscapes extend to air quality 201 [Taha et al., 1997], local temperatures [Bornstein, 1987; Van Wevenberg et al., 2008], local and regional 202 atmospheric circulation [Pielke et al., 2002; Marshall et al., 2004; Niyogi et al., 2006], and regional 203 precipitation patterns [Changnon and Huff, 1986; Changnon, 1992; Lowry, 1998]. 204 Mesoscale meteorological models have been increasingly applied over urban areas to examine 205 the urban-atmosphere exchange of heat, moisture, momentum or pollutants. Recently updated 206 parameterization in the community Weather Research and Forecasting (WRF) model includes coupling 207 between the Noah LSM (Land Surface Model) and a single layer urban canopy model (UCM) [Kusaka et 208 al. 2001; Kusaka and Kimura, 2004] which has substantially advanced the understanding and modeling 209 of the mesoscale impact of cities. The coupled WRF-Noah-UCM has been applied to major metropolitan 210 regions around the world (e.g. Houston, Beijing, Guangzhou/Hong Kong, , Salt Lake City, and Athens) to 211 better understand the contribution of urbanization to changes in urban heat island, surface ozone, 212 horizontal convective rolls, boundary layer structure, contaminant transport and dispersion, and heat 213 wave events [Chen et al., 2004; Jiang et al., 2008; Miao and Chen, 2008; Miao et al., 2009; Wang et al., 214 2009; Tewari et al., 2010; Wei-guang et al., 2011; Giannaros et al., 2013]. A common concern with the 215 use of these complex mesoscale models, however, is the high level of uncertainty in the specification of 216 surface cover and geometric parameters [Loridan et al., 2010; Chen et al., 2011]. Although realistic

217	representation of surface properties is critical for accurate simulation of the physical processes
218	occurring in urban regions, the majority of previous modeling studies rely on traditional land-use data
219	and lookup tables to define surface parameters.
220	Remote sensed observations provide important spatial information on urban-induced physical
221	modifications to the Earth's surface [Jin and Shepherd, 2005]. Airborne LIDAR (Light Detection and
222	Ranging) systems and photogrammetric techniques have been utilized to produce morphological
223	parameters over urban areas [Burian et al., 2004, 2006, 2007; Taha, 2008; Ching et al., 2009]. Burian et
224	al. [2004] used airborne LIDAR data, at 1 m resolution, to generate datasets of 20 urban canopy
225	parameters (e.g., building height, height-to-width ratio, and roughness length) for an air quality
226	modeling study over Houston, Texas. <u>Taha</u> [2008] introduced an alternative and low-cost approach for
227	generating urban canopy parameters input for the uMM5 over Sacramento region, California. The study
228	relied on commercially available Google Earth PRO imagery to generate urban geometry parameters
229	(e.g., pavement land-cover fraction, roof cover fraction, and mean building height). Using LIDAR-based
230	three-dimensional data sets of buildings and vegetation, Ching et al. [2009] presented a high-resolution
231	database of the geometry, density, material, and roughness properties of the morphological features for
232	applications in WRF and other models over Houston, Texas. While promising, the availability of such
233	datasets is currently limited to a few geographical locations and the reproduction of such datasets is
234	extremely challenging due to high collection costs and data management difficulties associated with the
235	extremely large size of LIDAR datasets [Burian et al., 2006; Ching et al., 2009].
236	Observations from satellites, on the other hand, have been utilized in model validation
237	processes over urban areas [Miao et al., 2009; Giannaros et al, 2013]. In addition to in situ observations,
238	Giannaros et al. [2013] included MODIS (Moderate Resolution Imaging Spectroradiometer) based Land
239	Surface Temperature (LST) products in their modeling study of the urban heat island (UHI) over Athens,
240	Greece. Similarly, Miao et al. [2009] utilized 1-km-resolution MODIS data to verify the WRF-Noah-UCM

Deleted: Tahah

242 simulated LST distribution in Beijing. Other studies have employed satellite data to replace outdated 243 urban land use maps in atmospheric models with new remote sensing products [Cheng and Byun, 2008; 244 Cheng et al., 2013]. Focusing on boundary Jayer mixing conditions and local wind patterns in the 245 Houston Ship channel, Cheng and Byun [2008] reported that the Noah LSM and planetary boundary 246 layer (PBL) scheme performances in the MM5 were improved when land-use type distributions were 247 correctly represented in the model using high resolution Landsat-based land use data. Cheng et al. 248 [2013] compared WRF simulations in the Taiwan area using U.S. Geological Survey (USGS), MODIS, and 249 SPOT (Système Pour l'Observation de la Terre) based land use data. Using the new high resolution land 250 use types obtained from SPOT satellite imagery, the WRF predictions of daytime temperatures and 251 onshore sea breezes had the best agreement with observed data. Furthermore, more accurate surface 252 wind speeds were simulated when MODIS and SPOT data replaced conventional USGS land use maps in 253 the WRF runs due to the more realistic representation of roughness length in the remotely sensed 254 databases. Although these and other previous studies [e.g., Jin and Shepherd, 2005] have recognized the 255 usefulness of satellite imagery (e.g., NASA's Terra, Aqua, and Landsat data) in specifying surface physical 256 characteristics in urban environments, very few have directly incorporated high resolution gridded 257 satellite-based parameters (e.g., impervious surface area, albedo, and emissivity) into parameter 258 estimation within land surface/atmospheric modeling systems. 259 In the current work we investigate the utility of remote sensing based surface parameters in the 260 Noah-UCM modeling framework over a highly developed urban area. Among parameters that can be 261 related to a measurable physical quantity, we evaluate those routinely and freely obtained from 262 satellite-based platforms. The derived parameter sets are implemented in the Noah-UCM with a focus 263 on simulated surface energy and water cycles that are essential feedback to the widely used WRF 264 model. Landsat and fused Landsat-MODIS data are utilized to generate high resolution (30 m) monthly 265 spatial maps of green vegetation fraction (GVF), impervious surface area (ISA), albedo, leaf area index

Deleted: later

267 (LAI), and emissivity in the Los Angeles metropolitan area. The temporal and spatial distributions of 268 newly assigned parameters are compared with those based on the model lookup tables. Next, gridded 269 remotely sensed parameter datasets are directly incorporated into the Noah-UCM modeling framework 270 replacing the land-use/lookup-table-based values. The sensitivity of the simulated energy and water 271 fluxes to the newly developed spatial metrics of parameters is presented. The model's performance in 272 reproducing evapotranspiration (ET) and LST fields is evaluated utilizing Landsat-based land surface temperature and ET estimates from CIMIS (California Irrigation Management Information System) 273 274 stations as well as in-situ measurements. Finally, the influence of each parameter set on the urban 275 energy and water budgets is investigated.

276

277 2. Study Area

278 The study domain is a 49 km² highly developed neighborhood in the City of Los Angeles (Fig. 1). Los 279 Angeles is the second most populous city in the United States with a population of 3.8 million [U.S. 280 Census, 2011], covering an area of 1,215 km² in Southern California. The City has a Mediterranean 281 climate and receives 381 mm of annual precipitation, mostly over the winter months [NOAA-CSC, 2003; 282 SCDWR, 2009]. Due to the semi-arid nature of the region, the City's water supply is heavily dependent on imported water (52% from the Colorado River and 36% from the Los Angeles Aqueduct) [LADWP, 283 284 2010]. Regional water demands and the extensive dependence on external sources make accurate 285 spatial representation of the metropolitan area in regional land surface/atmospheric models imperative 286 for predicting current and future water budgets. The study domain includes commercial/industrial as 287 well as low and high intensity residential land cover types and a large park with both irrigated and non-288 irrigated landscapes (Fig. 1b and 1c).

289

291 3. Remotely Sensed Parameters

292	Remote sensing data are retrieved from Landsat ETM+ images with a nominal pixel resolution of 30 m in	
293	the short wave bands and 60 m in the thermal band. The level 1Gt ETM+ imagery from USGS EROS,	
294	spanning years 2010-2011, are calibrated and atmospherically corrected through the Landsat Ecosystem	
295	Disturbance Adaptive Processing System (LEDAPS). Study domain data are not affected by the failure of	
296	the Landsat-7 ETM+ Scan Line Corrector in 2003 (SLC-off). Employing a knowledge-based approach,	
297	similar to the one introduced by Song and Civco [2002], several binary masks are applied to the images	
298	to detect contaminated areas (cloud and shadow). Images with cloud and/or shadow are distinguished	
299	and omitted in the following parameter retrievals. A total of 24 pure images, acquired over two years,	
300	are utilized in the parameter estimation processes.	
301	In addition to Landsat observations, MODIS products from Terra and Aqua satellite platforms	
302	are also utilized. The MODIS MCD43A BRDF (Bidirectional Reflectance Distribution Function) products,	
303	concurrent with pure Landsat images, are collected for use in the parameter calculations. The 500-m	
304	BRDF products are generated by the MODIS Adaptive Processing System (MODAPS) at the Goddard	
305	Space Flight Center (GSFC), using a kernel-driven linear model, and distributed through the Land	
306	Processes DAAC (Distributed Active Archive Center) [Justice et al., 2002; Schaaf et al., 2002; Shuai et al.,	
307	2008]. The described Landsat and MODIS-based data are used to produce a group of six remotely sensed	
308	derivatives:	
309	• Green Vegetation Fraction (GVF): GVF spatial maps are derived according to Gutman and	
310	Ignatov [1998] utilizing NDVI (Normalized Difference Vegetation Index) measurements. First,	
311	atmospheric corrected reflectance values from the red (ρ_{ETM3}) and near-infrared (ρ_{ETM4}) bands of Landsat	
312	ETM+ are used to derive NDVI maps for each date of imagery based on Eq. 1. Next, assuming the	
313	vegetated part of a pixel is covered by dense vegetations (i.e., it has a high LAI), GVF is calculated using	
314	Eq. 2.	

Deleted: 2033

316
$$NDVI = \frac{\rho_{ETM4} - \rho_{ETM3}}{\rho_{ETM4} + \rho_{ETM3}} \qquad \text{Eq. (1)}$$

317
$$GVF = \frac{NDVI - NDVI_o}{NDVI_o - NDVI_o}$$
 Eq. (2)

Where NDVI₀ and NDVI∞ are constant values computed using signals from bare soil and densely
vegetated pixels in the study domain, respectively.

Impervious Surface Area (ISA): ISA is shown to be inversely proportional to vegetation fraction
 where non-vegetated pervious surfaces are rare [Bauer et al., 2007]. Since the majority of pervious
 surfaces in the studied domain are vegetated and heavily irrigated throughout the year, ISA is assumed
 to be the complement of the vegetation fraction:

$$ISA = (1 - GVF_{max}).100$$
 Eq. (3)

325 Where GVF_{max} is the maximum GVF detected over the two year study period. The produced ISA map

326 shows high accuracy (>95%) when compared to a previously developed high resolution land cover map,

327 based on QuickBird remote sensing data, aerial photographs, and geographic information systems over

328 the city of Los Angeles [McPherson et al., 2008]. We speculate that one cause contributing to the high

329 accuracy of this assumption is that ISA overestimation, induced by non-vegetated pervious surfaces, is

330 offset by tree canopies that cover areas larger than underlying pervious surfaces.

Albedo: Employing a recent methodology by Shuai et al. [2011], 30 m land surface albedo maps
 is generated utilizing Landsat surface reflectance and anisotropy information from concurrent 500 m
 MODIS BRDF products. Landsat data are reprojected from UTM to MODIS sinusoidal projection and
 aggregated from 30 m to 500 m. Using USGS-based land cover types, the percentage of each land cover
 class within each MODIS pixel is computed, then relatively pure pixels (>85% purity) are selected for

ach class. MCD43A2 quality assessment product is used to choose highest quality MODIS MCD43A1

Deleted: that may contribute

338	BRDF parameters for the pure pixels. The concurrent parameters are used to calculate nadir
339	reflectance, white sky albedo, and black sky albedo under the solar geometry at Landsat overpass time
340	and MODIS scale. Next, the spectral albedo-to-nadir reflectance ratios, for white sky and black sky
341	albedos, are calculated over the pure pixels. The resultant ratios, specific to each land cover class, are
342	applied to Landsat surface reflectance to generate the spectral white sky and black sky albedos for each
343	Landsat pixel. A further narrowband-to-broadband conversion based on extensive radiative transfer
344	simulations by Liang [2000] is applied to generate the broadband albedos at shortwave regime. Finally,
345	albedo (blue sky) is modeled as an interpolation between the black sky (α_{bs}) and white sky (α_{ws}) albedos
346	as a function of the fraction of diffuse skylight (S($ heta, \tau(\lambda)$) which is estimated by the 6S (Second Simulation
347	of the Satellite Signal in the Solar Spectrum) codebase (Eq. 4) [Schaaf et al., 2002].

348
$$\propto (\theta, \lambda) = \{1 - S(\theta, \tau(\lambda))\}\alpha_{bs}(\theta, \lambda) + S(\theta, \tau(\lambda))\alpha_{ws}(\theta, \lambda) \quad \text{Eq. (4)}$$

349 where τ , θ , and λ are optical depth, solar zenith, and wavelength, respectively.

Leaf Area Index (LAI): Stenberg et al. [2004] showed that a reduced simple ratio (RSR) explains
 63%-75% of the variations in LAI and that maps of projected LAI, based on RSR, have good agreement
 with observations. In the current study, LAI values are retrieved based on the LAI-RSR correlations which
 are specified utilizing table-based LAI estimates in pure (fully vegetated) pixels and remotely sensed RSR
 maps. The atmospheric corrected reflectance values of Landsat ETM spectral channels red (ρ_{ETM3}), near
 infrared (ρ_{ETM4}), and mid infrared (ρ_{ETM5}), implemented in the following equation (Eq. 5), define RSR:

356
$$RSR = \frac{\rho_{ETM4}}{\rho_{ETM3}} \cdot \frac{\rho_{5max} - \rho_{ETM5}}{\rho_{5max} + \rho_{5min}} \qquad \text{Eq. (5)}$$

where p_{ETM5min} and p_{ETM5max} are the smallest and largest mid infrared reflectance detected in the Landsat
 ETM images over the study domain, excluding open water pixels.

359	• Emissivity: Among various methods developed to define land surface emissivity, the NDVI
360	Thresholds Method (NDVI ^{THM}) has been widely applied to urban areas [Stathopoulou and Cartalis, 2007;
361	Stathopoulou et al., 2007; Tan and Li, 2013]. NDVI ^{THM} is superior to other methods since the
362	consideration of the internal reflections (cavity effects), caused by heterogeneous surfaces minimizes
363	the overall error in this approach [Sobrino et al., 2001]. This methodology, originally introduced by
364	Sobrino and Raissouni [2000] and modified later by Stathopoulou et al. [2007] for urban areas, is
365	selected for land surface emissivity estimation in the current work. Using the Landsat-based NDVI
366	thresholds, the study area is divided into four classes: (1) fully vegetated (NDVI>0.5), (2) built-up areas
367	with sparse vegetation (NDVI<0.2), (3) mixture of man-made material and vegetation (NDVI>0.2 and
368	\leq 0.5), and (4) water bodies (NDVI<0). Mean emissivity values of 0.980, 0.920, and 0.995 are then used
369	for fully vegetated, built-up and water pixels [Similar to Tan and Li, 2013]. Emissivity values (ϵ) for mixed
370	pixels (class 3) are estimated using the following equations [for details see Stathopoulou et al., 2007]:

371
$$\varepsilon = 0.017 P_V + 0.963$$
 Eq. (6)

372
$$P_V = \frac{(NDVI - 0.2)^2}{(0.5 - 0.2)^2}$$
 Eq. (7)

Land Surface Temperature (LST): The emissivity corrected land surface temperature (LST) is
 calculated as follows [Artis & Carnahan, 1982]:

375
$$LST = \frac{BT}{\left\{1 + \left[\frac{\lambda BT}{\rho} \ln \varepsilon\right]\right\}}$$
 Eq. (8)

376 where BT is Landsat at sensor brightness temperature (K); λ and ε are the wavelength of emitted 377 radiance (11.5 µm) and surface emissivity; $\rho = hc/\sigma$ (1.438 × 10⁻²m K); σ , h, and c are Boltzmann 378 constant, Planck's constant, and the velocity of light, respectively.

380 4. Numerical Modeling System

381 4.1. Noah LSM-UCM Model

- Land surface processes are parameterized using the offline Noah LSM [Chen and Dudhia, 2001] coupled
- 383 with the single layer UCM [Kusaka et al. 2001; Kusaka and Kimura, 2004]. The Noah LSM is based on a
- 384 diurnally dependant Penman potential evaporation approach, a multi-layer soil parameterization, a
- 385 canopy resistance model, surface hydrology, and frozen ground physics [Chen et al., 1996, 1997; Chen
- 386 and Dudhia, 2001; Ek et al., 2003]. The UCM parameterization includes urban building geometry,
- 387 shadowing from buildings, reflections and trapping of radiation in a street canyon, and an exponential
- 388 wind profile. The Noah LSM provides surface sensible and latent heat fluxes and surface skin
- 389 temperature for vegetated areas (e.g., parks and trees) and the UCM calculates the fluxes for
- impervious surfaces. The outputs from the Noah LSM and UCM are coupled through the urban surface
- 391 fractions.

400

392 4.2. Irrigation Module

Irrigation is accounted for, in the Noah-UCM modeling framework, by incorporating an urban irrigation module developed in our previous work [Vahmani and Hogue, 2013; 2014]. The developed irrigation scheme mimics the effects of urban irrigation by increasing soil moisture content in vegetated portion of grid pixels at a selected interval. Added anthropogenic soil moisture contribution is a function of the soil moisture deficit, which is the difference between irrigated soil moisture content and actual soil moisture content in the top soil layer. The irrigation module calculates irrigated soil moisture content (SMC_{IRR}; m³ m⁻³), soil moisture deficit (DEF; m³ m⁻³), and irrigation water (IRR; kg m⁻² s⁻¹) as:

$$SMC_{IRR} = \alpha. SMC_{max}$$
 Eq. (9)

401
$$DEF = \max\{[SMC_{IRR} - SMC_1], 0\}$$
 Eq. (10)

402
$$IRR = \frac{\rho_W}{\Lambda t} DEF. D_1$$
 Eq. (11)

403	where saturation soil moisture content (SMC _{max} ; $m^3 m^{-3}$) and irrigation demand factor (α ; unit less)
404	define irrigated soil moisture content (Eq. 9); D1 is top soil layer thickness (10 cm); ρ_w (kg m-3)and Δt
405	stand for water density and Noah-UCM time step (3600 s), respectively. The parameter $lpha$, ranging from
406	zero to one, regulates the amount of irrigation water added to the soil each time the scheme increases
407	the soil moisture, simulating an irrigation event. Similar to previous studies [Hanasaki et al. 2008a,
408	2008b; Pokhrel et al. 2012] an irrigation demand factor of 0.75 is utilized in the current work. The
409	irrigation interval is set to three times per week according to the water restrictions implemented by Los
410	Angeles Department of Water and Power (LADWP) in 2010 (LADWP, personal communication, 2013).
411	4.3. Improving the UCM-simulated LST
412	The calculation of the impervious surface temperature in the UCM version used in this study has been
413	shown to be inaccurate [Li and Bou-Zeid, 2014]. This is due to the fact that the turbulent transfer
414	coefficient (C _h) for the whole pixel is calculated using only momentum and thermal roughness lengths of
415	vegetated portion, ignoring the developed surface impact on C _h . Li and Bou-Zeid [2014] showed that this
416	inconsistency could result in large biases in simulated LST values. In the current study, an alternative LST
417	calculation, proposed by Li and Bou-Zeid [2014], is used as follows. First, a revised surface temperature
418	of the impervious part of the pixel (T _s) is calculated based on canyon temperature (T _c) and roof surface
419	temperature (T,):
420	$T_s = f_r \times T_r + (1 - f_r) \times T_c \underline{\qquad} Eq. (12)$
421	where f_r is the roof fraction of the impervious surface. Note that the T_c calculated by the UCM is an
422	equivalent aerodynamic surface temperature aggregated for canyon surfaces, including walls and roads.
423	Next, the LST for the whole grid cell is computed as a weighted average based on the T_s and surface
424	temperature of pervious part (T_1) :
425	$LST = f_{urb} \times T_s + (1 - f_{urb}) \times T_1 \underline{\qquad Eq. (13)}$
426	where fue is the urban fraction of the nixel

426 where f_{urb} is the urban fraction of the pixel.

Deleted: 4.3.

428 4.4. Land Cover Data and Forcing Fields

429 The Noah-UCM modeling system requires static data to describe physical characteristics of the surface, 430 including soil type, slope type, vegetation type, and urban type. A combination of the Soil Data Mart 431 [http://soildatamart.nrcs.usda.gov] and the Los Angeles Department of Public Works (LADPW) 432 databases are used to gather soil classification information. Land use and land cover are parameterized 433 using the 30 m NOAA C-CAP-2006 land cover data which is transformed to urban and vegetation type 434 spatial maps over the study domain. High, medium, and low intensity developed land cover types, 435 recognized by NOAA, are converted to UCM Industrial/Commercial, high and low intensity residential 436 types, respectively. The developed open space along with natural land types are categorized as one of the 27 Noah LSM vegetation classes. 437 438 The offline Noah LSM-UCM is forced utilizing hourly ground-based observations from CIMIS and National Climatic Data Center (NCDC) stations for the period from 1 January 2010 to 31 December 2011. 439 There are ten CIMIS and eight NCDC stations within close proximity of the study domain (Figure 1a). The 440 441 NCDC stations, which use Automated Surface Observing Systems (ASOS), are located at smaller local 442 airports (6 stations), one major airport (Los Angeles International Airport), and a university campus (University of Southern California; USC) within the Los Angeles metropolitan area. Reporting the 443 444 meteorological conditions, the NCDC stations are used for wind speed, air temperature, relative 445 humidity, air pressure, and incoming long wave radiation. All NCDC data are gathered at a standard 446 reference height of 2m. The regional CIMIS stations are utilized for solar radiation (using LI200S 447 pyranometer) and tipping bucket rain gauges in 18 stations (NCDC and CIMIS) are included in collection of precipitation data. Inverse-distance weighting (2nd power) is employed to create the spatial gridded 448 449 forcing fields. Linear interpolation and data from the nearest gage are utilized to replace missing data. 450

451 **5.** Numerical Experiments and Evaluation Methods

452 5.1. Remote Sensing Based Parameterization

453	To investigate the sensitivity of the Noah-UCM model to integration of the developed remotely sensed	
454	parameters, nine simulation scenarios are designed (Table 1). A control experiment (Scenario 1) is	
455	conducted in which all default parameters are utilized in the Noah-UCM. Scenarios 2 to 6 explicitly	
456	assess each individual parameter effects on urban energy and water budgets using the newly	
457	incorporated remote sensing parameters. Scenario 7 analyzes the effects of employing both remotely	
458	sensed GVF and ISA while Scenario 8 assesses simultaneous integration of albedo, LAI, and emissivity.	
459	We are interested in the comparison of Scenarios 7 and 8 as the Noah-UCM parameterizations use GVF	
460	and ISA to select albedo, LAI, emissivity, and roughness length values from the predefined ranges in the	
461	parameter tables. It is worth mentioning that GVF alters the roughness length values over pervious or	
462	natural areas. However, roughness length and building height over the impervious surfaces are kept at	
463	the default values listed by Chen et al. [2011]. Scenarios 7 and 8 help quantify the contribution of each	
464	parameter group to the model's ability to reproduce the observed surface states and fluxes. Finally, the	
465	last experiment (Scenario 9) implements all five remotely sensed parameter sets in the simulations. It	
466	should be noted that the GVF and LAI measurements over mixed pixels (vegetated urban areas) are	
467	scaled up by multiplying the remotely sensed values by 1/(1-urban fraction) since in the Noah-UCM	
468	modeling framework these parameters characterize only the pervious portion (1 - urban fraction) of	1
469	each pixel. However, remotely sensed albedo and emissivity values over each pixel are assigned to both	
470	pervious and impervious surfaces for that pixel. Other than the implemented remote sensing based	(
471	parameters, the rest of the model parameters are kept at default values. All experiments incorporate	
472	the irrigation module and irrigation rates are kept constant in all scenarios. All scenarios are run at 30 m	
473	spatial and 1 hour temporal resolutions, spanning 2010 and 2011, with the first three months used as	
474	model initialization.	

475 5.2. Model Evaluation Approach

Deleted: using urban fractions
Deleted: ,
Deleted: ,

Deleted: sending

480	In order to evaluate the performance of the Noah-UCM modeling framework, simulated LSTs are
481	compared with concurrent Landsat observations and simulated latent heat flux time series are assessed
482	against CIMIS-based ET observations. The CIMIS network was established in 1982 by the CDWR
483	(California Department of Water Resources) and the University of California at Davis in order to provide
484	real-time weather conditions and irrigation water need estimates for California's agricultural
485	community. The automated CIMIS stations measure hourly surface solar radiation, temperature,
486	humidity, wind, precipitation, soil temperature, and surface pressure [http://www.cimis.water.ca.gov].
487	Employing observed meteorological fields over a well-watered soil, the reference ET (ET ₀) is calculated
488	for each site. Utilizing a methodology introduced by CDWR [2000], actual urban landscape ET is
489	estimated using ET_0 and a landscape coefficient, which is a function of species, density, and
490	microclimate factors. Based on the authors' knowledge in the study landscape as well as a report by
491	CDWR [2000], we assume "Moderate" (trees and shrubs) and "High" (turf grass) water needs. Following
492	the CDWR [2002] instructions on irrigation zones with mixed water need categories (i.e., low, moderate,
493	and high), a value from high category is selected (average species factor=0.80). Assuming the "average"
494	category for vegetation density, a density factor of 1 is used. Furthermore, a "high" category of
495	microclimate condition is used (microclimate factor=1.25) for the current highly developed study
496	domain. This factor is utilized to take into account the contribution of the developed surfaces to the
497	water loss from vegetated areas, through anthropogenic heating, reflected light, and high temperatures
498	of surrounding heat-absorbing surfaces (e.g., paving and buildings). Using these factors, a landscape
499	coefficient of 1 (landscape coefficient = species factor × density factor × microclimate factor) is
500	prescribed. This coefficient and ET_0 estimations from ten CIMIS stations within close proximity of the
501	study domain (Fig. 1a) are utilized to compute the urban landscape ET. Inverse-distance weighting (2 nd
502	power) is employed to create spatial gridded ET maps over fully vegetated pixels in the study area which
503	is then used in validation processes of the Noah-UCM. ET output of the model is also evaluated against

Deleted: /cimis

505	recent ET measurements in the greater Los Angeles area [Moering, 2011]. Moering [2011] employed a
506	previously developed chamber approach to measure instantaneous ET in an irrigated and a non-
507	irrigated park in the Los Angeles metropolitan area during WY (Water Year) 2011 (WY is defined as Oct.
508	1st of the previous year to Sep. 30th of the designated year). They reported an annual ET of about 1224
509	mm over the observed irrigated park, which is located within our study domain.
510	
511	6. Sensitivity Study of Surface Parameters
512	6.1. Temporal Evaluation
513	The monthly time series of the default Noah-UCM and remote sensing based GVF, ISA, albedo, and LAI
514	are compared and modeled cumulative monthly sensible and latent heat fluxes, using default and newly
515	estimated parameters, are presented over fully vegetated, low intensity residential, and
516	industrial/commercial areas (Fig. 2). Fluxes from high intensity residential areas are not presented as
517	they behave similarly to those from the industrial/commercial areas. Except for the summer months,
518	GVF values are significantly increased throughout the year when remote sensing products are utilized
519	(Fig. 2a). Moreover, the default seasonal variations of GVF values, assumed over all the land cover types,
520	are not detected in Landsat imagery (Fig. 2a). The reason for this is the significant and year round
521	irrigation in the Los Angeles area, which is not accounted for in the default parameter tables. This is
522	confirmed by previous studies [Johnson and Belitz, 2012] that reported urban vegetation supported by
523	water delivery, in contrast to common seasonal behavior of greening in the winter/spring and browning
524	in the summer, maintains constant greenness which is reflected in NDVI and GVF estimates. GVF plays a
525	dominant role in the Noah-UCM simulations as it defines the vegetated fraction of the natural areas,
526	and specifies albedo, LAI, emissivity, and roughness length values from the predefined ranges in the
527	model lookup tables. Furthermore, GVF partitions the total ET between soil direct and canopy ET. The
528	simulated latent heat flux is considerably decreased (up to 139 MJ m ⁻² per month) in the summer time

529	and increased over the remaining months, when remotely sensed GVF is incorporated in the fully	
530	vegetated areas (Fig. 2b). Since any increase of latent heat flux that does not alter the radiative balance	
531	leads to a reduction in sensible flux, the newly developed GVF values, in turn, cause enhancements (up	
532	to 103 MJ m ⁻² per month) in the simulated summer sensible heat fluxes and a reduction in the sensible	
533	heat fluxes during the remaining months (Fig. 2b). Latent and sensible heat fluxes from the low intensity	
534	residential pixels show similar but less significant changes (up to 66.1 and 31.0 MJ m^{-2} per month,	
535	respectively), when the new parameter sets are implemented. Adding remotely sensed GVF causes	
536	insignificant changes in the industrial/commercial area fluxes due to the small percentage of vegetated	
537	land cover in such areas (Fig. 2d).	
538	There are also large deviations between the look-up-table-based ISAs and the remotely sensed	
539	values. Averaged ISA is decreased (10%) over industrial and commercial pixels and increased (49%) over	
540	low intensity residential areas, when remote sensing products are utilized in the parameter estimation	
541	process (Fig. 2.e). These changes in the impervious surface area, or urban fraction values, have	
542	significant effects on monthly latent and sensible heat fluxes over the developed pixels (Fig. 2g and 2h),	
543	due to the critical role of urban fraction in partitioning of the energy fluxes. Over the low intensity	
544	residential areas, higher ISA values minimize the effects of urban vegetation which leads to latent heat	
545	fluxes decreases (up to 62.6 MJ m $^{-2}$ per month) and sensible heat fluxes increases (up to 52.4 MJ m $^{-2}$ per	
546	month), throughout the year, when remotely sensed data replace default urban fractions (Fig. 2g).	
547	These changes are reversed and less significant over the industrial and commercial pixels (maximum	
548	latent and sensible heat flux changes of 30.0 and 26.5 MJ m ⁻² per month, respectively; Fig. 2h). ISA has	
549	no influence on the fluxes from fully vegetated pixels which do not include impervious areas (Fig. 2.f).	
550	Considerable changes in the monthly albedo averages are detected when incorporating remote	
551	sensing data in the parameterization process (Fig. 2i). Using fused Landsat and MODIS products, a	_
552	reduction of averaged albedo values is observed over the fully vegetated and residential areas (up to	

Deleted: MOSID

554	48% and 39%, respectively; Fig. 2i). Moreover, the default seasonal variations are hardly noticeable in
555	the remote sensing based albedo values, which is due to the consistent greenness in the study area from
556	irrigation throughout the year. On the other hand, considerable albedo increases (up to 39%) are
557	detectable over the industrial/commercial pixels (Fig. 2i), which are caused by bright and highly
558	reflective materials seen mainly over the rooftops of industrial/commercial buildings. Albedo affects the
559	radiative energy budget and consequently available energy for the turbulent fluxes. In the current study,
560	decreased albedo values over the fully vegetated and low intensity residential areas result in reduced
561	loss of solar and long wave radiation respectively and, in turn, increases the sensible heat flux (up to
562	33.8 and 21.5 MJ m ⁻² per month; Fig. 2j and 2k). Albedo induced sensible heat deceases over
563	industrial/commercial pixels are also noticeable (up to 33.9 MJ m ⁻² per month; Fig. 2I).
564	Distinct seasonal fluctuations of LAI are observed in the remotely sensed data and the default parameter
565	tables (Fig. 2m). This reflects the fact that landscape plantings are quite different from agricultural crops
566	due to their being composed of collections of vegetation species and affected by complex irrigation
567	patterns which are not taken into account in the vegetation parameter tables in the Noah LSM [CDWR,
568	2000; Vahmani and Hogue, 2013; 2014]. Over the heavily vegetated pixels, the default pattern is
569	reversed in the measured parameter sets with less seasonal variations and peaks in the winter time, due
570	to the fact that most of the precipitation occurs in the winter months, over the current study domain
571	(Fig. 2m). The industrial and commercial pixels illustrate higher LAI values in the remotely sensed
572	parameter maps, year round, when compared to the default values (Fig. 2m). LAI is a critical parameter
573	in the Noah LSM, which is involved in the parameterization of the canopy resistance, controlling canopy
574	ET rates. In the presented results (Figs. 2n and 2o), LAI induced changes in the simulated turbulent fluxes
575	are more apparent in the summer months and over fully vegetated and residential pixels, where
576	sensible heat flux is significantly increased (up to 57.2 and 86.5 MJ m $^{-2}$ per month, respectively) and
577	latent heat flux is significantly decreased (up to 65.5 and 97.9 MJ m ⁻² per month, respectively). This is

578 due to the considerable deceases in the LAI values in summer time which lead to elevations of the 579 canopy resistance and therefore reductions of the transpiration from the vegetation, causing decreases 580 in latent heat fluxes. This in turn partitions the net radiation more into sensible heat fluxes. LAI does not 581 affect fluxes from industrial/commercial pixels with small pervious fractions (Fig. 2p). It is worth 582 mentioning that changes in the turbulent fluxes time series, in particular the latent heat flux decreases 583 in the summer months induced by implementation of satellite-based LAI, are to some extent captured in 584 the simulations with the remote sensing based GVF (compare Fig. 2b with 2n and 2c with 2o). This 585 reflects our previous point that GVF controls assigned LAI values to vegetated pixels in the Noah LSM 586 and that realistic presentation of GVF in the modeling framework can enhance LAI inputs in the model when LAI measurements are not available. 587 588 Remotely sensed emissivity maps are also utilized to replace the default values in the Noah-589 UCM simulations, which results in changes in the emissivity values (up to 5.1%). However, the new 590 surface parameterization leads to insignificant changes in turbulent fluxes (results now shown). The 591 largest emissivity induced alterations in sensible heat fluxes are seen over industrial and commercial

pixels (up to 31.2 MJ m⁻² per month). Latent heat fluxes are changed, the most significantly, over fully
 vegetated areas (up to 2.56 MJ m⁻² per month).

594 6.2. Spatial Evaluation

The spatial distributions of newly assigned GVF, ISA, albedo, and LAI are next compared with those based on the Noah-UCM lookup tables. Different urban surface parameterizations, along with their impacts on the simulated maps of turbulent sensible and latent heat fluxes, are presented (Fig. 3; Valid at 1100 LST on 14 April 2011). As expected, during the spring period (April), GVF values are significantly higher when remote sensing products are utilized, due to the irrigation effects which are ignored in the default parameters (Fig. 3a and 3b). Over fully vegetated and low intensity residential pixels, where a significant portion of the energy goes into evaporation and transpiration, latent heat flux increases

602	(about 300 and 230 W m $^{\text{-2}}$, respectively) and sensible heat fluxes decreases (about 160 and 120 W m $^{\text{-2}}$,	
603	respectively) are found (Fig. 3c and 3d) when utilizing the remote sensing GVF.	
604	The spatial distributions of ISA, or urban fraction, between the remote sensing and default values show	
605	similar patterns (Fig. 3e and 3f). However, industrial/commercial and high intensity residential areas are	
606	assigned noticeably higher urban fraction values in the remote sensing based maps (compare Fig. 3e and	
607	3f) which leads to lower latent heat fluxes (bias of up to about 130 W m $^{-2}$) and higher sensible (bias of up	
608	to about 100 W m ⁻²) in these pixels (Fig. 3g and 3h).	
609	The Noah-UCM parameters, based on look-up tables, underestimate surface albedo values over	
610	highly urbanized pixels <u>, when compared with remote sensing data</u> (Fig. 3i and 3j). In particular, the	
611	industrial/commercial buildings with highly reflective rooftops are <u>completely</u> ignored, Over the highly	Deleted: in the default parameter
612	vegetated areas, however, albedo values are <u>slightly</u> overestimated in look-up tables. Altering the	
613	energy budget, the newly developed albedo datasets lead to lower Noah-UCM-simulated sensible heat	
614	fluxes over intensely developed pixels (Fig. 3k). The sensible heat flux differences are only significant	Deleted: and higher fluxes over the
615	over industrial/commercial pixels <u>which include buildings with bright roofs (</u> up to ~300 W m ⁻²). The	Deleted: the most Deleted: ; Fig. 3k
616	changes in absolute surface albedos do not affect simulated latent heat fluxes as these reflective roofs	Deleted: (Fig.
617	are located in industrial/commercial areas with negligible pervious surfaces and simulated latent heat	
618	<u>flux (Fig.</u> 3l).	
619	The remote sensing data detect higher LAI values over all pixel types, particularly over fully	
620	vegetated areas where new LAI values are significantly higher (Fig. 3m and 3n). By influencing the	
621	canopy resistance, these changes redefine the spatial distribution of turbulent fluxes (Fig. 30 and 3p).	
622	Over the densely vegetated areas, increases in latent heat flux (up to 50 W m^{-2}) and decreases in	
623	sensible heat flux (up to 35 W m ⁻²) are found (Fig. 3o and 3p). It is noteworthy that, as illustrated before	
624	(Fig. 3n and 3o), the most significant influences of LAI alterations are detected in the summer months.	

erization.

ne vegetated areas

630	Thus, it is not surprising that the turbulent fluxes do not show significant sensitivity to the LAI changes in	
631	April.	
632	Remotely sensed emissivity maps, implemented in the Noah-UCM simulations, show minimal	
633	effect on the output turbulent fluxes maps (results not shown). Our results (Fig. 2 and 3) agree with	
634	previous sensitivity studies performed with the Noah-UCM which indicated high sensitivity of the model	
635	to GVF, ISA, albedo, and LAI, and less model sensitivity to emissivity [Loridan et al., 2010; Wang et al.,	
636	2011]. Loridan et al. [2010] highlighted the critical role of ISA and LAI in the simulations of latent heat	
637	flux and albedo role in the sensible heat flux simulations. Investigating the peaks of diurnal turbulent	
638	fluxes, Wang et al. [2011] reported that latent heat flux is the most sensitive to the GVF. They also found	
639	that emissivity has minimal effects on the model outputs.	
640		
641	7. Evaluation of Noah-UCM Performance	
642	After initial sensitivity tests, the model performance in reproducing ET and LST fields is evaluated using	
643	remotely sensed (independent from derived parameters) and in situ measurements. The comparisons of	
644	observed and simulated ET and LST, using different urban surface parameterizations (scenarios 1, 7, 8,	
645	and 9 in Table 1), are presented in figures 4, 5, and 6.	
646	7.1. ET Simulations	
647	The temporal variations of ET, simulated by the Noah-UCM model and averaged over fully vegetated	
648	pixels, are evaluated against CIMIS-based ET measurements, spanning 2010 and 2011 (Fig. <u>4). The</u>	 Deleted:
649	presented observations are averages over fully vegetated pixels in the study domain, calculated using ET	
650	maps based on ET ₀ measurements from ten CIMIS stations, landscape coefficients, and inverse-distance	
651	weighting (2 nd power) (see section 5.2). The model reproduces similar ET behaviors when the default	
652	parameters and the second group of remotely sensed parameters (albedo, LAI, and Emissivity) are	
653	implemented (Fig. 4a and 4c). The ET differences between observations and the default simulation are	

4).

655	minimal in the winter and fall months, due to the limited energy available for ET in those months. Over
656	the warmer months, the observed and modeled ETs show distinct behaviors. CIMIS stations report two
657	peaks, one in the spring and one in the summer time. Simulated ETs, however, illustrate one peak in the
658	July. The Noah-UCM, using these parameterizations, underestimates ET rates for the most of winter and
659	spring months and overestimates them in the summer time (Fig. 4a and 4c). Including remotely sensed
660	albedo, LAI, and emissivity does not change the general seasonal pattern deviations of ET (Fig. 4a and
661	4c), but it reduces the biases considerably (with R^2 =0.83 and RMSE=14.32 mm/month). We note that
662	model improvement is mostly associated with inclusion of remotely-sensed LAI maps in the model since
663	albedo and emissivity have minimal influence on latent heat fluxes from heavily vegetated pixels (see
664	Fig. 2j).

665 The new GVF and ISA values alter ET seasonal fluctuations significantly in scenario 7 (Fig. 4b). In 666 agreement with CIMIS observations, the model with inclusion of remotely sensed parameters results in significantly higher ET values in the warming months (Feb.-May) and lower ETs in the summer time. 667 668 Noting that ISA has minimal effects over the fully vegetated pixels, one explanation for this pattern is that higher green vegetation fraction detected by Landsat in late winter and early spring, increases 669 670 transpiration rates as soon as the required energy is available and lower measured GVFs in the summer 671 time suppresses the transpiration rates, resulting in the lower ET values. These changes enhance the 672 model performance significantly (with R²=0.92 and RMSE= 11.77 mm/month). 673 Including all the measured parameter sets (Fig. 4d), reduces the behavioral disagreements 674 between observed and modeled monthly ET (R²=0.86). Large biases over the summer months are also 675 reduced. However, ET values are overestimated over the rest of the year (RMSE=17.49 mm/month). 676 Although each newly developed parameter group enhances the model performance in predicting ET, the 677 advantages are countered when all of the parameters are implemented in the model. This is possibly due to the complex interactions between the parameters (e.g. GVF and LAI) in the model structure.

679	A notable pattern detected by CIMIS data is the drop in ET values over the month of June. The sudden
680	decrease in ET corresponds to the June Gloom weather pattern in southern California, when onshore
681	flows result in persistent overcast skies with cool temperatures, as well as fog and drizzle in late spring
682	and early summer [NWS, 2011]. The June Gloom effects are captured in scenarios 7 and 9 (Fig. 4b and
683	4d) and not seen in scenarios 1 and 8 (Fig. 4a and 4c). Since ISA has minimal influence on ET from the
684	fully vegetated pixels and the second group fails to simulate June Gloom influence, the improvements in
685	scenarios 7 and 9, in capturing this phenomenon, are associated with a more accurate representation of
686	GVF.
687	7.2. LST Simulations
688	In order to further evaluate model performance and examine the impacts of different remote sensing
689	based parameter sets, Landsat-based LST measurements are utilized (Fig. 5 and 6). Statistics (R^2 and
690	RMSE) are also included to quantify the model performance using different urban surface
691	parameterizations (Fig. 5). The observed LSTs, over fully vegetated pixels, are estimated with fair
692	accuracy by the default model (R^2 =0.86 and RMSE=3.21 °C; Fig 5a). The model performance has almost
693	the same level of accuracy over low intensity residential areas and is slightly worse (<1°C) over
694	industrial/commercial pixels (Fig. 5e). Using remote sensing data over fully vegetated and low intensity
695	residential pixels_weakly improves the biases (with <1°C improvement; Fig. 5b-d and 5f-h). Over
696	industrial/commercial areas, a systematic underestimation of the observed LST is identified (RMSE= <u>3.96-</u>
697	4.59°C; Fig. 5i-1) which seems to be persistent after using different remotely sensed parameter sets. We
698	speculate that this underestimation of LST over highly developed areas is due to lack of representation
699	of anthropogenic heating in the current study.
700	A comparison of LST at 1100 LST on 14 April 2011 with four simulation cases is also presented

- 701 (Fig. 6). Alterations due to use of remote sensing products are more noticeable in this spatial
- 702 examination of the results. Using all the default parameters (scenario 1), observed LST is overestimated

Deleted: is slightly worse (~1°C)

Deleted: R²=0.62 and Deleted: 6.15

Deleted:). Both

Deleted: groups (scenarios 7 and 8) significantly improve the correlations between the observed and simulated LSTs (RMSE of 0.76 and 0.70, respectively; Fig. 5j and 5k). When all the parameters are used (scenario 9), the RMSE is enhanced to 0.82. However, the cold biases are persistent in all simulations, more significantly over

Deleted: surfaces (Fig. 5e-I).

Deleted: Further analysis (not shown here) indicates that underestimation of LST values is due to a fundamental problem in the UCM and cannot be immediately solved with available parameter choices. This problem is discussed in a related study investigating different schemes for LST and conductive heat fluxes in the UCM [Wang et al. 2011b]. Their study shows that the current UCM formulation results in a phase lag and cold biases in simulated surface temperature when compared to observations. The discussed cold biased could potentially be resolved utilizing a spatially-analytical scheme introduced by Wang et al. [2011b].¶ 723 over the heavily vegetated areas and underestimated over highly developed pixels (Fig. 6a and 6b). 724 Remotely sensed GVF and ISA (in scenario 7) significantly decrease LSTs over fully vegetated and low 725 intensity residential pixels and increase temperatures over industrial and commercial areas resulting in a 726 better match with the observed LST map. The decreased simulated surface temperatures over heavily 727 vegetated areas is due to higher GVF and consequently higher ET rates, which in turn lead to lower 728 sensible heat flux and LSTs (see Fig. 3b). The increased LSTs over highly developed areas is likely due to 729 lower GVF and higher ISA values detected in Landsat imagery, compared with the default values, which 730 partition net radiation more into sensible heat flux (see Fig. 3b and 3f). The noticed changes in LST maps, 731 using remotely senses albedo, LAI, and emissivity (scenario 8), are small (compare Fig. 6a and 6e). 732 Although simulated LSTs over fully vegetated areas are decreased, the observed temperatures are still 733 overestimated (Fig. 6f). The LST decreases in scenario 8 may be explained by evaporative cooling effect 734 of the higher LAI values over heavily vegetated areas (see Fig. 3n). Similar to scenario 7, considerable 735 GVF induced LST reductions, over fully vegetated areas, improve the observed LST estimations in 736 scenario 9 (Fig. 6h). Our assessment indicates that implemented satellite derived parameter maps, 737 particularly GVF and ISA used in scenarios 7 and 9, enhance the Noah-UCM capability to reproduce the 738 LST differences between fully vegetated pixels and highly developed areas (simulated LST differences of 739 3.07, 6.78, 3.48, and 7.30 °C for scenarios 1, 7, 8, and 9 vs. observed LST difference of 11.25 °C) 740 7.3. Energy and Water Budget Evaluation 741 Differences in the simulated energy and water budgets, with different surface parameterizations 742 (scenarios 1, 7, 8, and 9 in the Table 1) are summarized for WY 2011 (Fig. 7). The emissivity induced 743 changes to the energy and water budgets are insignificant and not included. The illustrated radiative and 744 turbulent heat fluxes show that, unlike the longwave radiative fluxes, the simulated available solar radiations are altered considerably using different urban parameter sets (up to %6), particularly over 745

746 fully vegetated (Fig. 7a) and industrial/commercial pixels (Fig. 7c). These changes are induced by new

Deleted: result

Deleted: However the model still underestimates the observed LSTs over the industrial and commercial pixels (Fig. 6b and 6e).

Deleted: 1.31, 4.81, 1.55

Deleted: 4.93

Deleted: Nevertheless, the model still underestimates remotely sensed LST values, by about 9.91 °C for scenario 9, over the highly developed areas.

Deleted: Regardless of the parameterization processes, cold biases are persistent in all simulations, particularly over high intensity residential and industrial/commercial pixels (Fig. 6). As explained above, this underestimation of LST values is consistent with the literature and is reported to be due to a fundamental problem in the UCM which produces a phase lag and cold biases in simulated LST [Wang et al., 2011b].¶

762	surface albedo values utilized in scenarios 8 and 9. It is also observed that most of the incoming
763	radiative energy is dissipated through latent heat fluxes, over heavily vegetated pixels (Fig. 7a and 7b),
764	and sensible heat fluxes over industrial/commercial areas (Fig. 7c). These turbulent fluxes are also
765	altered when different surface parameterizations are incorporated. Implementing all the remotely
766	sensed parameters (scenario 9), the annual latent heat flux is increased (12%) over fully vegetated pixels
767	(Fig. 7a), and the annual sensible heat flux is decreased (32%) over industrial/commercial pixels (Fig. 7c).
768	Ground heat fluxes, however, are insignificant and unchanged.
769	Water budget terms also show variable behavior using different parameter sets over different
770	land cover types (Fig. 7 d-f). Annual irrigation amounts exceed received precipitations over the pixels
771	with significant vegetation fractions (Fig. 7d and 7e). This pattern is not rare in semi-arid regions [CDWR
772	1975, Mini et al., 2014]. In these areas, most of incoming water is lost through ET (Fig. 7d and 7e). Areas
773	with high coverage of impervious surfaces, however, dissipate most of the incoming moisture through
774	surface runoff (Fig. 7f). The alterations in the annual ET rates are, for the most part, due to the changes
775	in the GVF parameterizations (scenarios 7 and 9; Fig. 7d-f). Sub-surface runoff annual rates, on the other
776	hand, are altered using new ISA values (scenarios 7 and 9; Fig. 7e and 7f). Changes in the annual ET
777	values are as large as 145, 156, and 79.4 mm over fully vegetated, low intensity residential and
778	industrial/commercial pixels, respectively (Fig. 7d-f).
779	To further verify the capability of Noah-UCM to reproduce observed ET quantities, additional
780	evaluation of the model is conducted utilizing ground-based chamber ET measurements in the greater
781	Los Angeles area [Moering, 2011]. Instantaneous ET measurements, over an irrigated park in the study
782	domain during WY 2011, are converted to daily and then annual ET estimates (1224 mm) and compared
783	with the simulated ET values over the parks (Fig. 7d). As expected, the observed ET is best reproduced
784	by scenario 7 (Bias of 1.47 mm) due to more accurate representation of GVF in the model. Scenarios 1
785	(with the default parameters) and 8 underestimate, with biases of 58.65 and 65.32 mm, respectively.

786	Scenario 9, with all the remotely sensed parameters, overestimates the measured ET (with bias of 86.24
787	mm). These shortcomings are likely due to: (1) a lack of accurate representation of GVF in the default
788	parameter sets, used in scenarios 1 and 8, (2) the uncertainties associated with the estimated LAI values
789	utilized in scenarios 8 and 9, and (3) complex interactions between GVF and LAI noted in scenario 9.
790	The presented analysis of energy balance (Fig. 7) suggests that GVF, albedo and LAI play an important
791	role in regulating simulated radiative energy budget and turbulent fluxes, mainly by affecting the
792	available net radiation and transpiration quantities. GVF, ISA, and LAI also alter the study area
793	transpiration and ET values, as well as surface runoff rates.
794	
795	8. Conclusions
796	In the current work we investigate the utility of a select set of remote sensing based surface parameters
797	in the Noah-UCM modeling framework over a highly developed urban area. It was found that remote
798	sensing data show significantly different magnitudes and seasonal patterns of GVF when compared with
799	the default values. The reason for this mismatch is the significant and year round irrigation in the Los
800	Angeles area which is not accounted for in the default parameter tables. Irrigated landscapes maintain
801	constant greenness rather than a seasonal behavior of greening in the winter/spring and browning in
802	the summer. The noticed differences between the monthly LAI values from default tables and remotely
803	sensed data are also due to complex irrigation patterns. Another factor that contributes to this
804	mismatch is the fact that landscape plantings are quite different from agricultural crops due to their
805	being composed of collections of vegetation species which is not taken into account in the vegetation
806	parameter tables in the Noah LSM [CDWR, 2000; Vahmani and Hogue, 2013; 2014]. There are also
807	considerable deviations between the look-up-table-based ISA, albedo and emissivity maps and the

- remotely sensed values. The results of our analysis agree with previous studies which show high 808
- sensitivity of the Noah-UCM to GVF, ISA, albedo, and LAI, and minimal model sensitivity to emissivity 809

[Loridan et al., 2010; Wang et al., 2011]. Our results show that GVF, ISA and LAI are critical in the
simulations of latent and sensible heat flux, and that albedo plays a key role in the sensible heat flux
simulations.

813 Our assessment of the Noah-UCM ET estimation shows that using the default parameters leads to significant errors in the model predictions of monthly ET fields (RMSE= 22.06 mm/month) over the 814 815 study domain in Los Angeles. Results show that accurate representation of GVF is critical to reproduce 816 observed ET patterns over vegetated areas in the urban domains. LAI also plays an important role in ET 817 simulations. However, simulations incorporating the remotely sensed GVF values outperform (RMSE= 818 11.77 mm/month) simulations with the new LAI estimates (RMSE=14.32 mm/month). This could be due 819 to several reasons. First, there are uncertainties associated with the remote sensing based LAI retrieval, 820 including non-linearity of LAI-vegetation index (RSR) relationships [Latifi and Galos, 2010], which do not 821 apply to NDVI-based GVF. Second, more accurate representation of GVF values in the Noah-UCM not 822 only improves the assigned LAI values to the vegetated pixels in the model but also enhances other 823 parameters inputs as well (i.e. albedo, emissivity, and roughness length). Further analysis of the model 824 performance indicates that implemented satellite derived parameter maps, particularly GVF and ISA, 825 enhance the Noah-UCM capability to reproduce the LST differences between fully vegetated pixels and 826 highly developed areas (simulated LST differences of 3.07 and 6.78 °C for scenarios with default and 827 remotely sensed GVF and ISA vs. observed LST difference of 11.25 °C). 828 Our analysis of energy balance suggests that GVF, albedo and LAI play an important role in 829 regulating simulated radiative energy budget and turbulent fluxes, mainly by affecting the available net 830 radiation and ET quantities. With regard to urban water balance, GVF, ISA, and LAI play a key role in 831 surface hydrologic fluxes, including ET and surface runoff. When compared with in-situ observations, 832 Noah-UCM shows the capacity to reproduce ET fields with relatively high accuracy (Bias of 1.47 mm) 833 when GVF maps are updated using remote sensing data.

Deleted: 1.31 Deleted: 4.81

Deleted: Nevertheless, the model still underestimates remotely sensed LST values, over highly developed areas. We speculate that the underestimation of LST values, particularly over high intensity residential and industrial/commercial areas, is due to structural parameterization in the UCM and cannot be immediately solved with available parameter choices.

842	In summary, the current study highlights the significant deviations between the spatial distributions and
843	seasonal fluctuations of the default and remotely sensed parameter sets in the Noah-UCM. We illustrate
844	that replacing default parameters with the measured values reduces significant biases in model
845	predictions of the surface fluxes within irrigated urban areas. This ultimately has key implications in
846	feedback processes to the atmosphere when the Noah-UCM is coupled with the widely used WRF
847	model, which has been increasingly applied over urban areas to examine the exchange of heat,
848	moisture, momentum or pollutants. Semi-arid urban cities, in particular, are receiving much attention in
849	the literature, given their accelerated growth and increasing dependence on external water sources.
850	More accurate representation of both water and energy fluxes in commonly used modeling frameworks
851	is critical for regional resource management as well as predictions of urban processes under future
852	climate conditions. Although this study focuses on the widely used single layer UCM, we speculate that
853	implementation of the more accurate remote sensing based parameters (particularly, GVF and ISA) may
854	also enhance performance of the Noah-BEP [Martilli et al., 2002], which is currently the most
855	sophisticated urban scheme in WRF. In this multi-layer UCM a similar approach to the single layer UCM
856	is used based on an urban fraction (or ISA) parameter that couples the Noah outputs over pervious
857	portion of pixels and UCM outputs over developed surfaces.
858	Acknowledgements

- 859 Funding for this research was supported by an NSF Hydrologic Sciences Program CAREER Grant
- 860 (#EAR0846662), a 2012 NASA Earth and Space Science Fellowship (#NNX12AN63H), and an NSF Water
- 861 Sustainability and Climate (WSC) grant (#EAR12040235).

863 References

- 864 Arnfield, A. J.: Two decades of urban climate research: A review of turbulence, exchanges of energy and
- 865 water, and the urban heat island, Int. J. Climatol., 23: 1–26, doi: 10.1002/joc.859, 2003.
- 866 Artis, D. A. and Carnahan, W. H.: Survey of emissivity variability in thermography of urban areas, Remote
- 867 Sensing of Environment, 12, 313–329, 1982.
- 868 Bauer, M. E., Loeffelholz, B., and Wilson, B.: Estimating and mapping impervious surface area by
- 869 regression analysis of Landsat imagery, Remote Sensing of Impervious Surfaces, pp. 3–20, Boca Raton,
- 870 Florida: CRC Press, 2007.
- 871 Bornstein, R.: Urban climate models: Nature, limitations, and applications, Meteorol. Atmos. Phys., 38,
- 872 185–194, 1987.
- 873 Burian, S. , Brown, M. J., Augustus, N.: Development and assessment of the second generation National
- 874 Building Statistics database, Seventh Symposium on the Urban Environment, San Diego, CA, 10–13
- 875 September, American Meteorological Society: Boston, MA, Paper 5.4, 2007.
- 876 Burian, S. J., Stetson, S. W., Han, W., Ching, J., and Byun, D.: High resolution dataset of urban canopy
- 877 parameters for Houston, Texas, Preprint proceedings, Fifth Symposium on the Urban Environment,
- 878 Vancouver, BC, Canada, 23–26 August, American Meteorological Society: Boston, MA, 2004.
- 879 Burian, S., Brown, M., McPherson, T. N., Hartman, J., Han, W., Jeyachandran, I., Rush, J.: Emerging urban
- 880 databases for meteorological and dispersion, Sixth Symposium on the Urban Environment, Atlanta, GA,
- 881 28 January–2 February, American Meteorological Society: Boston, MA, Paper 5.2, 2006.

Deleted: 9,

California Department of Water Resources (CDWR): A guide to estimating irrigation water needs of			
landscape plantings in California: The landscape coefficient method and WUCOLS III, Department of			
Water resources, State of California, 1–150, 2000.			
California Department of Water Resources (CDWR): California's ground water, bulletin 118, Department			
of Water resources, State of California, 1975.			
Changnon, S. A. and Huff, F. A.: The urban-related nocturnal rainfall anomaly at St. Louis, J. Climate Appl.			
Meteor., 25, 1985–1995, doi:10.1175/1520-25_0450 <u>(1986)025<1985:TURNRA>2.0.CO;2</u> , 1986.		Deleted: http:/	//dx.doi.org/
Changnon, S. A.: Inadvertent weather modification in urban area: Lessons for global climate change.			
Bull. Amer. Meteor. Soc., 73, 619–627, doi;10.1175/1520-0477 <u>(1992)073<0619:IWMIUA>2.0.CO;2</u> ,		Deleted: http:/	//dx.doi.org/
1992.			
Chen, F. and Dudhia, J.: Coupling an advanced land-surface/hydrology model with the Penn State/NCAR			
MM5 modeling system. Part I: model implementation and sensitivity, Monthly Weather Review, 129:			
569–585, 2001.			
Chen, F., Janjic, Z., and Mitchell, K.: Impact of atmospheric surface layer parameterization in the new			
land-surface scheme of the NCEP mesoscale Eta model, Boundary-Layer Meteorology, 85: 391–421,			
DOI:10.1023/A:1000531001463, 1997.			
Chen, F., Kusaka, H., Bornstein, R., Ching, J., Grimmond, C. S. B., Grossman-Clarke, S., Loridan, T.,			
Manning, K. W., Martilli, A., Miao, S., Sailor, D., Salamanca, F. P., Taha, H., Tewari, M., Wang, X.,			
Wyszogrodzki, A. A., and Zhang, C.: The integrated WRF/urban modelling system: development,			
evaluation, and applications to urban environmental problems, Int. J. Climatol., 31: 273–288. doi:			
	 Iandscape plantings in California: The landscape coefficient method and WUCOLS III, <u>Department of</u> Water resources_State of California, 1–150, 2000. California Department of Water Resources (CDWR): California's ground water, bulletin 118, <u>Department of Water resources</u>_State of California, 1975. Changnon, S. A. and Huff, F. A.: The urban-related nocturnal rainfall anomaly at St. Louis, J. Climate Appl. Meteor., 25, 1985–1995, doi;10.1175/1520-25 0450(1986)025<1985:TURNRA>2.0.CO;2, 1986. Changnon, S. A.: Inadvertent weather modification in urban area: Lessons for global climate change. Bull. Amer. Meteor. Soc., 73, 619–627, doi;10.1175/1520-0477[1992)073<0619:IWMIUA>2.0.CO;2, 1992. Chen, F. and Dudhia, J.: Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: model implementation and sensitivity, Monthly Weather Review, 129: 569–585, 2001. Chen, F., Janjic, Z., and Mitchell, K.: Impact of atmospheric surface layer parameterization in the new Iand-surface scheme of the NCEP mesoscale Eta model, Boundary-Layer Meteorology, 85: 391–421, DOI:10.1023/A:1000531001463, 1997. Chen, F., Kusaka, H., Bornstein, R., Ching, J., Grimmond, C. S. B., Grossman-Clarke, S., Loridan, T., Manning, K. W., Martilli, A., Miao, S., Sailor, D., Salamanca, F. P., Taha, H., Tewari, M., Wang, X., Wyszogrodzki, A. A., and Zhang, C.: The integrated WRF/urban modelling system: development, 	 Iandscape plantings in California: The landscape coefficient method and WUCOLS III, <u>Department of</u> Water resources_State of California, 1–150, 2000. California Department of Water Resources (CDWR): California's ground water, bulletin 118, <u>Department</u> of Water resources_State of California, 1975. Changnon, S. A. and Huff, F. A.: The urban-related nocturnal rainfall anomaly at St. Louis, J. Climate Appl. Meteor., 25, 1985–1995, doi;10.1175/1520-25.0450(1986)025<1985:TURNRA>2.0.CO;2, 1986. Changnon, S. A.: Inadvertent weather modification in urban area: Lessons for global climate change. Bull. Amer. Meteor. Soc., 73, 619–627, doi;10.1175/1520-0477(1992)073<0619:IWMIUA>2.0.CO;2, 1992. Chen, F. and Dudhia, J.: Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: model implementation and sensitivity, Monthly Weather Review, 129: 569–585, 2001. Chen, F., Janjic, Z., and Mitchell, K.: Impact of atmospheric surface layer parameterization in the new Iand-surface scheme of the NCEP mesoscale Eta model, Boundary-Layer Meteorology, 85: 391–421, DOI:10.1023/A:1000531001463, 1997. Chen, F., Kusaka, H., Bornstein, R., Ching, J., Grimmond, C. S. B., Grossman-Clarke, S., Loridan, T., Manning, K. W., Martilli, A., Miao, S., Sailor, D., Salamanca, F. P., Taha, H., Tewari, M., Wang, X., Wyszogrodzki, A. A., and Zhang, C.: The integrated WRF/urban modelling system: development, 	 landscape plantings in California: The landscape coefficient method and WUCOLS III, <u>Department of</u> <u>Water resources</u>, State of California, 1–150, 2000. California Department of Water Resources (CDWR): California's ground water, bulletin 118, <u>Department</u> of <u>Water resources</u>, State of California, 1975. Changnon, S. A. and Huff, F. A.: The urban-related nocturnal rainfall anomaly at St. Louis, J. Climate Appl. Meteor., 25, 1985–1995, doi:10.1175/1520-25 0450(1986)025<1985:TURNRA>2.0.CO;2, 1986. Changnon, S. A.: Inadvertent weather modification in urban area: Lessons for global climate change. Bull. Amer. Meteor. Soc., 73, 619–627, doi:10.1175/1520-0477(1992)073<0619:IWMIUA>2.0.CO;2, 1992. Chen, F. and Dudhia, J.: Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MMS modeling system. Part I: model implementation and sensitivity, Monthly Weather Review, 129: 569–585, 2001. Chen, F., Janjic, Z., and Mitchell, K.: Impact of atmospheric surface layer parameterization in the new land-surface scheme of the NCEP mesoscale Eta model, Boundary-Layer Meteorology, 85: 391–421, DOI:10.1023/A:1000531001463, 1997. Chen, F., Kusaka, H., Bornstein, R., Ching, J., Grimmond, C. S. B., Grossman-Clarke, S., Loridan, T., Manning, K. W., Martilli, A., Miao, S., Sailor, D., Salamanca, F. P., Taha, H., Tewari, M., Wang, X., Wyszogrodzki, A. A., and Zhang, C.: The integrated WRF/urban modelling system: development,

10.1002/joc.2158, 2011.

- 906 Chen, F., Kusaka, H., Tewari, M., Bao, J. W., Harakuchi, H.: Utilizing the coupled WRF/LSM/urban
- 907 modeling system with detailed urban classification to simulate the urban heat island phenomena over
- 908 the Greater Houston area, Paper 9.11, American Meteorological Society Fifth Symposium on the Urban
- 909 Environment, Vancouver, BC, Canada, 2004.
- 910 Chen, F., Mitchell, K., Schaake, J., Xue, Y., Pan, H.-L., Koren, V., Duan, Q. Y., Ek, M., Betts, A.: Modeling of
- 911 land-surface evaporation by four schemes and comparison with FIFE observations, J. Geophys. Res.,
- 912 101(D3), 7251–7268, doi:10.1029/95JD02165, 1996.
- 913 Cheng, F. Y. and Byun, D.W.: Application of High Resolution Land Use and Land Cover Data for
- 914 Atmospheric Modeling in the Houston-Galveston Metropolitan Area: Part I, Meteorological Simulation
- 915 Results, Atmospheric Environment, 42, 7795-7811, doi:10.1016/j.atmosenv.2008.04.055, 2008.
- 916 Cheng, F. Y., Hsu, Y. C., Lin, P. L., Lin, T. H.: Investigation of the Effects of Different Land Use and Land
- 917 Cover Patterns on Mesoscale Meteorological Simulations in the Taiwan Area, J. Appl. Meteor. Climatol.,
- 918 52, 570–587, doi: http://dx.doi.org/10.1175/JAMC-D-12-0109.1, 2013.
- 919 Ching, J., Brown, M., McPherson, T., Burian, S., Chen, F., Cionco, R., Hanna, A., Hultgren, T., Sailor, D.,
- 920 Taha, H., Williams, D.: National Urban Database and Access Portal Tool, NUDAPT, Bulletin of the
- 921 American Meteorological Society, 90(8): 1157–1168, DOI:10.1175/2009BAMS2675.1, 2009.
- 922 Cotton, W. R. and Pielke, R. A.: Human impacts on weather and climate. Cambridge: Cambridge923 University Press, 1995.
- 924 De Ridder, K., Bertrand, C., Casanova, G., and Lefebvre, W.: Exploring a new method for the retrieval of
- 925 urban thermophysical properties using thermal infrared remote sensing and deterministic modeling, J.
- 926 Geophys. Res., 117, D17108, doi:10.1029/2011JD017194, 2012.

- 927 Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G., Tarpley, J. D.:
- 928 Implementation of Noah land surface model advances in the National Center for Environmental
- 929 Prediction operational mesoscale Eta model , J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296,
- 930 2003.
- Giannaros, T. M., Melas, D., Daglis, I. A., Keramitsoglou, I., Kourtidis, K.: Numerical study of the urban
- 932 heat island over Athens (Greece) with the WRF model, Atmospheric Environment, Volume 73, 103-111,
- 933 doi:10.1016/j.atmosenv.2013.02.055, 2013.
- 934 Gutman, G. and Ignatov, A.: Derivation of green vegetation fraction from NOAA/AVHRR for use in
- 935 numerical weather prediction models, Int. J. Remote Sens., 19: 1533-1543, 1998.
- 936 Hanasaki, N., Kanae, S., Oki, T., Masuda, K., Motoya, K., Shirakawa, N., Shen, Y., and Tanaka, K.: An
- 937 integrated model for the assessment of global water resources- Part 1: Model description and input
- 938 meteorological forcing, Hydrol. Earth Syst. Sci., 12, 1007-1025, doi:10.5194/hess-12-1007-2008, 2008a.
- 939 Hanasaki, N., Kanae, S., Oki, T., Masuda, K., Motoya, K., Shirakawa, N., Shen, Y., and Tanaka, K.: An
- 940 integrated model for the assessment of global water resources- Part 2: Applications and assessments,
- 941 Hydrol. Earth Syst. Sci., 12, 1027-1037, doi:10.5194/hess-12-1027-2008, 2008b.
- 942 Jiang, X., Wiedinmyer, C., Chen, F., Yang, Z. L., and Lo, J. C. F.: Predicted impacts of climate and land use
- 943 change on surface ozone in the Houston, Texas, area, J. Geophys. Res., 113, D20312,
- 944 doi:10.1029/2008JD009820, 2008.
- 945 Jin, M. and Shepherd J. M.: Inclusion of urban landscape in a climate model—How can satellite data
- 946 help?, Bull. Am. Meteorol. Soc., 86(5), 681–689, DOI:10.1175/BAMS-86-5-681, 2005.
- 947 Johnson, T. D. and Belitz K.: A remote sensing approach for estimating 1 the location and rate of urban
- 948 irrigation in semi-arid climates, Journal of Hydrology, 414-415, 86-98, 2012.

- 949 Justice, C. O., Townshend, J. R. G., Vermote, E. F., Masuoka, E., Wolfe, R. E., Saleous, N., Roy, D. P.,
- 950 Morisette, J. T.: An overview of MODIS land data processing and product status. Remote Sensing of
- 951 Environment, 83(1–2), 3–15, 2002.
- 952 Kalnay, E. and Cai, M.: Impact of urbanization and land-use change on climate, Nature, 423(29),
- 953 528–531, 2003.
- 954 Kusaka, H., Kimura, F.: Thermal effects of urban canyon structure on the nocturnal heat island:Numerical
- 955 experiment using a mesoscale model coupled with an urban canopy model, J. Appl. Meteorol. 43: 1899–
- 956 1910, 2004.
- 957 Kusaka, H., Kondo, H., Kikegawa, Y., and Kimura, F.: A simple single-layer urban canopy model for
- 958 atmospheric models: Comparison with multi-layer and slab models, Bound.-Layer Meteor., 101, 329–
- 959 358, 2001.
- 960 Landsberg, H. E.: The urban climate. New York: Academic Press, 1981.
- 961 Latifi, H. and Galos, B.: Remote sensing-supported vegetation parameters for regional climate models: a
- 962 brief review, iForest 3: 98-101, doi: 10.3832/ifor0543-003, 2010.
- 963 Loridan, T., Grimmond, C. S. B., Grossman-Clarke, S., Chen, F., Tewari, M., Manning, K., Martilli, A.,
- 964 Kusaka, H., Best, M.: Trade-offs and responsiveness of the single-layer urban parameterization in WRF:
- 965 an offline evaluation using the MOSCEM optimization algorithm and field observations, Q.J.R. Meteorol.
- 966 Soc., 136: 997–1019. doi: 10.1002/qj.614, 2010.
- 967 Lowry, W.: Urban effects on precipitation amount, Progress in Physical Geography, 22(4), 477–520, DOI:
- 968 10.1177/030913339802200403, 1998.

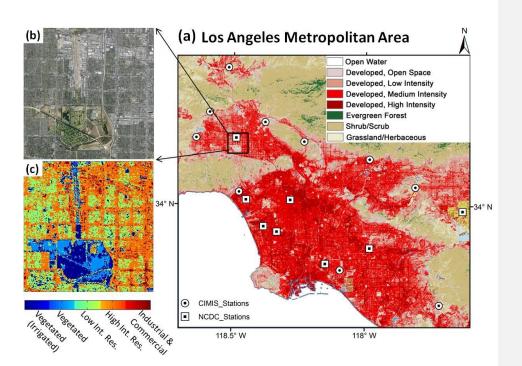
- 969 Marshall, C. H., Pielke, R. A., Steyaert, L., and Willard, D.: The impact of anthropogenic land-cover
- 970 change on the Florida peninsula sea breezes and warm season sensible weather, Mon. Wea. Rev., 132,
- 971 28–52, doi: http://dx.doi.org/10.1175/1520-0493, 2004.
- Martilli, A, Clappier, A, and Rotach, M. W.: An urban surface exchange parameterization for mesoscale
 models, Boundary-Layer Meteorology 104: 261–304, 2002.
- 974 McPherson, E. G., Simpson, J. R., Xiao, Q., Wu, C.: Los Angeles 1-million tree canopy cover assessment,
- 975 Gen. Tech. Rep. PSW-GTR-207, Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific
- 976 Southwest Research Station, 52 p, 2008.
- 977 Miao, S. and Chen F.: Formation of horizontal convective rolls in urban areas, Atmospheric Research,
- 978 89(3): 298–304, doi:10.1016/j.atmosres.2008.02.013, 2008.
- 979 Miao, S., Chen F., LeMone, M. A., Tewari M., Li, Q., Wang, Y.: An observational and modeling study of
- 980 characteristics of urban heat island and boundary layer structures in Beijing, J. Appl. Meteor. Climatol.,
- 981 48, 484–501, doi: http://dx.doi.org/10.1175/2008JAMC1909.1, 2009.
- 982 Mini, C., Hogue, T. S., and Pincetl, S.: Estimation of Residential Outdoor Water Use in Los Angeles,
- 983 California, Landscape <u>Urban Plan, 127, 124–135, doi:10.1016/j.landurbplan.2014.04.007, 2014.</u>
- 984 Moering, D. C.: A comparative study of evapotranspiration rates between irrigated and non-irrigated
- 985 parks in Los Angeles, M.S. thesis, Dep. of Civil and Env. Eng., Univ. of California Los Angeles, Los Angeles,
- 986 California, 2011.
- 987 National Oceanographic and Atmospheric Administration-Coastal Services Center (NOAA-CSC): Southern
- 988 California 2000-Era Land Cover/Land Use, LANDSAT-TM, 10m, NOAA-CSC, Charleston, SC, 2003.

Deleted: ., 2014:

Deleted: and Urban Planning (in press)

991	National Weather Service (NWS): Jet Stream - The Marine Layer, NOAA National Weather Service,	
992	http://www.srh.noaa.gov/jetstream/ocean/marine.htm <mark>_(last access: 24 February 2013),</mark> 2011.	Deleted: ,
993	Niyogi, D., Holt, T., Zhong, S., Pyle, P. C., and Basara, J.: Urban and land surface effects on the 30 July	
994	2003 mesoscale convective system event observed in the Southern Great Plains, J. Geophys. Res., 111,	
995	D19107, doi:10.1029/2005JD006746, 2006.	
996	Pielke, R. A. Sr., Marland, G., Betts, R. A., Chase, T. N., Eastman, J. L., Niles, J. O., Niyogi, D., and Running,	
997	S.: The influence of land-use change and landscape dynamics on the climate system: Relevance to	
998	climate change policy beyond the radiative effect of greenhouse gases, Phil. Trans. R. Soc. London A,	
999	360(Special Theme Issue), 1705–1719, 2002.	
1000	Pokhrel, Y., Hanasaki, N., Koirala, S., Cho, J., Kim, H., Yeh, P. JF., Kanae, S., and Oki, T.: Incorporating	
1001	anthropogenic water regulation modules into a land surface model, Journal of Hydrometeorology, 13	
1002	(1), 255-269, doi: 10.1175/JHM-D-11-013.1, 2012.	
1003	Sailor, D. J., Lu, L.: A top-down methodology for developing diurnal and seasonal anthropogenic heating	
1004	profiles for urban areas, Atmospheric Environment 38: 2737–2748,	
1005	doi:10.1016/j.atmosenv.2004.01.034, 2004.	
1006	Schaaf, C. B., Gao, F., Strahler, A. H., Lucht, W., Li, X. W., Tsang, T., Strugnell, N. C., Zhang, X. Y., Jin, Y. F.,	
1007	Muller, J. P., Lewis, P., Barnsley, M., Hobson, P., Disney, M., Roberts, G., Dunderdale, M., Doll, C.,	
1008	d'Entremont, R. P., Hu, B. X., Liang, S. L., Privette, J. L., Roy, D.: First operational BRDF, albedo nadir	
1009	reflectance products from MODIS, Remote Sensing of Environment, 83(2-Jan), 135-148, 2002.	
1010	Shuai, Y., Masek, J. G., Gao, F., and Schaaf, C. B.: An algorithm for the retrieval of 30-m snow-free albedo	
1011	from Landsat surface reflectance and MODIS BRDF, Remote Sensing of Environment, 115, 2204-2216,	
1012	doi:10.1016/j.rse.2011.04.019, 2011.	

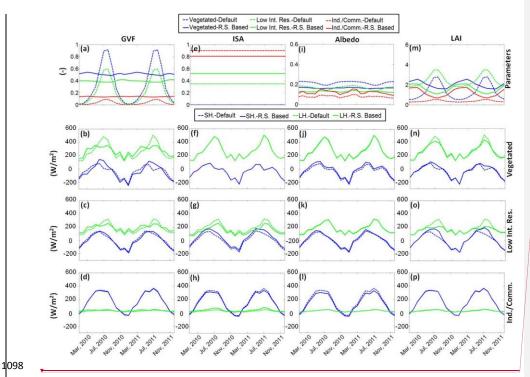
- 1014 Shuai, Y., Schaaf, C. B., Strahler, A. H., Liu, J., and Jiao, Z.: Quality assessment of BRDF/albedo retrievals
- 1015 in MODIS operational system, Geophysical Research Letters, 35, L05407, 5PP,
- 1016 doi:10.1029/2007GL032568, 2008.
- 1017 Sobrino, J. A. and Raissouni, N.: Toward remote sensing methods for land cover dynamic monitoring:
- 1018 Application to Morocco, International Journal of Remote Sensing, 21, pp. 353–366
- 1019 DOI:10.1080/014311600210876, 2000.
- 1020 Sobrino, J. A., Raissouni, N., and Li, Z. L.: A comparative study of land surface emissivity retrieval from
- 1021 NOAA data. Remote Sensing of Environment, 75, pp. 256–266, 2001.
- 1022 Song, M. and Civco, D. L.: A knowledge-based approach for reducing cloud and shadow, Proceedings of
- 1023 the American Society of Photogrammetry and Remote Sensing annual convention, Washington, DC:
- 1024 American Society of Photogrammetry and Remote Sensing, 7 p, 2002.
- 1025 State of California Department of Water Resources (SCDWR): California irrigation management
- 1026 information system, Sacramento, CA: State of California Department of Water Resources, Available at:
- 1027 http://www.water.ca.gov/, 2009.
- 1028 Stathopoulou, M. and Cartalis, C.: Daytime urban heat islands from Landsat ETM+ and Corine land cover
- data: An application to major cities in Greece, Solar Energy, 81 (3), pp. 358-368,
- 1030 doi:10.1016/j.solener.2006.06.014, 2007.
- 1031 Stathopoulou, M., Cartalis, C., and Petrakis, M.: Integrating Corine Land Cover data and Landsat TM for
- 1032 surface emissivity definition: application to the urban area of Athens, Greece, International Journal of
- 1033 Remote Sensing, 28:15, 3291-3304, DOI:10.1080/01431160600993421, 2007.
- 1034 Stenberg, P., Rautiainen, M., Manninen, T., Voipio, P., and Smolander, H.: Reduced simple ratio better
- than NDVI for estimating LAI in Finnish pine and spruce stands, Silva Fennica 38(1): 3–14, 2004.


- 1036 Taha, H., Ching, J. K. S.: UCP/MM5 Modeling in conjunction with NUDAPT: model requirements, updates,
- 1037 and applications, Seventh Symposium on the Urban Environment, San Diego, CA, 10–13 September,
- 1038 American Meteorological Society: Boston, MA, Paper 6.4, 2007.
- 1039 Taha, H., Douglas, S., and Haney, J.: Mesoscale meteorological and air quality impacts of increased urban
- 1040 albedo and vegetation, Energy and Buildings, 25, 169–177, DOI: 10.1016/S0378-7788(96)01006-7, 1997.
- 1041 Taha, H.: Meso-urban meteorological and photochemical modeling of heat island mitigation,
- 1042 Atmospheric Environment, 42: 8795–8809, DOI:10.1016/j.atmosenv.2008.06.036, 2008.
- 1043 Taha, H.: Modifying a mesoscale meteorological model to better incorporate urban heat storage: a bulk-
- 1044 parameterization approach, J. Appl. <u>Meteorol</u>., 38, 466–473, doi:10.1175/1520-
- 1045 0450<u>(1999)038<0466:MAMMMT>2.0.CO;2</u>, 1999.
- 1046 Tan, M. and Li, X.: Integrated assessment of the cool island intensity of green spaces in the mega city of
- 1047 Beijing, International Journal of Remote Sensing, 34:8, 3028-3043, DOI:
- 1048 10.1080/01431161.2012.757377, 2013.
- 1049 Tewari, M., Kusaka, H., Chen, F., Coirier, W. J., Kim, S., Wyszogrodzki, A., Warner, T. T.: Impact of
- 1050 coupling a microscale computational fluid dynamics model with a mesoscale model on urban scale
- 1051 contaminant transport and dispersion, Atmospheric Research 96: 656–664,
- 1052 doi:10.1016/j.atmosres.2010.01.006, 2010.
- 1053 US Census: US Census Bureau Releases Data on Population Distribution and Change in the US Based on
- 1054 Analysis of 2010 Census Results, <u>US</u> Census Bureau, <u>24</u> March 2011.
- 1055 Vahmani, P. and Hogue, T. S.: Modelling and analysis of the impact of urban irrigation on land surface
- 1056 fluxes in the Los Angeles metropolitan area, Climate and Land Surface Changes in Hydrology Proceedings
- 1057 of H01, IAHS-IAPSO-IASPEI Assembly, Gothenburg, Sweden, July 2013, IAHS Publ. 359, 2013.

Deleted: Meteor
Deleted: http://dx.doi.org/

-{	Deleted: U.S.
\neg	Deleted: U.S.
Y	Deleted: U.S.
\mathcal{A}	Deleted: U.S.
Y	Deleted: 24,

1065	Vahmani, P. and Hogue, T. S.: Incorporating an Urban Irrigation Module into the Noah Land Surface	
1066	Model Coupled with an Urban Canopy Model, J. Hydrometeorol., doi:10.1175/JHMD-13-0121.1, in press,	Deleted: Journal of Hydrometeorology, 2014 (in press).
1067	<u>2014.</u>	
1068	Van Wevenberg, K., De Ridder, K., Van Rompaey, A.: Modeling the contribution of the Brussels heat	
1069	island to a long temperature time series, Journal of Applied Meteorology and Climatology, 47, 976e990,	
1070	DOI: 10.1175/2007JAMC1482.1, 2008.	
1071	Wang, X. M., Chen, F., Wu, Z. Y., Zhang, M. G., Tewari, M., Guenther, A., and Wiedinmyer, C.: Impacts of	
1072	weather conditions modified by urban expansion on surface ozone: comparison between the Pearl River	
1073	Delta and Yangtze River Delta regions, Adv. Atmos. Sci, 26(5), 962-972, doi: 10.1007/s00376-009-8001-2,	
1074	2009.	
1075	Wang, Z. H., Bou-Zeid, E., Au, S. K., and Smith, J. A.: Analyzing the sensitivity of WRF's single-layer urban	
1076	canopy model to parameter uncertainty using advanced Monte Carlo simulation, J. Appl. Meteor.	
1077	Climatol., 50, 1795–1814, doi: http://dx.doi.org/10.1175/2011JAMC2685.1, 2011.	
1078	Wei-guang, M., Yan-xia, Z., Jiang-nan, L., Wen-shi, L., Guang-feng, D., and Hao-rui, L.: Application of	
1079	WRF/UCM in the simulation of a heat wave event and urban heat island around Guangzhou, Journal of	
1080	Tropical Meteorology, 03, 257-267, doi: 10.3969/j.issn.1006-8775.2011.03.007, 2011.	

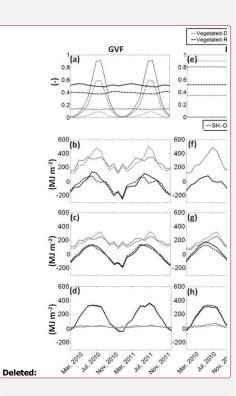
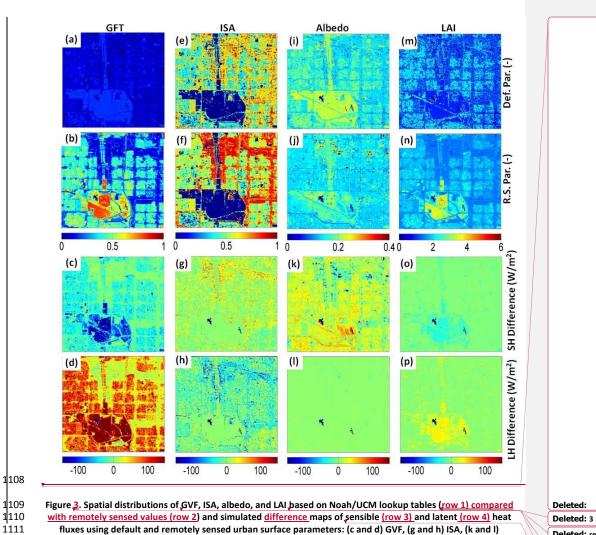


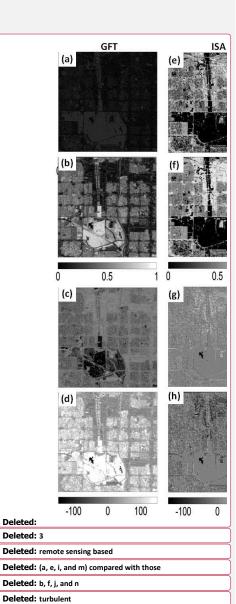
 1085
 Figure 1. (a) NOAA C-CAP Land cover map of the Los Angeles metropolitan area including study domain, 10

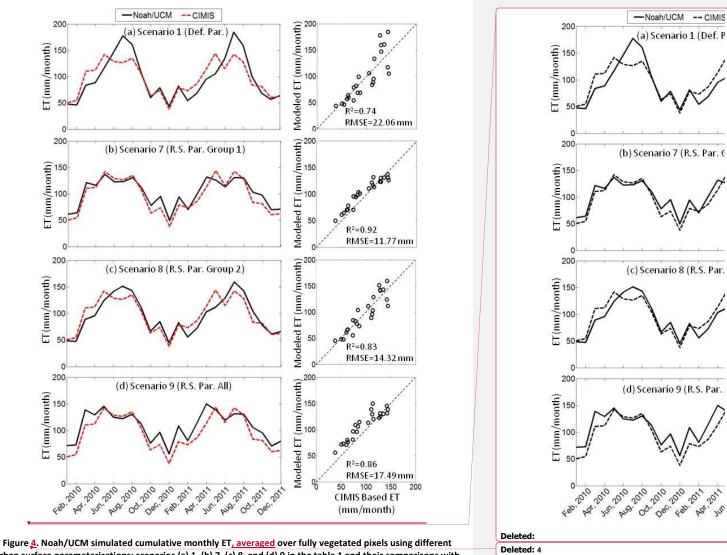
 1086
 CIMIS stations (white circles), and 8 NCDC stations (white squares), (b) Google image of the study domain, and

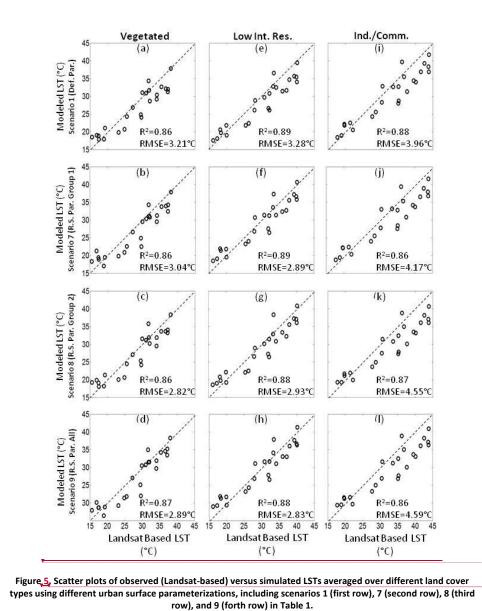
 1087
 (c) The Noah/UCM urban land cover classification of the study domain.

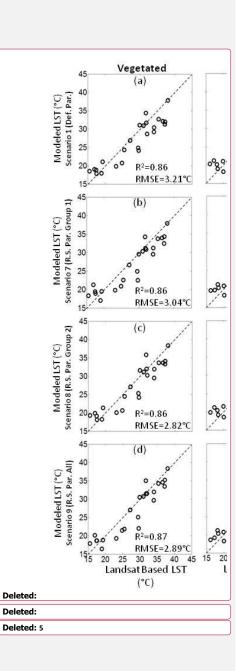
Deleted: 1

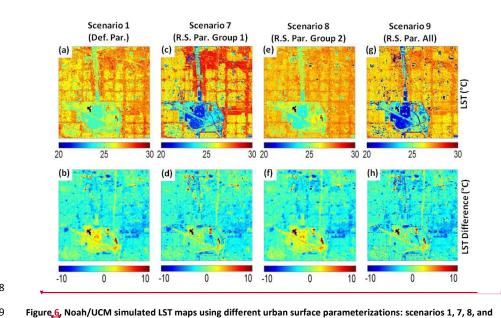



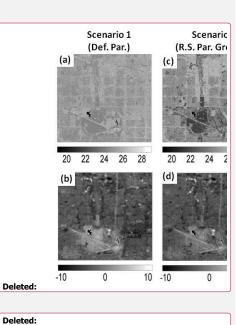

Figure 2. Monthly time series of default Noah/UCM compared with remote sensing based GVF, ISA, albedo, and LAI (<u>row 1</u>) and modeled cumulative monthly sensible and latent heat fluxes (MJ m⁻²) over fully vegetated.(<u>row 2</u>), low intensity residential (<u>row 3</u>) and industrial/commercial areas (<u>row 4</u>) using the default and newly estimated parameters: (b-d) GVF, (f-h) ISA, (j-l) albedo, and (n-p) LAI.

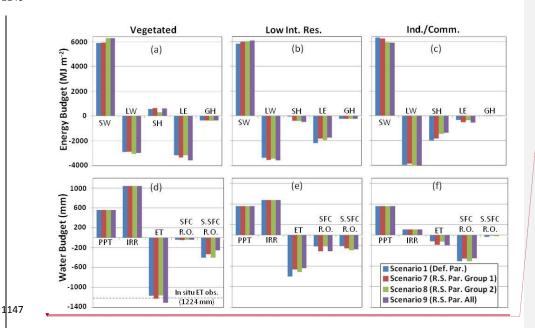

Deleted: 2
 Deleted: a,e, i, and m
 Deleted: ,




albedo, and (o and p) LAI. Valid at 1100 LST on 14 April 2011.







9 from Table 1 (top row) as well as differences between simulated and observed land surface temperature at

1100 LST on 14 April 2011 (bottom row).

Deleted: 6

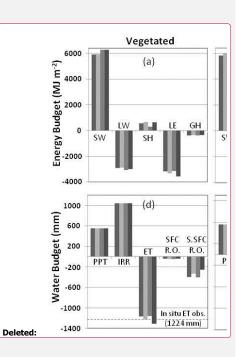


Figure 7. Differences in simulated energy (top) and water (bottom) budgets for WY 2011, using different urban surface parameterization and averaged over different land cover types. <u>Energy budget terms include: shortwave</u> radiation (SW), longwave radiation (LW), and sensible (SH), latent (LH), and ground (GH) heat fluxes. Water <u>budget terms include: precipitation (PPT), irrigation water (IRR), evapotranspiration (ET), surface runoff (SFC</u> <u>R.O.), and sub-surface runoff (S.SFC R.O.).</u>

Table 1. Model scenarios (1-9) and the incorporated remotely sensed parameter sets.

	GVF	ISA	Albedo	LAI	Emissivity
Scenario 1 (Def. Par.)	-	-	-	-	-
Scenario 2 (R.S. GVF)	х	-	-	-	-
Scenario 3 (R.S. ISA)	-	х	-	-	-
Scenario 4 (R.S. Albedo)	-	-	х	-	-
Scenario 5 (R.S. LAI)	-	-	-	х	-
Scenario 6 (R.S. Emissivity)	-	-	-	-	х
Scenario 7 (R.S. Par. Group 1)	х	х	-	-	-
Scenario 8 (R.S. Par. Group 2)	-	-	х	х	х
Scenario 9 (R.S. Par. All)	х	х	х	х	х

Formatted Table