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Abstract. Characterization of spatial variability of hydraulic properties of groundwater systems at

high resolution is essential to simulate flow and transport phenomena. This paper investigates two

schemes to invert transient hydraulic head data resulting from multiple pumping tests for the purpose

of estimating the spatial distributions of the hydraulic conductivity, K, and the specific storage, Ss,

of an aquifer. The two methods are centralized fusion and decentralized fusion. The centralized5

fusion of transient data is achieved when data from all pumping tests are processed concurrently

using a central inversion processor, whereas the decentralized fusion inverts data from each pumping

test separately to obtain optimal local estimates of hydraulic parameters, which are consequently

fused using the Generalized Millman Formula, an algorithm for merging multiple correlated or

uncorrelated local estimates. For both data fusion schemes, the basic inversion processor employed10

is the Ensemble Kalman Filter, which is employed to assimilate the temporal moments of impulse

response functions obtained from the transient hydraulic head measurements resulting from multiple

pumping tests. Assimilating the temporal moments instead of the hydraulic head transient data

themselves is shown to provide a significant improvement in computational efficiency. Additionally,

different assimilation strategies to improve the estimation of Ss are investigated. Results show that15

estimation of the K and Ss distributions using temporal moment analysis is fairly good, and the

centralized inversion scheme consistently outperforms the decentralized inversion scheme.
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1 Introduction

A detailed description of hydraulic properties, such as hydraulic conductivity,K, and specific elastic

storage, Ss, of groundwater systems is essential to predict flow and solute transport in porous media.20

Typically, these properties are inherently heterogeneous, and cannot be determined uniquely using

a finite set of sparse measurements. A direct method to map the spatial variability of these properties

is to collect a large number of core samples, which are then analyzed in the laboratory to obtain

conductivity and storage properties. These methods, however, are laborious, expensive, and time

consuming (Butler Jr. et al., 1999). In general, sampling of groundwater system states, such as25

hydraulic head or solute concentrations, is relatively easier and more cost-effective. Therefore,

characterization of the aquifer parameters using system states can be achieved by solving an inverse

problem (Sun, 1994; Tarantola, 2004).

Analyses of hydraulic head data resulting from pumping tests (Theis, 1935; Cooper and Jacob,

1946) and slug tests (Butler Jr., 1998) using type-curves techniques are classic examples of inverse30

methods used to infer hydraulic properties of porous media. In a pumping test, an aquifer is stressed

at a well and the response of the hydraulic head field is monitored at a number of observation wells.

The resulting data are processed using an analytical solution to obtain a lumped estimate of the

transmissivity and the storativity of the aquifer at a scale equal to the radius of the developed cone

of depression. While these estimates are useful to guide future groundwater development of an35

aquifer at a regional scale, they provide little or no information about the local spatial variability

of parameters, which is essential, for example, to model solute transport processes. In addition, the

estimates obtained by pumping tests are shown to be affected by the location of the pumping well

and the degree of heterogeneity within the cone of depression (Wu et al., 2005).

A relatively recent alternative method for estimating the spatial distribution of aquifer parameters40

at a high resolution is hydraulic tomography (HT) (Gottlieb and Dietrich, 1995; Butler Jr. et al.,

1999; Yeh and Liu, 2000; Berg and Illman, 2011). In HT, an aquifer is stressed at different

locations and the responses to these stresses at a network of observation wells are inverted to map

the parameters spatially.

During the last decade, HT has been intensively studied both numerically and experimentally to45

assess its performance with a few field applications (Straface et al., 2007; Bohling et al., 2007). HT

studies have covered several flow conditions, ranging from steady-state flow (Yeh and Liu, 2000) to

transient flow (Zhu and Yeh, 2005) in both confined and unconfined aquifers (Cardiff and Barrash,

2011). HT has been applied to joint unconfined and vadose zone flow problems (Mao et al., 2013)

and for both 2-D (Yeh and Zhu, 2007) and 3-D settings (Cardiff et al., 2012; Illman et al., 2009;50

Berg and Illman, 2013). A number of sandbox laboratory experiments have been performed to

validate HT methods off-site (Liu, 2002; Liu et al., 2007; Illman et al., 2010), which have deemed HT

a promising technique for characterizing aquifer properties at high resolution. For instance, Illman

et al. (2010) compared various approaches to characterize theK field using a sandbox and found that
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HT consistently outperformed kriging interpolation of small scale K measurements. Similar results55

reported by Illman et al. (2012) revealed that predictions of solute transport are better characterized

with estimates from HT surveys in comparison to traditional geostatistical analyses and effective

parameters. A comprehensive list of previous HT studies is provided by Cardiff and Barrash (2011).

In HT studies, hydraulic head transient data have been inverted using different algorithms,

such as the sequential successive linear estimator (SSLE) (Yeh and Liu, 2000), the quasi-linear60

approach (Kitanidis, 1995; Liu and Kitanidis, 2011), the Bayesian Maximum a Posteriori (MAP)

approach (Castagna and Bellin, 2009), and the Ensemble Kalman Filter (EnKF) (Schöniger et al.,

2012).

Despite the success in verifying its estimates numerically and experimentally, HT faces two major

challenges related to the heavy computational burden associated with the inversion process (Zhu65

and Yeh, 2005) and the non-uniqueness of the solution of the inverse problem, a situation where

infinite possible combinations of input parameters and model structures produce the same model

output (Moore and Doherty, 2006). With respect to the latter, Bohling and Butler (2010) caution

practicing hydrologists against “overselling” the reliability of HT estimates based on their pilot

point inverse method, and argue that some form of regularization is typically necessary to reduce70

uncertainties associated with the non-uniqueness effect. In this work, HT data are inverted using

the EnKF. While not resolving the non-uniqueness issue completetely, inversion algorithms based

on the EnKF constitute an ideal framework to handle the problem of non-uniqueness resulting from

parameter uncertainty only, as opposed to non-uniqueness resulting from uncertainty in conceptual

models and process assumptions.75

With its roots in Bayesian analysis, the EnKF updates a prior ensemble of possible realizations of

system states and parameters based upon collected state measurements, so that the posterior state-

parameters ensemble resembles a non-unique set of possible solutions. Therefore, the ensemble

mean of the posterior ensemble provides an unbiased estimate of the system parameters. The EnKF

offers several other advantages, such as computational efficiency (Franssen and Kinzelbach, 2009),80

avoiding sensitivity computations, such as those required by the SSLE (Yeh and Liu, 2000), and

improved accuracy when using ensemble-based covariance estimations instead of sensitivity-based

covariance estimations (Schöniger et al., 2012).

A possible effective approach to improving parameter estimations for ill-posed problems is by

integrating data from independent sources, which may be related to different physical processes,85

such as hydraulic, geophysical, geomechanical, and chemical processes (Bohling and Butler, 2010).

In this situation, different physical processes (models) are utilized to relate measured responses

to aquifer properties. The inversion of such multi-source data may take two general avenues:

centralized fusion (CF) and decentralized fusion (DF). In this work, we investigate and compare the

two approaches, one based on CF and another based on DF, to assimilating transient hydraulic head90

HT data for the characterization of theK and Ss fields of a confined aquifer. With the CF method, all
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data resulting from all experiments are inverted simultaneously using a single “global” EnKF. The

DF method, on the other hand, assimilates each data set resulting from a single experiment separately

using a “local” EnKF to obtain a local estimate of parameters. The multiple local estimates are

then “fused” using the Generalized Millman Formula (GMF) algorithm (Bar-Shalom and Campo,95

1986; Shin et al., 2006), which constitutes an unbiased linear estimator of multiple correlated or

uncorrelated estimates. The two inversion schemes are implemented to assimilate the responses

resulting from five pumping tests. However, the methodology can be generalized to merge multiple

parameter estimations resulting from inverting different physical processes.

As mentioned earlier, computational cost constitutes an issue for the application of HT methods100

for aquifer characterization. Typically, HT-based algorithms require inverting a large amount of

transient data resulting from multiple experiments and at multiple observation wells, which produces

the so-called “data-overload” problem (Zhu and Yeh, 2005). Assimilation of transient data with

the EnKF or Ensemble Smoother (ES) is computationally intensive for two reasons. First, the

computation of the forecast ensemble of states and parameters requires simulating transient flow105

for a large number of realizations, which typically involves a considerable computational effort.

Second, the resulting spatio-temporal cross-covariance matrix is typically large and difficult to

manipulate. In this study, we propose to assimilate temporal moments of the impulse response

function of transient drawdown data (Harvey and Gorelick, 1995; Von Asmuth and Maas, 2001; Li

et al., 2005; Bakker et al., 2008; Olsthoorn, 2008; Von Asmuth et al., 2008), rather than the hydraulic110

head data themselves.

In the temporal moment analysis, the original parabolic partial differential equation (PDE)

governing groundwater flow is transformed into two simpler and easier to solve Poisson-type

PDEs (Zhu and Yeh, 2006; Li et al., 2005). Although it has been shown that inversion of temporal

moments provides a drastic reduction in central processing unit (CPU) time and a reliable estimate115

of the K field, it has also been found to produce an unreliable characterization of the Ss field (Yin

and Illman, 2009). In this work, we devise a strategy that can optimize the estimation of the Ss field,

while still benefiting from the reduced problem complexity achieved with the temporal moment

formulation.

The article is organized as follows. The methodologies of the two inversion schemes are presented120

in Sect. 2. A description of the numerical experiments used to investigate the inversion approaches

is provided in Sect. 3. In Sect. 4, the obtained results are presented and discussed.

2 Methodology

In the following, we provide an overall description of the proposed HT approaches, followed by

a detailed description of each component of the methodology. For the purpose of estimating the125

hydraulic parameters K and Ss, we assume that a series of separate pumping tests is conducted at
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Np wells installed at different locations within a confined aquifer. In each pumping test, the pumping

well i (i ∈ {1,2, . . . ,Np}) is operated at the flow rateQi. The resulting transient hydraulic head data,

hij(t), are recorded at number No of observation wells (j ∈ {1,2, . . . ,No}).
The size of such measurement data sets is typically quite large. To reduce the computational130

requirement associated with the inversion of large amount of temporal data, the hydraulic head

hydrographs are used to compute the temporal moments of the Impulse Response Function (IRF) at

each observation well j, in particular, the zeroth-temporal, mj
0, and the first-temporal moment, mj

1.

Procedures followed to calculate the temporal moments of the IRF using the measured hydraulic

head are discussed in Sect. 2.1. These temporal moments are treated as observations.135

The effect of the spatial variability of the aquifer hydraulic parameters, namely the hydraulic

conductivity, K, and specific elastic storage, Ss, on the spatial distribution of the temporal moments

of the IRF are achieved by means of moment-generating PDEs, which are discussed in Sect. 2.2. The

numerical solution of these equations is also discussed in the same section. Two numerical models,

one to predict the zeroth-temporal moment, m0, and another to predict the first-temporal moment140

m1, are employed to simulate an ensemble of randomly generated realizations of theK and Ss fields.

At this point, the forecast temporal moments, obtained by solving the moment-generating PDEs

numerically, and the observed moments, computed from transient hydraulic head measurements, are

available and can be subsequently utilized by the EnKF to update both K and Ss fields. Finally, the

overall inversion algorithm is applied either through a CF scheme or a DF scheme, as discussed in145

Sect. 2.3.

2.1 Estimation of temporal moments of measured hydraulic head

In pumping tests, data may be recorded with high temporal frequency of measurements or

even continuously in time. Assimilating such a large amount of transient data using a Kalman

filter (Kalman, 1960) scheme is computationally prohibitive and impractical (Evensen, 2009). Time150

series analyses allow us to shrink the hydrographs of hydraulic head data into low order temporal

moments, which are related to aquifer hydraulic properties through moment-generating partial

differential equations. To illustrate, assume that an aquifer system is stressed by a well with a time

dependent flow rate Q(t) resulting in transient change in hydraulic head h(x; t), where the vector

x includes the coordinates of the location of an observation well, and t represents time. For linear155

systems, h(x; t) can be expressed as a function of Q(t) through a convolution integral (Von Asmuth

and Maas, 2001; Li et al., 2005; Bakker et al., 2008; Olsthoorn, 2008; Von Asmuth et al., 2008):

h(x; t) =

t∫
0

Q(τ)θ(x; t− τ)dτ (1)

where θ(x; t− τ) is the IRF, that is the response of the aquifer at location x and time t to a unit

flow rate impulse at the well at time τ . Accordingly, the objective of time series analysis is to obtain160

the IRF for every stress source and at each observation well. A possible approach to achieve this

5



is by fitting a parametric function to represent the IRF for each stress source at each observation

well (Von-Asmuth et al., 2002; Bakker et al., 2008). Consequently, the obtained IRF function can

be used to calculate the kth temporal moment as follows:

mk(x) =

∞∫
0

tkθ(x; t)dt (2)165

Alternatively, Li et al. (2005) proposed the following equations for calculating the zeroth moment,

m0, and the first moment, m1, of the IRF using hydraulic head measurements resulting from

a constant continuous extraction rate Q:

m0(x) =
h(x;0)−h(x;∞)

Q
(3)

170

m1(x) =

∫∞
0

[h(x; t)−h(x;∞)]dt

Q
(4)

where h(x;0) and h(x;∞) represent, respectively, the initial and the steady state hydraulic heads

at location x. Using Eqs. (3) and (4), the observed zeroth-temporal moment and the first-temporal

moment are computed at all observation wells and for each pumping test. In symbolic form, the

observed moments from each pumping test can be denoted as m0,ij and m1,ij (i ∈ {1,2, . . . ,Np};175

j ∈ {1,2, . . . ,No}). At this point, the transient-hydraulic head large dataset at each observation well

is shrunk into the two values m0,ij and m1,ij . In the following sections, the numerical simulation of

temporal moments is presented.

2.2 Moment generating equations

Transient groundwater flow in a saturated heterogeneous porous medium is governed by the PDE:180

∇[K(x)∇h] +Q(x; t) = Ss(x)
∂h

∂t
(5)

where∇ is the differential operator,K is the hydraulic conductivity tensor, Ss is the specific elastic

storage, and Q(x; t) represents generic source/sink terms at location x and time t . Eq. 5 may be

solved by imposing Dirichlet boundary conditions h(x; t) = hD(x; t) at a prescribed portion of the

domain boundary ΓD, Neumann boundary conditions K(x)∇h(x; t) = qN(x; t) at another portion185

of the domain boundary ΓN, and initial boundary conditions h(x;0) = h0(x) throughout the domain.

For a unit impulse extraction Q(x; t) = δ(xw) at location xw, the kth temporal moment, mk, of

the IRF of drawdown, s(x; t) = h(x;0)−h(x; t), might be computed by multiplying Eq. (5) by tk

and integrating over the time interval [0,+∞). The resulting moment-generating equation is (Li

et al., 2005; Yin and Illman, 2009) the following:190

∇[K(x)∇mk] + δk(xw) + kSs(x)mk−1 = 0 (6)
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where δk(xw) is equal to unity if k = 0 and equal to zero if k > 0. Similarly, the boundary conditions

of the temporal-moment equations are expressed as mk(x) = 0 for the Dirichlet boundary ΓD and

K(x)∇mk = 0 for the Neumann boundary ΓN.

Because the observations (Sect. 2.1) consist of the zeroth and the first temporal moments, the195

simulation of only m0 and m1 is sought. These moments can be obtained by solving numerically

the following two PDEs:

∇[K(x)∇m0] + 1(xw)=0 (7)

∇[K(x)∇m1] +Ss(x)m0=0 (8)200

Equation (7) is equivalent to a steady-state flow problem characterized by a unit extraction rate,

denoted as 1(xw), at well location xw. Equation (8) is equivalent to a steady-state flow problem

with a forcing term constituted by a spatially variable recharge equal to Ss(x)m0. Both Eqs. (7)

and (8) can be solved using a common groundwater flow simulator, such as the well-known finite-

difference model MODFLOW2000 (Harbaugh et al., 2000).205

2.3 Inversion approaches

This section presents the approaches adopted here to invert the temporal moments in order to

characterize the spatial distributions ofK and Ss. Using a Bayesian framework to pose the inversion

problem, the vector of system parameters, φ, can be updated in light of newly collected data m as

follows:210

p(φ|m,I) =
p(m|φ,I)p(φ,I)

p(m,I)
(9)

where p(φ|m,I) is the posterior probability distribution function (PDF) of φ given the

measurements m and the generic “prior” information I; p(m|φ) is the likelihood PDF, that is,

the probability of the measurements m conditional to the parameters φ; p(φ,I) is the prior PDF

of φ; and p(m,I) is a normalization term. An exact solution to Eq. (9) can be obtained if the215

measurements m are related to the parameters φ through a linear relationship, and when all PDFs

in Eq. (9) are Gaussian. This solution is widely known as the Kalman Filter (KF) (Kalman, 1960).

In the classical implementation of the KF, the data assimilation of state follows a two-stage

forecast-update process. In the forecast stage, a forward in time prediction of the current state,

along with its error covariance is made. The forecast state is then updated as field measurements220

become available. In this work, the inversion problem is reduced to a time-independent inversion

problem, which means that the forecast stage does not include any forward in-time prediction. That

is to say, the forecast stage is limited to the solution of the equivalent steady state groundwater

problems expressed by Eq. (7)and (8).

In addition to being limited to Gaussian linear systems, the KF is computationally expensive when225

applied to large scale problems. Evensen (1994) expanded the applicability of the KF to nonlinear
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systems through the EnKF. Within the EnKF, the prior PDFs of the system states are approximated

using an ensemble of realizations that characterize the prior uncertainty in the system parameters

and states.

2.3.1 Forecast of parameters and system states230

From the perspective of subsurface flow, the major parameters that typically characterize

a groundwater system are the hydraulic conductivity, K, and the specific storage, Ss. These

parameters are inherently heterogeneous and cannot be determined uniquely using a finite set

of measurements. Therefore, it is convenient to describe these parameters using a geostatistical

conceptual model (Matheron, 1962; Isaaks and Srivastava, 1990; Cressie, 1993; Diggle and Ribeiro,235

2007), according to which an heterogeneous field is modelled as a spatially-distributed random

process, characterized by a trend model and a covariance model. In this study, we assume the

log-transformed parameters Y = ln(K) and Z = ln(Ss) to fit to two independent isotropic and

stationary (with no trend) Gaussian processes (de Marsily, 1986), with prescribed covariance models

CY Y (d;σ2
Y ;λY ) and CZZ(d;σ2

Z ;λZ), respectively. The scalar d represents the distance between240

any two points. The parameters σ2 and λ represent the correlation length and the variance of each

random process. The stationary means of the two fields are denoted as µY and µZ . A spherical

covariance function is assumed for both CY Y and CZZ (Deutsch and Journel, 1997). This choice is

somewhat arbitrary and other covariance functions might be used to describe the spatial correlation

of random field without altering the general inversion methodology.245

Using these geostatistical models, it is possible to generate an ensemble of Nens equally likely

realizations for both Y and Z. The ensemble of the natural logarithm of K is obtained as Y =

[Y1, ...,YNens ], where Yk ∈ Rn×1 (k ∈ {1,2, . . . ,Nens}) is a realization of Y , and n is the number

of cells of the finite-difference grid adopted to discretize the aquifer domain. The ensemble of the

natural logarithm of Ss, Z∈Rn×Nens is generated in a similar fashion. The resulting ensembles can250

be seen as discrete approximations of the forecast, or prior, joint PDFs of Y or Z.

In the forecast stage, Eqs. (7) and (8) are solved numerically to predict the system states, that is,

the temporal moments, in each pumping test. Each realization Y k in the ensemble Y is numerically

simulated using Eq. (7) to obtain m0,k ∈ Rn×1, a vector including the spatial distribution of the

zeroth moment at the cells of the finite-difference grid. Next, m0,k and the parameters Yk and255

Zk are used to compute the first moment vector m1,k ∈ Rn×1 by solving Eq. (8). Therefore,

all realizations of states m0,k and m1,k (k ∈ {1,2, . . . ,Nens}) can be assembled into the n×Nens

matrices M0 = [m0,1, ...,m0,Nens ] and M1 = [m1,1, ...,m1,Nens ], respectively. To proceed to the

update stage, we propose two alternatives: CF and DF. Schematic diagrams of the two methods are

provided in Fig. 1.260
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2.3.2 Parameter estimation by centralized fusion

In the CF scheme (Fig. 1b), forecast ensembles obtained from simulating independent pumping tests

are augmented into a single global forecast matrix XY
f = [Y,M1

0, . . . ,M
Np

0 ]T , where Mi
0 represents

the zeroth-moment ensemble for the ith pumping test (i ∈ {1,2, . . . ,Np}). Note that the matrix

XY
f has size (Np + 1)n×Nens. As a matter of fact, there are several possibilities to assemble the265

forecast matrix, some of which are listed in Table 1. Formulations A, B, and C provide alternatives

for forming XY
f in order to estimate the Y field, whereas formulations D and E address possible

alternatives for estimating the Z field. In Sect. 4 we investigate the implications of employing

different formulations of the forecast matrix. Here, we focus exclusively on formulation A in Table 1

to illustrate the CF procedure.270

From the augmented state-parameter forecast matrix XY
f , the global prior covariance matrix

PY
f ∈R(Np+1)n×(Np+1)n can be approximated as

PY
f =

(
XY

f − X̄Y
f

)
·
(
XY

f − X̄Y
f

)T
Nens−1

(10)

where X̄Y
f is the prior ensemble mean matrix, calculated as X̄Y

f = XY
f ·1Nens and 1Nens ∈

RNens×(Np+1)n is a matrix with all elements equal to 1/Nens.275

To facilitate the assimilation procedure, measurements collected from N0 observations wells

and Np pumping tests are vertically concatenated in a single vector. Therefore, the vector of

measurements for the zeroth-moment can be denoted as d0 = [m0,i,j ] ∈ RNpN0×1, where i is the

pumping test index, and j is the observation well index.

Following an EnKF-like procedure, the measurements d0 are assimilated to update both systems280

states and parameters. Therefore, the update state-parameter matrix, XY
u ∈ R(Np+1)n×Nens and the

update covariance matrix, PY
u ∈ R(Np+1)n×(Np+1)n can be expressed as follows:

XY
u = XY

f +K ·
(
D0−H ·XY

f

)
(11)

PY
u = (I−K ·H) ·PY

f · (I−K ·H)T +K ·R ·KT (12)285

where D0 ∈ RNpN0×Nens is a matrix whose columns are obtained by perturbing the measurement

vector d0 with a Gaussian zero-mean noise, characterized by the error covariance matrix R ∈
RNpN0×NpN0 ; H ∈ RNpNo×(Np+1)n is a matrix that maps each measurement to its location in

the finite-difference grid and to its corresponding pumping test. The matrix K∈R(Np+1)n×NpNo

is called “Kalman gain”, and is computed as:290

K = PY
f ·HT ·

(
H ·PY

f ·HT +R
)−1

(13)

In the context of parameter estimation, we are interested exclusively in updated parameters.

Consequently, the ensemble of log-transformed hydraulic conductivity fields is extracted from the

updated state-parameter matrix (Eq. 11) as Yu = XY
u (1 : n,1 :Nens). The posterior ensemble mean
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of the hydraulic conductivity is thus computed as Ŷ = Yu · 1̂Nens , where 1̂Nens is a Nens× 1-vector295

in which all elements are equal to 1/Nens.

A procedure similar to that described above to obtain the ensemble Yu by assimilating the zeroth

moment of the IRF computed from hydraulic head measurements (Eq. 3) may be devised to derive

the specific elastic storage ensemble Zu, using observations of the first moment of the IRF (Eq. 4).

The formulations D and E, presented in Table 1, provide two possible methods for assembling the300

forecast matrix in order to estimate the Z field. Since the first-temporal moment m1 (Eq. 3) depends

on the zeroth temporal moment m0, as well as the K and Ss fields, the uncertainty on K might

affect the estimation of Ss. To reduce the influence of the uncertainty on K on the estimation of Ss,

it is possible, for example, to use the posterior ensemble mean Ŷ to solve Eqs. (7) and (8). This

assimilation strategy is denoted as E in Table 1. In this case, the forecast matrix is expressed as305

XZ
f = [Z,M1

1, . . . ,M
Np

1 ]T , where Mi
1 represents the first-moment ensembles for the ith pumping

test. XZ
f is updated by assimilating the observations of the hydraulic head first-moment, d1 =

[m1,i,j ] ∈ RNpN0×1 where i is the pumping test index, and j is the observation well index, and

applying equations similar to Eqs. (11) and (12). The ensemble mean of the updated Z is thus

computed as Ẑ = Zu1Nens . This mean represents the best unbiased estimate of the unknown true310

parameter. In Sect. 4.1, we show that this approach significantly improves the estimation of Ss.

2.3.3 Parameter estimation by decentralized fusion

For conciseness, this section describes the DF algorithm to estimate theK field only. The estimation

of Ss field is achieved by applying an analogous procedure.

In the DF approach (Fig. 1b), the data from each pumping test are assimilated separately using315

a “local” EnKF. The application of the EnKF to each of the Np pumping tests produces multiple

estimates of the hydraulic properties of the aquifer, which are characterized by the means of the

posterior ensembles, Ŷ 1
u, . . . , Ŷ

Np
u , and their corresponding posterior covariances, PY,1

u , . . . ,P
Y,Np
u .

The objective of the DF algorithm is to merge these estimates and produce an integrated global

estimate Ỹ of the parameters. The multiple estimates are fused using the GMF (Bar-Shalom and320

Campo, 1986; Shin et al., 2006):

Ỹ = WT · Ŷ 1:Np
u =

Np∑
i=1

wiŶ
i
u (14)

where the matrix W = [w1,w2, . . . ,wNP
]T , of size nNP ×n, includes the n×n weight matrices

wi (i= 1,2, ...,Np) and the Npn× 1 vector Ŷ 1:Np
u is assembled by vertical concatenation of the

means of the posterior ensembles Ŷ 1
u, . . . , Ŷ

Np
u .325

The weight matrices in Eq. (14) are given by the solution of the optimization problem:

W = min
W
‖Y − Ỹ ‖2 (15)

where ‖ · ‖2 represents the Euclidean norm operator. In addition, Eq. (15) is subject to a constraint
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required to obtain a “best linear unbiased estimate” (BLUE) of Y , which is expressed by the

following set of linear equations:330

In,Np
·W = In (16)

where In is the n×n identity matrix, and In,Np
is the n×nNp matrix formed by horizontal

concatenation of In for Np times.

The solution to Eq. (15) is obtained by least-square minimization, which, together with Eq. (16),

yields the following linear sets of equations:335

C ·W = B (17)

where

C =


c1,1 . . . c1,Np

...

cNp−1,1 . . . cNp−1,Np

In . . . In

 (18a)

B =


0n

...

0n

In

 (18b)

340

Matrix C has size nNp×nNp, whereas matrix B has size nNp×n. In matrix B (Eq. (18a), 01 is

a zero matrix with size n×n. The generic term ci,j in matrix C (Eq. (18a) is given by:

ci,j = PY,i,j
u −PY,i,Np

u (19)

where PY,i,j
u is the updated cross-covariance matrix for the Y fields estimated from the assimilation

of data corresponding to pumping tests i and j, which is calculated as:345

PY,i,j
u =

(
Yi

u− Ŷi
u

)(
Yj

u− Ŷj
u

)T
/(N ens− 1) (20)

From Eq. (17), W is obtained as:

W = C−1 ·B (21)

Once the weight matrix W is calculated, it is substituted in Eq. (14) to provide the estimate Ỹ . The

posterior covariance of Ỹ can be computed as (Shin et al., 2006):350

P̃ = WT ·P ·W (22)

where P is a nNp×nNp matrix formed by the covariance matrices PY,i,j
u (i, j = 1, . . . ,Np).
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2.3.4 Localization of Decentralized Fusion

The inversion of the matrix C in Eq. (21) constitutes the most intensive part of the GMF. In HT, it

is typically required to estimate hydrogeological parameters at high resolution, which often renders355

the GMF approach computationally very intensive. To circumvent this obstacle, we propose the

following novel localized fusion algorithm.

In essence, instead of computing Eq. (21) for all the cells in the domain at once, the fused estimate

at any given cell is computed by considering only a circular block of cells within a specified radius

around the cell of interest (Fig. 2). The localized DF algorithm visits each cell within the domain360

sequentially or in parallel and fuse these circular blocks. The resulting fused estimate for the cell at

the center is returned, and the algorithm moves to the next cell. Indicating as n′ (< n) the number

of grid cells within a specified distance from the cell of interest, the resulting size for the “local”

matrices in Eq. (21) is: n′×n′Np for B, and n′Np×n′Np for C.

The implicit assumption behind this method is that neighboring cells will have the majority of365

influence on the estimation. The GMF localization is meant to improve the computational efficiency

in two ways. First, the inversion of matrices C of smaller size is less CPU intensive; second, the

fusion algorithm can be directly parallelized on multi-core processors.

2.4 Options for data fusion formulation

The forecast matrix Xf can be assembled according to different formulations of the data fusion370

problem. Table 1 shows a list of the formulations investigated herein.

Formulations A, B, and C seek the estimation of Y field. Formulation A consists of assimilating

measurements of the zeroth temporal moment m0 (Eq. 3), with the forecast model given by

numerical solution of the PDE (Eq. 7). Formulation B consists of assimilating measurements of

the first temporal moment m1 (Eq. 4), with the forecast model given by numerical solution of the375

PDE (Eq. 8), in which the K forecast ensemble and its corresponding m0 forecast ensemble, in turn

obtained from the numerical solution of PDE (Eq. 7), are used. In Formulation C, measurements

of both m0 and m1 are assimilated, and the forecast model is obtained by solving Eqs. (7) and (8)

combined.

Formulations D and E aim at estimating the Z field. In the estimation of Ss, it is possible380

to find a one-to-one correspondence between Ss and m1 based on Eq. (8) if the K field and its

corresponding m0 field are known. However, since the K field is unknown, one can choose instead

to represent it using, for example, its forecast ensemble Y, or a best unbiased estimate, calculated as

the mean of the posterior ensemble Ŷ obtained in formulation A. These alternatives are investigated

in Formulations D and E. In both instances, measurements of m1 are assimilated, and the forecast385

model consists of the numerical solution of PDE (Eq. 8). In Formulation D, theK forecast ensemble

and its corresponding m0 forecast ensemble, obtained from the numerical solution of PDE (Eq. 7),
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are used. Instead, in Formulations E, the posterior mean of Y , as estimated in Formulation A, and

its corresponding m0 distribution, obtained from the numerical solution PDE (Eq. 7), are used.

3 Numerical experiments390

3.1 Model setup

The testing of the inversion schemes proposed in this work is based on a number of hypothetical

two-dimensional cases. The method is, however, directly applicable to three-dimensional problems.

We consider a two-dimensional horizontal 1km×1km, 10 m thick confined aquifer, discretized into

10 000 cells (100 gridblocks along the x–y coordinate directions, and a single gridblock along the z395

direction). Table 2 and Figure 3 provide detailed descriptions of data regarding the aquifer model.

The aquifer is subject to constant-head boundary conditions on the left and right edges of the

domain, at which the hydraulic head h is set equal to 45 m. Anywhere else no-flow boundary

conditions are imposed. The “true” K and Ss fields in the aquifer are assumed to fit to the

geostatistical models introduced in Sect. 2.3.1 and generated synthetically using the sequential400

Gaussian simulation algorithm SGSIM (Deutsch and Journel, 1997), with the geostatistical

parameters µY = 1.5 ln mday−1, σY = 1ln mday−1, λY = 350 m, µZ =−10 ln m−1, σZ = 1ln

m−1, and λZ = 350 m (Table 2). These two fields are used in five MODFLOW2000 (Harbaugh

et al., 2000) simulations to reproduce the aquifer response to five separate pumping tests, conducted

from the locations and with the pumping rates specified in Table 2 and Figure 3.405

The duration of these hypothetical pumping tests is 10 days. The output of each simulation

provides the reference system from which collection of hydraulic head data is simulated. Hydraulic

head observations are recorded from a network of 36 monitoring wells, whose locations are depicted

in Fig. 3.

Three set of numerical experiments are carried out to evaluate and compare the performances410

of the CF and DF schemes. The first experiment set investigates the performance of different

formulations of the forecast matrix, as listed in Table 1, using the CF approach. The second

experiment set is similar to the first experiment set, but the DF approach is used instead. In the

third experiment, we investigate the effects of assimilating temporal moments instead of hydraulic

head data. To do this, we compare the Y and Z fields obtained by direct assimilation of transient415

hydraulic head data with those obtained by assimilating zeroth and first temporal moments of the

IRF. The comparison in the third experiment set is limited only to a single pumping test at well

number 1 in Figure 3. In all experiment sets, the parameters characterizing the geostatistical models

of Y and Z are assumed to be known as prior information and equal to those of the “true” fields

given in Table 2. The prior ensembles of Y and Z realizations are assumed be uncorrelated.420

In the three experiment sets, the size Nens of the ensemble is 200. The temporal moments at each

observation well are estimated using Eqs. (3) and (4). Since the temporal moments are assumed to
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be the measured quantities, their measurement error is assumed to fit to a normal distribution with

zero mean and standard deviation equal to the corresponding forecast standard deviation multiplied

by 0.01.425

3.2 Performance metrics

The performances of the fusion methods may be evaluated qualitatively by visual comparison of

the maps of the estimated hydraulic parameters, represented by the average distributions Ŷ and Ẑ

(Sect. 2.3.2), with the corresponding maps of the “true” reference fields. In addition, a quantitative

evaluation of these performances is achieved using the following statistics: the mean absolute error430

L1, the root mean square error L2, the mean error µe, and the correlation coefficient r. L1 is

computed as:

L1 =
1

n

n∑
i=1

|φtrue(i)− φ̂(i)| (23)

where φtrue(i) is the value of “true” parameter at the grid cell i and φ̂(i) is the corresponding value

of estimated parameter. L2 is computed as:435

L2 =

√√√√ 1

n

n∑
i=1

[φtrue(i)− φ̂(i)]2 (24)

The correlation between the estimated parameter field and the true parameter field, both represented

as two-dimensional images, could be computed using the Pearson’s correlation coefficient r as

follows:

r =

nr∑
i=1

nc∑
j=1

[φtrue(i, j)− φ̄true][φ̂(i, j)− φ̄]√
nr∑
i=1

nc∑
j=1

[φtrue(i, j)− φ̄true]2
nr∑
i=1

nc∑
j=1

[φ̂(i, j)− φ̄]2

(25)440

where φ̄true and φ̄ are the overall means of the true and the estimated parameter fields, respectively;

nr and rc are the number of rows and the number of columns of the two-dimensional field,

respectively. Values of r range between 1 and −1, with r = 1 indicating perfect positive linear

correlation, r = 0 indicating no correlation, and r =−1 indicating perfect negative correlation.

Finally, the error mean µe is obtained as:445

µe =
1

n

n∑
i=1

[φtrue(i)− φ̂(i)] (26)

and is meant to provide a measure of the biasedness of the estimate. Values of µe close to zero

indicate an unbiased estimate.
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4 Results and discussions

4.1 Centralized fusion of HT data450

In this section, the performance of each of the forecast formulations given in Table 1 is evaluated

using the CF scheme (Fig. 1). The results of the inversion tests are summarized in Table 3, which

reports values of the four performance statistics, L1, L2, r and µe (Eqs. 23–26) for the formulation

schemes A–E. As explained in Sect. 2.4, formulations A to C seek the estimation of the Y field. The

comparison of the metrics L1, L2, and r reported in Table 4 reveals that the CF scheme performs455

significantly better under formulation A than under formulation C. In turn, formulation B is slightly

less effective than formulation C.

These results find an explanation in that with formulation A the Y field is estimated by assimilating

m0 data only, whereas with formulation C the Y field is estimated by assimilating both m0 and m1

data. While in formulation A the heterogeneity of the Y field affects directly the spatial variability460

of m0 via PDE (Eq. 7), in formulation C such heterogeneity influences both the m0 and m1 spatial

distributions via PDEs (Eqs. 7 and 8). In addition, the spatial variability of m1 depends not only on

Y but also on Z. This makes the estimation of Y using PDEs (Eqs. 7 and 8) less effective given the

added uncertainty in Z.

In the case of formulation B, the performance of the CF scheme is even lower than with465

formulation C since only m1 data are assimilated and thus the impact of the added uncertainty

in Z is inevitably more pronounced. In Table 3, it is worth observing that for all formulations A–C,

the mean error µe is very low, on the order of 10−5, which provides substantial evidence of the

unbiasedness of the estimates obtained by CF.

Figure 4a and 4c present the maps of the “true” reference field Y true and the average of the update470

ensemble Ŷ obtained using the forecast formulation A, respectively. The similarity between the two

maps is remarkable. Figure 4e shows a scatter plot obtained using the components of Y true on the

x axis, and the corresponding components of Ŷ on the y axis. The data points in this plot tend to

gather along the identity line, which provides a further visual proof of the satisfactory performance

of the CF scheme.475

In formulations D and E (Table 1), the estimation of Z field is sought using the CF approach.

The values of the metrics L1, L2, and r given in Table 3 indicate that with formulation D the CF

scheme performs significantly worse than with formulation E. Indeed, estimating the Z field based

exclusively on m1 data through PDE (Eq. 8) is inevitably affected by the uncertainty on the Y

and the m0 fields, in a fashion very similar to that highlighted above for formulation B. A similar480

outcome has been observed by other researchers (Yin and Illman, 2009). It is interesting to observe

that formulations B and D are substantially the same, although they attempt to estimate different

parameters. Thus it is not coincidental that they exhibit the two lowest estimation performances.

Based on the results of formulation B, the estimation of Z may be improved if the uncertainty
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on the Y and m0 fields can be reduced. Formulation E (Table 1) stems from the idea of using the485

best unbiased estimate Ŷ obtained with formulation A, and the corresponding m0 field calculated

by solving the PDE (Eq. 7), within the the forecast model based on PDE (Eq. 8) and assimilate m1

measurements only, as in formulation D. The values ofL1, L2, and r shown in Table 3 reveal that this

solution allows for a significant improvement in the estimation of the Z field, and the performance of

the CF approach becomes comparable with that observed in formulations A-C, when estimating the490

Y field. Note in Table 3 that with both formulations D and E the CF approach produces negligible

values of µe (10−6), which demonstrates that the estimates of Z are substantially unbiased.

Figure 4b and 4d depicts the “true” Z field and that estimated by CF using formulation E,

respectively. A comparison between the two maps shows that the CF scheme is able to capture

fairly well the spatial heterogeneity of Z. Figure 4f shows a scatter plot of Z true against Ẑ. Similar495

to Fig. 4e, the data are distributed along the identity line, that is, a general agreement between “true”

and the estimated Z can be observed. However, Fig. 4f shows that higher and lower values of Z,

located on the “tails” of the distribution, are not well identified, which highlights the tendency of the

CF scheme to produce smoothed estimates of the Z field.

Plots in Figure 5 compare the simulated heads using the estimated Y and Z fields using CF500

methods with heads obtained by simulating true parameter fields. Figure 5a shows a scatter plot

of simulated heads versus reference heads resulting from the five pumping tests and for heads

observed at 36 observation wells. The performance statistics L1, L2, and r are 0.09, 0.015, and

0.998, respectively, indicating fairly good performance of the inversion method. Figures 5b to 5f

show one sample of hydraulic head hydrographs resulting from the five pumping tests at observation505

well 15 (See Figure 3), which is located approximately in the middle of the simulated domain. The

figures show a general agreement between observed and simulated head hydrographs.

In the tests presented above, the average CPU time required to calculate the spatial

distributions of temporal moments, that is, to solve either of the PDEs (Eqs. 7 and 8) using

MODFLOW2000 (Harbaugh et al., 2000) is about 2 s per run. In practice, a forecast simulation510

with an ensemble size Nens of 200 requires a CPU time of the order of minutes. This is because

the moment-generating PDEs (Eqs. 7 and 8) are Poisson-type equations, which are computationally

much less intensive to solve than the parabolic PDE (Eq. 5) from which they are derived. In this

regard, note the PDE (Eq. 5) is time-dependent, whereas in PDEs (Eqs. 7 and 8) the time variable is

eliminated by integration (Eq. 2).515

Considering the temporal moments of the IRF measurements allows also for a significant

reduction of the CPU requirements of data assimilation. In the numerical experiments conducted

here, 36 observation wells are used to monitor the hydraulic head during each pump test. In each

observation well, 100 temporal measurements are recorded, resulting in 3600 measurements per

single pumping test. Since we assumed that five pumping tests are performed to characterize the520

aquifer, the total number of available hydraulic head data is (36×100×5) 18 000. Direct assimilation
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of transient hydraulic head data using either the EnKF or the Ensemble Smoother (Evensen, 2009)

would require, respectively, the inversion (Eq. 13) of a 180× 180 matrix for each of the 100

measurement times, or the inversion all-at-once of a 18 000× 18 000 matrix. In either situation, the

computational effort would not be trivial. Instead, by introducing temporal moments, for example525

when estimating the Y field with formulation A, the data assimilation step involves the inversion of

a 180× 180 matrix only once.

4.2 Decentralized fusion of HT data

In this section, the DF scheme based on the GMF (Sect. 2.3.3) is employed to estimate aquifer

parameters based on the same HT data used in the previous section with the CF scheme. Similar530

to the set of experiments used to evaluate CF inversion method, this experiments set investigates

formulations A to C to estimate Y field, and formulations D and E to estimate Z field. It is worth

noting that forecast formulations of the forecast matrix in the DF inversion are slightly different

from those used in the CF inversion. Forecast matrices in the DF inversion are formulated for each

local inversion, while in the CF inversion a single global forecast matrix is formulated as shown in535

Table 1.

Following the approach outlined in Sect. 2.3.3 to reduce computational intensity, in the calculation

of the weight coefficients W (Eq. 21), for each grid cell, only cells within a radius of 50 m are used

in the inversion of the matrix C. The results of preliminary numerical tests (not shown here) have

suggested that, in this problem, no significant improvement in accuracy is achieved if this radius is540

increased beyond 50 m, while a significant increase in computational cost is observed.

The performance criteria for the DF method using different formulations are summarized in

Table 4. Comparing performance criteria for the DF method shown in Table 4 with performance

criteria for the CF in Table 3, reveals that the performance of different formulations is independent

from the fusion method used. For example, formulation A outperforms formulations B and C in545

estimating Y field for both CF and DF methods, and formulation E outperforms formulation D in

estimating Z for both CF and DF.

Figure 6a–e show the “local” estimates of the Y field obtained using formulation A of the EnKF to

assimilate HT data collected separately in each of the five pumping tests. Figure 6f shows the global

estimate of the Y field produced by Eq. (14), and Fig. 6g shows the “true” Y field. The similarity550

between the two maps in Fig. 6f and g indicates that the DF scheme is able to estimate fairly well

the spatial distribution of hydraulic conductivity. In Fig. 6h, the scatter plot of Y true vs. Ỹ provides

further proof of the good performance of the DF scheme. The resulting correlation coefficient, r,

between the two distributions is equal to 0.723, which is less than that obtained by using the CF

scheme with formulation A (r = 0.825, see formulation A in Table 3).555

Figure 7a–e show the estimations of the Z field obtained using formulation E and applying the

EnKF separately to each of the five pumping tests. Figure 7f and g shows the DF global estimate of
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the Z field and the “true” reference field, respectively. The comparison of the two maps in subpanels

f and g indicates that the DF scheme is able to capture the main features of the heterogeneity of the Z

field. The scatter plot of Z true vs. Z̃ shows that the correlation coefficient r is equal to 0.645, which560

is smaller than that produced by the CF scheme with formulation E (r = 0.759, see formulation E in

Table 3).

Figure 8 compares hydraulic heads obtained by simulating estimated Y and Z fields using DF

method with observed hydraulic heads. Comparing the performance metrics of the DF method,

shown in Figure 8a, with the performance metrics of the CF, shown in Figure 5a, indicates that565

the performance of CF inversion performs better than that of DF inversion. The hydraulic heads at

observation well No. 15 are plotted in Figures 8b to 8f for the five pumping tests. A generally fair

agreement can be observed between simulated heads and true ones.

The results presented above indicate that, in the joint estimation of Y and Z, the CF scheme

consistently outperforms the DF scheme. This can be explained by observing that all of the r570

coefficients obtained with “local estimations”, that is, the application of the EnKF separately to the

five pumping tests (panels a–e in Figs. 6 and 7), are smaller than the corresponding coefficients

produced by the CF scheme (see formulations A and E in Table 3), which applies the EnKF

“globally”, that is, to the five pumping tests altogether. Since the GMF (Eq. 14) constitutes in

essence a weighted average of the “local” estimates of the Y and Z fields, with weights (Eq. 21)575

that are inversely related to the corresponding “local” covariances (Shin et al., 2006), it produces

fused estimates with a coefficient r that cannot be larger than those associated with the best “local”

estimate and, consequently, those obtained with the “global” CF estimate. However, the DF scheme

has an operational advantage over the CF scheme, in that the “raw” transient data are not required

to apply fusion. Indeed, only estimates of the hydraulic parameter field and the covariances are580

required.

Note also that when applying the DF scheme to the considered problem, the inversion of the matrix

C (Eq. 21) would be computationally overwhelming since its size (nNp×nNp) is equal to 50 000

by 50 000. This application is made possible only by implementing the localized DF described in

Sect. 2.3.4. By doing so, the algorithm requires about 40 CPU minutes to complete the calculations585

without parallelization of the computation. Using a multicore computer would further reduce this

time by a factor roughly equal to the number of processors available.

4.3 Assimilating transient head data versus assimilating temporal moments

While assimilating temporal moments instead of the transient data itself provides a significant saving

in CPU time, it is important to verify to what extent this option affects the accuracy of the estimation.590

To do so, we conduce an experiment whose goal is to compare the performances of the EnKF when

temporal moments are assimilated and when the ”raw” transient hydraulic head data are assimilated.

In this experiment, we use data from a single pumping test at well No. 1 in Figure 3. Using data
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from a single pumping test allows for reducing the scale of the data assimilation problem, thereby

limiting the associated computational effort, without affecting the generality of conclusions drawn595

from the experiment.

Table 5 summarizes the performance statistics of the two approaches. One can observe that

assimilating the transient data leads to better results compared with assimilating the temporal

moments. This observation can be seen for the estimation of both Y and Z fields. This effect can

be explained by information loss resulting from lumping transient head data into low order temporal600

moments. However, while assimilating transient head data provides a better characterization than

using temporal moments, the associated computational cost is drastically higher. For example, in

the case investigated here, the overall CPU time required by the transient data formulation is about

40 times larger than that required by the temporal moment formulation.

It is worth noting that the correlation coefficient r for estimation of Y resulting from a single605

pumping test (r = 0.908 in Table 5) is higher than that resulting from five pumping tests (r = 0.825

in Table 3), while the L1 and L2 statistics are better (lower) for multiple pumping tests. This due

to the fact that the correlation coefficient r is invariant with respect to linear transformation of the

two fields, and thus r provides a measure of similarity in the structure of spatial variability with no

information about the Euclidean distance between the two fields, which is provided by L2.610

5 Conclusions

In this work, two approaches have been developed and implemented to characterize the spatial

variability of aquifers’ hydraulic properties at high resolution: centralized fusion (CF) and

decentralized fusion (DF). CF utilizes a global EnKF scheme to simultaneously invert data obtained

from multiple pumping tests. DF uses the generalized Millman formula (GMF) to merge together615

estimates obtained from “local” EnKF applications to each of the pumping tests. The proposed

inversion methods assimilated the zeroth and first temporal moments of the Impulse Response

Function (IRF) inferred from hydraulic head data collected in monitoring wells, which significantly

expedites the stochastic simulation procedures.

The performance of the fusion schemes, measured as the deviation of the estimated field from the620

“true” reference field, are promising for both inversion schemes. The numerical tests presented

in this work show that the CF scheme using the global EnKF consistently outperforms the DF

scheme based on the GMF. To optimize the inversion procedures, different formulations of the

forecast matrix were investigated, and results indicate that the estimation of the aquifer parameters is

significantly affected by the chosen formulation. For instance, the estimation of the specific elastic625

storage field was significantly improved by using a specific formulation of the forecast matrix based

on the assimilation of measurements of the first temporal moment of the impulse response function,

with the posterior mean of hydraulic conductivity obtained with the assimilation of measurements
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of the zeroth temporal moment.

It is finally important to point out that in the numerical experiments presented here the structure of630

the geostatistical model and its parameters are assumed be be known a priori. Since most often this

hypothesis is not met, it is necessary to extend the methodologies developed in this work to jointly

identifying the geostatistical model. This is the subject of an ongoing research effort.
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1962.

Moore, C. and Doherty, J.: The cost of uniqueness in groundwater model calibration, Adv. Water Resour., 29,710

605–623, doi:10.1016/j.advwatres.2005.07.003, 2006.

Olsthoorn, T. N.: Do a bit more with convolution, Ground Water, 46, 13–22, doi:10.1111/j.1745-

6584.2007.00342.x, 2008.

Rubin, Y.: Applied Stochastic Hydrogeology, Oxford University Press, New York, USA, 2003.

Schöniger, A., Nowak, W., and Hendricks Franssen, H.-J.: Parameter estimation by ensemble Kalman filters715

22

http://dx.doi.org/10.1088/0266-5611/11/2/005
http://dx.doi.org/10.1029/95WR01231
http://dx.doi.org/10.1029/2007WR006715
http://dx.doi.org/10.1029/2009WR007745
http://dx.doi.org/10.1111/j.1745-6584.2011.00859.x
http://www.cs.unc.edu/~welch/kalman/media/pdf/Kalman1960.pdf
http://dx.doi.org/10.1029/95WR01945
http://dx.doi.org/10.1029/2004WR003874
http://dx.doi.org/10.1029/2001WR000338
http://dx.doi.org/10.1029/2010WR009144
http://dx.doi.org/10.1029/2006WR005144
http://dx.doi.org/10.1002/wrcr.20129
http://dx.doi.org/10.1016/j.advwatres.2005.07.003
http://dx.doi.org/10.1111/j.1745-6584.2007.00342.x
http://dx.doi.org/10.1111/j.1745-6584.2007.00342.x
http://dx.doi.org/10.1111/j.1745-6584.2007.00342.x


with transformed data: approach and application to hydraulic tomography, Water Resour. Res., 48, W04502,

doi:10.1029/2011WR010462, 2012.

Shin, V., Lee, Y., and Choi, T.-S.: Generalized Millman’s formula and its application for estimation problems,

Signal Process., 86, 257–266, doi:10.1016/j.sigpro.2005.05.015, 2006.

Straface, S., Yeh, T.-C. J., Zhu, J., Troisi, S., and Lee, C. H.: Sequential aquifer tests at a well field, Montalto720

Uffugo Scalo, Italy, Water Resour. Res., 43, W07432, doi:10.1029/2006WR005287, 2007.

Sun, N.-Z.: Inverse Problems in Groundwater Modeling (Theory and Applications of Transport in Porous

Media), Springer, New York, USA, 1994.

Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM: Society for

Industrial and Applied Mathematics, Philadelphia, PA, USA 2004.725

Theis, C. V.: The Relation Between the Lowering of the Piezometric Surface and the Rate and Duration of

Discharge of a Well Using Ground Water Storage, US Department of the Interior, Geological Survey, Water

Resources Division, Ground Water Branch, Washington DC, USA, 1935.

Von Asmuth, J. and Maas, K.: The method of impulse response moments: a new method integrating time series-

, groundwater-and eco-hydrological modelling, in: Impact of Human Activity on Groundwater Dynamics.730

Proceedings of a Symposium Held During the Sixth IAHS Scientific Assembly, Maastricht, Netherlands,

18–27 July 2001, 51–58, 2001.

Von Asmuth, J. R., Bierkens, M. F. P., and Maas, K.: Transfer function-noise modeling in continuous time using

predefined impulse response functions, Water Resour. Res., 38, 1287, doi:10.1029/2001WR001136, 2002.

Von Asmuth, J. R., Maas, K., Bakker, M., and Petersen, J.: Modeling time series of ground735

water head fluctuations subjected to multiple stresses, Ground Water, 46, 30–40, doi:10.1111/j.1745-

6584.2007.00382.x, 2008.

Wu, C.-M., Yeh, T.-C. J., Zhu, J., Lee, T. H., Hsu, N.-S., Chen, C.-H., and Sancho, A. F.: Traditional analysis of

aquifer tests: comparing apples to oranges?, Water Resour. Res., 41, W09402, doi:10.1029/2004WR003717,

2005.740

Yeh, T.-C. J. and Liu, S.: Hydraulic tomography: development of a new aquifer test method, Water Resour.

Res., 36, 2095, doi:10.1029/2000WR900114, 2000.

Yeh, T.-C. J. and Zhu, J.: Hydraulic/partitioning tracer tomography for characterization of dense nonaqueous

phase liquid source zones, Water Resour. Res., 43, W06435, doi:10.1029/2006WR004877, 2007.

Yin, D. and Illman, W. A.: Hydraulic tomography using temporal moments of drawdown recovery data:745

a laboratory sandbox study, Water Resour. Res., 45, W01502, doi:10.1029/2007WR006623, 2009.

Zhu, J. and Yeh, T.-C. J.: Characterization of aquifer heterogeneity using transient hydraulic tomography, Water

Resour. Res., 41, W07028, doi:10.1029/2004WR003790, 2005.

Zhu, J. and Yeh, T.-C. J.: Analysis of hydraulic tomography using temporal moments of drawdown recovery

data, Water Resour. Res., 42, W02403, doi:10.1029/2005WR004309, 2006.750

23

http://dx.doi.org/10.1029/2011WR010462
http://dx.doi.org/10.1016/j.sigpro.2005.05.015
http://dx.doi.org/10.1029/2006WR005287
http://dx.doi.org/10.1029/2001WR001136
http://dx.doi.org/10.1111/j.1745-6584.2007.00382.x
http://dx.doi.org/10.1111/j.1745-6584.2007.00382.x
http://dx.doi.org/10.1111/j.1745-6584.2007.00382.x
http://dx.doi.org/10.1029/2004WR003717
http://dx.doi.org/10.1029/2000WR900114
http://dx.doi.org/10.1029/2006WR004877
http://dx.doi.org/10.1029/2007WR006623
http://dx.doi.org/10.1029/2004WR003790
http://dx.doi.org/10.1029/2005WR004309


Table 1. Alternative formulations of the forecast matrix investigated in the numerical experiments.

Formulation Description Forecast matrix

A Estimate K field by assimilating m0 measure-

ments only, with PDE (Eq. 7) as forecast model.

XY
f = [Y;M1

0; . . . ;M
Np

0 ]

B Estimate K field by assimilating m1 mea-

surements only, with PDE (Eq. 8) as forecast

model, in which the Y forecast ensemble and its

corresponding m0 forecast ensemble (obtained

from PDE, Eq. 7) are used.

XY
f = [Y;M1

1; . . . ;M
Np

1 ]

C Estimate K field by joint assimilation of m0

and m1 measurements, with PDEs (Eqs. 7 and

8) as forecast model.

XY
f = [Y;M1

0; . . . ;M
Np

0 ;M1
1; . . . ;M

Np

1 ]

D Estimate Ss field by assimilating m1 mea-

surements only, with PDE (Eq. 8) as forecast

model, in which the Y forecast ensemble and its

corresponding m0 forecast ensemble (obtained

from PDE, Eq. 7) are used.

XZ
f = [Z;M1

1; . . . ;M
Np

1 ]

E Estimate Ss field by assimilating m1 measure-

ments only, with PDE (Eq. 8) as forecast model,

in which the posterior mean of Y , as estimated

in A, and its corresponding m0 distribution

(obtained from PDE, Eq. 7) are used.

XZ
f = [Z;M1

1; . . . ;M
Np

1 ]

Fig. 1. Flowcharts illustrating the structure of (a) the CF approach and (b) the DF approach.
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Table 2. Model setting for the numerical experiments.

Finite-Difference Grid Properties

Domain Dimensions [x,y,z] (m, m, m) [1000, 1000, 10]

Cell Size [x,y,z] (m, m, m) [10, 10, 10]

Total number of Cells 10 000

Boundary Conditions

Dirichlet boundary conditions at:

x= 0m h= 45m

x= 1000m h= 45m

Neumann boundary conditions at:

y = 0m no-flow

y = 1000m no-flow

Geostatistical Parameters

[µY ,σY ,λY ] (ln mday−1, ln mday−1, m) [1.5, 1, 350]

[µZ ,σZ ,λZ ] (ln m−1, ln m−1, m) [−10, 1, 350]

Pumping Tests

Well #1 [x,y;Q] (m, m; m3day−1) [500, 500; 500]

Well #2 [x,y;Q] (m, m; m3day−1) [200, 500; 500]

Well #3 [x,y;Q] (m, m; m3day−1) [800, 500; 500]

Well #4 [x,y;Q] (m, m; m3day−1) [500, 200; 500]

Well #5 [x,y;Q] (m, m; m3day−1) [500, 800; 500]

Observation Wells See layout in Fig. 3

Table 3. Performance statistics for the formulations of Table 1 using CF.

Performance Statistics Formulation

Y = lnK Z = lnSs

A B C D E

Mean Absolute Error: L1 0.318 0.353 0.343 0.596 0.363

Root Mean Square Error: L2 0.408 0.446 0.438 0.730 0.460

Correlation Coefficient: r 0.825 0.787 0.803 0.292 0.759

Mean Error: µe 1.40× 10−5 1.54× 10−5 1.01× 10−5 −6.13× 10−6 −5.31× 10−6
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Table 4. Performance statistics for the formulations of Table 1 using DF.

Performance Statistics Formulation

Y = lnK Z = lnSs

A B C D E

Mean Absolute Error: L1 0.412 0.458 0.442 0.776 0.466

Root Mean Square Error: L2 0.521 0.570 0.556 0.953 0.605

Correlation Coefficient: r 0.723 0.683 0.700 0.246 0.645

Mean Error: µe 2.0× 10−2 2.2× 10−2 1.4× 10−2 −1.05× 10−1 −9.1× 10−2

Table 5. Performance statistics for estimates resulting from assimilating transient hydraulic head data and

temporal moment data obtain from a single pumping test at Well No. 1

Performance Statistics Data Assimilated

Hydraulic Head Temporal Moments

Y Z Y Z

Mean Absolute Error: L1 0.337 0.384 0.406 0.398

Root Mean Square Error: L2 0.420 0.479 0.509 0.521

Correlation Coefficient: r 0.908 0.880 0.694 0.628

Fig. 2. Illustration of localized decentralized fusion. The figure shows five images of hydraulic parameters to

be merged. Cells at the center of the circles are the cells to be fused using cells block within a specified distance

from the center.
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Fig. 4. Maps of (a and b) the “true” reference Y and Z fields, and (c and d) the Y and Z fields estimated using

the CF scheme with formulations A and E, respectively. (e and f) Scatter plots of Y true vs. Ŷ and Z true vs. Ẑ.
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Fig. 5. Verification of CF inversion method by comparing true hydraulic heads and hydraulic heads simulated

using estimated parameters. Subpanel (a) shows the scatter plot of true heads on x-axis and estimated heads on

the y-axis for the five pumping tests. Subpanels (b-f) show time-series for the true and the estimated hydraulic

heads at observation well No. 15 in Figure 3.
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shows the scatter plot of Z true vs. Z̃.
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Fig. 8. Verification of DF inversion method by comparing true hydraulic heads and hydraulic heads simulated

using estimated parameters. Subpanel (a) shows the scatter plot of true heads on x-axis and estimated heads on

the y-axis for the five pumping tests. Subpanels (b-f) show time-series for the true and the estimated hydraulic

heads at observation well No. 15 in Figure 3.
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