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EXPLAINING AND FORECASTING INTERANNUAL VARIABILITY IN 1 

THE FLOW OF THE NILE RIVER  2 

 3 

Abstract 4 

 5 

This study analyzes extensive data sets collected during the 20th century and define four modes of 6 

natural variability in the flow of Nile River, identifying a new significant potential for improving 7 

predictability of floods and droughts. Previous studies have identified a significant teleconnection 8 

between the Nile flow and the Eastern Pacific Ocean. El Niño-Southern Oscillation (ENSO) 9 

explains about 25% of the interannual variability in the Nile flow. Here, this study identifies a 10 

region in the southern Indian Ocean with similarly strong teleconnection to the Nile flow. Sea 11 

Surface Temperature (SST) in the region (50oE-80oE and 25oS-35oS) explains 28% of the 12 

interannual variability in the Nile flow. During those years with anomalous SST conditions in both 13 

Oceans, this study estimates that indices of the SSTs in the Pacific and Indian Oceans can 14 

collectively explain up to 84% of the interannual variability in the flow of Nile. Building on these 15 

findings, this study uses classical Bayesian theorem to develop a new hybrid forecasting algorithm 16 

that predicts the Nile flow based on global models predictions of indices of the SST in the Eastern 17 

Pacific and Southern Indian Oceans.  18 

 19 

 20 
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1. Introduction 21 

The Nile basin covers an area of 2.9 x106 km2, which is approximately 10% of the African 22 

continent (Fig. 1). It has two main tributaries; the White Nile and the Blue Nile that originate from 23 

the equatorial lakes and Ethiopian highlands respectively. The Upper Blue Nile (UBN) basin is 24 

the main source of water for the Nile River. It contributes to approximately 60% of the annual flow 25 

of the Nile and 80% of the total Nile flow that occurs between July and October at Dongola 26 

(Conway and Hulme, 1993) (Fig. 2). The UBN basin extends over an area of 175 x103 km2 (7o N 27 

to 12o5' N and from 34o5' E to 40o E). The mean annual rainfall over this basin is 1200 mm/year 28 

(Conway and Hulme, 1993). Almost 60% of the annual rainfall over the UBN occurs during the 29 

summer between July and August, resulting in a largely predictable seasonal variability in the flow 30 

of the river.  31 

 32 

The predictability of inter-annual variability in the flow of the Nile is rather challenging. Many 33 

studies investigated the teleconnections between the Ethiopian rainfall and the global SSTs in order 34 

to find SSTs indices to use for Nile flow prediction (e.g. Eltahir, 1996; Abtew et al., 2009; and 35 

Melesse et al., 2011). Eltahir, 1996 showed that the SSTs anomalies over the tropical Eastern 36 

Pacific Ocean explains 25% of the inter-annual variability of Nile flow. ElSanabary et al., 2014 37 

showed that the dominant frequencies of the Ethiopian rainfall ranged between 2 and 8 years and 38 

that the scale averaged wavelet power of the SSTs over the Eastern Pacific and South Indian and 39 

Atlantic Oceans can explain significant fraction of the rainfall variability over Ethiopia using 40 

wavelet principal component analysis. These correlations were the basis for new forecast models 41 

that were proposed to predict the Nile flows. For example, Wang and Eltahir (1999) used a 42 

discriminant prediction approach to estimate the probabilities that the Nile flow will fall into 43 
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prescribed categories. Eldaw et al., (2003) and Gissila et al., (2004) used sea surface temperature 44 

(SST) over the Pacific, Indian and Atlantic Oceans as predictors within a multiple linear regression 45 

model to predict the Nile flow.  46 

 47 

The mechanisms behind these teleconnections between the rainfall over Ethiopia and the global 48 

SSTs were examined in several studies (e.g. Beltrando and Camperlin, 1993). However, a clear 49 

distinction must be made between rainfall over the UBN basin in Ethiopia and rainfall over East 50 

Africa, defined as the region along the coast, east of the Ethiopian highlands (Fig. 1). The UBN 51 

basin has one rainy season (May to September) during which more than 80% of the rainfall occurs, 52 

while along the East coast of Africa and depending on the location from the equator, the seasonal 53 

cycle of rainfall can have two rainy seasons (Black et al., 2003, Hastenrath et al., 2011). This 54 

pattern in the seasonal cycle of rainfall is related to the migration of the Inter-tropical Convergence 55 

Zone (ITCZ) across the equator. Camberlin, 1995 showed that the rainfall over East Africa, 56 

including the UBN basin, is strongly coupled with the dynamics of the Indian monsoon. During 57 

strong Indian monsoon seasons, the sea level pressure over India decreases significantly, which 58 

enhances the pressure gradient between East Africa and India. As a result, westerly winds increase 59 

over Eastern Africa, which advect moisture from the Congo basin to Ethiopia, Uganda and western 60 

Kenya. Giro et al., 2010 also showed that the warming over the Pacific Ocean, during El Niño 61 

events, reduces these westerly winds, which reduce the rainfall over East Africa. In addition, the 62 

monsoon circulation is weaker during El Niño events due to modulation of the walker circulation 63 

and enhanced subsidence over the Western Pacific and South Asia, thus the rainfall over Ethiopia 64 

decreases (Ju and Slingo, 1995; Kawamura, 1998; Shukla and Wallace, 1983; Soman and Slingo, 65 

1997). The reduced Nile flows during El Niño events were also attributed to the enhanced tropical-66 
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scale subsidence that suppresses rainfall, as a consequence of the increased upwelling over the 67 

Eastern Pacific Ocean (Amarasekera et al., 1996).  68 

 69 

The teleconnection between the Nile flow and SSTs of North and Middle Indian Ocean and ENSO 70 

is described in another paper by the authors (Siam et al., 2014). Nile flow is strongly modulated 71 

by ENSO through ocean currents. During El Niño events, the warm water travels from the Pacific 72 

to the Indian Ocean through the “Indonesian through flow” and advection by the Indian Equatorial 73 

Current (Tomczak and Godfrey, 1995). As a result, SSTs in North and Middle Indian Ocean warm-74 

up following the warming of Tropical Eastern Pacific, and forces a Gill type circulation anomaly 75 

with enhanced westerly winds over Western Indian Ocean (Yang et al., 2007). The latter enhances 76 

the low-level divergence of air and moisture away from the Upper Blue Nile resulting in a 77 

reduction of rainfall over the basin. On the other hand, the warming over the South Indian Ocean, 78 

generates a cyclonic flow in the boundary layer, which reduces the cross-equatorial meridional 79 

transport of air and moisture towards the UBN basin, favoring a reduction in rainfall and river 80 

flows. The tele-connections between the Pacific Ocean and the Nile basin and between the Indian 81 

Ocean and the Nile basin are reflected in different modes of observed natural variability in the 82 

flow of Nile River, with important implications for the predictability of floods and droughts. 83 

 84 

The objectives of the study are (i) to investigate the teleconnection between the Indian Ocean and 85 

the Nile basin and its role in explaining observed natural modes of variability in the flow of the 86 

Nile river, and (ii) to develop a new hybrid forecasting algorithm that can be used to predict the 87 

Nile flow based on indices of the SST in the Eastern Pacific and Southern Indian Oceans.  88 

 89 
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2. Data  90 

In this study we use observed SSTs over the Indian and Pacific oceans from the monthly global 91 

(HadISST V1.1) dataset on a 1 degree latitude-longitude grid from 1900 to 2000 (Rayner et al. 92 

2003). The monthly flows at Dongola from 1900 to 2000 were extracted from the Global River 93 

Discharge Database (RivDIS v1.1) (Vörösmarty et al., 1998). The average monthly anomalies 94 

from September to November of the SSTs averaged over the Eastern Pacific Ocean (6oN-2oN, 95 

170oW-90oW; 2oN-6oS, 180oW-90oW; and 6oS-10oS, 150oW-110oW) are used as an index of 96 

ENSO. This area has shown the highest correlation with the Nile flows and it is almost covering 97 

the same area as Niño 3 and 3.4 indices (Trenberth, 1997).  98 

 99 

3. Relation between the variability in the flow of Nile river, ENSO and the Indian Ocean SST 100 

Based on extensive correlation analysis of the Nile river flow at Dongola and the observed SST in 101 

the Indian Ocean, this study identifies a region over the Southern Indian Ocean (50oE-80oE and 102 

25oS-35oS) (see Figure 3) as the one with the highest correlation between SST and the Nile flow. 103 

This correlation is especially high for river flow (accumulated for July, August, September and 104 

October) and SST during the month of August. In comparison to earlier studies, ElDaw et al. 105 

(2003) used SST indices over the Indian Ocean to predict the Nile flow, however, they focused on 106 

regions of the Indian Ocean that are different from the region that we use in defining the SIO index. 107 

In other words the region of the SIO was not used by ElDaw et al. (2003). Table 2 describes the 108 

regions of the Indian Ocean identified in both studies. 109 

 110 

Here, this study emphasizes that the proposed forecasting methodology for the Nile flow is 111 

motivated by the physical mechanisms proposed by Siam et al. (2014) and described in Section 1. 112 
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However, the forecasting approach of some of the previous studies was based on purely statistical 113 

correlations found between the Nile flow and SSTs globally. 114 

 115 

Figure 4 shows the observed and simulated time series of the average July to October Nile flow at 116 

Dongola, which accounts for approximately 70% of the annual Nile flow. The Nile flow is 117 

predicted by a linear regression model using ENSO averaged from September to November and 118 

SIO August indices as predictors. It is clear from this figure that the addition of the SIO index 119 

increase the explained variability of the Nile flow to 44%, compared to only 25% when ENSO 120 

index is used alone. This indicates that the SIO index can explain almost 20% of the variability of 121 

the Nile flow that is independent from ENSO. The North and middle of the Indian Ocean have 122 

also exhibited a high correlation between their SST and the Nile flow. However, the additional 123 

variability explained by the SST over the North and Middle Indian Ocean, when combined with 124 

the ENSO index, is negligible (not shown here). This is mainly because the SSTs over the North 125 

and Middle Indian Ocean are dependent on ENSO, while the SSTs over the South Indian Ocean 126 

(i.e. SIO index) is not, as described in Section 1. 127 

 128 

In further analysis, we define ±0.5oC as the threshold between non-neutral and neutral years on the 129 

Eastern Pacific Ocean based on ENSO index. This value is about two-thirds of one standard 130 

deviation of the anomalies of ENSO index. The same threshold has been used to identify non-131 

neutral and neutral years using El Niño 3.4 index, which is similar to our ENSO index (Trenberth, 132 

1997). This indicates that if the ENSO index anomaly is greater than 0.5oC or less than -0.5oC, it 133 

is considered as non-neutral condition, otherwise, it is considered as neutral condition. Similarly, 134 
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±0.3oC value is used as a threshold between non-neutral and neutral years on the South Indian 135 

Ocean using the SIO index. This value is also about two-thirds of one standard deviation for the 136 

anomalies of the SSTs over this region. Thus, if both ENSO and SIO indices are used together, 137 

four different combinations can be defined based on these classifications. The first is when both 138 

ENSO and SIO indices are neutral (29 out of 100 events), the second is when both ENSO and SIO 139 

indices are non-neutral (19 out of 100 events), the third when SIO is non-neutral and ENSO is 140 

neutral (26 out of 100 events) and finally when SIO is neutral and ENSO is non-neutral (26 out of 141 

100 events). Each of these combinations is considerate as a mode of natural variability in the flow 142 

of Nile river. Then the Nile flow is calculated as a predictant using multiple linear regression with 143 

the (ENSO and SIO indices) of each mode as predictors.  144 

 145 

Four different modes are identified for describing the natural variability in the flow of Nile River 146 

and summarized in (Table 1). The ENSO and SIO indices do not explain a significant fraction of 147 

the interannual variability in the flow of river when they are both neutral (Fig. 5a). The variability 148 

of the Nile flow in such years can be regarded as a reflection of the chaotic interactions between 149 

the biosphere and atmosphere and within each of the two domains. For this mode, the predictability 150 

of the Nile flow is rather limited. The other two intermediate modes include non-neutral conditions 151 

in the Eastern Pacific and neutral conditions in the Southern Indian Oceans or vice versa (Fig. 5b 152 

and 5c). For these two modes, a significant fraction (i.e. 31% and 43%) of the variance describing 153 

inter-annual variability in the flow is explained. Hence, these modes point to a significant potential 154 

for predictability of the flow. Finally, indices of ENSO and SIO can explain 84% of the interannual 155 

variability in the Nile flow when non-neutral conditions are observed for both the Eastern Pacific 156 

and Southern Indian Oceans (Fig. 5d). Therefore, the SIO index can be used to predict the flow 157 
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together with the ENSO index, as collectively they can explain a significant fraction of the 158 

variability in the flow of Nile River. This result indicates that during years with anomalous SST 159 

conditions in both oceans, floods and droughts in the Nile River flow can be highly predictable, 160 

assuming accurate forecasts of those indices are available.  161 

 162 

4. A Hybrid Methodology for Long-range Prediction of the Nile flow 163 

A simple methodology is proposed to predict the Nile flow with a lead time of about a few months 164 

(~3-6 months). The forecast of global SST distribution based on dynamical models (e.g. NCEP 165 

coupled forecast system model version 2 (CFSv2), Saha et al., 2010; Saha et al., under review), 166 

can be used together with the algorithm developed in this section to relate the Nile flow to ENSO 167 

and SIO indices. The proposed method is shown in Figure 6 and can be described in two main 168 

steps: 169 

• Forecast of SST anomalies in the Indian Ocean and Eastern Pacific Ocean using dynamical 170 

models of the coupled global ocean atmosphere system. Such forecasts are routinely issued by 171 

centers such NCEP and ECMWF. 172 

• Application of a forecast algorithm between the Nile flow (predictand) and forecasted SSTs 173 

in the Indian and Eastern Pacific Oceans (predictors) for the identified mode of variability. 174 

 175 

In this paper we focus on the second step of the proposed method: the development of the algorithm 176 

relating SSTs and the Nile flow. We develop the forecast algorithm using observed SSTs. We do 177 

not describe how this algorithm can be applied with forecasts of global SST distribution based on 178 
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dynamical models as this step is beyond the scope of this paper.  However, we recognize that 179 

overall accuracy of this method in predicting interannual variability of the Nile flow is dependent 180 

on the skill of global coupled models in forecasting the global SSTs (See Appendix for information 181 

about forecasting models). Thus, the selection of the forecast model, which predicts the SSTs is 182 

an important step to ensure the accuracy of the prediction of the Nile flow. As global coupled 183 

ocean-atmosphere models improve in their skill of forecasting global SSTs in the Pacific and 184 

Indian Oceans, we expect that our ability to predict the interannual variability in the Nile flow will 185 

improve too. In addition, the accuracy in the prediction of the Nile flow at medium and short time 186 

scales (of weeks to one month) can be improved by adding other hydrological variables (e.g. 187 

rainfall and stream flow) over the basin, as demonstrated by (Wang and Eltahir, 1999) 188 

The proposed method can be described as hybrid since it combines dynamical forecasts of global 189 

SSTs, and statistical algorithms relating the Nile flow and the forecasted SSTs. The same method 190 

can also be described as hybrid since it combines information about SSTs from the Pacific and the 191 

Indian Oceans. 192 

Here, we apply a discriminant approach that specifies the categoric probabilities of the predictand 193 

(Nile flow) according to the categories that the predictors (i.e. ENSO and SIO indices) fall into. 194 

The annual Nile flow is divided into “low”, “normal”, and “high” categories. The boundaries of 195 

these categories are defined so that the number of points in each category is about a third of the 196 

data points (Fig 7). On the other hand, the ENSO and SIO indices are divided into “cold”, “normal” 197 

and “warm” categories. (The words Normal and Neutral are used to describe the same 198 

conditions).The boundaries for the normal category are -0.5oC and 0.5oC for ENSO index and -199 

0.3oC and 0.3oC for SIO index (Fig. 7). Any condition below the lower limit is considered “cold” 200 

and higher than the upper limit is considered “warm” for both indices.  201 
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The Bayesian theorem, described in many statistical books (e.g., Winkler 1972; West 1989), states 202 

that the probability of occurrence of a specified flow category (Qi) and given two conditions (A 203 

and B) can be expressed as 204 

�(��/ �, 	)  =
�(
/��,�)�(��/�) 

�(
/�)
       (1) 205 

Where �(��/ �) is the probability of event Qi given that event A has occurred, and �(��/ �, 	) is 206 

the probability of event Qi given that events A and B have occurred, and similarly for other shown 207 

probabilities.  In addition, if the events A and B are independent, we can rewrite Eq. (1) as 208 

�(��/ �, 	)  =
�(
/��)�(��/�) 

∑ �(
/��)�
��� �(��/�)

      (2) 209 

The advantage of assuming independence between (A and B) and using Eq. (2), it simplifies the 210 

calculation of P(B/Qi, A) since we do not have to split the data into a relatively large number of 211 

categories, which reduces the error due to the limitation of the data size. The independence 212 

between ENSO and SIO indices is a reasonable assumption as the coefficient of determination 213 

between them is less than 6%. 214 

 215 

In order to evaluate the predictions of the Nile flow, we use a forecasting index (FI) defined by 216 

Wang and Eltahir, (1999) as 217 

FP(j)= ∑ ��(�, �)�
��� ��(�, �)   (3) 218 

FI = 
�

�
∑ �� (�)�

���                  (4) 219 
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Where FP(j) is the forecast probability in a certain year (j) and the FI is the average of the FP over 220 

a certain period, n. The prior probability Pr(i, j) is calculated using Eq.(2) for a certain year (j) and 221 

category (i=1, 2, 3) and the posterior probability Pp(i, j) is defined as [1,0,0] in low flow year, 222 

[0,1,0] in normal year, and [0,0,1] in a high flow year.  Hence, a larger FI indicates a higher 223 

accuracy of the forecast. The FI without any information about SST, should be about one third as 224 

we have classified flow data into three categories each with a similar number of the data points. 225 

The data is split into a calibration period (1900-1970) and a verification period (1970-2000). 226 

Tables 3 and 4 summarize the conditional probabilities of Nile flow given certain conditions of 227 

SIO or ENSO index. It is shown that during “warm” and “cold” conditions of SIO, the probabilities 228 

are significantly higher for “low” and “high” Nile flow, respectively. The same is true for the 229 

ENSO, as was described originally by Eltahir (1996). Table 5 shows the probabilities that are 230 

conditioned on both SIO and ENSO, calculated using Eq. (2). This table illustrates clearly how 231 

forecasts of the Nile flow can be improved by combining the two indices. For example, “warm” 232 

conditions in both oceans translate into 85% probability of “low” flow in the Nile, and insignificant 233 

probability of “high” flow. On the other hand, “cold” conditions in both oceans translate into 83% 234 

probability of “high” flow in the Nile, and insignificant probability of “low” flow. Depending on 235 

the accuracy of the dynamical forecast models of global SSTs, such forecast of the Nile flow can 236 

be issued with lead times of 6 months. At present, the Eastern Nile Regional technical Office 237 

(ENTRO) issues operational forecasts of the Nile flow based on ENSO forecasts and the 238 

probability table described by Eltahir (1996) (similar to Table 4). We anticipate that use of Table 239 

5, would represent a significant improvement in these operational forecasts.  240 

The combined use of ENSO and the SIO indices significantly increased the FI to 0.5 (Figure 8a). 241 

Comparison of Figures 8b and 8c, illustrates that the SIO index alone has almost the same FI value 242 
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as ENSO index. Recall that in absence of any information about global SSTs, the FI should have 243 

a value of one third.  The deviations of the FI using ENSO index alone (Figure 8b) or SIO index 244 

alone (Figure 8c) from one third are almost added together to create the deviation of the FI from 245 

the hybrid method from one third (Figure 8a). Hence, the new SIO index plays an independent role 246 

from ENSO in shaping the interannual variability in the flow of Nile River. Thus by using these 247 

two indices, we explain a significant fraction of the interannual variability in the flow of Nile 248 

River, and illustrate a significant potential for improving the Nile flow forecasts.  249 

5. Conclusions 250 

• In this paper, we document that the SSTs in the Eastern Pacific and Indian Oceans play a 251 

significant role in shaping the natural interannual variability in the flow of Nile River. 252 

Previous studies have identified a significant teleconnection between the Nile flow and the 253 

Eastern Pacific Ocean. El Niño-Southern Oscillation (ENSO) explains about 25% of the 254 

interannual variability in the Nile flow. Here, this study identifies a region in the southern 255 

Indian Ocean with similarly strong teleconnection to the Nile flow. Sea Surface 256 

Temperature (SST) in the region (50oE-80oE and 25oS-35oS) explains 28% of the 257 

interannual variability in the Nile flow.  258 

• In addition, four different modes of natural variability in the Nile flow are identified and it 259 

is shown that during non-neutral conditions in both the Pacific and Indian Oceans, the Nile 260 

flow is highly predictable using global SST information. During those years with 261 

anomalous SST conditions in both Oceans, this study estimates that indices of the SSTs in 262 

the Pacific and Indian Oceans can collectively explain up to 84% of the interannual 263 

variability in the flow of Nile. The estimated relationships between the Nile flow and these 264 
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indices allow for accurately predicting the Nile floods and droughts using observed or 265 

forecasted conditions of the SSTs in the two oceans. 266 

•  This study uses classical Bayesian theorem to develop a new hybrid forecasting algorithm 267 

that predicts the Nile flow based on indices of the SST in the Eastern Pacific and Southern 268 

Indian Oceans. “Warm” conditions in both oceans translate into 85% probability of “low” 269 

flow in the Nile, and insignificant probability of “high” flow. On the other hand, “cold” 270 

conditions in both oceans translate into 83% probability of “high” flow in the Nile, and 271 

insignificant probability of “low” flow. Applications of the proposed hybrid forecast 272 

method should improve predictions of the interannual variability in the Nile flow, adding 273 

a new a tool for better management of the water resources of the Nile basin.  274 

The proposed forecasting methodology is indeed dependent on the accuracy of the global SST 275 

forecasts from global dynamical models. The accuracy of these forecasts is likely to improve as 276 

the models are tested and developed further. However, in this paper we test the proposed 277 

forecasting algorithm using observed SSTs. Such test describes an upper limit of the skill of the 278 

proposed algorithm. The assessment of the same methodology using indices of SST forecasted by 279 

global dynamical models will be addressed in future work. 280 

 281 

 282 

 283 

 284 

 285 



15 

 

Tables 286 

Table 1: Summary of the coefficient of determination (R2) between the average Nile flow from July to 287 

October and different combination of indices of ENSO and SIO. 288 

Mode 

ENSO SIO 
ENSO, 

SIO 

Number of 

 events 

(Observed Variance of Nile flow) ENSO SIO 

Neutral Neutral 
0.04 

 

0.03 

 

0.08 

 

29 

(6.76) 

Neutral Non-Neutral 
0.05 

 

0.28+ 

 

0.31+ 

 

26 

(10.24) 

Non-

Neutral 
Neutral 

0.4+ 

 

0.02 

 

0.43+ 

 

26 

(5.8) 

Non-

Neutral 
Non-Neutral 

0.64+ 

 

0.6+ 

 

0.84+ 

 

19 

(12.3) 

SIO: South Indian Ocean SSTs index, ENSO: ENSO index.  289 

*Values that are significant at 5% significance level 290 

+ Values that are significant at 1% significance level 291 

 292 

 293 

 294 

 295 

 296 

 297 
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Table 2: Comparison between regions in the Indian Ocean used in ElDaw et al., 2003 and this 298 

study to predict the Nile flow. 299 

Region Location Study 

1  (35o-44 o S, 115 o -130 o E) 

ElDaw et al, 2003 

2  (0o-7 o S, 90 o -130 o E) 

3  (35o-44 o S, 20 o -60 o E) 

4  (10o-20 o S, 110 o -125 o E) 

5  (50oE-80oE and 25oS-35oS) This study 

 300 

Table 3: Conditional probability of the Nile flow given SIO conditions 301 

    Nile flow 

   High Normal Low 

S
IO

  

Warm 0 0.25 0.75 

Normal 0.23 0.39 0.39 

Cold 0.57 0.26 0.17 

 302 

 303 

Table 4: Conditional probability of the Nile flow given ENSO conditions 304 

    Nile flow 

   High Normal Low 

E
N

S
O

 

Warm 0.15 0.31 0.54 

Normal 0.22 0.38 0.41 

Cold 0.68 0.32 0 

 305 
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 306 

Table 5: Conditional probability of the Nile flow given SIO and ENSO conditions 307 

SIO  

Nile 

flow 

ENSO  

Warm  Normal Cold 

S
IO

 W
a

rm
 High  0 0 0 

Normal 0.15 0.22 1 

Low 0.85 0.78 0 

S
IO

 N
o

rm
a

l High  0.1 0.14 0.57 

Normal 0.31 0.4 0.43 

Low 0.59 0.46 0 

S
IO

 C
o

ld
 

High  0.33 0.42 0.83 

Normal 0.29 0.33 0.17 

Low 0.37 0.25 0 

 308 

 309 

 310 

 311 

 312 

 313 

 314 

 315 
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Appendix 316 

Table 1: Summary of some available forecast models of the Sea Surface Temperature 317 

Model Type of 

Model 

Agency Domain Lead time 

up to 

(Months) 

Resolution 

    (km) 

Reference 

NCEP-CFS 

V2 

Dynamical  National 

Centers for 

Environmental 

Prediction 

(NCEP) 

Global 8  200  Saha et al., 

2010 

NASA-

GMAO 

Dynamical NASA Goddard 

Space Flight 

Center- Global 

Modeling and 

Assimilation 

Office 

Global 12 200 Bacmeister 

et al., 2000 

ECMWF- 

System 4 

Dynamical  European 

Centre for 

Medium-Range 

Weather 

Forecasts 

Global 4 70 Molteni et 

al., 2011 

UKMO-

GCM 

Dynamical  United Kingdom 

Met Office 

Global 6 150 Graham et 

al., 2005 

NOAA-CDC Statistical National 

Oceanic and 

Atmospheric 

Administration- 

Climate 

Diagnostic 

Center 

Global 12 -- Pneland et 

al., 1998 

CPC- 

Markov 

Statistical  National 

Centers for 

Environmental 

Prediction- 

Climate 

Prediction 

Center 

Nino 3 and 

Nino 3.4 

8 -- Xue et al., 

2000 

 318 
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Figures 454 

 455 

 456 

 457 

Figure 1: Topographic map of the Nile basin showing the outlet of the Upper Blue Nile basin (shaded in 458 

gray) at Roseiras. The White and Blue Nile join together at Khartoum the form the main branch of the Nile 459 

that flows directly to Dongola in the North. 460 

 461 
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 475 

 476 

Figure 2: Annual Nile flow (Top) and seasonal cycle (Bottom) of the flow at Dongola for the period from 477 

1900 to 2000. 478 
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 481 
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 484 

 485 

Figure 3: World map showing areas that cover the ENSO and North and South Indian Ocean SSTs indices. 486 

The Nino 3 and 3.4 are outlined in blue and green respectively. The whole Nile basin is outlined in black. 487 
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 488 

 489 

Figure 4: Observed (Solid Blue lines) and simulated (Dashed Red lines) average Nile flows from July to 490 

October at Dongola using: a) ENSO index, b) SIO index and c) ENSO and SIO indices as predictors for the 491 

period 1900 to 2000. 492 
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 497 

Figure 5: A comparison between the observed and simulated Nile flow showing the different modes of 498 

variability for the period from 1900 to 2000: a) Neutral ENSO and SIO, b) Neutral ENSO and Non-Neutral 499 

SSTs in SIO, c) Non-Neutral ENSO and Neutral SSTs in SIO and finally, d) Non-Neutral ENSO and Non-500 

Neutral SSTs in SIO. 501 
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 519 

 520 

Figure 6: Schematic of the hybrid methodology for predicting the Nile flow using the SSTs forecasts of 521 

the dynamical models and the proposed forecast algorithm. 522 
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 527 

Figure 7: Relations between the annual Nile flow and different indices for the period (1900-2000): a) 528 

ENSO, and b) SIO. The horizontal lines represent the boundaries for the “high”, “normal” and “low” 529 

categories of the annual flow. The vertical lines represent the boundaries for the “Warm”, “normal”, and 530 

“cold” conditions for ENSO and SIO indices. 531 
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 538 

Figure 8: Time series of the forecast probability using different indices: a) ENSO and SIO together, b) 539 

ENSO, and c) SIO. The period (1900-1970) is used for calculating the probabilities (shown in crosses) 540 

using Eq. (2) and (1970-2000) for validation (shown in stars). 541 
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