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Review comments from Mark Thyer
Comment #1.1. General Comments This paper presents a modificatoexisting approaches for

handling autoregressive errors in streamflow maudglin a forecasting context. | applaud this paper
for undergoing a detailed analysis of the issues$ déine encountered when endeavouring to deal with
both heteroscedasticity and autocorrelation in dlpdyical modelling errors. Something which we
think should be straightforward, but is actuallyitgichallenging to get right. The paper is fairlgliv
written, but needs some improvement (see minoe&®s he results presented, while quite promising,
are currently not sufficiently convincing to wartapublication. Please see the list of major issues
below. These issues need to be addressed priobtaation.

Response: Thank you for the careful and constrectview. We have attempted to address the major
issues you have raised, while keeping the papkriefsas possible.

Major Issues

Comment #1.2. More metrics are required to verify performance.

Currently the three methods, AR-Norm, AR-Raw and=Rorm are evaluated by visual inspection of
a few events and using the NSE as an evaluatiderieri A wider range of metrics is needed. In a
forecasting context, it is not simply the NSE whishused to evaluate predictions, users are also
interested in the statistical properties of thedtive streamflow distribution, such as relialyiland
precision. It is common for these metrics to alsadé-off against one another, so it would be
interesting to see if that occurs in this casett&rmore, the NSE is heavily weighted towards bette
predictions of high flows. It is recommended thathars use metrics that evaluate the full predéctiv
streamflow distribution and use precision and bdliiy metrics, such as they have used in past, e.g
Wang and Robertson [2011] or see for example Bvah. §2014].

Response: Thanks for this suggestion. We have aadeanber of metrics to bolster our conclusions,
including the probabilistic verification scores CRPwhich measures both accuracy and reliability),
RMSEP (which measures accuracy of forecast in fitihg and PIT-Uniform probability plots to
assess reliability. These show that there is litdedistinguish between the three models with
probabilistic measures; all show similar accurang aeliability (though again, RAR-Norm tends to
produce slightly better CRPS and RMSEP skills stdinan the other models.) In addition, we analyse
the NSE of forecasts when flows are rising andnfglIThese analyses confirm the general tendency of
the AR-Norm model to perform least well when floare rising, and the tendency of the AR-Raw
model to perform least well when flows are recedimgaddition, these analyses show that the RAR-
Norm model reflects the best tendencies of the AR+Rnd AR-Norm models.

Comment #1.3. Robustness of the results with respect to the Hhgdimal model.

Line 20 page 6044 makes the point that AR-Raw perédetter than AR-Norm and state “this suggest
that more robust performance can be expected ef ngdrological models with AR models are applied
to raw errors”. Sectio, 4.2 is devoted to discusbasthe AR-Norm model, produce poor performance
of the hydrological model. However, this is basaty@ single hydrological model, GR4J. When Evin
et al. [2014] applied an equivalent to the AR-Naradel (but with linear heteroscedatic errors, nathe
than log-sinh transformed) to the 12 MOPEX catchisi¢imey found similar poor model performance
for GR4J for some catchments, but this did not pedwen the HBV model was applied. This provides
strong evidence that the problems with ARNorm i$ mecessarily generic, but hydrological model
specific. It is recommended that the authors tidifferent hydrological model, e.g. HBV, and ske i
the results are similar. If they are, then thisvites a greater robustness of the model results, an
greater  confidence for the hydrological communityo t adopt this  method.

Providing more metrics with a wider range of hydgital models would be better test the extent ef th
problems with AR-Raw and AR-Norm and the robustrashe results. For example, Figure 3, shows
the error over-correction problem with AR-Norm orgin only 10-20% of cases, which is not very
high. Given also that the poor performance of theMorm method is hydrological model specific,

further testing and metrics are required to vethify robustness of the proposed approach.
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Response: We concede that other rainfall-runoff ef®anay not be as prone to poor base model
performance as GR4J. We have stopped short oftigatiag additional hydrological models however,
to keep our paper brief. We address the revieveergern as follows:

1) We now explicitly acknowledge that the sometimesrgmerformance of the base hydrological

model may be particular to GR4J

2) Adding some of the MOPEX catchments used by Eval.2014 (see response to Comment #
1.4, below) has allowed us to draw more directyrfrEvin’s work, which suggested that
HBV could lead to more robust base model perforrmattie refer to this study explicitly
when we discuss the performance of the base hygloalomodel

3) Because the RAR-Norm model restricts the magnitfdepdates that can be applied by the
AR-Norm model, more reliance is placed on the bhgdrological model to accurately
simulate flows. This will generally encourage tles® hydrological model to perform strongly
compared with the AR-Norm, irrespective of the fojdgical model used. If the base
hydrological model is already performing stronghg (might be expected, e.g., of HBV) then
the RAR-Norm model is unlikely to undermine thigfpemance. We see evidence of this in
our experiments with GR4J (which we know can penfgoorly): when the performance of
the GR4J base hydrological model is strong relatvine updated forecasts for both AR-Raw
and AR-Norm models (e.g. in the Tarwin, Mitta Mjtta Guadalupe catchments), the RAR-
Norm model base hydrological model also performsngfly. In other words, if the problem
does not exist in the other models, RAR-Norm dagsniroduce it.

The arguments above are now covered in the dismugkines 418-437).

As noted in the response to Comment #1.2, we hdgecamore metrics and analysis, as well as three
extra catchments, and we hope that these demanthiatthe RAR-Norm model is preferable to both
the AR-Norm and AR-Raw models in general. As wevsiothe proof in the Appendix, and argue in
the discussion, the potential of the AR-Norm madebver-correct rising flows is likely to be gereri
(irrespective of hydrological model or transforroatiapplied). In addition, while you are right in
saying that the AR-Norm model is susceptible toraarection for as little as 10% of flows, it iften
these instances — when flows are rising rapidljhat tare of most interest to forecasters (e.g., for
forecasting floods). We therefore argue that tlablgm of over-correction by the AR-Norm model is a
salient one and that the RAR-Norm model addre¢sgsptoblem successfully.

Comment #1.4. 3. Ability to compare results with previous stugli&@his is more a general comment

of an issue which is a common blight for the pregref the hydrological scientific community. One of
the big challenges for reviewers (and readers megd) is the ability to compare results between
different studies, due to differences in implem&ata As an example, Evin et al. [2013] showed that
the equivalent to AR-norm was better than AR-RawilevEvin et al. [2014] showed that AR-Norm
can degrade hydrological model performance for GRid,not HBV. While Schaefli et al. [2007]
showed that AR on raw errors lead to better infeeemhile this study showed a AR-hybrid (norm and
raw) (see minor comment 3) works better than boRrMorm and AR-Raw. However in all these
studies, there are differences in their approach aase study application. For example, Evin et al.
[2013,2014] used a linear heteroscedastic resielwal model, Schaefli et al. [2007] used a mixtofe
Gaussians for their error model, while this stugdgdia log-sinh transformation with modification for
zero flow occurrences. Furthermore, each study dadifferent set of case study catchments. It
concerns me that the conclusions of each of thieskes could be sensitive to these differenceserath
than differences in the way the AR is handled, iamaakes it very difficult for hydrological sciende
move forward. This is the reason why Evin et al1j2] choose to use the MOPEX dataset, as it least
provides a common set of catchments to previoudiestul would suggest to these authors to include
the 12 MOPEX catchments as used by Evin et al.4R@d1 enable better comparison. This is not an
essential criteria, but it would increase the &pilio compare the results, and test its compare
robustness against previous results.

Response: We agree that comparability of resultsgbly desirable. To this end, we have included 3
of the catchments used by Evin et al. [2014], apedc#ically note that these are chosen for the
purposes of comparison to that study. In additie®,apply the same cross-validation strategy as Evin
et al. 2014 to these catchments, to enable di@tiparison to Evin et al.’s findings. We did not use
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Evin’s remaining 9 catchments, for the simple thase are all impacted by snow, and this was mot th
focus of our study. We discuss the results of lineet US catchments with reference to Evin et @420
We find that the additional of the US catchmentspsuits our initial findings, and thank the reviewer
very much for this suggestion.

Minor Issues

Comment #1.5. Page 6039 Line 20-25. The assertion that thesetieqaaepresent the median needs
further derivation (perhaps in an appendix), as itot clear to me. For example, the error termis(t
completely dropped from egs 4 and 5. This assutrasmedian of Z-1(et)=0, now median(et)=0, but,
I’'m not convinced that median of Z-1(et)=0, dughe use of the log sinh transformation which takes
into account zero flow occurrences.

Response: Thank you for reading our manuscriptlesely. Following your suggestion, we explain
why the updated streamflow is the median of therde streamflow forecast in Appendix A.
Comment #1.6. Page 6045, Eq(8). It is very confusing using thiessript (R) for both AR-Raw and

AR-Norm. Please use a different subscript for RARedl

Response: We have carefully and thoroughly updiedotations and avoided the use of the subscript
(R).

Comment #1.7. RAR model is essentially a hybrid of AR-Norm when over-corrections, use
ARRaw. Suggest to change name of RAR_Norm to ARdlyl\Iso, why did the authors choose not
use the phi term, i.e. Q(s,t)+ phi*[Q(t-1) — Q(¥)i-in last line of eq 8. Some justification of ghis
needed.

Response:

While the RAR-norm uses errors calculated fromsfarmed and untransformed flows, it is not a
formal combination of the AR-Norm and the AR-Rawduats. This is because we do not apply a rho
term to the error in the untransformed domain wiverapply the restriction. In addition, the model is
conceptually much more similar to AR-Norm, and ied¢he model functions as an AR-Norm model
for the large majority of the time. Accordingly, yweefer the moniker RAR-Norm.

Comment #1.8. Figure 3 — Q(M,t) is used before it is defined. &Bke define it earlier in the
manuscript.

in the

Qu- Qt—l

Response:: All notations have been updated foebetadability. We us®, <

revision. Please refer to Section 2.1 for the digins of the notations.
Comment #1.9. . Agree with B. Schaefli, the superscript notatisrhard to read. Please change to

increase readability

Comment #1.10. Response: We have carefully and thoroughly updétecotations and avoided the
superscript in the old versioAgree with B. Schaefli, re structure, the new mdtiAR should be
presented in Section 2. All methods should bermeghod section, all results in a results section

Response: We have changed the structure accomlingniments from B. Schaefli, and hope this is
easier to follow.
Comment #1.11. Please also provide details on the algorithm usedaximize the likelihood — was it

SCE or something else?

ResponseThe Shuffled Complex Evolution (SCE) algorithm (Duet al., 1994) is used to minimize
the negative log likelihood. (Lines 153-155).
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Abstract

For streamflow forecasting applications, rainfaihoff hydrological models are often
augmented with updating procedures that correeastilow forecasts based on the
latest available observations of streamflow andirthdepartures from model
simulations. The most popular approach uses autssige (AR) models that exploit
the “memory” in hydrological model simulation erso0AR models may be applied to
raw errors directly or to normalised errors. Instistudy, we demonstrate that AR
models applied in either way can sometimes cause-ayrection of forecasts. In
using an AR model applied to raw errors, the oweraction usually occurs when
streamflow is rapidly receding. In applying an ARael to normalised errors, the
over-correction usually occurs when streamflowaigidly rising. Furthermore, when
parameters of a hydrological model and an AR madelestimated jointly, the AR
model applied to normalised errors sometimes degréoe stand-alone performance
of the base hydrological model. This is not desegdbr forecasting applications, as
forecasts should rely as much as possible on tise Igdrological model, and
updating should be applied only to correct minaoesr. To overcome the adverse
effects of the conventional AR models, a restrioddtl model applied to normalised
errors is introduced. The new model is evaluatedh srumber of catchments and is
shown to reduce over-correction and to improve plegformance of the base

hydrological model considerably.
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1. Introduction

Rainfall-runoff models are widely used to generateeamflow forecasts, which
provide essential information for flood warning amdter resources management. For
streamflow forecasting, rainfall-runoff models aoffen augmented by updating
procedures that correct streamflow forecasts basdtle latest available observations
of streamflow and their departures from model satiahs. Model errors reflect
limitations of the hydrological models in reprodugiphysical processes as well as
inaccuracies in data used to force and evaluatmtuels.

The most popular updating approach uses autoregeggsR) models, which exploit
the “memory” - more precisely the autocorrelatitnucture - of errors in hydrological
simulations (Morawietz et al., 2011). Essentialg updating uses a linear function
of the known errors at previous time steps to grdie errors in a forecast period.
Forecasts are then updated according to theseipatéid errors. AR updating is
conceptually simple and yet generally leads to iB@antly improved forecasts
(World Meteorological Organization, 1992). AR upgdgthas been shown to provide
equivalent performance to more sophisticated nogali and nonparametric updating

procedures (Xiong and O'Connor, 2002).

In rainfall-runoff modelling, model errors are gealey heteroscedastic (i.e., they
have heterogeneous variance over time) (Xu, 200k&ts&i et al., 2003;Pianosi and
Raso, 2012) and non-Gaussian (Bates and Campb@D]l;2chaefli et al.,

2007;Shrestha and Solomatine, 2008). In many agipits (Seo et al., 2006;Bates
and Campbell, 2001;Salamon and Feyen, 2010;Moraveietl., 2011), AR models

are applied to normalised errors that are considé@moscedastic and Gaussian.
Normalisation is often achieved through variablansformation by using, for

example, the Box-Cox transformation (Thyer et &002;Bates and Campbell,
2001;Engeland et al., 2010) or, more recently,ltigesinh transformation (Wang et
al., 2012;Del Giudice et al.,, 2013). In other apgiions (Schoups and Vrugt,
2010;Schaefli et al., 2007), AR models are apptireectly to raw errors, but residual
errors of the AR models may be explicitly specifiag heteroscedastic and non-

Gaussian.

There is no agreement on whether it is better fdyagn AR model to normalised or
raw errors. Recent work by Evin et al. (2013) fodinat an AR model applied to raw
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errors may lead to poor performance with exaggdratecertainty. They
demonstrated that such instability can be mitigdtgdapplying an AR model to
standardised errors (raw errors divided by standaxdations). Here, standardisation
has a similar effect to normalisation in that itfagenises the variance of the errors
(but does not consider the non-Gaussian distributiioerrors). Conversely, Schaefli
et al. (2007) pointed out that when an AR modeljomtly estimated with a
hydrological model, there is a clear advantagepplyang an AR model to raw errors
rather than normalised (or standardised) errorsa&t et al. (2007) found that using
raw errors leads to more reliable parameter infeeand uncertainty estimation,
because the mean error is close to zero and theréie simulations are free of
systematic bias. The same is not necessarily thoenvapplying an AR model to

normalised errors.

In this study, we evaluate AR models applied tchbaiw and normalised errors on
four Australian catchments and three United Stétks) catchments. We show that
when estimated jointly with a hydrological modehet AR model applied to

normalised errors sometimes degrades the stand-gbenformance of the base
hydrological model. We also identify that both bése conventional AR models can
sometimes cause over-correction of forecasts. Wweduace a restricted AR model
applied to normalised errors and demonstrate itscefeness in overcoming the
adverse effects of the conventional AR models.

2. Autoregressive error models

2.1 Formulations

A hydrological model is a function of forcing vablas (precipitation and potential

evapotranspiration), initial catchment stafg, and a set of hydrological model
parametersf,. We denote the observed streamflow and model stedllstreamflow
at timet by Q andQ, respectively. An error model is used to desctiiteedifference

betweenQ andQ. The log-sinh transformation defined by Wang e{2012)
f (x) =b™log{ sinh@+bx } (1)

is applied to stabilise variance and normalise.data

In this study, we firstly examine two first-ordeRAerror models:
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(1) An AR error model applied to normalised err@geferred to a®\R-Norm) defined

Z = Z~t + p(zt—l - Zt—l) t& (2)

where z, andZ, are the log-sinh transformed variables@fand Q;

(2) An AR error model applied to raw errors (regerto asAR-Raw) defined by

Z =f {Qt + p(Qt—l _Q~t—l)} té 3)

For both modelsp is the lag-1 autoregression parameter, §nes an identically

and independently distributed Gaussian deviate withean of zero and a constant

standard deviatiow .

Both the AR-Norm and AR-Raw models represent tigeolae autocorrelation by an
AR process and both employ the log-sinh transfaonaHowever, the way the log-
sinh transformation is applied differs between tihe models. The AR-Norm model
first applies the log-sinh transformation to thesetved and model simulated
streamflow, and then assumes that the error itréimsformed space follows an AR(1)
process. In contrast, the AR-Raw model essentadlyumes that the error in the
original space follows an AR(1) process and onlglias the log-sinh transformation

to fit the asymmetric and non-Gaussian error digtron.

The median of the updated streamflow forecast rfredleto asupdated streamflow)
for the AR-Norm and AR-Raw models (see Appendixoh froof), denoted by,

are respectively

Q =tz +p(z-2.)} 4
and
(jt* :Qt +p(Q—1_Qt—1)’ (5)

where f 7(x) is the inverse of log-sinh transformation (or ba@sformation). The
magnitude of the error update by the AR-Raw mofi)él,—(:)t , IS dependent only on

the difference betweeQ)_; and Q_l. In contrast, the magnitude of the error update
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by the AR-Norm model is dependent not only on tiféexence betweerf)_, and

Q_l, but also orQ . Put differently, the AR-Norm model uses errorekated in

the transformed domain, and this means that the @rrthe original domain can be
amplified (or reduced) by the back-transformatigyation (4)). The AR-Raw model
uses errors calculated in the original domain aodack-transformation is used in
calculating(j: (Equation (5)), meaning that the error in the ioafjdomain cannot be

amplified (or reduced). In Appendix B, we show tllaé AR-Norm model gives

greater error updates for larger valueQ‘)f.

We will demonstrate in Section 4 that the AR-Normd aAR-Raw models can
sometimes cause over-correction of forecasts. Mtgt/to overcome the potential for
over-correction, we introduce a modification of tA&R-Norm model, called the

restricted AR-Norm model (referred to afRAR-Norm). A condition

G -Q<]|Q..~Q.| is used to limit the correction amount to not exiag the error

in the last time step in absolute value. The umtlateeamflow is given by

xx f_l{zt +p(zt—1_zt—1)} if D, S‘Qt—l_ét—l‘
Q=1_ ) | (6)
Q+(Q,—-Q.,) otherwise.
where
D, :‘f'l{zt +p(2.-Z.,)} -4 (7)
The full RAR-Norm model in the transformed spacgiien by
- Z~t tp(zt—l_z:t—l t& if D, S‘Qt—l_ét—l‘ (8)
(0 +QL-Qu)+s  otherwise.

2.2 Estimation

The AR-Norm, AR-Raw and RAR-Norm models are eadibed jointly with the

hydrological model. The method of maximum likelildois used to estimate the error

model parameter§. and the hydrological model parameté&s. Using a similar

derivation as given by Li et al. (2013), the likelod functions can be written as

(a) for AR-Norm
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L(HE’HH ) - |_| P(Q |Qt 'QI—I;HE 64)= |_| ‘JZmQt(”(Zt |Zt +’0(Zt‘1_zt'1) ’02)’ ©)
(b) for AR-Raw

L(eE’HH ) = |_| P(Q |Q~t ’Qt—l;eE G, )= |_| ‘]zﬁqq”(zt |f{Q~t +p(Qt—1_Qt—l)} ’02) g
(10)

(c) for RAR-Norm

I‘(0E'6H ) = “ PQ |Qt 'Qt—1;6E 64 )=t:D sQltl—Q_JZtﬁQt(o(Zt |Z~t +p(zt‘1_zt‘1) ’02)

+ |—| 5 JLHQw(Zt |f{Qt+p(Q“l_Qt‘l)} ’02)'
t:D;>Q41-Q
(11)

where JZWQ‘:{tanh(a+th}_l is the Jacobian determinant of the log-sinh

transformation andp(x|4,0?) is the probability density function of a Gaussian

random variablex with meany and standard deviatiom. The probability density

function is replaced by the cumulative probabifilpction when evaluating events of
zero flow occurrences (Wang and Robertson, 201é&tLal.,, 2013). The Shuffled
Complex Evolution (SCE) algorithm (Duan et al.,, 499s used to minimize the

negative log likelihood.
3. Data

We use daily data from four Australian catchmemntd three catchments from the
United States (US; Figure 1, Table 1). Australiaeanflow data are taken from the
Catchment Water Yield Estimation Tool (CWYET) datagVaze et al., 2011).
Australian rainfall and potential evaporation dat@ derived from the Australian
Water Availability Project (AWAP) dataset (Jonesakt 2009). All data for the US
catchments come from the Model Intercomparison Expnt (MOPEX) dataset
(Duan et al., 2006). The selected US catchmentaraangst the 12 catchments used
by Evin et al. (2014) to compare joint and postpesor approaches to estimate
hydrological uncertainty, and allows us to compasults with that study (the other
catchments used by Evin et al. (2014) are infludnisg snowmelt, which is not

considered in the hydrological model used in thislg). The Abercrombie River and
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the Guadalupe River intermittently experience pisiof very low (to zero) flow,
while the other rivers flow perennially (Table Such dry catchments are challenging
for hydrological simulations and error modellingll Batchments have high-quality

streamflow records with very few missing data.

We forecast daily streamflow with the GR4J rainfaihoff model (Perrin et al.,

2003) . We apply updating procedures to correedherecasts. All results presented
in this paper are based on this cross-validatistead of calibration in order to ensure
the results can be generalised to independent A&tause different cross-validation
schemes for the Australian and US catchments, Becatithe shorter streamflow

records available for the Australian catchments:

i.  For the Australian catchments we use data from 1892005 (14 years) for
these catchments. We then generate 14-fold crdskted streamflow
forecasts. The data from 1990-1991 are only usedaton up the GR4J model.
For a given year, we leave out the data from tlear yand the following year
when estimating the parameters of GR4J and erralelaoFor example, if we
wish to forecast streamflows at any point in 1998 Jeave out data from 1999
and 2000 when we estimate parameters. The remdvala@ from the
following year (2000) is designed to minimise tmepact of hydrological
memory on model parameter estimation. We then gémestreamflow
forecasts in that year (1999) with model parametssmated from the
remaining data.

ii. For the US catchments we follow the split-samplvaidation scheme
suggested by Evin et al. (2014) to make our resutsparable to that study:
(1) an 8-year calibration (09/09/1973- 26/11/198%). 3000 days) with an 8-
year warm-up period and (2) a 17-year validatio/12/1981-01/05/1998)
(i.e. 6000 days) with an 8-year warm-up period.

To demonstrate the problems of over-correctionradre in updating and poor stand-
alone performance of the base hydrological mod@, consider only streamflow
forecasts for one time step ahead. We will condioleger lead times in future work.
Forecasts are generated using observed rainfal] &.‘perfect’ rainfall forecast) as
input. In streamflow forecasting, forecasts maybeerated from rainfall information
that comes from a different source (e.g., a nurakreather prediction model). Our

study is aimed at streamflow forecasting applicetjcso we preserve the distinction
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between observed and forecast forcings by refeiangtreamflows modelled with
observed rainfall asmulations and those modelled with forecast rainfalf@®casts.
As the forecast rainfall we use is observed ralinfaé termdorecast andsimulation
are interchangeable.

4. Results

4.1 Over-correction of forecasts as the hydrograph rises

The first adverse effect of the conventional AR eleds over-correction of errors in
updating as streamflows are rising. By over-coroectwe mean that the AR model
updates the hydrological model simulations too mu@er-correction is difficult to
define precisely, however we will demonstrate tbacept with two examples in the
Mitta Mitta catchment: the first example illustratever-correction by the AR-Norm
model, and the second example illustrates overecbaon by the AR-Raw model.

To illustrate the problem of over-correction caubgdhe AR-Norm model, Figure 2
presents a 1-week time series for the Mitta Mitscloment, showing streamflow
forecasts with GR4J before error updating (refeteeds streamflows forecast with
the base hydrological model) and after error updating. Figure 2 shows thatlthse
hydrological models consistently under-estimate stieamflow from 23/09/2000 to
25/09/2000, and the corresponding updating proesdsumccessfully identify the need
to compensate for this under-estimation. For the-Md®m model, however, the
correction amount for 26/09/2000 is unreasonablgeda Because the forecast
streamflow on 26/09/2000 is much higher than tlidéhe previous day, the correction
is greatly amplified by the back-transformationadang to the over-correction. In
contrast, the AR-Raw model works better in thisiaibn because the magnitude of
the error update never exceeds the simulation errdhe previous day regardless of
whether the forecast streamflow is high or low. TRAR-Norm model behaves
similarly to the AR-Raw model for correcting theageon 26/09/2000 and avoids the

over-correction made by the AR-Norm model.
Figure 3 shows instances of possible over-correctly the AR-Norm model,
identified by the conditiorD, >‘Qt—l_Qt—1" Figure 3 shows that about 10-25% of the

AR-Norm updated forecasts have an error updateigHatger than the forecast error
on the previous day and therefore are susceptbdedr-correction. The frequency of
these instances varies somewhat from catchmemt¢brment. The RAR-Norm model
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identifies 10-30% of the forecasts as possibleaimsts of problematic updating, and
the AR-Norm model identifies a similar number odtences (slightly fewer — they are

not identical because the parameters for each namdehferred independently).

Figure 4 presents a time-series for the Orara o@ah that shows the instances
susceptible to over-correction for the AR-Norm modehese instances all occur
when the streamflow rises. The RAR-Norm model ¢i¥ety rectifies the problem of
over-correction caused by the AR-Norm model. Weenbiat there is nothing that
forces the instances susceptible to over-correctientified by the AR-Norm model
to be the same as those identified by the RAR-Nmiwdels because the two models
are calibrated independently (and therefore badeolngical model simulations may
be different). However, the restriction definedtire RAR-Norm model is largely
applied to the instances where the AR-Norm modsligceptible to over-correction.

4.2 Over-correction of forecasts as the hydrograph recedes

The second adverse effect of conventional AR moidetsrer-correction of forecasts
as streamflows reced. Anexample is presented iar&i§ where the AR-Raw model
causes over-correction. Here, the base hydrologicalel over-estimates the receding
hydrograph on 05/10/1993. The magnitude of thererpalate given by the AR-Raw
model cannot adjust according to the value of tredast. As a result, the AR-Raw
model updates the forecast on 06/10/1993 by a larmgeunt, resulting in serious
under-estimation (the forecast is for near zereastiflow), and an artificial distortion
of the hydrograph. (We note that we have seenpitublem become much worse in
unpublished experiments of forecasts made for aéwene-steps into the future,
sometimes resulting in forecasts of zero flows mydiarge floods.) In contrast, the
AR-Norm model performs better in this example, ggra smaller magnitude of error
update by recognising that the hydrograph is modognward. It is generally true
that in applying the AR-Raw model, over-correctioay occur when the streamflow
is receding. The RAR-Norm model produces updateshstflow similar to the AR-
Norm model when the hydrograph recedes rapidlyauaids the over-correction by
the AR-Raw model on 06/10/1993.

Figure 6 provides more examples of the over-caomeaaused by the AR-Raw model
from a longer time-series plot for the Abercrombachment. There are three clear
instances of over-correction, all occurring on time step immediately after large
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peaks in observed streamflows. The RAR-Norm workseb than the AR-Raw model
to avoid the three instances of over-correction tfee Abercrombie catchment.
Overall, the RAR-Norm model takes a conservativesitmm when streamflow
changes rapidly, either rising or falling. Wheneamnflow changes rapidly, it is
difficult to anticipate the magnitude of forecastoe. Accordingly the conventional

AR models are prone to over-correction in suchaimsts.
4.3 Poor stand-alone performance of the base hydrological model

The third adverse effect with conventional AR ermodels is the stand-alone
performance of the base hydrological model (GRA3)noted above, the parameters
of the base hydrological model are estimated jpintith each error modelFor
streamflow forecasting, we expect to obtain a reakly accurate forecast from the
base hydrological model followed by an updatingcedure as an auxiliary means to
improve the forecast accuracy. At lead times of yname-steps (e.g., streamflow
forecasts generated from medium-range rainfallcasts) the magnitude of AR error
updates becomes rapidly smaller (tending to zenadl, thus the performance of the
base hydrological model is crucial for realisticeicasts at longer lead times. While
we investigate only forecasts at a lead time of time step in this study, we aim to
develop methods that can be applied to forecadtsnger lead times. Further, if the
base hydrological model does not replicate importatchment processes realistically,
the performance of the hydrological model outsluke ¢alibration period may be less

robust.

Figure 7 presents the Nash-Sutcliffe efficiency BYENash and Sutcliffe, 1970)
calculated from the base hydrological model andédtrer models. When the AR-
Norm model is used, the forecasts from the badeolggical model are very poor for
the Orara catchment (NSE<O0). The scatter plot gufe 8 shows a serious over-
estimation of the streamflow simulation for the @raVhen the AR-Norm model is
used, the base hydrological model greatly overregts discharge and the AR-Norm
model then attempts to correct this systematic-egémation. This is also shown in
Figure 4 where the base hydrological model hagangttendency to over-estimate
streamflows for a range of streamflow magnituddése Base hydrological model with
the AR-Norm model also performs poorly for the Advembie catchment (Figure 7).
In this case, the base hydrological model tendsmtier-estimate streamflows (results
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not shown). For the other three catchments, howefier base hydrological model

with the AR-Norm model performs reasonably well.

In general, the AR-Raw base hydrological model grent as well or better than the
AR-Norm base hydrological model. The AR-Raw baseérbipgical model is notably
better than the AR-Norm base hydrological modekhia Abercrombie and Orara
catchments (Figure 7). This suggests that morestgierformance can be expected of

base hydrological models when AR models are apphiedw errors.

The RAR-Norm model generally improves the perforosanf the AR-Norm base
hydrological model to a similar performance levelle AR-Raw base hydrological
model (Figure 7). The improvement over the AR-Ndrase hydrological model is
especially evident for the Orara (Figures 4 andai@i Abercrombie catchments

(Figures 7).

We note that for the AR-Norm models, the updategdasts are not always better
than forecasts generated by the base hydrologicadets. For the Tarwin and
Guadalupe catchments, AR-Norm forecasts are ngbas as the forecasts generated
by the AR-Norm base hydrological model. This poitdsa tendency to overfit the
parameters to the calibration period, resultingha error model undermining the
performance of the base hydrological model undesswalidation. Such a lack of
robustness is highly undesirable in forecastingliegions, where the hydrological
models should be able to operate in conditions di&r from those experienced
during calibration. Note that this problem also wscin the RAR-Norm model
(Guadalupe) and in the AR-Raw model (Abercrombieadalupe) but to a much

smaller degree.

In general, the updated forecasts from the RAR-Noradel show similar or better
forecast accuracy, as measured by NSE, than betdRiRaw model and the AR-
Norm model (Figure 7). We note that the Orara cattt is an exception: here the
AR-Raw model shows slightly better performance thBRAR-Norm model.
Conversely, the RAR-Norm model shows notably beterformance than both the
AR-Norm and AR-Raw models in the Abercrombie andi@alupe catchments. This
suggests the RAR-Norm model may work better inrmittently flowing catchments,
although further testing is required to establis&t this is true for a greater range of

catchments.
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4.4 Further analyses
We further evaluate the NSE of the three differembr models calibrated when

streamflows are receding (1.6, <Q_,) and rising (i.eQ >Q_,) (Table 2). For the

receding streamflows (constituting 70-85% of striews), the AR-Raw model leads
to the overall worst forecast accuracy becausehefaver-correction explained in
Section 4.1. This is especially evident for the vebembie catchment (and, to a lesser
degree, the Guadalupe catchment). The RAR-Norm hwgeificantly outperforms
the other two models for the Abercrombie catchmamd shares similar forecast
accuracy to the (strongly performing) AR-Norm modet the other catchments.
When streamflows are rising (which also includesasnhflow peaks), the AR-Norm
model can cause over-correction and leads to Hst Bccurate forecasts (in terms of
NSE), and the RAR-Norm model behaves similarlylte AR-Raw model, which
consistently provides the most accurate forecalibe only exception is the
Guadalupe River, where the AR-Raw model clearlypedbrms the RAR-Norm
model when streamflows are rising. This is somewt@npensated for by the
markedly better performance the RAR-Norm model rsfiever the AR-Raw model
when streamflows are receding for this catchmeatdihg to better forecasts overall
(Figure 7).) We conclude that the AR-Norm modelegafly tends to perform least
well when streamflows recede, and that the AR-Ravdehtends to perform least
well when streamflows rise. We also conclude that RAR-Norm model tends to
combine the best elements of the AR-Norm and AR-Ramlels, leading to the best

overall performance.

We have shown that over-corrections can lead tocunate deterministic forecasts,
and we now discuss the consequences for the piialpredictions given by each
of the error models. We assess probabilistic fateskill with skill scores derived
from two probabilistic verification measures: therfinuous Rank Probability Score
(CRPS) and the Root Mean Square Error in Probgb{RMSEP) (denoted by
CRPS_SS and RMSEP_SS, respectively) (Wang and ®oher2011). Both skill
scores are calculated with respect to a refereaxdst. The reference forecast is
generated by resampling historical streamflows: doforecast issued for a given
month/year (e.g. February 1999), we randomly drawsample of 1000 daily
streamflows that occurred in that month (e.g. Fatyufrom other years with
replacement (e.g. years other than 1999). Tablem3pares these two skill scores
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calculated for the all catchments. The RAR-Norm eigaerforms best across the
range of skill scores and catchments, attaininghigpest CRPS_SS in 4 of the 7
catchments and the highest RMSEP_SS in 4 of 7 weticts. Even where RAR-Norm

was not the best performed model, it performs wmyilarly to the best performing

model in all cases. Interestingly, the AR-Raw mouelds to outperform the AR-

Norm model in CRPS_SS while the reverse is trueRISEP_SS. The CRPS tests
how appropriate the spread of uncertainty is fartheprobabilistic forecast, while

RMSEP puts little weight on this. The results sigjdgkat while the median forecasts
of AR-Norm tends to be slightly more accurate tharse of the AR-Raw model, the
forecast uncertainty is represented slightly bditjethe AR-Raw model.

To better understand how reliably the forecast tac#y is quantified by each model,
we produce Probability Integral Transform (PIT)fonmn probability plots (Wang and
Robertson, 2011) in Figure 9. There are two maimtpao draw from these plots.
First, the curves are very similar for all errordets (a partial exception is the San
Marcos catchment, where the AR-Raw model is shgtitbser to the one-to-one line
than the other models). This demonstrates thag¢mel the models produce similarly
reliable uncertainty distributions. Second, all miscshow an inverted S-shaped curve,
which is characteristic of the forecasts with utaety ranges that are too wide. This
underconfidence is a result of using a Gaussiamilglition to characterise the error.
The Gaussian distribution is not flexible enoughrépresent the high degree of
kurtosis in the distribution of the residuals afegror updating (partly because the
errors become very small after updating). We aesgmtly experimenting with other
distributions in order to address this issue, anldseek to publish this work in future.
For the purposes of the present study, we condiidethe three error models are

similarly reliable.
5. Discussion and conclusions

For streamflow forecasting, rainfall-runoff modedse often augmented with an
updating procedure that corrects the forecast usiiogmation from recent simulation
errors. The most popular updating approach usesremressive (AR) models that
exploit the “memory” in model errors. AR models mhg applied to raw errors

directly or to normalised errors.
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We demonstrate three adverse effects of AR erralatipy procedures on seven
catchments. The first adverse effect is possibkr-gerrection on the rising limb of

the hydrograph. The AR-Norm model can exhibit teedency to over-correct the
peaks or on the rise of a hydrograph, because epaating can be (overly) amplified
by the back-transformation. The second adversetefehe tendency to over-correct
receding hydrographs. This tendency is most praevatethe AR-Raw model, which

can fail to recognise that a large error update maty be appropriate for small

streamflows.

The third adverse effect is that the stand-alondopeance of base hydrological
models can be poor when the parameters of rainfatff and error models are
jointly estimated with the AR parameters. We shbat poor base hydrological model
performance is particularly prevalent in the AR-Momodel. The poor performance
appears to occur in catchments with highly skewedamflow observations (the

intermittent Abercrombie River, and the Orara Riv@rcatchment in a subtropical
climate). For example, in the Orara River, the bhgdrological model tends to

greatly over-estimate streamflows, and then reieshe error updating to correct the
over-estimates. This is not desirable in real-tifneecasting applications for two

major reasons. First, modern streamflow forecassiygiems often extend forecast
lead-times with rainfall forecast information (Bethet al., 2014). The magnitude of
AR updating decays with lead times, and forecadtsnger lead times rely heavily on
the performance of the base hydrological model.o8&c hydrological models are
designed to simulate various components of natayatems, such as baseflow
processes or overland flow. In theory, simulatingse processes correctly will allow
the model to perform well for climate conditionsathmay substantially differ from

those experienced during the parameter estimagoiog If the hydrological model

parameters do not reflect the natural processes given catchment, the hydrological

model may be much less robust outside the pararestienation period.

We note that the poor performance of the hydroklgwodel may be specific to the
GR4J model, and many not occur in other hydroldgicadels. Evin et al. (2014)
estimated hydrological model and error model patarsejointly using GR4J and
another hydrological model, HBV, for the three U&ctiments tested here. While
they did not assess the performance of the bas®logital models, they found that

HBV tended to perform more robustly when combineth wifferent error models. It
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is possible that we may have achieved more stadde Imodel performance had we
used HBV or another hydrological model. We noteyéwer, that our conclusions can
probably be generalised to other hydrological m®dkhat do not offer robust base
model performance under joint parameter estimgigog. GR4J). Because the RAR-
Norm model essentially limits the range of updatihgt can be applied through the
AR-Norm model, it will tend to rely more heavily dhe base hydrological model,

and therefore will tend to favour parameter sets #ncourage good stand-alone
performance of the base model. For those hydradbgimodels that already produce
robust base model performance under joint parametgmation (perhaps HBV),

RAR-Norm is unlikely to undermine this performarfoe the same reasons. We see
some evidence of this in our experiments with GRMden the performance of the

base hydrological model is already strong relativehe updated forecasts for the AR-
Norm and AR-Raw models (e.g. the Tarwin, Mitta lslitor Guadalupe catchments),

the RAR-Norm model base hydrological model alsdgoers strongly.

The tendency of the AR-Norm model to over-corrésing streamflows is probably
generic. In particular, transformations other thfam log-sinh transformation may still
lead to over-correction at the peak of hydrografte proof in Appendix A shows
that if a transformation satisfies some conditiffirst derivate is positive and second
derivate is negative), it will tend to correct mdoe higher forecast streamflows and
can cause the problem of over-correction. The ¢mmd$ given by Appendix A are
generally true for many other transformations ug$ed data normalisation and
variance stabilisation in hydrological applicatipssich as logarithm transformation

and Box-Cox transformation with the power paramkges than 1.

We use joint parameter inference to calibrate hgdioal model and error model
parameters, in order to address the true natuten@érlying model errors. Inferring
parameters of the error model and the base hydoalommodel independently — i.e.,
first inferring parameters of the base hydrologitaddel, holding these constant and
then inferring the error model parameters - ratiesimplified and often invalid error
assumptions (it assumes independent, homoscedastic Gaussian errors), but
nonetheless could be a pragmatic alternative tgoiheparameter inference to reduce
computational demands. The over-correction of cotiweal AR models is
independent of the parameter inference, whetheretner and base hydrological

model parameters are inferred jointly or indepetigien
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In order to mitigate the adverse effects of conesal AR updating procedures, we
introduce a new updating procedure called the RAIRINmModel. The RAR-Norm
model is a modification of the AR-Norm: in most tisusces it operates as the AR-
Norm model, but in instances of possible over-adioa it relies on the error in
untransformed streamflows at the previous time .st€pat is, RAR-Norm is
essentially a more conservative error model thanN®RM: in situations where
streamflows change rapidly, it opts to update withichever error (transformed or
untransformed) is smaller. This forces greateansle on the base hydrological model
to simulate streamflows accurately, leading to motaust performance in the base
hydrological model. The RAR-Norm model clearly cerfiorms the AR-Norm model
in both the updated and base model forecasts, bh@svameliorating the problem of
over-correcting rising streamflows. The RAR-Normdabs advantage over the AR-
Raw model is less clear: both the base hydrologieadel and the updated forecasts
produced by the AR-Raw model perform similarly to §ometimes slightly better
than) the RAR-Norm model. However, the RAR-Norm mlodearly addresses the
problem of over-correcting receding streamflows thecurs in the AR-Raw model.
As we show, this type of over-correction can sesipulistort event hydrographs, and
cause forecasts of near zero streamflows whenmabBosubstantial streamflows are
observed. While these instances are not very comthenfailure in the forecast is a
serious one. As we note earlier, the over-corraatibreceding streamflows is likely
to be exacerbated when producing forecasts attiees$ of more than one time step.
Accordingly, we contend that the RAR-Norm modepigeferable to both AR-Norm

and AR-Raw models for streamflow forecasting agpians.
Appendix A

For simplicity we only show the case of the AR-Nommodel and analogues
arguments can be used to prove the cases of thRaiRand RAR-Norm models.

The streamflow ensemble forecagt given by the AR-Norm model defined by (1)

can be written as

Q = max[ f '1{Z~t + ,o(Zt_1 - ZNH) + st} ,O} : (AL)
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where negative values after the back-transformatrerassigned zero values. Because

we assume that is a standard normal random variable, In ordestiow Q is the

median ofQ, , we just need to shO\FJ(Ql sQ{) =0.5, which can be proved as follows:

P(Q <Q')=P(max {2 +p(2.-2.)+5} .0<Q)

(A2)
= P(f'l{i +p(2,-2.,)+&}<Q and OSQI)
BecauseQ always has a non-negative value, we have
(@ <G)=P(1(2 +p(z-2.) va)= {2 +olz-2) ) "
=P(5<0)=05
Appendix B

We will analytically show that the AR-Norm modelgs a larger magnitude of the

error update for a higher forecast streamflow.

Firstly, we will show that the first derivate ofethog-sinh transformf defined by (3)
is positive and the second derivate is negatiee fi'\(x) >0 and f"(x) <0) for any
b >0 and anyx . Following some simple manipulation, we have

cosh(a+bx)
= >
sinh@+bx)

_—b<0
sink? @+bx)

f'(X) and f"(x)= (B1)

Using the differentiation of inverse functions, fired the first and second derivates of

the inverse transfornf

-f{ £ (%)}

(el

a7 _ 1 a7 _
[ f ](x)_mm and [ f*] (0= >0, (B2)

for anyb >0 and anyx.

Next, we will derive the difference of magnituddghe error update between low and

high forecast streamflows. For the sake of notasiomplicity, we rewriteq = Z, and

us= ,o(Zt_l - ZNt_l) and assume that> 0. Using Equation (4), the updated streamflow

can be written aQ: = f *(g+u) . The magnitude of the error update can be writen
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[17] (x+aydx if u>0
Qi -Q=|f*(a+u)- 7 (a) = (B3)

[ 7] (x+a)dx otherwise

C e O O

Suppose that we have two forecast streamfl@ys Q , and denote the normalised
forecast streamflow by, = Zt’l andg, = Z,Z and the updated streamflow @l and
Qz Becausef is an increasing function, we hages< q,. The difference in the
magnitude of the error update betwe@n andQ, , can be derived as

H[f_l]’ (x+q)-[ 7] (X+q2)}dx if u>0
‘Qt,l_Q:,l‘_‘Q,Z_Q:,Z‘: 2 , '
J{[f_l] (x+q)=[ £7] (x+ qz)}dx otherwise

u

(B4)

From (A2), we have shown thElf ‘1]' IS a positive increasing function and this
ensures thaE f ‘1]' (x+q,) —[ f ‘1]' (x+0q,) <0. Finally we have

‘Qt,l_(j:,l‘s‘@t,z_@:,zl' (B5)
Therefore, the error update at larger forecasastflows is always larger than error
update at lower forecast streamflows.
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Table of Tables
Table 1: Catchment characteristics.

Table 2: Comparison of the NSE calculated at (e)réteding limb and (b) the rising
limb of the hydrograph for three different error dets.

Table 3: Comparison of the skill scores based oiP&€Rnd RMSEP (denoted by
CRPS_SS and RMSEP_SS) for three different erroretsod

Table of Figures
Figure 1: Map of US (top) and Australian (bottorajahments.

Figure 2: An example of over-correction causedhi®/AR-Norm model in the Mitta
Mitta catchment. Dashed lines: forecasts from thsebhydrological model (i.e.,

without error updating). Solid lines: forecastshwétrror updating.

Figure 3: The fraction of instances WhEEDf)>‘Qt_l —(jt_l‘ (i.e., instances where over-

correction may occur in the AR-Norm model and wharer updating is restricted in
the RAR-Norm model) for the AR-Norm and RAR-Norm dets for Australian

catchments.

Figure 4: Forecast streamflows for the Orara casfirfor an example 1-year period.
Top panel shows streamflows forecast with AR-Normodsel, bottom panel shows
streamflows forecast with the RAR-Norm model. Dakliges: forecasts from the
base hydrological model (i.e., without error upd@}i Solid lines: forecasts with error

updating. Tick marks in the x-axis denote the insta of updating where
D, > ‘Qt—l - Qt—l‘ '

Figure 5: An example of over-correction causedh® AR-Raw model in the Mitta
Mitta catchment. Dashed lines: forecasts from thsebhydrological model (i.e.,

without error updating). Solid lines: forecastshwétrror updating.

Figure 6: Forecast streamflows for the Abercrondaitehment for the period between
01/08/1997 and 15/09/1997. Top panel shows strearsflforecast with AR-Raw
model, bottom panel shows streamflows forecast thighRAR-Norm model. Dashed
lines: forecasts from the base hydrological model,(without error updating). Solid
lines: forecasts with error updating. Gray shadiagotes instances of over-correction
caused by the AR-Raw model.
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Figure 7: NSE of streamflows forecast with the ABrM, AR-Raw and RAR-Norm
models (colours). Performance of the correspondiage hydrological models is

shown by hatched blocks.

Figure 8: Comparison of the observed streamflofg) (and forecast streamflows

(Q), as forecast: 1) with the base hydrological mddetles), and 2) with the base

hydrological model and error updating models (dfs}the Orara catchment.

Figure 9: PIT-uniform probability plots. Curves ¢ime diagonal indicate perfectly

reliable forecasts.
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Table 1: Catchment characteristics.

Name Country  Gauge Site Area Rainfall Streamflow Runoff Zero
(km?) (mm/yr)  (mmlyr) coefficient  flows

Abercrombie  Aus Abercrombie River 1447 783 63 0.08 14.4%
at Hadley no. 2

Mitta Mitta Aus Mitta Mitta River at 1527 1283 261 0.20 0
Hinnomunjie

Orara Aus Orara River at1868 1176 243 0.21 0.6%
Bawden Bridge

Tarwin Aus Tarwin  River at 1066 1042 202 0.19 0
Meeniyan

Amite us 07378500 3315 1575 554 0.35 0

Guadalupe us 08167500 3406 772 104 0.13 1.7%

San Marcos us 08172000 2170 844 165 0.20 0%
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660 Table 2: Comparison of the NSE calculated at (@yéteding limb and (b) the rising
661 limb of the hydrograph for three different error dets.

662

@0, <0, (b) Q >Q.,
Proportion AR- AR- RAR- Proportion AR- AR- RAR-
of flows Norm Raw  Norm of flows Norm Raw  Norm
Abercrombie 82% 0.11 -0.41 0.52 19% 0.58 0.66 0.65
Mitta Mitta 82% 0.95 0.91 0.95 18% 0.81 0.86 0.86
Orara 85% 0.94 0.91 0.95 15% 0.86 0.86 0.83
Tarwin 71% 0.90 0.91 0.90 29% 0.18 0.77 0.76
Amite 69% 0.76 0.82 0.84 31% 0.82 0.82 0.85
Guadalupe 83% 0.75 0.35 0.77 15% 0.24 0.55 0.45
San Marcos 82% 0.80 0.66 0.80 17% 0.63 0.64 0.64

663
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664 Table 3: Comparison of the skill scores based oRERNd RMSEP (denoted by
665 CRPS_SS and RMSEP_SS) for three different erroretsod
666

CRPS_SS (%) RMSEP_SS (%)
AR- RAR- AR- RAR-
Norm AR-Raw Norm Norm AR-Raw Norm
Abercrombie  64.1 62.3 66.3 75.1 73.7 74.7
Mitta Mitta 80.3 79.7 80.7 84.1 83.2 84.0
Orara 74.0 75.7 75.5 81.7 80.7 81.4
Tarwin 74.9 79.3 78.8 86.1 85.1 86.1
Amite 67.5 68.3 69.5 71.0 70.9 71.2
Guadalupe 57.4 60.9 59.8 76.3 75.2 77.2
San Marcos  68.8 66.0 68.9 73.9 73.9 74.3

667
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Figure 1: Map of Utop) and Australian (bottom) catchments.
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Figure 2: An example of over-correction causedhi®/AR-Norm model in the Mitta
Mitta catchment. Dashed lines: forecasts from thsebhydrological model (i.e.,

without error updating). Solid lines: forecastshwétrror updating.
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Figure 4: Forecast streamflows for the Orara ca@sfirfor an example 1-year period.
Top panel shows streamflows forecast with AR-Normdsel, bottom panel shows
streamflows forecast with the RAR-Norm model. Dakliges: forecasts from the
base hydrological model (i.e., without error upd@}i Solid lines: forecasts with error

updating. Tick marks in the x-axis denote the insta of updating where

D, > ‘Qt—l - Qt—l‘ :
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Figure 5: An example of over-correction causedigyAR-Raw model in the Mitta
Mitta catchment. Dashed lines: forecasts from @eethydrological model (i.e.,

without error updating). Solid lines: forecastshwétrror updating.
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Figure 7: NSE of streamflows forecast with the ABFHM, AR-Raw and RAR-Norm
models (colours). Performance of the correspondiage hydrological models is
shown by hatched blocks.
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