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Abstract 1 

Future flood frequency for the Upper Truckee River Basin (UTRB) is assessed using non-2 

stationary extreme value models and design life risk methodology.  Historical floods are 3 

simulated at two UTRB gauge locations, Farad and Reno using the Variable Infiltration 4 

Capacity (VIC) model and non-stationary Generalized Extreme Value (GEV) models. The 5 

non-stationary GEV models are fit to the cool season (November-April) monthly maximum 6 

flows using historical monthly precipitation totals and average temperature. Future cool 7 

season flood distributions are subsequently calculated using downscaled projections of 8 

precipitation and temperature from the Coupled Model Intercomparison Project Phase-5 9 

(CMIP-5) archive.  The resulting exceedance probabilities are combined to calculate the 10 

probability of a flood of a given magnitude occurring over a specific time period (referred to 11 

as flood risk) using recent developments in design life risk methodologies.  This paper 12 

provides the first end-to-end analysis using non-stationary GEV methods coupled with 13 

contemporary downscaled climate projections to demonstrate the evolution of flood risk 14 

profile over typical design life periods of existing infrastructure that is vulnerable to flooding 15 

(e.g. dams, levees, bridges, and sewers). Results show that flood risk increases significantly 16 

over the analysis period (from 1950 through 2099). This highlights the potential to 17 

underestimate flood risk using traditional methodologies that don’t account for time varying 18 

risk. Although model parameters, for the non-stationary method are sensitive to small changes 19 

in input parameters, analysis shows that the changes in risk over time are robust. Overall, 20 

flood risk at both locations (Farad and Reno) is projected to increase 10-20% between the 21 

historical period1950-1999 and the future period 2000-2050 and 30-50% between the same 22 

historical period and 2050-2099. 23 

24 
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1 Introduction 1 

 “Stationarity is Dead” [Milly et al., 2008], yet the standard practice for flood frequency 2 

analysis is predicated on this very assumption. This discrepancy has not gone unnoticed 3 

within the scientific community and there is a growing body of research investigating, (1) 4 

trends in observed floods [e.g. Franks, 2002; Vogel et al., 2011], (2) ways to incorporate non-5 

stationarity into frequency distributions [e.g. Katz and Neveau, 2002; Raff et al., 2005] and 6 

(3) methodologies to interpret risk and approach design within a non-stationary framework 7 

[e.g. Mailhot and Duchesne, 2010; Rootzen and Katz, 2013; Salas and Obeysekara, 2014].  8 

Both the frequency and intensity of extreme events are particularly susceptible to change 9 

because small shifts in the center of a distribution can potentially have much larger impacts 10 

on the tails [Meehl et al., 2000]. Regardless of climate change, naturally occurring long-term 11 

climate oscillations, such as ENSO, have been linked to low frequency variability in flood 12 

frequency [e.g. Cayan et al., 1999; Jain and Lall, 2001]. Anthropogenic climate change has 13 

the potential to amplify natural climatic variability throughout the interconnected climate and 14 

hydrologic systems.   15 

Already trends in many hydrologic variables have been observed across the Western United 16 

states (as well as around the world). For example, clear increases in temperature have been 17 

measured across the west [e.g. Cayan et al., 2001; Dettinger and Cayan, 1995].  Precipitation 18 

trends are more variable. Regonda et al. [2005] found increased total winter precipitation (rain 19 

and snow) from 1950 to 1999 in many sites across the western United States, although 20 

springtime snow water equivalent (SWE) was shown to decline over the same period. 21 

Similarly, Mote et al. [2005] analyzed snowpack trends in western North America, and 22 

reported widespread declines in springtime SWE over the period 1925–2000, especially since 23 

the middle of the 20th century.  They attribute this decline predominantly to climatic factors 24 

such as El Niño–Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and 25 

positive trends in regional temperature.  Easterling et al. [2000] summarized previous studies 26 

on precipitation trends. They note that trends vary from region to region, but in general, 27 

increases in precipitation have occurred disproportionately in the extremes. Several 28 

subsequent studies have observed increasing trends in extreme precipitation events, although 29 

the changes are relatively small [Gutowski et al., 2008; Kunkel, 2003; Madsen and Figdor, 30 

2007]. 31 
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Research has also demonstrated increasing trends in flood frequency in some regions.  Walter 1 

and Vogel [2010] and Vogel et al. [2011] observed increasing flood magnitudes across the 2 

United States using stream gauge records, and Franks [2002] showed statistically significant 3 

increases in flood frequency since the 1940s.  Still, non-stationary flood behaviour has been 4 

historically difficult to quantify and there has been some debate on the significance of flood 5 

frequency trends. For example, Hirsch [2011] noted both increasing and decreasing trends in 6 

annual flood magnitudes in different regions of the US. Also, Douglas et al. [2000] found that 7 

if one takes into account spatial correlation, many previous findings of flood trends are not 8 

statistically significant. Difficulty in diagnosing flood trends is not unique to the Western US; 9 

a literature review of historical flood studies across Europe also found spatial variability in 10 

flood trends [Hall et al., 2014]. 11 

Even when significant trends are found, the complexity of flooding mechanisms that depend 12 

on many variables and can vary regionally and seasonally makes it difficult to attribute trends 13 

to specific causes. Illustrating the importance of seasonality, Small et al. [2006] showed that if 14 

a high precipitation event occurs in the fall, as opposed to the spring, it will contribute to 15 

baseflow rather than inducing flooding.  Also, urbanization can drastically increase the 16 

impervious area of a basin, thus amplifying floods by decreasing infiltration and speeding 17 

runoff. The largest flood magnitude increases observed by both Walter and Vogel [2010] and 18 

Vogel et al. [2011] were in basins with urban development. The influence of development 19 

trends on flood behavior can be difficult to separate from other variables. For example, 20 

Villarini et al. [2009] could not conclusively tie reduced stationarity (i.e. changes in mean 21 

and/or variance) in peak discharge records to climate change because of variability in the 22 

other factors that influence runoff.  23 

Merz et al. [2012] note that attributing changes in flood hazard is complicated by the complex 24 

array of drivers that can include; land cover change and infrastructure development as well as 25 

natural climate variability and change.  Here we set aside the impacts of development and 26 

management practices and focus on the role of climate change.  However, even with this 27 

simplification, future extremes can still be influenced by a number of interrelated variables 28 

such as changes in temperature, precipitation efficiency, and vertical wind velocity [Mullet et 29 

al., 2011; O'Gorman and Schneider, 2009]. Analyzing global circulation model (GCM) 30 

outputs Pierce et al. [2012] found total changes in precipitation to be small relative to the 31 

existing variability but noted larger seasonal changes in storm intensity and frequency.  32 
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Despite uncertainty, many studies agree that warming will increase the potential for intense 1 

rainfall [Allan, 2011; Gutowski et al., 2008; Pall et al., 2011; Sun et al., 2007]. Furthermore, 2 

Min et al. [2011] found that some GCM simulations may underestimate extreme precipitation 3 

events in the northern hemisphere. Indicating that projections of extreme precipitation based 4 

on GCM outputs may be conservative.   5 

Studies have also predicted increases in flood frequency and magnitude with a warmer 6 

climate especially in snowmelt dominated basins [e.g. Das et al., 2011].  As with historical 7 

flooding trends, translating forecasted climate variables to flood frequency is a complex 8 

process and several methodologies have been used.  Downscaled GCM climate forcings can 9 

be used to drive hydrologic models and simulate future floods directly [e.g. Das et al., 2011; 10 

Vogel et al., 2011; Raff et al., 2009].  With this approach traditional stationary flood 11 

frequency distributions can be fit to the simulated floods to calculated return periods of 12 

interest [e.g. Raff et al., 2009; Vogel et al., 2011].  This allows for return periods and flood 13 

magnitudes that change over time, as with the flood magnification and recurrence reduction 14 

factors calculated by Walter and Vogel [2010] and Vogel et al. [2011]. However, these 15 

approaches still assume flood mechanisms are stationary over the time period that the 16 

distribution is fit to.   17 

This limitation can be overcome using non-stationary generalized extreme value (GEV) 18 

distributions where the model parameters like mean (i.e. location) and spread (i.e. scale) are 19 

allowed to vary as a function of time [e.g. Gilroy and McCuen, 2012] or with relevant 20 

covariates [e.g. Griffis and Stedinger, 2007; Richard W Katz et al., 2002; Towler et al., 2010]. 21 

This approach has been gaining popularity for flood frequency estimation. Using this 22 

technique it is not necessary to simulate future floods directly by forcing a hydrologic model 23 

with projected hydroclimate fields (e.g. precipitation and temperature). The parameters of the 24 

GEV model, like mean and spread change with time (i.e. non-stationary) based on a linear 25 

combination of covariates like precipitation and temperature. Historical relationships between 26 

extreme events and hydroclimate fields are used to identify the weighting of covariates. These 27 

weights are then used to estimate parameters for future time periods using precipitation and 28 

temperature outputs from hydroclimate projections. For example, Gilroy and McCuen [2012] 29 

used non-stationary GEV models of flood frequency that incorporated a linear trend in the 30 

location parameter.  Similarly, Griffis and Stedinger [2007] and Towler et al. [2010] used 31 

climate variables as covariates for the distribution parameters.    32 
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While, non-stationary flood forecasting methods provide flexibility to analyze flood 1 

variability, they are also incongruent with many of the traditional metrics used in water 2 

resources planning.  Historically, most infrastructure that is vulnerable to flooding (e.g. dams, 3 

levees, sewers and bridges) has been designed to withstand flooding of specified return period 4 

(e.g. the 100 year flood). However, these calculations rely on a flood distribution which is 5 

assumed to remain stationary with time, and hence the return period design metric is also 6 

assumed to be stationary.  When non-stationary methods are used, the underlying flood 7 

distributions, and associated return periods, vary with time. Thus, under a non-stationary 8 

climate, the notion of static return period flood event (e.g., 100-year flood, 200-year flood, 9 

etc.) is no longer a valid concept. 10 

To address this issue, Rootzén and Katz [2013] introduced the concept of design life level to 11 

calculate the risk of a given flood magnitude occurring over a specified time period. Salas and 12 

Obeysekera [2014] further demonstrated the relevance of this technique to hydrologic 13 

community using flood frequency examples. However, this methodology has yet to receive 14 

widespread attention within the hydrologic community. Here, we present a non-stationary 15 

flood frequency assessment for the Upper Truckee River Basin (UTRB) using contemporary 16 

downscaled climate projections and the non-stationary design life level technique introduced 17 

by Rootzén and Katz [2013] to quantify flood risk (Note that following the convention of 18 

Rootzén and Katz [2013] we use the term flood risk to refer to the probability of an extreme 19 

event occurring and not as a quantification of expected losses).  While the methodology used 20 

for this analysis is previously established, this paper provides the first end-to-end 21 

demonstration of non-stationary GEV analysis coupled with contemporary downscaled 22 

climate projections (specifically, downscaled climate projections from the Coupled Model 23 

Intercomparison Project Phase-5 (CMIP-5)), to quantify how the flood risk profiles may 24 

evolve in the Truckee river basin over the next century.  The intent of this work is 1) to 25 

investigate potential flood risk changes over time in the Truckee basin and 2) to demonstrate 26 

the applicability of non-stationary techniques in a regional flood analysis to make these tools 27 

more accessible to the hydrologic community.  28 

The paper is organized as follows.  Section 2 provides background on the study area along 29 

with data sets and models used.  The methodologies of using non-stationary spatial GEV 30 

analysis in conjunction with climate projections and time evolving risk assessment are 31 
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described in section 3.  Results and discussions of findings are given in section 4.  Summary 1 

and conclusions from the analysis are presented in section 5. 2 

 3 

2 Background 4 

This section provides background on the study area (2.1), streamflow data and simulations 5 

(2.2) and climate data and models (2.3).  6 

2.1 Upper Truckee River Basin 7 

The Truckee River originates in northern Sierra Nevada Mountains in California (above Lake 8 

Tahoe) and flows northeast to Nevada where it ends in the Pyramid Lake (Figure 1).  The 9 

total basin area is roughly  7,900 square  kilometres, however the area upstream of Reno 10 

(2,763 square kilometres) provides the majority of the basin’s precipitation through 11 

snowpack.  The focus of this analysis is on the Farad and Reno gauge locations shown in 12 

Figure 1, henceforth referred to as Farad and Reno.  The Farad gauge is located roughly 1.5 13 

kilometers downstream of the Farad hydropower plant and provides a cumulative measure of 14 

all of the upper basin tributaries [Stokes, 2002]. Most of the available water supply is 15 

generated upstream of the Farad Gauge [USACE, 2013a].  The Reno gauge is located 16 

downstream of Farad in the heart of Reno and is a good reference point for analyzing urban 17 

flooding. The intervening area between the Farad and Reno gauges is small, roughly 350 18 

square kilometers and there are only two small tributaries that enter the main stem between 19 

Farad (Reno Dog Creek and Hunter Creek). 20 

 Flooding in the upper Truckee generally takes one of three forms. Some of the most 21 

severe floods have resulted from heavy rain events covering most of the basin and lasting one 22 

to six days.  These storms generally occur from November to April and may be linked to 23 

Atmospheric Rivers [Ralph and Dettinger, 2012].  Snowmelt floods are also common from 24 

April to July. Although, snowmelt floods transmit large volumes of water for longer 25 

durations, they generally don’t cause damage because they are well predicted and can be 26 

regulated with upstream reservoirs. Finally, in late summer (July – August) local cloudbursts 27 

can generate high intensity precipitation over small areas.  These storms can cause local 28 

damage to tributaries but generally don’t have a large impact on the main stem of the Truckee. 29 
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 In the twentieth century, nine major floods have been recorded on the Truckee River, 1 

all of which occurred from November to April [USACE, 2013b]. The flood of record 2 

occurred in January of 1997 and was caused by warm rain falling on a large snowpack 3 

(~180% of normal) and melting nearly all of the snowpack below 7,000 feet [USACE, 4 

2013b]. The floods of 1950, 1955 and 1963 were some of the most damaging due to the 5 

development of Reno along the river during this time period [USACE, 2013b]. Subsequent 6 

flood damages have been, at least partially, mitigated by the implementation of flood 7 

infrastructure starting in the 1960s.  8 

2.2. Streamflow data and simulations 9 

 Streamflow has been measured at both the Farad and Reno USGS gauges. However, 10 

gauge flows are not readily applicable to flood frequency analysis due to the presence and 11 

development of water supply and flood control structures upstream.  For example, upstream 12 

of Reno there are four dams with flood control capabilities (i.e.  Martis Creek Dam, Prosser 13 

Creek Dam, Stampede Dam and Boca Dam) in addition to Tahoe, Donner and Independence 14 

Lakes which provide incidental flood regulation.  Unregulated flow estimates were developed 15 

by the US Army Corps of Engineers (USACE) but are only available for historical flood 16 

periods [USACE, 2013b]. Therefore, we simulate unregulated flows from 1950 to 1999 using 17 

the Variable Infiltration Capacity (VIC) model and validate results using the available 18 

unregulated flow estimates.    19 

A brief summary of the VIC model is provided here, and for additional technical 20 

specifications the reader is referred to Liang et al. [1994], Liang et al. [1996] and Nijssen et 21 

al. [1997].  VIC is a gridded hydrologic model designed to simulate macro scale (spatial 22 

resolution in greater than 1mile) water balances using parameterized sub-grid infiltration and 23 

vegetation processes.  In the VIC model, surface water infiltrates to the subsurface based on 24 

conductivity, and soil moisture is distributed vertically through three model layers extending 25 

up to about 2 meters below the land surface.  At the surface, potential evapotranspiration 26 

(PET) is simulated using the Penman Monteith PET model [Maidment et al., 1993]. Surface 27 

flows are determined in a two-step process. First, the water balance for each grid cell is 28 

calculated independently to determine surface runoff and baseflow, and subsequently runoff 29 

from each cell is routed to river channels and outlets using a predefined routing network. Here 30 

we drive VIC with daily weather forcings including precipitation, maximum and minimum 31 

temperature and wind speed.  Additional climate variables such as short and long wave 32 
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radiation, relative humidity and vapor pressure are calculated within the model.  The VIC 1 

model is well documented and has already been used in a number of hydrologic and climate 2 

change studies [e.g. Christensen and Lettenmaier, 2007; Christensen et al., 2004; 3 

Gangopadhyay et al., 2011; Maurer et al., 2007; Payne et al., 2004;  Reclamation, 2011; Van 4 

Rheenen et al., 2004]. Recently VIC has also been applied for real time flood estimation [Wu 5 

et al., in press].  6 

The VIC model used for this analysis was developed and calibrated as part of the Bureau of 7 

Reclamation’s (Reclamation) West Wide Climate Risk Assessment (WWCRA). The 8 

WWCRA VIC model encompasses the western US.  Streamflows were evaluated at 152 9 

locations primarily from the USGS Hydroclimatic Data Network [Slack et al., 1993] and 43 10 

additional locations of importance to Reclamations water management activities.  Among the 11 

evaluated locations are several in the Truckee basin including the Truckee River at Farad. For 12 

details on model calibration and development we refer the reader to Reclamation [2011] and 13 

Gangopadhyay et al. [2011]. While we do not discuss model calibration further here, in the 14 

subsequent sections we provide additional model verification for flood simulation in the 15 

UTRB.  16 

2.3 Climate data and models 17 

As noted in the previous section, the VIC model requires daily climate inputs to drive water 18 

balance simulations.  We use the national 1/8° (roughly 7 miles) gridded dataset from Maurer 19 

et al. [2002] for historical (i.e. 1950-1999) climate observations. Additionally, monthly total 20 

precipitation and average temperature were aggregated for the upstream area of each gauge 21 

for every month of the flood season (i.e. November through April). These values are used as 22 

covariates for fitting non-stationary GEV models as discussed in Section 3. 23 

Future gridded precipitation and temperature values from 2000 to 2099 were generated from 24 

Global Circulation Model (GCM) outputs. We analyzed 234 projections generated by 37 25 

different climate models from the CMIP-5 (Coupled Model Intercomparison Project Phase 5) 26 

archive [Taylor et al., 2012]. Projections span four Representative Concentration Pathways 27 

(RCPs) for greenhouse gas emissions. Each GCM projection includes monthly gridded 28 

precipitation and temperature from 1950 to 2099 at a coarse grid resolution ranging between 29 

~65-250 kilometers.   30 
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Reclamation in collaboration with other federal and non-federal partners has developed a 1 

monthly archive of downscaled CMIP-5 projections at the finer 1/8th degree resolution using 2 

the two-step BCSD (Bias Correction and Spatial Disaggregation) algorithm described in 3 

Wood et al. [2004].  For this analysis we extended the existing hydrology archive to cover the 4 

UTRB domain for all 234 BCSD CMIP-5 climate projections following the steps detailed 5 

below. A subset of the CMIP-5 hydrology projections is publically accessible through the 6 

"Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections" archive at http://gdo-7 

dcp.ucllnl.org/downscaled_cmip_projections/. Additional documentation on the archive and 8 

the methodology is provided in Reclamation [2014]. 9 

The downscaled climate variables include monthly total precipitation, monthly maximum and 10 

minimum temperatures and monthly average temperature.  Before applying the BCSD 11 

algorithm all the 234 climate projections were first gridded from their respective native GCM 12 

scale to a common grid of 1° latitude by 1° longitude.  Similarly, the observed 1/8° degree 13 

gridded dataset [Maurer et al., 2002] was aggregated to the coarser 1° latitude by 1° longitude 14 

grid.  Next, for a given climate variable, GCM, and location (1° latitude by 1° longitude grid 15 

cell), the bias correction (BC) step uses quantile mapping between monthly CDFs 16 

(Cumulative Distribution Functions) of historical simulated and historical observed values to 17 

identify biases over a common climatological period – in this case, 1950-1999.  The projected 18 

future climate variables from the same GCM at the same location are then bias corrected 19 

using the identified bias.  The result of bias-correction is an adjusted GCM dataset (20th 20 

century and 21st century, linked together) that is statistically consistent with the observed data 21 

during the bias-correction overlap period (i.e., 1950-1999 in this application).  Note that the 22 

BC step happens at the coarse 1° latitude by 1° longitude grid.  Next, adjustment factors that 23 

are multiplicative (ratio of bias-corrected GCM to observed) for precipitation and an offset 24 

(bias-corrected GCM minus observed) for temperature are calculated for each of the 1° 25 

latitude by 1° longitude grid cell [Reclamation, 2013].  These adjustments are then spatially 26 

disaggregated (SD) to a 1/8° latitude by 1/8° longitude grid.  Finally, the adjustments are 27 

applied (multiplicative for precipitation; additive for temperature) to the finer resolution, 1/8° 28 

degree gridded observed precipitation and temperature fields [Maurer et al., 2002] to derive 29 

the 1/8° degree gridded BCSD climate projections.  30 

http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/
http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/
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3 Methodology 1 

This section describes the methodology used for flood frequency analysis in the UTRB.  2 

Discussion is divided into two sections. First, we describe the process of extreme value 3 

modeling using non-stationary GEV distributions (Section 3.1). Second, the methodology for 4 

design life level risk assessment is detailed (Section 3.2) 5 

3.1  Extreme value modeling 6 

Extreme values analysis (EVA) deals with the examination of the tail (i.e. extreme) values of 7 

a distribution (as opposed to standard approaches which are generally more concerned with 8 

the average system behaviour). EVA methods are standard practice for flood frequency 9 

analysis because they are designed to capture the behaviour of low frequency high impact 10 

events.  Furthermore, in climate change studies Katz [2010] points out that traditional 11 

approaches are not sufficient and extreme value statistics are needed. For this analysis, we use 12 

the Generalized Extreme Value (GEV), which is commonly applied to flood frequency 13 

analysis to model block maxima from streamflow time series [e.g. Katz et al., 2002; Towler et 14 

al., 2010]. The cumulative distribution function (CDF) for the GEV is as follows: 15 

                                                        (1) 16 

Where z is the streamflow maxima value of interest and θ is the parameter set (μ, σ, ξ) used to 17 

specify the distribution such that the center is given by the location (μ), the spread by the 18 

scale(σ)  and the behavior of the upper tail by the shape (ξ). Based on the shape parameter, the 19 

GEV can take one of three forms: Gumbel, or light tailed, when ξ is zero; Fréchet, or heavy 20 

tailed, if ξ is positive; and Weibull, or bounded, when ξ is negative. Following the 21 

methodology of Towler et al. [2010], GEV parameters (μ, σ, ξ) are fitted using the Maximum 22 

Likelihood Estimation (MLE) technique. 23 

In traditional stationary flood frequency analysis, it is assumed that observations are 24 

independent and identically distributed (IID), and therefore model parameters (μ, σ, ξ) are 25 

derived from the observed flood record and are assumed to remain constant across the period 26 

of record and into the future. Here, we introduce non-stationarity into the distribution by 27 

allowing location and scale parameters to change with relevant covariates. Such that: 28 
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                                                                   (2) 1 

                                                                   (3) 2 

Where the β variables represent the coefficients, and the x variables are the covariates. In 3 

keeping with previous studies the shape parameter, which is the most difficult to estimate, is 4 

assumed constant [e.g. Obeysekara and Salas, 2014; Salas and Obeysekera, 2013; Towler et 5 

al., 2010].  6 

 Some previous studies [e.g. Salas and Obeysekera, 2013; Stedinger and Griffis, 2011] 7 

developed non-stationary location and scale parameters that are explicitly dependent on time. 8 

This approach requires first, the derivation of temporal flooding trends and second, the 9 

projection of this trend into the future. Here we derive location and scale parameters based on 10 

time varying meteorological variables (i.e. temperature and precipitation). With the approach 11 

used here, temporal trends in flooding are introduced as a function of temporal variability in 12 

precipitation and temperature but no explicit trend is specified apriori.   13 

To determine the optimal set of covariates for a non-stationary model, additional statistical 14 

methods must be employed. The Akaike Information Criterion [AIC;  Akaike, 1974], given in 15 

Equation 4, weighs the goodness of fit for a model with the level of complexity.  16 

                                                                                   (4) 17 

Here nllh is the negative log likelihood estimated for a model fitted with K parameters.  In 18 

this formulation, higher ranked models have lower AIC scores. For this analysis the best 19 

model is selected using pairwise comparisons of NLLH scores following the methods of Salas 20 

and Obeysekera [2014] and others. Models are compared using the deviance statistic (D) 21 

which is equal to twice the difference in NLLH scores. Deviance statistics are then tested for 22 

significance based on a chi-squared distribution with the degrees of freedom set equal to the 23 

difference in the number of parameters (K) between models.  P-values less than 0.05 indicate 24 

a statistically significant (alpha of 0.05) improvement in model performance. 25 

Following the methodology described above, GEV distributions are fit to time series of 26 

maximum monthly historical (1950-1999) one day simulated stream flows (detailed in 27 

Section 2) for the cool season.  Although, there are some unregulated historical flow 28 



 13 

estimates, the available dataset only covers six storms. Therefore, to be consistent we fit our 1 

model only to the simulated flows.  The dataset includes maximum daily streamflows for each 2 

month in the cool season defined by the block of months November through April, as opposed 3 

to the more traditional single value per year. This technique was also used by Towler et al. 4 

[2010] who noted that expanding the dataset helps avoid the problems associated with using 5 

maximum likelihood estimate on small datasets. However, as noted by Towler et al. [2010], 6 

when multiple values are used per year the calculated probabilities must be adjusted 7 

appropriately to derive annual values.  Floods during the cool season generally last between 8 

one and four days. Here we focus on the one day flood peak, as opposed to multi-day flood 9 

volumes, because this is a representative metric for flood damage. Additionally, using the one 10 

day flood maximum focuses the analysis on flood magnitude rather than duration.  11 

 Two covariates were considered, monthly total precipitation (P) and mean temperature (T) 12 

averaged over the upstream area for each gauge.  As discussed in Section 2, precipitation is a 13 

relevant covariate because many of the floods in this season are rain on snow events or 14 

extreme rainfall events. Similarly, temperature drives snowmelt and is an important 15 

contributor to UTRB flood events (e.g., January 1997 event).  Both stationary and non-16 

stationary GEV models were evaluated using the extRemes package [Gilleland and Katz, 17 

2011] in the ‘R’ statistical computing environment.  18 

3.2  Time varying risk assessment 19 

Traditional flood planning relies on the concept of return periods, which are usually 20 

calculated as the inverse of annual exceedance probability for a given flood magnitude, 21 

assuming a stationary distribution. For example, the log-Pearson Type III (LP3) distribution 22 

described by the Interagency Advisory Committee on Water Data Bulletin 17B [IACWD, 23 

1982].  However, when non-stationary models are used, the distribution parameters, and 24 

hence the exceedance probabilities vary with time. Table 1 compares various flood 25 

probability calculations between stationary and non-stationary approaches [Salas and 26 

Obeysekera, 2014].  As shown here, when the flood distribution is stationary, the return 27 

period for a given flood magnitude is constant and relies only on the exceedance probability 28 

(4a). However, if distribution parameters are non-stationary then the return period will vary 29 

based on the period of interest (4b).  This concept is easily extended to flood risk (here 30 

defined as the probability of a flood of a given magnitude occurring, not expected loses). In 31 

traditional analyses, the risk of a flood occurring in a given period depends only on the length 32 
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of the period (5a), while in a non-stationary analysis risk depends on both the length of time 1 

considered and the time period itself (5b). This is the concept of design life level proposed by 2 

Rootzén and Katz [2013].  Here, we adopt the design life level risk framework given in (5b) 3 

and calculate the risk of flood for a range of future periods and design life lengths.  4 

 5 

4 Results and Discussion 6 

Results are grouped into three sections. First we present the development of the non-7 

stationary GEV models (4.1). Next the models are verified by comparing simulated results to 8 

observations (4.2). Finally we present future projections of flood frequency analysis (4.3).  9 

4.1 Extreme value model development 10 

A suite of models were fit to the logarithms of block (cool season, November-April) maxima 11 

flows (simulated by the calibrated VIC model) with different non-stationary parameter 12 

combinations. The model structures tested include stationary, non-stationary location, non-13 

stationary scale and non-stationary location and scale. For all model structures model fit was 14 

tested using one or both covariates (i.e. precipitation (in) and temperature (F)).  Models were 15 

also tested using the block maxima flows directly; however, performance was improved 16 

considerably with the logarithmic transformation.  Validation of the VIC simulated flows as 17 

well as the GEV models are presented in the following section.  18 

Table 2 summarizes negative log-likelihood (NLLH) and Akaike Information Criterion (AIC) 19 

scores for each model configuration. The deviance statistic (D)  for pairwise comparisons of 20 

NLLH scores and the p-values calculated for each D based on a chi – squared distribution are 21 

also provided (Note that the bottom rows provide the number of parameters in each model 22 

and the model number that was used for the pairwise comparisons).  As shown here the 23 

models with non-stationary location and scale relying on both precipitation and temperature 24 

as covariates have the best (i.e. lowest) NLLH scores for both stations, and are a statistically 25 

significant improvement over the other models listed in Table 2.  Figure 2 plots, stationary 26 

and non-stationary location and scale models with histograms of observed flow for both 27 

gauges. Qualitatively, the stationary model fits well with the center of the distribution but 28 

overestimates the tails. The non-stationary models overestimate the median values but are a 29 

closer fit to the extreme values.  30 
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The coefficients for equations 2 and 3 for the selected models are provided in Table 3.   Using 1 

the coefficients determined above, the location and scale parameters are calculated for every 2 

climate projection (i.e. 234) and flood season month (i.e. November to April 1950 to 2099) 3 

based on the downscaled precipitation and temperature values detailed in Section 2 (Note that 4 

the scale parameter remains fixed). Thus, for every future month there is a separate GEV 5 

curve for each of the 234 climate projections. 6 

4.2 Hydrologic and GEV model validation 7 

Because we utilize modeled VIC flows for flood analysis there are two considerations for 8 

model validation. First, we compare VIC simulated one day flood events to the observed 9 

unregulated flow estimates (i.e. validating that our calibrated VIC model is accurately 10 

simulating flood flows). Second, we compare the GEV modeled floods to the VIC simulated 11 

flows and the observed flow estimates (i.e. validating that the GEV models we fit to the 12 

simulated data match both the observed flows and the VIC simulated flows).  13 

Although, unregulated flows are not available for the entire period of record, one-day 14 

maximum unregulated flow estimates are available at Reno for six historical floods [USACE, 15 

2013b]. Figure 3 plots the observed flow (blue triangle) with the one-day VIC flow that was 16 

simulated using historical observed forcings from Maurer et al. [2002] (red triangle), and a 17 

boxplot of the non-stationary GEV distribution for the same month generated using the same 18 

monthly historical precipitation and temperature [i.e. Maurer et al., 2002].  Comparing first 19 

the one day maximum VIC simulated flow with the observed flow the maximum percent 20 

difference between the natural logarithm of simulated and observed flows is 12%. There does 21 

appear to be a slight positive bias in the VIC simulations (i.e. VIC simulated flows are greater 22 

than observed flood flows).  Still, the simulated flood values (red circles) generally fall within 23 

the interquartile range of the GEV distribution, except in the case of the February 2, 1963 24 

flood and the January 2, 1997 flood.  25 

In these instances the VIC simulation matches very closely (percent difference in the natural 26 

logarithm of flows are 0.5% and 1.2% respectively) with the observed flow, however, the 27 

GEV model underestimates the events. This discrepancy is caused by the flood timing.  In 28 

both cases the flood occurs at the very beginning of the month. In the GEV framework the 29 

precipitation and temperature are used as covariates for the flow of the same month. However, 30 

for these storms flooding is linked to precipitation and temperature in the month of flooding 31 
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and the preceding month. Therefore, the GEV model simulates the flood in the preceding 1 

month and/or underestimates the flood magnitude if the precipitation is split between two 2 

months. While this is a limitation for matching individual historical events, primarily timing, 3 

it is not a major concern in future projections.  This is because, for the purposes of risk 4 

calculations, it really doesn’t matter in which month the GEV model simulates the flood event 5 

as long as it realistically captures flood magnitude behavior.  6 

Comparing the GEV model distribution to the other observed floods (blue triangles), the 7 

distribution encompasses the observed flood magnitude (within the 5th and 95th percentile) 8 

for all except for two of the floods (1955 and 1963). For 1963, the VIC simulated and 9 

observed floods are in close agreement (the difference between the natural logarithm of 10 

simulated and observed flows is the smallest of any event at 0.5%) and the discrepancy with 11 

the GEV model is consistent with the flood timing described above. The 1955 flood resulted 12 

from 38 cmof melted snow combined with 33 cmof rainfall over a three day period [O’Hara et 13 

al., 2007]. In the historical forcings used to drive the VIC model December 1955 has 75 cm of 14 

precipitation which is the highest December precipitation value in the historical period. In this 15 

instance the VIC simulated flow falls within the interquartile range of the GEV model, but the 16 

high monthly precipitation results in an overestimate of the flood magnitude. Again, this is a 17 

limitation of using monthly forcings because the total December precipitation is used as a 18 

covariate and not a storm specific value though in many cases the storm specific values 19 

constitute the bulk of the monthly precipitation totals.  20 

Figure 4 is a time series plot of VIC historical simulated flow along with the median and 5th 21 

to 95th percentile flow of the GEV model. As would be expected from the model fit 22 

demonstrated in Figures 2 and 3, Figure 4 shows that the VIC simulated flows are generally 23 

close to the median GEV modeled flow and nearly always fall within the 5th to 95th 24 

percentile range. Although there are differences in the simulation of individual events 25 

discussed above, the median simulated flood magnitudes are only greater than the maximum 26 

observed flood in two instances. 27 

In general, Figures 3 and 4 show that the VIC simulated flows match closely with the 28 

observed floods (based on percent difference in the natural logarithm of flows) and that the 29 

interquartile range of the GEV distributions encompass the observed and simulated flows in 30 

most instances. Figure 3 does illustrate some of the complications in matching individual 31 

events, however based on analysis of the driving forces behind each individual event we are 32 
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able to document the sources of these discrepancies. Based on this analysis we conclude that 1 

the model behaviour is a reasonable match with the natural system.  2 

  3 

4.3  Future flood risk 4 

Future flood risk is calculated using equation (5b) from Table 1. For the first part of this 5 

analysis we define ‘flood’ as one-day flow exceeding 1,065 cms (37,600 cfs). This is the 6 

maximum historical unregulated flow at Reno from the January 2, 1997 event and is 7 

considered to be the design flood for flood protection infrastructure design.  For each 8 

simulation month (1950-2099 November –April) exceedance probabilities are calculated for 9 

every climate projection (234 in total) using the selected non-stationary GEV models from 10 

Table 3 and the projected monthly precipitation and temperature. As detailed in the section 11 

3.2, when exceedance probabilities are time dependent, the flood risk (refer to equation 5b, 12 

Table 1) is a function of both the length of the design life and the period of operation. Figure 13 

5 plots the risk of flood versus project life for three time periods, 1950 to 1999, 2000 to 2049 14 

and 2050 to 2099. In other words this is the risk of a flood exceeding 1,065 cms in the next n 15 

years if you are standing in 1950, 2000 or 2050. The median and interquartile ranges show the 16 

distribution of the 234 climate projections simulated.  Here we use the interquartile range, as 17 

opposed to the 5th and 95th percentile, to focus on the central tendencies of each time period 18 

and not the variability between projections. Note that the ranges presented here express the 19 

variability between climate models. Uncertainty in the historical data sources used for 20 

calibration and in the parameters of the VIC model are not investigated directly here. For 21 

more detailed analysis on uncertainty in VIC simulations the reader is referred to Elsner et al. 22 

[2014].  23 

For both Farad and Reno there is a clear positive shift in flood risk between the three time 24 

periods. In all cases the median risk for each subsequent time period falls outside the 25 

interquartile range of the preceding time period although the prediction spread for Reno is 26 

greater than Farad. It is important to note that the flood risk is actually higher at Farad than 27 

Reno in both the historical and future periods despite the fact that the observed flow 28 

distributions at the two stations are very similar (refer to Figure2).  This shift between Farad 29 

and Reno is caused by the differences in the shape parameters (refer to Table 3). Farad has a 30 

heavier tailed distribution and therefore flood risks are increased. The sensitivity of the model 31 
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parameters (and the associated flood risk) to small differences in the flow and covariate 1 

distributions is further demonstrated by Figure 6.  2 

Figure 6 presents the project life risk from Figure 5 for three project life periods (10, 20 and 3 

30 years). Boxplots show the non-stationary model results for the 234 climate projections 4 

with the different time periods compared side by side. Also, the risk calculated using a 5 

stationary GEV model and a stationary LP3 model (i.e. the distribution prescribed by Bulletin 6 

17B fit using the L-moments [IACWD, 1982]) fit to the historical flow data are plotted for 7 

reference (blue and red dashed lines respectively).  Comparing between these three 8 

approaches (non-stationary GEV, stationary GEV and stationary LP3) provides information 9 

on the sensitivity of results to model approach and non-stationary parameters.  For instance, 10 

both stationary models are fit to the same historical simulated flows (one using MLE and the 11 

other using L-moments) so differences between the stationary lines reflect the impact of 12 

model choice and fitting approach on estimated risk.  Conversely the stationary GEV model 13 

(blue line) and the historical non-stationary models (grey boxplot) have the same model form 14 

and cover the same time period; the only difference is the addition of covariates to estimate 15 

model parameters.  Thus differences between these two show the effect of model parameter 16 

changes from the non-stationary approach.  Finally, variability between the boxplots for a 17 

given design period demonstrates the evolution of risk over time (i.e. the impact of climate 18 

trends on risk). The latter (i.e. changing risk over time), is the purpose of this analysis, 19 

however before assessing trends over time we must first discuss the impact of model choice 20 

and parameters on risk estimates.  21 

For both of the stationary methods, the risk increases with project life following equation (5a) 22 

from Table 1. The distinction between these lines and the non-stationary approaches is that, 23 

with the stationary approach, a single exceedance probability is calculated for the given flood 24 

magnitude and this probability is assumed to remain constant throughout the design life. Also, 25 

for both stationary approaches the model is fit directly to the historical one day maximum 26 

flow distribution and no covariates are required (note that stationary models are not fit to the 27 

future time periods because this would require future simulated flows).   Comparing between 28 

the GEV (blue line) and the LP3 (red line) stationary models there is a 10-20% increase in 29 

risk between the two models. This difference is purely a function of model form and 30 

highlights the sensitivity of the risk calculations to model choice.  31 
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Contrasting the difference between the stationary (blue line) and the non –stationary GEV for 1 

the historical time period (grey boxplot) illustrates the effect of adding non-stationary 2 

parameters to a given model form. Recall that in both cases the GEV model is fit to the 3 

historical simulated flows. However, for the stationary approach, model fitting results in a 4 

single set of parameters (location, scale and shape) whereas with the non-stationary approach 5 

we derive the shape parameter and a set of coefficients for linear models to determine the 6 

location and scale parameters based on precipitation and temperature values.  Thus, for the 7 

non-stationary approach, different location and scale parameters are calculated for every 8 

historical cool season month and GCM model (234).   9 

Overall, there is close agreement between the stationary (S) and average non-stationary (NS) 10 

location parameters (6.55 S vs. 6.64 NS at Farad and 6.63 S vs. 6.78 NS at Reno). However, 11 

for both gauges the scale parameter is lower with the non-stationary approach (1.30 S vs. 0.94 12 

NS at Farad and 1.28 S vs. 0.96 NS at Reno). At Reno the shape parameter is similar (-0.24 S 13 

vs. -0.27 NS), but at Farad the difference is somewhat larger (-0.24 S vs. -0.18 NS).  14 

Differences in model parameters are reflected in the distance between the stationary GEV 15 

model (blue line) and the median historical non-stationary GEV boxplots (center of the grey 16 

boxplots) in Figure 6. For Reno the stationary line is closer to the historical boxplots. 17 

However, at Farad, the non-stationary boxplots are consistently higher than the stationary 18 

line. The larger differences between the stationary and non-stationary models for Farad result 19 

from changes in the shape parameter between the stationary and non-stationary model fits. 20 

This change demonstrates the sensitivity of model results to changes in model parameters.  21 

As with Figure 5, Figure 6 shows significant increases in risk moving into the future and 22 

subsequently larger differences between the stationary and non-stationary approach. By the 23 

second future period the differences between the stationary and non-stationary models can be 24 

as much as 50% or more. For both gauges difference in risk between the non-stationary and 25 

stationary approaches grows over time, indicating greater potential to underestimate risk 26 

looking further into the future if non-stationary parameters are not adopted.  27 

Although the figures are not shown here, results were also grouped by RCPs to analyze 28 

connections between greenhouse gas emission rates and changes in flood risk. We observed 29 

no clear trend in flood risk based on the different RCPs. This indicates that the variability 30 

between GCM model form and initial conditions likely overwhelms the influence of 31 

greenhouse gas emissions when comparing between scenarios. In other words, the variability 32 
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between projections within any RCP scenario is larger than the difference between RCP 1 

scenarios. 2 

Given the sensitivity of projected risk to model parameters, an obvious question is whether 3 

increases in risk over time are similarly sensitive. For the 1,065 cms flood plotted in Figure 6, 4 

the increased risk with added project life (i.e. 20 years vs. 10 years) is greater with the non-5 

stationary models than the stationary one at both stations. This is intuitive, given the increased 6 

flood risk with time demonstrated in Figure 5 for the non-stationary models. Although, Farad 7 

has higher risk overall, the relative increase in risk between time periods is similar between 8 

the two stations. For example, the median ten year flood risk increases by 21% for Farad 9 

comparing between the first (1950-1999) and second (2000-2049) time periods compared to 10 

29% for Reno.   11 

Next, analysis is expanded to a range of flood magnitudes. Figure 7 plots the flood risk over a 12 

ten year project life starting in 1950, 2000, and 2050 for flood values ranging from 283 to 13 

1,416 cms (10,000 to 50,000 cfs).  As would be expected the ten year flood risk decreases 14 

with increasing flood rate. The shapes of the curves are slightly different between Farad and 15 

Reno; flood risk decreases more sharply with increased flow at Reno than Farad. Again this 16 

behavior is a function of the shape of the distribution. Despite these differences, both gauges 17 

display clear shifts between time periods similar to Figure 5. Here again, the median risk for 18 

each subsequent period consistently falls outside the interquartile range of the preceding 19 

period.  20 

Changes in the median flood risk (i.e. differences between the solid lines on Figure 7) 21 

between each future period and the historical period are plotted in Figure 8 for both gauges.  22 

As would be expected based on the qualitative differences in Figure 7, the shape of the Farad 23 

and Reno difference curves are slightly different. However, the salient point for this analysis 24 

is that the increased risk between periods is generally within 10% between the two stations. 25 

Overall the increased risk between the first future period (2000-2050) and the historical 26 

period (1950-1999) is between 10 and 20% for flows from 600 to 1,200 cms .  Similarly, the 27 

increased risk from the historical period to the second future period (2050-2099) is between 28 

30 and 50%.  Differences for the highest and lowest flows are difficult to assess because the 29 

median is skewed by the upper and lower limits of risk (i.e. 0 and 100%).    30 

 31 
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5 Summary and Conclusions 1 

The analysis presented is unique in its incorporation of non-stationary GEV analysis using 2 

CMIP 5 projections and the design life level risk assessment. We present our findings as a 3 

relevant case study and an example application of recent developments in non-stationary 4 

flood assessment.  Lacking sufficient unregulated flow data we simulate historical floods 5 

using the VIC model. Subsequently we use the simulated floods to fit non-stationary GEV 6 

models with downscaled monthly precipitation and temperature as covariates. Although there 7 

are some discrepancies between individual simulated and observed floods, we demonstrate 8 

that the VIC model adequately captures the range of flood magnitudes. Furthermore, we show 9 

that that the GEV modeled historical floods are in good agreement with both the VIC 10 

simulated floods and the published flood events [USACE, 2013b].   11 

Discrepancies between historical and simulated events often result from the monthly time step 12 

used for covariates. This can affect the ability to model floods that are generated by 13 

precipitation that occurs in two months. Also, because the climate variables are monthly 14 

aggregates, and not event based, large floods can be generated in months with high 15 

precipitation even if that precipitation does not occur in one concentrated event.   Despite 16 

these differences, comparison with historical floods demonstrated that the GEV model does a 17 

good job of encompassing historical flood magnitudes, even if some individual historical 18 

events are not matched exactly.  19 

Using the derived non-stationary GEV models, we generate flood distributions for 234 20 

CMIP5 climate projections from 1950 to 2099. For the historical one-day design flood 21 

magnitude of 1,065 cms, results show significant increases in the frequency of high flow 22 

events in the future. From a water management standpoint this finding translates directly to 23 

increased flood risk.  For example, we calculate a 21% (29%) increase risk of a 1,065 cms 24 

flood over a 10 year design life for Farad (Reno) from the historical time period to the first 25 

future period, and similar increases from the first future period to the second. Increased risk 26 

between time periods is also relatively consistent for longer design life periods and similar 27 

shifts in flood risk are noted across a range of flood magnitudes. For both stations the 28 

increased risk from the historical to the first future period is between 10 and 20% and from 29 

the historical to the second future period is between 30 and 50% for floods ranging from 600 30 

to 1,200 cms.   31 
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The significant increases in flood risk through time indicate the importance of non-stationary 1 

flood frequency analysis for future infrastructure planning and the potential to underestimate 2 

risk when stationarity is assumed.  For both stations the difference between the stationary and 3 

no-stationary approach increases over time. By the second future period differences in risk 4 

calculations between the stationary and non-stationary models can be 50% or larger.  This 5 

finding is in keeping with a number of recent studies [e.g. Griffis and Stedinger, 2007; Katz et 6 

al., 2002; Towler et al., 2010] that have highlighted potential applications for non-stationary 7 

analysis of flood frequency.  8 

An important consideration for this approach is the sensitivity of results to model parameters.  9 

In all cases the flood risk is higher at Farad than Reno due to the heavier tailed distribution 10 

that was fit. Estimated model parameters differed by station despite the fact that the flow, 11 

precipitation and temperature distributions for both locations are very similar.  While these 12 

changes effected the overall risk projections the relative increase in risk over time remained 13 

consistent between stations. This indicates that the more robust metric from this analysis is 14 

the relative increase in flood risk and not the absolute values.  This finding is further 15 

supported by the fact that absolute flood risk estimates could be impacted by model bias. By 16 

focusing on differences in risk we specifically highlight the impact of non-stationarity on risk 17 

assessment, as opposed to parameter sensitivity.  Similarly, it is important to note that this 18 

analysis is based on natural flow estimates and does not include infrastructure development or 19 

operation.  As such results indicate the potential increase in the underlying natural flood risk 20 

and not the potential increase in flood damages. 21 
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Table 1: Flood calculations using stationary and non-stationary distributions (adapted 1 

from Salas and Obeysekera [2014]) 2 

Eqn. 
# 

Description a. Stationary b. Non Stationary 

1 Exceedance probability 

(Probability of flood 1 
occurring in year x) 

  

2 Probability of the first flood 
occurring in year x 2  

 

  
3 Probability of a flood 

occurring before year x 3 

 
 

  
4 Return Period  

(Expected waiting time 
between flood occurrences 4,5 )  

 

  
5 Probability of a flood 

occurring before the design life 
n 

 
 

  
1 Flood is defined as a flow exceeding a predefined threshold 3 
2 f(x) = Probability density function of X 4 
3 F(x) = Cumulative distribution function of X 5 
4 X = Random variable denoting the waiting time for the first flood occurrence 6 
5 xmax = Time when px equals 1 7 
 8 

9 
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 1 
Table 2: Negative log likelihood(NLLH) and Akaike information Criterion (AIC) scores 2 
for each model, as well as the deviance statistics (D) of pairwise comparisons of 3 
different model configurations (P = precipitation only, T= temperature only P&T= both) 4 
and the p-values of each D score based on a chi-squared distribution.  The number of 5 
parameters in each model and the models used for comparison are listed at the bottom 6 
of the table.  The selected model for each station is shaded in grey. 7 

P & T P T P & T P T P & T P T
1 2 3 4 5 6 7 8 9 10

NLLH 508.9 422.9 467.1 499.7 487.3 500.9 506.5 416.4 462.2 496.9
AIC 1023.7 855.9 942.3 1007.4 984.6 1009.8 1021.1 846.8 934.4 1003.8
D 171.8 83.4 18.3 43.1 15.9 4.7 13.0 9.9 5.7
p-value of D < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
NLLH 505.4 418.4 462.5 496.0 484.4 497.6 503.1 408.8 457.4 493.2
AIC 1016.8 846.8 932.9 1000.0 978.8 1003.2 1016.1 831.7 924.8 996.5
D 174.0 85.9 18.8 42.0 15.6 4.7 19.1 10.1 5.5
p-value of D < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05

3 5 4 4 5 4 4 7 5 5
1 1 1 1 1 1 2 3 4

Non stationary Location and 

Farad

Reno
# of model parameters

Model # compared to for pval

Station Metric
Stationary

Non stationary Location Non stationary Scale

8 
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Table 3:  Summary of derived model covariates for equations 2 and 3.  2 

  Farad Reno 

β0μ 2.155 2.582 

β1μ 0.175 0.18 

β2μ 0.115 0.105 

β0σ 0.211 0.530 

β1σ -0.013 -0.018 

β2σ 0.027 0.017 

Shape 
(ξ) -0.178 -0.275 

 3 

 4 
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 1 
Figure 1: Map of model domain including the Farad and Reno gauges and their drainage 2 
areas. 3 

 4 
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 2 

Figure 2: PDFs of fitted stationary (solid black) and non-stationary (dashed) GEV models 3 
compared to historical VIC simulated flow histogram. 4 

 5 

 6 

 7 
Figure 3: ‘Observed’ unregulated flow estimated from gauge records (blue triangle) 8 
compared with VIC simulated flow (red circles) and the simulated GEV distribution. 9 
Boxes span the 25th to 75th percentile of the GEV distribution for a given month and the 10 
whiskers extend to the 5th and 95th percentiles. 11 
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 2 

 3 

 4 
Figure 4: VIC simulated one- day flood maximums for November through April 1950 to 5 
1999 (red lines) compared with the historical GEV distributions (blue line is median and 6 
grey shading is the 5th to 95th percentile range) and the six observed flow rates. 7 

 8 

 9 
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 1 
Figure 5: Probability of one day flood exceeding historical maximum of 37,600 cfs at 2 
Farad and Reno. Solid lines represent the median risk of the 234 climate projections and 3 
shading covers the interquartile range (i.e. 25th to 75th percentile).  4 

 5 
Figure 6: Boxplots of the probability of a one-day flood exceeding 37,600 cfs for three 6 
project life lengths (10, 20 and 30 years). Results are grouped by time period (1950-7 
1999, 2000-2049 and 2050-2099). Blue dashed lines show the flood risk calculated from 8 
the stationary GEV model fit to the historical data.  9 
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 1 

 2 

Figure 7: Probability of flood in a ten year project life vs. median one day flood rate (a) 3 
Farad and (b) Reno for three time periods 1950-1999 (blue), 2000-2049 (red) and 4 
2050-2099 (green). Solid lines represent the median of the 234 climate projections and 5 
shading covers the interquartile range (i.e. 25th to 75th percentile). 6 

 7 

 8 



 37 

Figure 8: Increased probability of flood occurrence  for a 10 year project life from the 1 
historical period (1950-1999) to each of the two future periods 2000-2050 (black) and 2 
2050-2099 (grey). Farad is plotted with a solid line and Reno is a dashed line.  3 

 4 
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