
Authors responses (in red and italics) to referees comments (in black) 

We thank the two reviewers for their constructive comments and suggestions and believe our 
proposed revisions in response to their comments, outlined below, will significantly improve the 
manuscript. 

Reviewer #1  

The article by Peel et al. mainly assesses the ’within-GCM’ uncertainty and its impact on modelled 
runoff for climate change impact studies. Overall, the article is clearly structured and well written. 
However, I have major concerns about the very premise of the paper and the methods used by the 
authors. Therefore I seriously doubt it could be a valuable contribution to the journal Hydrology and 
Earth System Sciences. 

Noted. 

Comments related to individual chapters: 

TITLE: 

The title is ambiguous and does not provide a proper summary of the article. 

Disagree. It is unclear what is ambiguous about the title especially as the reviewer states that we have 
provided a clear overview of the study. The title of the paper is based on that overview. Furthermore, 
the reviewer is not dissatisfied with the title of Paper 1 so one can only assume that he/she finds the 
qualifying phrase “Estimation and uncertainty of annual runoff and reservoir yield” is unsatisfactory.    
Unless we have additional guidance we would not wish to amend the title. 

INTRODUCTION: 

The introduction describes concisely the aim of the work and provides a clear overview of the study 
setup. 

Noted with thanks. 

However, previous studies on investigating and quantifying uncertainty from various sources other 
than GCMs are not referenced. 

We assume this comment refers to adding references for the non-GCM uncertainties discussed in the 
introduction (page 4582). We will amend the manuscript to include appropriate references into this 
discussion. 

METHODOLOGY AND RELATED LITERATURE: 

Section 2.1 

The paper claims that the primary aim of this study is to investigate within-GCM uncertainty, but 
actually what it does is to approximate stochastic replicates of GCM runs based on a single run. The 
underlying assumption here is that various runs from one GCM have same long-term trend and low 
frequency signals, which is not necessarily true. 

We agree that our methodology assumes the same long-term trend and low frequency signals. We 
note in the paper that our methodology is a likely under-estimate of true within-GCM uncertainty 
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because of these assumptions. The method was developed to estimate uncertainty when we have 
limited runs from a GCM. This is similar to the approach in water resources system simulation where 
there is a single historical time-series of data. When there are many runs available for a given GCM 
and scenario, our methodology need not be used as there will be sufficient runs to estimate within-
GCM uncertainty directly from the GCM runs. 

No change to the manuscript. 

 The authors admit that this approximation represents an under-estimate of the true within-GCM 
uncertainty. This could be true. In fact the uncertainty within GCM is most likely to be GCM specific 
since GCMs have different sensitivity to initial conditions. Further, the initial condition is not the only 
difference between GCM runs. Some of the runs used different forcing (e.g. UKMO-HadGEM1 
20C3M runs), some of the runs were simply run on different platforms (e.g. ECHO-G 20C3M runs). 
Therefore the approximation here can not represent the true within-GCM uncertainty. 

We agree that our approximation does not represent true-within-GCM uncertainty as noted by the 
reviewer. We also agree that each GCM is likely to have its own within-GCM uncertainty. Our 
approximation was developed to gain some insight in the likely scale of impact of within-GCM 
uncertainty on hydrologic outputs. 

No change to the manuscript. 

What really assessed in this study is the uncertainty within the stochastically generated data. 

No, we disagree. In this study we have assessed uncertainty associated with GCM runs using 
generated sequences of stochastic data. Our approach follows the standard practice in surface 
hydrology (Hipel & McLeod, 1994) where stochastic replication of the observed record is used to 
estimate uncertainty. In our case the GCM runs are treated as record for stochastic replication. 

No change to the manuscript. 

There are CMIP3 GCMs that provide as many as 8 runs and more for CMIP5 GCMs. It would be 
much creditable if they use 3 to 10 real GCM runs to quantify within-GCM uncertainty rather than 
using 100 stochastically constructed replicates. Or at the very least, using those real GCM runs to 
validate the results and conclusion reached by using this method. 

Agree. We will revise the manuscript to include Figure A, which compares within-GCM uncertainty 
based on seven runs from the CCSM GCM with the stochastic approximation of within-GCM 
uncertainty for (a) annual precipitation and (b) annual temperature for the Herbert River at 
Gleneagle. In each plot the maximum, median and minimum annual value for a given year are shown 
for the seven CCSM runs and are compared with the maximum, median and minimum of the 700 (7 x 
100) stochastic replicates of the CCSM runs of the within-GCM uncertainty in annual precipitation 
and temperature. For both precipitation and temperature the median of the 700 stochastic replicates 
overlies the median of the 7 CCSM runs and difference between the maximum and minimum lines 
around the median for the two datasets are totally consistent given only seven CCSM runs and 700 
stochastic replicates. This is confirmed by comparison of the standard deviation of all annual values 
calculated for the seven CCSM runs (precipitation = 110 mm, temperature = 1.21 oC) and the 700 
stochastic replicates (precipitation = 111 mm, temperature = 1.20 oC). The CCSM runs and the 
stochastic replicates presented in Figure A have not been bias corrected. 
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These results confirm the credibility of the stochastic methodology for approximating the within-GCM 
uncertainty when limited GCM runs are available. 

Section 2.4 

Another serious problem with the methodology is how the GCM climate is related to catchment 
hydrology. Only 5 of the 17 catchments used in this study are larger than a grid cell of the finest-
resolution GCM (MPI) out of the 5 GCMs investigated. Many catchments are smaller than one tenth 
of a grid cell.  

From a hydrological and water management perspective the ability to conduct climate change impact 
assessments on a large number of small to medium sized catchments for a wide range of GCMs is 
critical. Since we are dealing with catchments from around the world our resources did not allow us 
to carry out a comprehensive dynamic downscaling of each of the GCM outputs. Rather a simple 
statistical approach (quantile-quantile bias correction) was adopted. The results shown in Table A 
(see later comment) confirm that the quality of results from our analysis is independent of catchment 
area. 

No change to the manuscript. 

However, regardless of their size, an area weighted average of the GCM data based on the proportion 
of catchment area associated with each GCM grid cell are calculated for each catchment and used as 
input to hydrological model PERM after bias correction. As stated in the paper, the GCMs tend to 
over-estimate low MAP and under-estimate high MAP. Further averaging could only accentuate this. 
In worst case, a climate series averaged for an area hundreds of times larger than the catchment is 
forced to represent the catchment climate. 

As our time step of analysis is monthly the spatial precipitation and temperature fields are relatively 
smooth, so area-averaging will not significantly accentuate this problem. 

No change to the manuscript. 

This is beyond what a quantile-quantile bias correction can fix. The use of bias correction itself is 
problematic as it impairs the advantages of GCMs by altering spatiotemporal field consistency, 
relations among variables and by violating conservation principles (Ehret et al. 2012). 

Ehret et al. (2012) presents a detailed review of the inadequacies of bias correction and how to deal 
with the problem in the short, mid and long term. For the short term they offer no alternative 
methodology but recommend that the uncertainties associated with using the procedure be openly 
communicated and that the impact of both bias corrected and non-corrected input be provided. We 
note, however, that Rojas et al. (2011) found that bias correcting monthly temperature using a 
transfer function preserved the annual statistics. We note that our analysis is based on monthly data. 

In this study the quantile-quantile bias correction has worked well as confirmed in the runoff results 
shown in Table A (we will not include Table A in a revised manuscript). Satisfactory runoff estimation 
requires the bias correction of temperature and precipitation data to be successful. In Table A three 
sets of mean annual runoffs (MAR) are presented: (1) observed mean annual runoff; (2) MAR 
estimated from bias-corrected GCM inputs to PERM expressed as a percentage of observed MAR; 
and (3) MAR estimated from bias-corrected stochastic replicates of GCM precipitation and 
temperature input to PERM expressed as a percentage of observed MAR. The last two MAR estimates 
are for the period 1965 – 1994 (20C3M), while the observed MAR is based on all available observed 
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data (not necessarily from the period 1965-1994). Although there are several large biases in MAR, 
the overall bias is 3.6%, with 73% of MARs being within ±10% of the observed MAR. Overall the 
modelled results exhibit very small biases, which confirm that the quantile-quantile bias correction of 
monthly precipitation and temperature inputs to PERM has worked well in this study. 

In the revised manuscript we would add a summary of the inadequacies as documented by Ehret et al. 
(2012) in Section 2.4. 

RESULTS AND DISCUSSION 

The boxplots in Figures 4, 8 and 11 show that the within-GCM ranges are usually larger than the 
between-GCM (raw) ranges. This is to say that the initial condition used by a GCM has greater impact 
than the model structure and parametrisation. I suspect this is strongly related to the method used in 
this study. 

We suspect the reviewer has been misled by the misleading caption to Figures 4, 8 & 11. The ‘Raw’ 
values have actually been bias-corrected and are not raw (original) GCM values. The captions will 
be modified to correct this (the body of text reflects the correct interpretation). 

CONCLUSIONS AND IMPLICATIONS 

The authors conclude that the with-in GCM should not be neglected and has significant implications 
for interpreting climate change impact assessments and warned the decision makers the risk of sense 
of certainty that is unjustified. In reality, the large uncertainty in climate change impact assessments is 
well known, and it is also well established that the largest uncertainty is usually associated with GCM 
simulations. There are extensive discussions around how to improve this situation, including clearer 
communication, using multi-model ensembles, and eventually, improving models themselves. In my 
opinion, this paper adds limited value to the research community. 

We agree that the large uncertainty in climate change impact assessments is well known, but suggest 
within-GCM uncertainty is not well quantified due to the limited number of GCM runs available for 
each GCM and scenario combination. Our methodology is a contribution toward quantifying within-
GCM uncertainty, which provides an objective approach for communicating the uncertainty in climate 
change impact assessments in a quantitative manner. In this paper we applied our procedure to 
estimate the impact of within-GCM uncertainty on annual runoff and reservoir yield for the first time. 
Such information is crucial to water resources engineers and management decisions in the short to 
medium term planning horizon. For the research community the stochastic data generation 
methodology provides a way to assess within-GCM uncertainty on a temporary basis until the number 
of GCM runs for a given GCM and scenario combination becomes adequate to estimate within-GCM 
uncertainty from GCM runs directly. 

The research reported in this paper was conducted as part of a collaboration with the water industry 
where the industry partners were extremely interested to see the level of uncertainty in estimates of 
runoff and reservoir yield from our approximation of within-GCM uncertainty.  

No change to the manuscript. 

References 
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apply bias correction to global and regional climate model data?". Hydrol. Earth Syst. Sci., 16(9), 
3391-3404, doi:10.5194/hess-16-3391-2012. 

Noted. 

 

Reviewer #2 

Attempting to comprehensively address all sources of uncertainty is challenging and it is reasonable 
for the authors to focus on some particular aspects of the problem. Here it is clear that the main focus 
lies on addressing the representation of internal variability by generating synthetic time series 
conditioned on information about lowhigh frequency variability in the GCM time series. This looks 
interesting and is well worthy of publication though with some tweaks could probably address some 
concerns that otherwise could be directed towards this study (note that I’m not commenting on the 
Hydrological aspects of this paper, e.g. the hydrological model and the reservoir calculations, these 
areas are outside my expertise). 

Noted. 

1. Can the stochastic method really re-place dynamically simulated ensemble members? If this is a 
proof of concept paper, it would be good if the authors had selected a GCM with several runs so that 
we could see the spread of the dynamically simulated ensemble members in relation to the 
stochastically simulated ensemble members. Further, why 100 simulations - does the spread stabilise 
around 100 samples? 

We agree that this paper should be read as a proof of concept paper and we will modify the text 
accordingly. In the Introduction we stated that ‘A complete assessment of the magnitude of within-
GCM uncertainty requires numerous, for example 100, runs of each scenario from each GCM, which 
are currently unavailable across all GCMs’ and that our method is an approximation. In the 
methodology we also stated that ‘An ideal assessment of within-GCM uncertainty would involve 
analysis of at least 100 runs of a single GCM for a given scenario with each run having slightly 
different, but equally plausible, initial conditions.’ We agree our method should not replace 
dynamically simulated ensemble members, as the reviewer notes, but is a temporary approximation 
that can be used until substantially more GCM ensemble members become available for each GCM 
and scenario combination. 

There is nothing special about 100 stochastic replicates. As a proof of concept paper we selected 100 
replicates to ensure we have a reasonable sample size on which to base the summary statistics. In 
stochastic hydrology, generally 100 replicates are adopted (see McMahon et al.; 2008; Adeloye et al, 
2010; Potter et al., 2010). 

In response to reviewer #1 we have introduced a comparison of the seven CCSM runs from CMIP3 
against our stochastic methodology (see Figure A). See previous response. 

2. Can within GCM variability really be greater than between GCM variability? Well, I guess it is 
possible in the near term for variables with large natural variability such as rainfall. The selected 
’future’ time period here falls in the ’near to mid-term’ category, so perhaps it isn’t impossible. 
However, as the authors note - the GCMs have been bias corrected and the sample of GCMs is small 
so is this conclusion robust? It would be good to relate the spread of the selected sub-sample of GCMs 
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(before and after bias correction) to that of the entire CMIP3 archive in terms of projected precip and 
temp (regionally and globally). 

It is not entirely clear what the reviewer is requesting here. So we have interpreted the comment in the 
following manner. 

From our bias corrected results we do observe that within-GCM variability is generally larger than 
between-GCM variability for our sub-set of GCMs. As noted in the Conclusions and Implications 
section we believe the observed limited between-GCM variability is due to the bias correction forcing 
all GCMs to have the same mean and variance as the observed P & T data over the observed period 
of record at each catchment. The between-GCM variability observed in Figures 4, 8 & 11 is due to 
differences in GCM trend from the observed period to the two periods of assessment (1965-1994 and 
2015-2044). If original data were used (un-bias corrected) the between-GCM variability would be 
significantly larger. 

The reviewer requests that we “relate the spread of the selected sub-sample of GCMs (before and 
after bias correction) to that of the entire CMIP3 archive in terms of projected precip and temp 
(regionally and globally)”. In Figure B we compare un-bias corrected mean annual precipitation 
against mean annual temperature for (a) 1965-1994 and (b) 2015-2034 for the selected five GCMs 
runs compared with the 23 CMIP3 GCMs including all ensemble members for the global land 
surface. The figures show the relative positions of the selected five GCM runs compared with the 23 
CMIP3 GCMs including all 44 ensemble members for the two periods. The five selected GCM runs sit 
within the cloud of 44 GCM ensemble members, which indicate that they are reasonably 
representative of the range of current and future GCM projections. The wide range of mean annual 
precipitation and temperature values for these two periods shows there is significant between-GCM 
variability prior to bias-correction. 

In Table A we show post bias-corrected results for our 17 regional catchments for our selected sub-
set of GCMs. Across the five GCMs we observe very similar average bias in the runoff results 
following bias-correction. To extend this Table to include results from all 44 GCM runs from CMIP3 
for these catchments would be a major undertaking that is not expected to yield a significantly 
different outcome. 

No change to the manuscript. 

3. Rather than using bias corrected GCM data as input to the hydrological model,could you not use 
simple daily scaling whereby you apply the change signal on observed data? There just seems to be a 
bit of a scale mis-match between the GCM output and required catchment scale. Daily scaling has its 
obvious limitations, but would better represent the regional variability in precip. Maybe a few words 
on why you choose to use bias corrected GCM input over this very simple downscaling method. 

It would be possible to use daily scaling as opposed to bias correction, if by ‘simple daily scaling’ the 
reviewer means scaling ‘the historical climate series to reflect a future climate by the relative 
difference between GCM simulations of future and historical precipitation and other climate 
variables’ (Chiew, 2010, page 218). However, a method to modify the scaling to incorporate any 
trend in the GCM data over the scenario period would be necessary. Our methodology avoided this 
issue by using EEMD to identify the trend before stochastic replication. Thus we were able to run 
PERM from the beginning of 20C3M to the end of A1B using stochastic replicates in one run, which 
avoided discontinuities in the runoff time-series. We will modify the manuscript to reflect this 
discussion. 

6 
 



References 

Adeloye, A. J., Pal, S., and O’Neill, M.: Generalised storage-yield-reliability modelling: Independent 
validation of the Vogel–Stedinger (V–S) model using a Monte Carlo simulation approach, 
Journal of Hydrology, 388, 234–240, 2010. 

Chiew, F. H. S.: Lumped Conceptual Rainfall-Runoff Models and Simple Water Balance Methods: 
Overview and Applications in Ungauged and Data Limited Regions, Geography Compass, 4/3, 
206–225, 2010. 

Hipel, K. W. and McLead, A. I.: Time series modelling of water resources and environmental systems, 
Elsevier, Amsterdam, 1013 pp. 

Potter, N. J., Chiew, F. H. S., and Frost, A. J.: An assessment of the severity of recent reductions in 
rainfall and runoff in the Murray–Darling Basin, Journal of Hydrology, 381, 52–64, 2010. 

McMahon, T. A., Kiem, A. S., Peel, M. C., Jordan, P. W., and Pegram, G. G. S.: A New Approach to 
Stochastically Generating Six-Monthly Rainfall Sequences Based on Empirical Mode 
Decomposition, Journal of Hydrometeorology, 9, 2008. 

Rojas, R., Feyen, L., Dosio, A., and Bavera, D.: Improving pan-European hydrological simulation of 
extreme events through statistical bias correction of RCM-driven climate simulations, Hydrol. 
Earth Syst. Sci., 15, 2599–2620, doi:10.5194/hess-15-2599-2011, 2011. 

  

7 
 



Table A Mean annual runoffs expressed as percentage of observed mean annual runoff for the five bias-corrected GCM runs and for the average of 100 bias-
corrected stochastically generated replicates for each GCM. 

Ref. 
no. River 

Catchment 
area 
(km2) 

Obs. 
MAR 
(mm 

year-1) 

Years 
of obs. 
runoff 

HadCM3 HadCM3 
stoch. MIROCM (1) MIROCM (1) 

stoch. MIUB (1) MIUB (1) 
stoch. MPI(1) MPI(1) 

stoch. MRI(3) MRI(3) 
stoch. 

1202 Bafing 15500 568 27 1.06% 9.15% 4.23% 3.70% 3.52% 4.75% 6.51% 3.35% -2.64% -0.35% 
1325 Oueme 10326 195 33 6.15% 15.9% 30.8% 39.5% -5.13% -3.08% -7.69% 3.59% 4.10% -17.4% 
1333 Sabi 11000 127 30 -0.79% 15.0% -14.2% -5.51% 2.36% 2.36% -8.66% -9.45% -3.15% 0.79% 
2270 Songhuajiang 391000 92.9 46 -5.38% -1.83% -15.7% -6.35% -3.34% 6.89% -5.06% -2.69% 7.64% 7.64% 
2274 Tapi 61575 224 31 25.9% 15.7% 21.5% 20.1% 19.6% 15.6% 6.70% 7.59% 35.7% 25.9% 
2288 Wujiang 58300 619 44 0.16% -3.39% -10.3% -6.95% -1.13% 3.39% -4.20% -6.62% -2.42% 0.97% 
3195 Kiamichi 3686 418 47 -6.70% -2.63% 12.0% 11.5% 11.5% 0.24% 22.5% 15.6% 28.7% 14.8% 
3279 Black 3243 257 56 7.39% -0.78% 6.23% 7.39% 10.9% 5.84% 0.39% 6.23% 2.33% 14.4% 
3543 Umpqua 9539 719 20 -1.25% 4.59% -1.95% 2.09% 3.20% -5.56% -0.83% 9.04% 4.17% 11.4% 
4014 Magdalena 74410 1043 47 4.31% 4.03% -1.53% -3.45% 0.67% -6.23% 0.38% 0.38% 1.53% 0.10% 
4019 Cuyuni 53354 638 31 8.62% 28.2% -12.8% 9.25% 8.15% 7.52% -8.15% 1.88% 9.40% 5.49% 
4145 Lumaco 1054 569 42 -0.35% 4.57% -8.61% -2.81% 7.73% 7.73% 4.22% 2.64% -4.04% -0.88% 
4179 Rio Jaguaribe 21770 39.4 52 25.6% 30.7% 35.8% 23.6% 13.4% 15.0% 17.0% 64.2% 29.2% 43.2% 
5255 Clyde 1704 745 25 1.48% 2.15% 3.22% 3.89% -3.76% -3.76% 0.40% 5.23% -2.82% -5.50% 
6058 Herbert 5236 195 82 5.13% -5.64% -3.59% 18.0% -5.64% 7.69% 1.54% 3.59% -3.08% 3.08% 
6103 Nymboida 1660 483 85 2.69% 2.07% -8.49% -1.66% -9.94% -0.62% 6.83% 5.59% -13.7% 0.41% 
6279 Ovens 5410 207 98 -7.25% 3.86% -62.4% -48.8% -7.73% -10.1% -10.1% -5.80% -20.8% -12.1% 
  Average   3.93% 7.15% -1.53% 3.73% 2.61% 2.80% 1.28% 6.14% 4.13% 5.41% 

Note: Observed (obs.) mean annual runoffs (MAR) are based on the available historical data which covered different periods to that used in the GCM and 
stochastic data analysis (1965 – 1994, 20C3M). This difference would explain some of the discrepancies between the historical data and the GCM runoff. 
Although there are some large biases, 73% of MARs are within ±10% of the observed MAR. Overall, the modelled results exhibit very small biases, which 
confirm that the quantile-quantile bias corrections of monthly precipitation and temperature inputs to PERM have worked well in this study. 
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Figure A Within-GCM uncertainty for the Herbert River at Gleneagle based on seven runs from the 
CCSM GCM compared with the stochastic approximation of within-GCM uncertainty for (a) annual 
precipitation and (b) annual temperature. In each plot the maximum, median and minimum annual 
value for a given year are shown for the seven CCSM runs compared with the maximum, median and 
minimum of the 700 (7 x 100) stochastic replicates of the CCSM runs. 
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Figure B Mean annual precipitation versus mean annual temperature for (a) 1965-1994 and (b) 
2015-2034 for the selected five GCMs runs compared with the 23 CMIP3 GCMs including all 
ensemble members for the global land surface  
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