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Review comments from Mark Thyer  
Comment #1.1. General Comments This paper presents a modification to existing approaches for 
handling autoregressive errors in streamflow modelling in a forecasting context. I applaud this paper 
for undergoing a detailed analysis of the issues that are encountered when endeavouring to deal with 
both heteroscedasticity and autocorrelation in hydrological modelling errors. Something which we 
think should be straightforward, but is actually quite challenging to get right. The paper is fairly well 
written, but needs some improvement (see minor issues). The results presented, while quite promising, 
are currently not sufficiently convincing to warrant publication. Please see the list of major issues 
below. These issues need to be addressed prior to publication. 
 
Response: Thank you for the careful and constructive review. We have attempted to address the major 
issues you have raised, while keeping the paper as brief as possible. 
Major Issues  
Comment #1.2. More metrics are required to verify performance. 
 
Currently the three methods, AR-Norm, AR-Raw and RAR-Norm are evaluated by visual inspection of 
a few events and using the NSE as an evaluation criteria. A wider range of metrics is needed. In a 
forecasting context, it is not simply the NSE which is used to evaluate predictions, users are also 
interested in the statistical properties of the predictive streamflow distribution, such as reliability and 
precision. It is common for these metrics to also trade-off against one another, so it would be 
interesting to see if that occurs in this case. Furthermore, the NSE is heavily weighted towards better 
predictions of high flows. It is recommended that authors use metrics that evaluate the full predictive 
streamflow distribution and use precision and reliability metrics, such as they have used in past, e.g. 
Wang and Robertson [2011] or see for example Evin et al. [2014]. 

Response: Thanks for this suggestion. We have added a number of metrics to bolster our conclusions, 
including the probabilistic verification scores CRPS (which measures both accuracy and reliability), 
RMSEP (which measures accuracy of forecast in probability) and PIT-Uniform probability plots to 
assess reliability. These show that there is little to distinguish between the three models with 
probabilistic measures; all show similar accuracy and reliability (though again, RAR-Norm tends to 
produce slightly better CRPS and RMSEP skills scores than the other models.) In addition, we analyse 
the NSE of forecasts when flows are rising and falling. These analyses confirm the general tendency of 
the AR-Norm model to perform least well when flows are rising, and the tendency of the AR-Raw 
model to perform least well when flows are receding. In addition, these analyses show that the RAR-
Norm model reflects the best tendencies of the AR-Raw and AR-Norm models.  
Comment #1.3. Robustness of the results with respect to the hydrological model. 
 
Line 20 page 6044 makes the point that AR-Raw performs better than AR-Norm and state “this suggest 
that more robust performance can be expected of base hydrological models with AR models are applied 
to raw errors”. Sectio, 4.2 is devoted to discusses that the AR-Norm model, produce poor performance 
of the hydrological model. However, this is based only a single hydrological model, GR4J. When Evin 
et al. [2014] applied an equivalent to the AR-Norm model (but with linear heteroscedatic errors, rather 
than log-sinh transformed) to the 12 MOPEX catchments they found similar poor model performance 
for GR4J for some catchments, but this did not occur when the HBV model was applied. This provides 
strong evidence that the problems with ARNorm is not necessarily generic, but hydrological model 
specific. It is recommended that the authors trial a different hydrological model, e.g. HBV, and see if 
the results are similar. If they are, then this provides a greater robustness of the model results, and 
greater confidence for the hydrological community to adopt this method.  
 
Providing more metrics with a wider range of hydrological models would be better test the extent of the 
problems with AR-Raw and AR-Norm and the robustness of the results. For example, Figure 3, shows 
the error over-correction problem with AR-Norm occurs in only 10-20% of cases, which is not very 
high. Given also that the poor performance of the AR-Norm method is hydrological model specific, 
further testing and metrics are required to verify the robustness of the proposed approach. 
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Response: We concede that other rainfall-runoff models may not be as prone to poor base model 
performance as GR4J. We have stopped short of investigating additional hydrological models however, 
to keep our paper brief. We address the reviewer’s concern as follows: 

1) We now explicitly acknowledge that the sometimes poor performance of the base hydrological 
model may be particular to GR4J 

2) Adding some of the MOPEX catchments used by Evin et al. 2014 (see response to Comment # 
1.4, below) has allowed us to draw more directly from Evin’s work, which suggested that 
HBV could lead to more robust base model performance. We refer to this study explicitly 
when we discuss the performance of the base hydrological model  

3) Because the RAR-Norm model restricts the magnitude of updates that can be applied by the 
AR-Norm model, more reliance is placed on the base hydrological model to accurately 
simulate flows. This will generally encourage the base hydrological model to perform strongly 
compared with the AR-Norm, irrespective of the hydrological model used. If the base 
hydrological model is already performing strongly (as might be expected, e.g., of HBV) then 
the RAR-Norm model is unlikely to undermine this performance. We see evidence of this in 
our experiments with GR4J (which we know can perform poorly): when the performance of 
the GR4J base hydrological model is strong relative to the updated forecasts for both AR-Raw 
and AR-Norm models (e.g. in the Tarwin, Mitta Mitta, or Guadalupe catchments), the RAR-
Norm model base hydrological model also performs strongly. In other words, if the problem 
does not exist in the other models, RAR-Norm does not introduce it. 

The arguments above are now covered in the discussion (Lines 418-437). 
As noted in the response to Comment #1.2, we have added more metrics and analysis, as well as three 
extra catchments, and we hope that these demonstrate that the RAR-Norm model is preferable to both 
the AR-Norm and AR-Raw models in general. As we show in the proof in the Appendix, and argue in 
the discussion, the potential of the AR-Norm model to over-correct rising flows is likely to be generic 
(irrespective of hydrological model or transformation applied). In addition, while you are right in 
saying that the AR-Norm model is susceptible to over-correction for as little as 10% of flows, it is often 
these instances – when flows are rising rapidly – that are of most interest to forecasters (e.g., for 
forecasting floods). We therefore argue that the problem of over-correction by the AR-Norm model is a 
salient one and that the RAR-Norm model addresses this problem successfully. 
Comment #1.4.  3. Ability to compare results with previous studies. This is more a general comment 
of an issue which is a common blight for the progress of the hydrological scientific community. One of 
the big challenges for reviewers (and readers in general) is the ability to compare results between 
different studies, due to differences in implementation. As an example, Evin et al. [2013] showed that 
the equivalent to AR-norm was better than AR-Raw, while Evin et al. [2014] showed that AR-Norm 
can degrade hydrological model performance for GRJ, but not HBV. While Schaefli et al. [2007] 
showed that AR on raw errors lead to better inference, while this study showed a AR-hybrid (norm and 
raw) (see minor comment 3) works better than both AR-Norm and AR-Raw. However in all these 
studies, there are differences in their approach and case study application. For example, Evin et al. 
[2013,2014] used a linear heteroscedastic residual error model, Schaefli et al. [2007] used a mixture of 
Gaussians for their error model, while this study used a log-sinh transformation with modification for 
zero flow occurrences. Furthermore, each study had a different set of case study catchments. It 
concerns me that the conclusions of each of these studies could be sensitive to these differences rather 
than differences in the way the AR is handled, and it makes it very difficult for hydrological science to 
move forward. This is the reason why Evin et al. [2014] choose to use the MOPEX dataset, as it least 
provides a common set of catchments to previous studies. I would suggest to these authors to include 
the 12 MOPEX catchments as used by Evin et al. [2014] to enable better comparison. This is not an 
essential criteria, but it would increase the ability to compare the results, and test its compare 
robustness against previous results.  

Response: We agree that comparability of results is highly desirable. To this end, we have included 3 
of the catchments used by Evin et al. [2014], and specifically note that these are chosen for the 
purposes of comparison to that study. In addition, we apply the same cross-validation strategy as Evin 
et al. 2014 to these catchments, to enable direct comparison to Evin et al.’s findings. We did not use 
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Evin’s remaining 9 catchments, for the simple that these are all impacted by snow, and this was not the 
focus of our study. We discuss the results of the three US catchments with reference to Evin et al. 2014. 
We find that the additional of the US catchments supports our initial findings, and thank the reviewer 
very much for this suggestion. 
Minor Issues  
Comment #1.5. Page 6039 Line 20-25. The assertion that these equations represent the median needs 
further derivation (perhaps in an appendix), as it is not clear to me. For example, the error term e(t) is 
completely dropped from eqs 4 and 5. This assumes that median of Z-1(et)=0, now median(et)=0, but, 
I’m not convinced that median of Z-1(et)=0, due to the use of the log sinh transformation which takes 
into account zero flow occurrences. 

Response: Thank you for reading our manuscript so closely. Following your suggestion, we explain 
why the updated streamflow is the median of the ensemble streamflow forecast in Appendix A.  
Comment #1.6.  Page 6045, Eq(8). It is very confusing using the subscript (R) for both AR-Raw and 
AR-Norm. Please use a different subscript for RAR-Model  

Response: We have carefully and thoroughly updated the notations and avoided the use of the subscript 
(R). 
Comment #1.7. RAR model is essentially a hybrid of AR-Norm when it over-corrections, use 
ARRaw. Suggest to change name of RAR_Norm to AR-hybrid. Also, why did the authors choose not 
use the phi term, i.e. Q(s,t)+ phi*[Q(t-1) – Q(s,t-1)] in last line of eq 8. Some justification of this is 
needed.  

Response:  
While the RAR-norm uses errors calculated from transformed and untransformed flows, it is not a 
formal combination of the AR-Norm and the AR-Raw models. This is because we do not apply a rho 
term to the error in the untransformed domain when we apply the restriction. In addition, the model is 
conceptually much more similar to AR-Norm, and indeed the model functions as an AR-Norm model 
for the large majority of the time. Accordingly, we prefer the moniker RAR-Norm. 
 
Comment #1.8. Figure 3 – Q(M,t) is used before it is defined. Please define it earlier in the 
manuscript. 

Response:: All notations have been updated for better readability. We use 1 1  t t tD Q Q− −≤ − ɶ in the 

revision. Please refer to Section 2.1 for the definitions of the notations.  
Comment #1.9. . Agree with B. Schaefli, the superscript notation is hard to read. Please change to 
increase readability  
Comment #1.10. Response: We have carefully and thoroughly updated the notations and avoided the 
superscript in the old version. Agree with B. Schaefli, re structure, the new method RAR should be 
presented in Section 2. All methods should be in a method section, all results in a results section  

Response: We have changed the structure according to comments from B. Schaefli, and hope this is 
easier to follow. 
Comment #1.11. Please also provide details on the algorithm used to maximize the likelihood – was it 
SCE or something else?   

Response: The Shuffled Complex Evolution (SCE) algorithm (Duan et al., 1994) is used to minimize 
the negative log likelihood. (Lines 153-155). 
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Abstract 9 

For streamflow forecasting applications, rainfall-runoff hydrological models are often 10 

augmented with updating procedures that correct streamflow forecasts based on the 11 

latest available observations of streamflow and their departures from model 12 

simulations. The most popular approach uses autoregressive (AR) models that exploit 13 

the “memory” in hydrological model simulation errors. AR models may be applied to 14 

raw errors directly or to normalised errors. In this study, we demonstrate that AR 15 

models applied in either way can sometimes cause over-correction of forecasts. In 16 

using an AR model applied to raw errors, the over-correction usually occurs when 17 

streamflow is rapidly receding. In applying an AR model to normalised errors, the 18 

over-correction usually occurs when streamflow is rapidly rising. Furthermore, when 19 

parameters of a hydrological model and an AR model are estimated jointly, the AR 20 

model applied to normalised errors sometimes degrades the stand-alone performance 21 

of the base hydrological model. This is not desirable for forecasting applications, as 22 

forecasts should rely as much as possible on the base hydrological model, and 23 

updating should be applied only to correct minor errors. To overcome the adverse 24 

effects of the conventional AR models, a restricted AR model applied to normalised 25 

errors is introduced. The new model is evaluated on a number of catchments and is 26 

shown to reduce over-correction and to improve the performance of the base 27 

hydrological model considerably. 28 

 29 
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1. Introduction 30 

Rainfall-runoff models are widely used to generate streamflow forecasts, which 31 

provide essential information for flood warning and water resources management. For 32 

streamflow forecasting, rainfall-runoff models are often augmented by updating 33 

procedures that correct streamflow forecasts based on the latest available observations 34 

of streamflow and their departures from model simulations. Model errors reflect 35 

limitations of the hydrological models in reproducing physical processes as well as 36 

inaccuracies in data used to force and evaluate the models. 37 

The most popular updating approach uses autoregressive (AR) models, which exploit 38 

the “memory” - more precisely the autocorrelation structure - of errors in hydrological 39 

simulations (Morawietz et al., 2011). Essentially, AR updating uses a linear function 40 

of the known errors at previous time steps to anticipate errors in a forecast period. 41 

Forecasts are then updated according to these anticipated errors. AR updating is 42 

conceptually simple and yet generally leads to significantly improved forecasts 43 

(World Meteorological Organization, 1992). AR updating has been shown to provide 44 

equivalent performance to more sophisticated non-linear and nonparametric updating 45 

procedures (Xiong and O'Connor, 2002). 46 

In rainfall-runoff modelling, model errors are generally heteroscedastic (i.e., they 47 

have heterogeneous variance over time) (Xu, 2001;Kavetski et al., 2003;Pianosi and 48 

Raso, 2012) and non-Gaussian (Bates and Campbell, 2001;Schaefli et al., 49 

2007;Shrestha and Solomatine, 2008). In many applications (Seo et al., 2006;Bates 50 

and Campbell, 2001;Salamon and Feyen, 2010;Morawietz et al., 2011), AR models 51 

are applied to normalised errors that are considered homoscedastic and Gaussian. 52 

Normalisation is often achieved through variable transformation by using, for 53 

example, the Box-Cox transformation (Thyer et al., 2002;Bates and Campbell, 54 

2001;Engeland et al., 2010) or, more recently, the log-sinh transformation (Wang et 55 

al., 2012;Del Giudice et al., 2013). In other applications (Schoups and Vrugt, 56 

2010;Schaefli et al., 2007), AR models are applied directly to raw errors, but residual 57 

errors of the AR models may be explicitly specified as heteroscedastic and non-58 

Gaussian. 59 

There is no agreement on whether it is better to apply an AR model to normalised or 60 

raw errors. Recent work by Evin et al. (2013) found that an AR model applied to raw 61 
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errors may lead to poor performance with exaggerated uncertainty. They 62 

demonstrated that such instability can be mitigated by applying an AR model to 63 

standardised errors (raw errors divided by standard deviations). Here, standardisation 64 

has a similar effect to normalisation in that it homogenises the variance of the errors 65 

(but does not consider the non-Gaussian distribution of errors). Conversely, Schaefli 66 

et al. (2007) pointed out that when an AR model is jointly estimated with a 67 

hydrological model, there is a clear advantage in applying an AR model to raw errors 68 

rather than normalised (or standardised) errors. Schaefli et al. (2007) found that using 69 

raw errors leads to more reliable parameter inference and uncertainty estimation, 70 

because the mean error is close to zero and therefore the simulations are free of 71 

systematic bias. The same is not necessarily true when applying an AR model to 72 

normalised errors. 73 

In this study, we evaluate AR models applied to both raw and normalised errors on 74 

four Australian catchments and three United States (US) catchments. We show that 75 

when estimated jointly with a hydrological model, the AR model applied to 76 

normalised errors sometimes degrades the stand-alone performance of the base 77 

hydrological model. We also identify that both of these conventional AR models can 78 

sometimes cause over-correction of forecasts. We introduce a restricted AR model 79 

applied to normalised errors and demonstrate its effectiveness in overcoming the 80 

adverse effects of the conventional AR models.  81 

2. Autoregressive error models  82 

2.1 Formulations 83 

A hydrological model is a function of forcing variables (precipitation and potential 84 

evapotranspiration), initial catchment state, 0S , and a set of hydrological model 85 

parameters, Hθ . We denote the observed streamflow and model simulated streamflow 86 

at time t  by tQ  and tQɶ , respectively. An error model is used to describe the difference 87 

between tQ  and tQɶ . The log-sinh transformation defined by Wang et al. (2012)  88 

( ) { }1 log sinh( )f x b a bx−= +         (1) 89 

is applied to stabilise variance and normalise data. 90 

In this study, we firstly examine two first-order AR error models:  91 
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(1) An AR error model applied to normalised errors (referred to as AR-Norm) defined 92 

by: 93 

( )1 1t t t t tZ Z Z Zρ ε− −= + − +ɶ ɶ
,        (2) 94 

where tZ  and tZɶ are the log-sinh transformed variables of tQ  and tQɶ ; 95 

(2) An AR error model applied to raw errors (referred to as AR-Raw) defined by 96 

( ){ }1 1t t t t tZ f Q Q Qρ ε− −= + − +ɶ ɶ
.       (3) 97 

For both models, ρ  is the lag-1 autoregression parameter, and tε  is an identically 98 

and independently distributed Gaussian deviate with a mean of zero and a constant 99 

standard deviation σ . 100 

Both the AR-Norm and AR-Raw models represent the lag-one autocorrelation by an 101 

AR process and both employ the log-sinh transformation. However, the way the log-102 

sinh transformation is applied differs between the two models. The AR-Norm model 103 

first applies the log-sinh transformation to the observed and model simulated 104 

streamflow, and then assumes that the error in the transformed space follows an AR(1) 105 

process. In contrast, the AR-Raw model essentially assumes that the error in the 106 

original space follows an AR(1) process and only applies the log-sinh transformation 107 

to fit the asymmetric and non-Gaussian error distribution.  108 

The median of the updated streamflow forecast (referred to as updated streamflow) 109 

for the AR-Norm and AR-Raw models (see Appendix A for proof), denoted by *
tQɶ , 110 

are respectively  111 

( ){ }* 1
1 1t t t tQ f Z Z Zρ−

− −= + −ɶ ɶ ɶ ,        (4) 112 

and 113 

( )*
1 1t t t tQ Q Q Qρ − −= + −ɶ ɶ ɶ ,        (5) 114 

where 1( )f x−  is the inverse of log-sinh transformation (or back-transformation). The 115 

magnitude of the error update by the AR-Raw model, *
t tQ Q−ɶ ɶ , is dependent only on 116 

the difference between 1tQ−  and 1tQ −
ɶ . In contrast, the magnitude of the error update 117 
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by the AR-Norm model is dependent not only on the difference between 1tQ−  and 118 

1tQ −
ɶ , but also on tQɶ . Put differently, the AR-Norm model uses errors calculated in 119 

the transformed domain, and this means that the error in the original domain can be 120 

amplified (or reduced) by the back-transformation (Equation (4)). The AR-Raw model 121 

uses errors calculated in the original domain and no back-transformation is used in 122 

calculating *
tQɶ  (Equation (5)), meaning that the error in the original domain cannot be 123 

amplified (or reduced). In Appendix B, we show that the AR-Norm model gives 124 

greater error updates for larger values of tQɶ .   125 

We will demonstrate in Section 4 that the AR-Norm and AR-Raw models can 126 

sometimes cause over-correction of forecasts. Motivated to overcome the potential for 127 

over-correction, we introduce a modification of the AR-Norm model, called the 128 

restricted AR-Norm model (referred to as RAR-Norm). A condition 129 

*
1 1t t t tQ Q Q Q− −− ≤ −ɶ ɶ ɶ  is used to limit the correction amount to not exceeding the error 130 

in the last time step in absolute value. The updated streamflow is given by 131 

( ){ }1
1 1 1 1*

1 1

   if  

( )   otherwise.

t t t t t t

t

t t t

f Z Z Z D Q Q
Q

Q Q Q

ρ−
− − − −

− −

 + − ≤ −= 
 + −

ɶɶ ɶ

ɶ

ɶ ɶ

     (6) 132 

where  133 

( ){ }1
1 1t t t t tD f Z Z Z Qρ−

− −= + − − ɶɶ ɶ .       (7) 134 

The full RAR-Norm model in the transformed space is given by 135 

( )
( )

1 1 1 1

1 1

      if   

      otherwise.
t t t t t t t

t
t t t t

Z Z Z D Q Q
Z

f Q Q Q

ρ ε
ε

− − − −

− −

 + − + ≤ −=  + − +

ɶɶ ɶ

ɶ ɶ
    (8) 136 

2.2 Estimation 137 

The AR-Norm, AR-Raw and RAR-Norm models are each calibrated jointly with the 138 

hydrological model. The method of maximum likelihood is used to estimate the error 139 

model parameters Eθ  and the hydrological model parameters Hθ . Using a similar 140 

derivation as given by Li et al. (2013), the likelihood functions can be written as  141 

(a) for AR-Norm 142 
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( ) ( )( )2
1 1 1, ( | , ; , ) | ,

t tE H t t t E H Z Q t t t t
t t

L P Q Q Q J Z Z Z Zθ θ θ θ φ ρ σ− → − −= = + −∏ ∏ɶ ɶ ɶ ɶ , (9) 143 

(b) for AR-Raw 144 

( ) ( ){ }( )2
1 1 1, ( | , ; , ) | ,

t tE H t t t E H Z Q t t t t
t t

L P Q Q Q J Z f Q Q Qθ θ θ θ φ ρ σ− → − −= = + −∏ ∏ɶ ɶ ɶ ɶ ,145 

 (10) 146 

(c) for RAR-Norm 147 

( ) ( )( )

( ){ }( )
1 1

1 1

2
1 1 1

:

2
1 1

:

, ( | , ; , ) | ,

| , ,

t t

t t t

t t

t t t

E H t t t E H Z Q t t t t
t t D Q Q

Z Q t t t t
t D Q Q

L P Q Q Q J Z Z Z Z

J Z f Q Q Q

θ θ θ θ φ ρ σ

φ ρ σ

− −

− −

− → − −
≤ −

→ − −
> −

= = + −

+ + −

∏ ∏

∏

ɶ

ɶ

ɶ ɶ ɶ ɶ

ɶ ɶ

148 

        (11) 149 

where { } 1
tanh( )

t tZ Q tJ a bQ
−

→ = +  is the Jacobian determinant of the log-sinh 150 

transformation and ( )2| ,xφ µ σ  is the probability density function of a Gaussian 151 

random variable x  with mean µ  and standard deviation σ . The probability density 152 

function is replaced by the cumulative probability function when evaluating events of 153 

zero flow occurrences (Wang and Robertson, 2011;Li et al., 2013). The Shuffled 154 

Complex Evolution (SCE) algorithm (Duan et al., 1994) is used to minimize the 155 

negative log likelihood.  156 

3. Data  157 

We use daily data from four Australian catchments and three catchments from the 158 

United States (US; Figure 1, Table 1). Australian streamflow data are taken from the 159 

Catchment Water Yield Estimation Tool (CWYET) dataset (Vaze et al., 2011). 160 

Australian rainfall and potential evaporation data are derived from the Australian 161 

Water Availability Project (AWAP) dataset (Jones et al., 2009). All data for the US 162 

catchments come from the Model Intercomparison Experiment (MOPEX) dataset 163 

(Duan et al., 2006). The selected US catchments are amongst the 12 catchments used 164 

by Evin et al. (2014) to compare joint and postprocessor approaches to estimate 165 

hydrological uncertainty, and allows us to compare results with that study (the other 166 

catchments used by Evin et al. (2014) are influenced by snowmelt, which is not 167 

considered in the hydrological model used in this study). The Abercrombie River and 168 
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the Guadalupe River intermittently experience periods of very low (to zero) flow, 169 

while the other rivers flow perennially (Table 1). Such dry catchments are challenging 170 

for hydrological simulations and error modelling. All catchments have high-quality 171 

streamflow records with very few missing data. 172 

We forecast daily streamflow with the GR4J rainfall-runoff model (Perrin et al., 173 

2003) . We apply updating procedures to correct these forecasts. All results presented 174 

in this paper are based on this cross-validation instead of calibration in order to ensure 175 

the results can be generalised to independent data. We use different cross-validation 176 

schemes for the Australian and US catchments, because of the shorter streamflow 177 

records available for the Australian catchments: 178 

i. For the Australian catchments we use data from 1992 to 2005 (14 years) for 179 

these catchments. We then generate 14-fold cross-validated streamflow 180 

forecasts. The data from 1990-1991 are only used to warm up the GR4J model. 181 

For a given year, we leave out the data from that year and the following year 182 

when estimating the parameters of GR4J and error models. For example, if we 183 

wish to forecast streamflows at any point in 1999, we leave out data from 1999 184 

and 2000 when we estimate parameters. The removal of data from the 185 

following year (2000) is designed to minimise the impact of hydrological 186 

memory on model parameter estimation. We then generate streamflow 187 

forecasts in that year (1999) with model parameters estimated from the 188 

remaining data.  189 

ii.  For the US catchments we follow the split-sampling validation scheme 190 

suggested by Evin et al. (2014) to make our results comparable to that study: 191 

(1) an 8-year calibration (09/09/1973- 26/11/1981) (i.e. 3000 days) with an 8-192 

year warm-up period and (2) a 17-year validation (27/11/1981-01/05/1998) 193 

(i.e. 6000 days) with an 8-year warm-up period. 194 

To demonstrate the problems of over-correction of errors in updating and poor stand-195 

alone performance of the base hydrological model, we consider only streamflow 196 

forecasts for one time step ahead. We will consider longer lead times in future work. 197 

Forecasts are generated using observed rainfall (i.e., a ‘perfect’ rainfall forecast) as 198 

input. In streamflow forecasting, forecasts may be generated from rainfall information 199 

that comes from a different source (e.g., a numerical weather prediction model). Our 200 

study is aimed at streamflow forecasting applications, so we preserve the distinction 201 
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between observed and forecast forcings by referring to streamflows modelled with 202 

observed rainfall as simulations and those modelled with forecast rainfall as forecasts. 203 

As the forecast rainfall we use is observed rainfall, the terms forecast and simulation 204 

are interchangeable.  205 

4. Results 206 

4.1 Over-correction of forecasts as the hydrograph rises 207 

The first adverse effect of the conventional AR models is over-correction of errors in 208 

updating as streamflows are rising. By over-correction, we mean that the AR model 209 

updates the hydrological model simulations too much. Over-correction is difficult to 210 

define precisely, however we will demonstrate the concept with two examples in the 211 

Mitta Mitta catchment: the first example illustrates over-correction by the AR-Norm 212 

model, and the second example illustrates over-correction by the AR-Raw model. 213 

To illustrate the problem of over-correction caused by the AR-Norm model, Figure 2 214 

presents a 1-week time series for the Mitta Mitta catchment, showing streamflow 215 

forecasts with GR4J before error updating (referred to as streamflows forecast with 216 

the base hydrological model) and after error updating. Figure 2 shows that the base 217 

hydrological models consistently under-estimate the streamflow from 23/09/2000 to 218 

25/09/2000, and the corresponding updating procedures successfully identify the need 219 

to compensate for this under-estimation. For the AR-Norm model, however, the 220 

correction amount for 26/09/2000 is unreasonably large. Because the forecast 221 

streamflow on 26/09/2000 is much higher than that of the previous day, the correction 222 

is greatly amplified by the back-transformation, leading to the over-correction. In 223 

contrast, the AR-Raw model works better in this situation because the magnitude of 224 

the error update never exceeds the simulation error on the previous day regardless of 225 

whether the forecast streamflow is high or low. The RAR-Norm model behaves 226 

similarly to the AR-Raw model for correcting the peak on 26/09/2000 and avoids the 227 

over-correction made by the AR-Norm model.  228 

Figure 3 shows instances of possible over-correction by the AR-Norm model, 229 

identified by the condition 1 1t t tD Q Q− −> − ɶ . Figure 3 shows that about 10-25% of the 230 

AR-Norm updated forecasts have an error update that is larger than the forecast error 231 

on the previous day and therefore are susceptible to over-correction. The frequency of 232 

these instances varies somewhat from catchment to catchment. The RAR-Norm model 233 
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identifies 10-30% of the forecasts as possible instances of problematic updating, and 234 

the AR-Norm model identifies a similar number of instances (slightly fewer – they are 235 

not identical because the parameters for each model are inferred independently). 236 

Figure 4 presents a time-series for the Orara catchment that shows the instances 237 

susceptible to over-correction for the AR-Norm model. These instances all occur 238 

when the streamflow rises. The RAR-Norm model effectively rectifies the problem of 239 

over-correction caused by the AR-Norm model. We note that there is nothing that 240 

forces the instances susceptible to over-correction identified by the AR-Norm model 241 

to be the same as those identified by the RAR-Norm models because the two models 242 

are calibrated independently (and therefore base hydrological model simulations may 243 

be different). However, the restriction defined in the RAR-Norm model is largely 244 

applied to the instances where the AR-Norm model is susceptible to over-correction.    245 

4.2 Over-correction of forecasts as the hydrograph recedes 246 

The second adverse effect of conventional AR models is over-correction of forecasts 247 

as streamflows reced. Anexample is presented in Figure 5 where the AR-Raw model 248 

causes over-correction. Here, the base hydrological model over-estimates the receding 249 

hydrograph on 05/10/1993. The magnitude of the error update given by the AR-Raw 250 

model cannot adjust according to the value of the forecast. As a result, the AR-Raw 251 

model updates the forecast on 06/10/1993 by a large amount, resulting in serious 252 

under-estimation (the forecast is for near zero streamflow), and an artificial distortion 253 

of the hydrograph. (We note that we have seen this problem become much worse in 254 

unpublished experiments of forecasts made for several time-steps into the future, 255 

sometimes resulting in forecasts of zero flows during large floods.) In contrast, the 256 

AR-Norm model performs better in this example, giving a smaller magnitude of error 257 

update by recognising that the hydrograph is moving downward. It is generally true 258 

that in applying the AR-Raw model, over-correction may occur when the streamflow 259 

is receding. The RAR-Norm model produces updated streamflow similar to the AR-260 

Norm model when the hydrograph recedes rapidly and avoids the over-correction by 261 

the AR-Raw model on 06/10/1993. 262 

Figure 6 provides more examples of the over-correction caused by the AR-Raw model 263 

from a longer time-series plot for the Abercrombie catchment. There are three clear 264 

instances of over-correction, all occurring on the time step immediately after large 265 
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peaks in observed streamflows. The RAR-Norm works better than the AR-Raw model 266 

to avoid the three instances of over-correction for the Abercrombie catchment. 267 

Overall, the RAR-Norm model takes a conservative position when streamflow 268 

changes rapidly, either rising or falling. When streamflow changes rapidly, it is 269 

difficult to anticipate the magnitude of forecast error. Accordingly the conventional 270 

AR models are prone to over-correction in such instances. 271 

4.3 Poor stand-alone performance of the base hydrological model 272 

The third adverse effect with conventional AR error models is the stand-alone 273 

performance of the base hydrological model (GR4J). As noted above, the parameters 274 

of the base hydrological model are estimated jointly with each error model. For 275 

streamflow forecasting, we expect to obtain a reasonably accurate forecast from the 276 

base hydrological model followed by an updating procedure as an auxiliary means to 277 

improve the forecast accuracy. At lead times of many time-steps (e.g., streamflow 278 

forecasts generated from medium-range rainfall forecasts) the magnitude of AR error 279 

updates becomes rapidly smaller (tending to zero), and thus the performance of the 280 

base hydrological model is crucial for realistic forecasts at longer lead times. While 281 

we investigate only forecasts at a lead time of one time step in this study, we aim to 282 

develop methods that can be applied to forecasts at longer lead times. Further, if the 283 

base hydrological model does not replicate important catchment processes realistically, 284 

the performance of the hydrological model outside the calibration period may be less 285 

robust.  286 

Figure 7 presents the Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) 287 

calculated from the base hydrological model and the error models. When the AR-288 

Norm model is used, the  forecasts from the base hydrological model are very poor for 289 

the Orara catchment (NSE<0). The scatter plot in Figure 8 shows a serious over-290 

estimation of the streamflow simulation for the Orara. When the AR-Norm model is 291 

used, the base hydrological model greatly over-estimates discharge and the AR-Norm 292 

model then attempts to correct this systematic over-estimation. This is also shown in 293 

Figure 4 where the base hydrological model has a strong tendency to over-estimate 294 

streamflows for a range of streamflow magnitudes. The base hydrological model with 295 

the AR-Norm model also performs poorly for the Abercrombie catchment (Figure 7). 296 

In this case, the base hydrological model tends to under-estimate streamflows (results 297 
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not shown). For the other three catchments, however, the base hydrological model 298 

with the AR-Norm model performs reasonably well.  299 

In general, the AR-Raw base hydrological model performs as well or better than the 300 

AR-Norm base hydrological model. The AR-Raw base hydrological model is notably 301 

better than the AR-Norm base hydrological model in the Abercrombie and Orara 302 

catchments (Figure 7). This suggests that more robust performance can be expected of 303 

base hydrological models when AR models are applied to raw errors.   304 

The RAR-Norm model generally improves the performance of the AR-Norm base 305 

hydrological model to a similar performance level of the AR-Raw base hydrological 306 

model (Figure 7). The improvement over the AR-Norm base hydrological model is 307 

especially evident for the Orara (Figures 4 and 7) and Abercrombie catchments 308 

(Figures 7).  309 

We note that for the AR-Norm models, the updated forecasts are not always better 310 

than forecasts generated by the base hydrological models. For the Tarwin and 311 

Guadalupe catchments, AR-Norm forecasts are not as good as the forecasts generated 312 

by the AR-Norm base hydrological model. This points to a tendency to overfit the 313 

parameters to the calibration period, resulting in the error model undermining the 314 

performance of the base hydrological model under cross-validation. Such a lack of 315 

robustness is highly undesirable in forecasting applications, where the hydrological 316 

models should be able to operate in conditions that differ from those experienced 317 

during calibration. Note that this problem also occurs in the RAR-Norm model 318 

(Guadalupe) and in the AR-Raw model (Abercrombie, Guadalupe) but to a much 319 

smaller degree. 320 

In general, the updated forecasts from the RAR-Norm model show similar or better 321 

forecast accuracy, as measured by NSE, than both the AR-Raw model and the AR-322 

Norm model (Figure 7). We note that the Orara catchment is an exception: here the 323 

AR-Raw model shows slightly better performance than RAR-Norm model. 324 

Conversely, the RAR-Norm model shows notably better performance than both the 325 

AR-Norm and AR-Raw models in the Abercrombie and Guadalupe catchments. This 326 

suggests the RAR-Norm model may work better in intermittently flowing catchments, 327 

although further testing is required to establish that this is true for a greater range of 328 

catchments.  329 
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4.4 Further analyses 330 

We further evaluate the NSE of the three different error models calibrated when 331 

streamflows are receding (i.e. 1t tQ Q −≤ɶ ɶ ) and rising (i.e. 1t tQ Q −>ɶ ɶ ) (Table 2). For the 332 

receding streamflows (constituting 70-85% of streamflows), the AR-Raw model leads 333 

to the overall worst forecast accuracy because of the over-correction explained in 334 

Section 4.1. This is especially evident for the Abercrombie catchment (and, to a lesser 335 

degree, the Guadalupe catchment). The RAR-Norm model significantly outperforms 336 

the other two models for the Abercrombie catchment and shares similar forecast 337 

accuracy to the (strongly performing) AR-Norm model for the other catchments. 338 

When streamflows are rising (which also includes streamflow peaks), the AR-Norm 339 

model can cause over-correction and leads to the least accurate forecasts (in terms of 340 

NSE), and the RAR-Norm model behaves similarly to the AR-Raw model, which 341 

consistently provides the most accurate forecasts. (The only exception is the 342 

Guadalupe River, where the AR-Raw model clearly outperforms the RAR-Norm 343 

model when streamflows are rising. This is somewhat compensated for by the 344 

markedly better performance the RAR-Norm model offers over the AR-Raw model 345 

when streamflows are receding for this catchment, leading to better forecasts overall 346 

(Figure 7).) We conclude that the AR-Norm model generally tends to perform least 347 

well when streamflows recede, and that the AR-Raw model tends to perform least 348 

well when streamflows rise. We also conclude that the RAR-Norm model tends to 349 

combine the best elements of the AR-Norm and AR-Raw models, leading to the best 350 

overall performance. 351 

We have shown that over-corrections can lead to inaccurate deterministic forecasts, 352 

and we now discuss the consequences for the probabilistic predictions given by each 353 

of the error models. We assess probabilistic forecast skill with skill scores derived 354 

from two probabilistic verification measures: the Continuous Rank Probability Score 355 

(CRPS) and the Root Mean Square Error in Probability (RMSEP) (denoted by 356 

CRPS_SS and RMSEP_SS, respectively) (Wang and Robertson, 2011). Both skill 357 

scores are calculated with respect to a reference forecast. The reference forecast is 358 

generated by resampling historical streamflows: for a forecast issued for a given 359 

month/year (e.g. February 1999), we randomly draw a sample of 1000 daily 360 

streamflows that occurred in that month (e.g. February) from other years with 361 

replacement (e.g. years other than 1999). Table 3 compares these two skill scores 362 



Page 16 of 39 

calculated for the all catchments. The RAR-Norm model performs best across the 363 

range of skill scores and catchments, attaining the highest CRPS_SS in 4 of the 7 364 

catchments and the highest RMSEP_SS in 4 of 7 catchments. Even where RAR-Norm 365 

was not the best performed model, it performs very similarly to the best performing 366 

model in all cases. Interestingly, the AR-Raw model tends to outperform the AR-367 

Norm model in CRPS_SS while the reverse is true for RMSEP_SS. The CRPS tests 368 

how appropriate the spread of uncertainty is for each probabilistic forecast, while 369 

RMSEP puts little weight on this. The results suggest that while the median forecasts 370 

of AR-Norm tends to be slightly more accurate than those of the AR-Raw model, the 371 

forecast uncertainty is represented slightly better by the AR-Raw model.  372 

To better understand how reliably the forecast uncertainty is quantified by each model, 373 

we produce Probability Integral Transform (PIT) uniform probability plots (Wang and 374 

Robertson, 2011) in Figure 9. There are two main points to draw from these plots. 375 

First, the curves are very similar for all error models (a partial exception is the San 376 

Marcos catchment, where the AR-Raw model is slightly closer to the one-to-one line 377 

than the other models). This demonstrates that in general the models produce similarly 378 

reliable uncertainty distributions. Second, all models show an inverted S-shaped curve, 379 

which is characteristic of the forecasts with uncertainty ranges that are too wide. This 380 

underconfidence is a result of using a Gaussian distribution to characterise the error. 381 

The Gaussian distribution is not flexible enough to represent the high degree of 382 

kurtosis in the distribution of the residuals after error updating (partly because the 383 

errors become very small after updating). We are presently experimenting with other 384 

distributions in order to address this issue, and will seek to publish this work in future. 385 

For the purposes of the present study, we conclude that the three error models are 386 

similarly reliable. 387 

5. Discussion and conclusions 388 

For streamflow forecasting, rainfall-runoff models are often augmented with an 389 

updating procedure that corrects the forecast using information from recent simulation 390 

errors. The most popular updating approach uses autoregressive (AR) models that 391 

exploit the “memory” in model errors. AR models may be applied to raw errors 392 

directly or to normalised errors. 393 
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We demonstrate three adverse effects of AR error updating procedures on seven 394 

catchments. The first adverse effect is possible over-correction on the rising limb of 395 

the hydrograph. The AR-Norm model can exhibit the tendency to over-correct the 396 

peaks or on the rise of a hydrograph, because error updating can be (overly) amplified 397 

by the back-transformation. The second adverse effect is the tendency to over-correct 398 

receding hydrographs. This tendency is most prevalent in the AR-Raw model, which 399 

can fail to recognise that a large error update may not be appropriate for small 400 

streamflows. 401 

The third adverse effect is that the stand-alone performance of base hydrological 402 

models can be poor when the parameters of rainfall-runoff and error models are 403 

jointly estimated with the AR parameters. We show that poor base hydrological model 404 

performance is particularly prevalent in the AR-Norm model. The poor performance 405 

appears to occur in catchments with highly skewed streamflow observations (the 406 

intermittent Abercrombie River, and the Orara River, a catchment in a subtropical 407 

climate). For example, in the Orara River, the base hydrological model tends to 408 

greatly over-estimate streamflows, and then relies on the error updating to correct the 409 

over-estimates. This is not desirable in real-time forecasting applications for two 410 

major reasons. First, modern streamflow forecasting systems often extend forecast 411 

lead-times with rainfall forecast information (Bennett et al., 2014). The magnitude of 412 

AR updating decays with lead times, and forecasts at longer lead times rely heavily on 413 

the performance of the base hydrological model. Second, hydrological models are 414 

designed to simulate various components of natural systems, such as baseflow 415 

processes or overland flow. In theory, simulating these processes correctly will allow 416 

the model to perform well for climate conditions that may substantially differ from 417 

those experienced during the parameter estimation period. If the hydrological model 418 

parameters do not reflect the natural processes for a given catchment, the hydrological 419 

model may be much less robust outside the parameter estimation period. 420 

We note that the poor performance of the hydrological model may be specific to the 421 

GR4J model, and many not occur in other hydrological models. Evin et al. (2014) 422 

estimated hydrological model and error model parameters jointly using GR4J and 423 

another hydrological model, HBV, for the three US catchments tested here. While 424 

they did not assess the performance of the base hydrological models, they found that 425 

HBV tended to perform more robustly when combined with different error models. It 426 
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is possible that we may have achieved more stable base model performance had we 427 

used HBV or another hydrological model. We note, however, that our conclusions can 428 

probably be generalised to other hydrological models that do not offer robust base 429 

model performance under joint parameter estimation (e.g. GR4J). Because the RAR-430 

Norm model essentially limits the range of updating that can be applied through the 431 

AR-Norm model, it will tend to rely more heavily on the base hydrological model, 432 

and therefore will tend to favour parameter sets that encourage good stand-alone 433 

performance of the base model. For those hydrological models that already produce 434 

robust base model performance under joint parameter estimation (perhaps HBV), 435 

RAR-Norm is unlikely to undermine this performance for the same reasons. We see 436 

some evidence of this in our experiments with GR4J: when the performance of the 437 

base hydrological model is already strong relative to the updated forecasts for the AR-438 

Norm and AR-Raw models (e.g. the Tarwin, Mitta Mitta, or Guadalupe catchments), 439 

the RAR-Norm model base hydrological model also performs strongly.  440 

The tendency of the AR-Norm model to over-correct rising streamflows is probably 441 

generic. In particular, transformations other than the log-sinh transformation may still 442 

lead to over-correction at the peak of hydrograph. The proof in Appendix A shows 443 

that if a transformation satisfies some conditions (first derivate is positive and second 444 

derivate is negative), it will tend to correct more for higher forecast streamflows and 445 

can cause the problem of over-correction. The conditions given by Appendix A are 446 

generally true for many other transformations used for data normalisation and 447 

variance stabilisation in hydrological applications, such as logarithm transformation 448 

and Box-Cox transformation with the power parameter less than 1. 449 

We use joint parameter inference to calibrate hydrological model and error model 450 

parameters, in order to address the true nature of underlying model errors. Inferring 451 

parameters of the error model and the base hydrological model independently – i.e., 452 

first inferring parameters of the base hydrological model, holding these constant and 453 

then inferring the error model parameters - relies on simplified and often invalid error 454 

assumptions (it assumes independent, homoscedastic and Gaussian errors), but 455 

nonetheless could be a pragmatic alternative to the joint parameter inference to reduce 456 

computational demands. The over-correction of conventional AR models is 457 

independent of the parameter inference, whether the error and base hydrological 458 

model parameters are inferred jointly or independently.  459 
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In order to mitigate the adverse effects of conventional AR updating procedures, we 460 

introduce a new updating procedure called the RAR-Norm model. The RAR-Norm 461 

model is a modification of the AR-Norm: in most instances it operates as the AR-462 

Norm model, but in instances of possible over-correction it relies on the error in 463 

untransformed streamflows at the previous time step. That is, RAR-Norm is 464 

essentially a more conservative error model than AR-Norm: in situations where 465 

streamflows change rapidly, it opts to update with whichever error (transformed or 466 

untransformed) is smaller. This forces greater reliance on the base hydrological model 467 

to simulate streamflows accurately, leading to more robust performance in the base 468 

hydrological model. The RAR-Norm model clearly outperforms the AR-Norm model 469 

in both the updated and base model forecasts, as well as ameliorating the problem of 470 

over-correcting rising streamflows. The RAR-Norm model’s advantage over the AR-471 

Raw model is less clear: both the base hydrological model and the updated forecasts 472 

produced by the AR-Raw model perform similarly to (or sometimes slightly better 473 

than) the RAR-Norm model. However, the RAR-Norm model clearly addresses the 474 

problem of over-correcting receding streamflows that occurs in the AR-Raw model. 475 

As we show, this type of over-correction can seriously distort event hydrographs, and 476 

cause forecasts of near zero streamflows when reasonably substantial streamflows are 477 

observed. While these instances are not very common, the failure in the forecast is a 478 

serious one. As we note earlier, the over-correction of receding streamflows is likely 479 

to be exacerbated when producing forecasts at lead times of more than one time step. 480 

Accordingly, we contend that the RAR-Norm model is preferable to both AR-Norm 481 

and AR-Raw models for streamflow forecasting applications. 482 

Appendix A 483 

For simplicity we only show the case of the AR-Norm model and analogues 484 

arguments can be used to prove the cases of the AR-Raw and RAR-Norm models. 485 

The streamflow ensemble forecast tQ  given by the AR-Norm model defined by (1) 486 

can be written as  487 

( ){ }1
1 1max ,0t t t t tQ f Z Z Zρ ε−

− −
 = + − +
 

ɶ ɶ .      (A1) 488 
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where negative values after the back-transformation are assigned zero values. Because 489 

we assume that tε  is a standard normal random variable, In order to show *
tQɶ  is the 490 

median of tQ , we just need to show ( )* 0.5t tP Q Q≤ =ɶ , which can be proved as follows: 491 

( ) ( ){ }( )
( ){ }( )

* 1 *
1 1

1 * *
1 1

max ,0

 and 0

t t t t t t t

t t t t t t

P Q Q P f Z Z Z Q

P f Z Z Z Q Q

ρ ε

ρ ε

−
− −

−
− −

 ≤ = + − + ≤
 

= + − + ≤ ≤

ɶ ɶɶ ɶ

ɶ ɶɶ ɶ

    (A2) 492 

Because *
tQɶ  always has a non-negative value, we have 493 

( ) ( ){ } ( ){ }( )
( )

* 1 1
1 1 1 1  

0 0.5

t t t t t t t t t

t

P Q Q P f Z Z Z f Z Z Z

P

ρ ε ρ

ε

− −
− − − −≤ = + − + ≤ + −

= ≤ =

ɶ ɶ ɶ ɶ ɶ

.  (A3) 494 

Appendix B 495 

We will analytically show that the AR-Norm model gives a larger magnitude of the 496 

error update for a higher forecast streamflow.  497 

Firstly, we will show that the first derivate of the log-sinh transform f  defined by (3) 498 

is positive and the second derivate is negative (i.e. ( ) 0f x′ >  and ( ) 0f x′′ < ) for any 499 

0b >  and any x . Following some simple manipulation, we have 500 

( )cosh
( ) 0

sinh( )

a bx
f x

a bx

+
′ = >

+
 and 2

( ) 0
sinh ( )

b
f x

a bx

−′′ = <
+

   (B1) 501 

Using the differentiation of inverse functions, we find the first and second derivates of 502 

the inverse transform 1f −   503 

{ }
1

1

1
( ) 0

' ( )
f x

f f x
−

−
′  = >   and  

{ }
{ }

1

1
3

1

( )
( ) 0

( )

f f x
f x

f f x

−
−

−

′′−′′  = > 
 ′
 

,  (B2) 504 

for any 0b >  and any x . 505 

Next, we will derive the difference of magnitudes of the error update between low and 506 

high forecast streamflows. For the sake of notation simplicity, we rewrite tq Z= ɶ  and 507 

( )1 1t tu Z Zρ − −= − ɶ  and assume that 0u > . Using Equation (4), the updated streamflow 508 

can be written as * 1( )tQ f q u−= +ɶ . The magnitude of the error update can be written as  509 
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1

0* 1 1

0
1

( )    if   0

( ) ( )

( )   otherwise.

u

t t

u

f x q dx u

Q Q f q u f q

f x q dx

−

− −

−

 ′  + >  
− = + − = 

′   + 


∫

∫

ɶ ɶ    (B3) 510 

Suppose that we have two forecast streamflows ,1 ,2t tQ Q≤ɶ ɶ  and denote the normalised 511 

forecast streamflow by 1 ,1tq Z= ɶ  and 2 ,2tq Z= ɶ  and the updated streamflow by *
,1tQɶ  and 512 

*
,2tQɶ . Because f  is an increasing function, we have 1 2q q≤ . The difference in the 513 

magnitude of the error update between ,1tQɶ  and ,2tQɶ  can be derived as  514 

1 1
1 2

0* *
,1 ,1 ,2 ,2 0

1 1
1 2

( ) ( )    if   0

( ) ( )   otherwise.

u

t t t t

u

f x q f x q dx u

Q Q Q Q

f x q f x q dx

− −

− −

  ′ ′   + − + >      − − − = 
 ′ ′    + − +      

∫

∫

ɶ ɶ ɶ ɶ

 (B4) 515 

From (A2), we have shown that 1f − ′    is a positive increasing function and this 516 

ensures that 1 1
1 2( ) ( ) 0f x q f x q− −′ ′   + − + ≤    . Finally we have  517 

* *
,1 ,1 ,2 ,2t t t tQ Q Q Q− ≤ −ɶ ɶ ɶ ɶ .        (B5) 518 

Therefore, the error update at larger forecast streamflows is always larger than error 519 

update at lower forecast streamflows. 520 
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Table 1: Catchment characteristics. 657 

Name Country Gauge Site Area 

(km2) 

Rainfall 

(mm/yr) 

Streamflow 

(mm/yr) 

Runoff 

coefficient 

Zero 

flows  

Abercrombie Aus Abercrombie River 

at Hadley no. 2 

1447 783 63 0.08 14.4% 

Mitta Mitta Aus Mitta Mitta River at 

Hinnomunjie 

1527 1283 261 0.20 0 

Orara Aus Orara River at 

Bawden Bridge 

1868 1176 243 0.21 0.6% 

Tarwin Aus Tarwin River at 

Meeniyan 

1066 1042 202 0.19 0 

Amite US 07378500 3315 1575 554 0.35 0 

Guadalupe US 08167500 3406 772 104 0.13 1.7% 

San Marcos US 08172000 2170 844 165 0.20 0% 

 658 

  659 
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Table 2: Comparison of the NSE calculated at (a) the receding limb and (b) the rising 660 
limb of the hydrograph for three different error models. 661 
 662 

 
(a) 1t tQ Q −≤ɶ ɶ   

(b) 1t tQ Q −>ɶ ɶ  

 Proportion 

of flows 

AR-

Norm 

AR-

Raw 

RAR-

Norm 

 Proportion 

of flows 

AR-

Norm 

AR-

Raw 

RAR-

Norm 

Abercrombie 82% 0.11 -0.41 0.52  19% 0.58 0.66 0.65 

Mitta Mitta 82% 0.95 0.91 0.95  18% 0.81 0.86 0.86 

Orara 85% 0.94 0.91 0.95  15% 0.86 0.86 0.83 

Tarwin 71% 0.90 0.91 0.90  29% 0.18 0.77 0.76 

Amite 69% 0.76 0.82 0.84  31% 0.82 0.82 0.85 

Guadalupe 83% 0.75 0.35 0.77  15% 0.24 0.55 0.45 

San Marcos 82% 0.80 0.66 0.80  17% 0.63 0.64 0.64 
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Table 3: Comparison of the skill scores based on CRPS and RMSEP (denoted by 664 
CRPS_SS and RMSEP_SS) for three different error models. 665 
 666 

 CRPS_SS (%)  RMSEP_SS (%) 

 
AR-

Norm 
AR-Raw 

RAR-

Norm 
 

AR-

Norm 
AR-Raw 

RAR-

Norm 

Abercrombie 64.1 62.3 66.3  75.1 73.7 74.7 

Mitta Mitta 80.3 79.7 80.7  84.1 83.2 84.0 

Orara 74.0 75.7 75.5  81.7 80.7 81.4 

Tarwin 74.9 79.3 78.8  86.1 85.1 86.1 

Amite 67.5 68.3 69.5  71.0 70.9 71.2 

Guadalupe 57.4 60.9 59.8  76.3 75.2 77.2 

San Marcos 68.8 66.0 68.9  73.9 73.9 74.3 
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668 

Figure 1: Map of US (top) 669 

 670 

(top) and Australian (bottom) catchments. 

 

 



Page 32 of 39 

 671 

Figure 2: An example of over-correction caused by the AR-Norm model in the Mitta 672 

Mitta catchment. Dashed lines: forecasts from the base hydrological model (i.e., 673 

without error updating). Solid lines: forecasts with error updating.  674 

 675 

 676 
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 678 

Figure 3: The fraction of instances where 1 1t t tD Q Q− −> − ɶ  (i.e., instances where over-679 

correction may occur in the AR-Norm model and where error updating is restricted in 680 

the RAR-Norm model) for the AR-Norm and RAR-Norm models for Australian 681 

catchments.  682 
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 684 

Figure 4: Forecast streamflows for the Orara catchment for an example 1-year period. 685 

Top panel shows streamflows forecast with AR-Norm model, bottom panel shows 686 

streamflows forecast with the RAR-Norm model. Dashed lines: forecasts from the 687 

base hydrological model (i.e., without error updating). Solid lines: forecasts with error 688 

updating. Tick marks in the x-axis denote the instance of updating where 689 

1 1t t tD Q Q− −> − ɶ .  690 
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 691 

Figure 5: An example of over-correction caused by the AR-Raw model in the Mitta 692 

Mitta catchment. Dashed lines: forecasts from the base hydrological model (i.e., 693 

without error updating). Solid lines: forecasts with error updating.  694 
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 696 

Figure 6: Forecast streamflows for the Abercrombie catchment for the period between 697 

01/08/1997 and 15/09/1997. Top panel shows streamflows forecast with AR-Raw 698 

model, bottom panel shows streamflows forecast with the RAR-Norm model. Dashed 699 

lines: forecasts from the base hydrological model (i.e., without error updating). Solid 700 

lines: forecasts with error updating. Gray shading denotes instances of over-correction 701 

caused by the AR-Raw model.  702 
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 703 

Figure 7: NSE of streamflows forecast with the AR-Norm, AR-Raw and RAR-Norm 704 

models (colours). Performance of the corresponding base hydrological models is 705 

shown by hatched blocks. 706 

 707 
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 709 

Figure 8: Comparison of the observed streamflows (tQ ) and forecast streamflows 710 

( tQɶ ), as forecast: 1) with the base hydrological model (circles), and 2) with the base 711 

hydrological model and error updating models (dots) for the Orara catchment.  712 
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 714 

Figure 9: PIT-uniform probability plots. Curves on the diagonal indicate perfectly 715 

reliable forecasts. 716 


