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Reply to comments of Anonymous Referee #1 

 

The authors would like to thank the Anonymous Referee #1 for the comments; they 

are very helpful to improve our manuscript. Our responses to the comments are 

provided in bold (below each comment). 

 

General comments 

 

The paper develops a rainfall-runoff model of medium complexity, distinguishing 

between groundwater, direct runoff and interflow; and splitting the catchments into three 

using topography. The parameter estimation uses a combination of calibration and 

estimation of parameters based on soil properties. The work is a brave attempt to develop 

and test a model for an area that suffers from limited flow, precipitation and hydrological 

properties data. However the paper does not really provide significant advances in 

understanding hydrological responses or innovation in modeling. The quality of model 

outputs is declared good, but this is arguable and a detailed analysis of model errors has 

not been reported. 

 

We do agree that the type of model used does not fully allow to gain additional 

insight in hydrological responses, and the framework used is not innovative in 

modeling as well, as many conceptual models have been developed and used. 

However, we believe that the innovation of this paper should not be sought in these 

aspects but rather in the fact that through a simplified model (i.e. a conceptual 

model), we are able to assess hydrological processes in the Lake Tana basin, which 

would be complex to do if a more sophisticated model were used (one would 

immediately encounter problems due to data scarcity). The insights that are gained 

learn a lot about the hydrology of this system, which up till now was less 

understood. We hope that the reviewer may agree that this objective of the paper is 

sufficiently novel to be published. 

Concerning the quality of the model outputs and the errors associated with them, 

they can be evaluated based on model performance indicators like the Nash-

Sutcliffe Efficiency (NSE), Root Mean Squared Error (RMSE), the coefficient of 

determination (R2), Bias, etc.  The visual comparison (Plots) can also give an overall 

judgment. The authors used NSE, RMSE and R2 in addition to the plot comparison 

of the observed and simulated outputs. The statistical results for NSE and R2 were 

greater than 0. 7, which shows the good performance of the model.  

Model uncertainty arises from a variety of sources, such as model parameterization, 

process representation, equifinality, and calibration accuracy. We agree the 

importance of a detailed analysis of model errors. In this regard, we carried out 

more than 2500 iterations using the Particle Swarm Optimization (PSO) technique 

to reach to the optimal model parameters and minimize calibration errors. We 

made sensitivity analysis of the model parameters to identify the important 

parameters and rank parameters that have significant impact on the model outputs 

(Fig.7 in the paper).  Each and every step of the model development has been 

discussed with the possible limitations.  
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We agree with the reviewer to further investigate model errors and model clarity 

based on the relevant comments suggested by the reviewer that will be shown on the 

response to the more detailed comments of the reviewer and revise the manuscript.  

 

While recognizing the data issues, the authors claim that periods of data are relatively 

high quality; however this has not been shown, for example the reader cannot judge the 

degree of rainfall and flow data errors. The model is rather complex given the data 

restrictions, shown by the sensitivity analysis. The conclusions about hydrological 

processes cannot be justified given the data issues, the use of text book values of 

parameters of unknown applicability here, and the apparent limited performance of the 

model.  

The authors’ claim of relatively high quality discharge data for the calibration of 

the models emancipates from the data acquisition methodologies used. Unlike the 

previous water level measurement of twice a day using staff gauges, in this case, the 

water level measurements were made using Mini-Divers, automatic water level 

recorders (every 10min), and manual readings from a staff gauge (three times a day, 

at 7 a.m., 1 p.m. and 6 p.m.). Moreover, rating curves were produced using recent 

survey of river x-sections.  We do not dare to say that the data is absolutely prefect. 

However, there is a significant improvement to what was available before. We agree 

that we did not show the rating curve plot in the manuscript together with the range 

of levels to which the rating curves were applied. In the revised version, we will 

elaborate more on the accuracy of the rating curves that were established. Further 

in this rebuttal, we will elaborate in more detail on this issue.  

With respect to the rainfall data, the authors used the available rainfall data from 

the rain gauges in and around the study catchments and discussed the accuracy of 

the data. In the revised version, we will include the location of the rain gauges. This 

figure is also included further in this rebuttal where a more detailed discussion on 

this issue is given.  

The reviewer commented on the limitations of the use of text book values of 

parameters of unknown applicability. We agree with the comment and understand 

the limitation. Unfortunately, the study area faces high scarcity of data. In such 

instances, it is normal to consider data from relevant sources with caution. 

Accordingly, porosity and field capacity of the soils were derived from the study 

area soil texture data based on literature recommendation. Similar procedures are 

followed for the saturated hydraulic conductivity for the deep percolation by 

identifying the likely aquifer formation of the study area. We tried to optimize the 

literature recommended values to get better performance of the model (again, we 

refer to answers to more detailed comments of the reviewer). 

 

There are various gaps in the description of the method, as I explain in my comments 

below. Overall, I am not confident that this model or the conclusions made about 

processes are justified, and all the evidence points to the model being over-complicated. 

The authors may have been better using a stricter application of the methods of Fenicia et 

al. 2008 to gradually build up the complexity of the model to the justified level, with 

more explicit attention to errors in inputs and outputs. Below are a few more detailed 
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comments that may help in a revised version; however in my opinion the aims and 

approach need re-thought. 

 

We note the need for the clarification of some of the descriptions of the method that 

were not clear to the reviewer and to the other readers. These will be addressed in 

reply to the detailed comments of the reviewer point by point. We appreciate the 

suggestion of the reviewer to use a stricter application of the methods of Fenicia et 

al. (2008) in the building up of the model and we will consider it as a bench mark 

model to compare the performance of our topography driven model in the revised 

version of the paper. 

 

More detailed comments (Specific comments) 
 

5293, 3. Model is modified from what? Not clear what is being modified. 5293, 10. 

Differently from what? 

As explained on page 5293 in the paper, our model is developed based on the works 

of Jothityangkoon et al. (2001), Krasnostein and Oldham (2004) and Fenicia et al. 

(2008). However, we made modifications on some of their model concepts and 

equations. The major modification (variations) made in this paper can be seen from 

three cases. 

 

i. The catchment bucket representation concept 

 

The works of Jothityangkoon et al. (2001), Krasnostein and Oldham (2004) and 

Fenicia et al. (2008) considered the catchment bucket to consist of the soil reservoir 

and the groundwater reservoir. In our model, in addition to the soil and 

groundwater reservoirs, we included the other component that considers the 

impermeable part of the catchment. So, the catchment is divided into the soil and 

groundwater reservoirs part and the impermeable part. As we know that our study 

catchments have impermeable surfaces (with little or no soil cover), we needed to 

consider this separately in the rainfall-runoff process representation of the 

conceptual model. 

 

ii. Soil surface Catchment characterization 

 

Catchment characterization was made based on topography. Hence, the catchment 

was divided as steeply, hilly and level and the input data to the model were 

determined accordingly. This is because the model is not a fully distributed model 

and hence topography is considered as a major landscape characteristics to 

determine the other catchment features required for the model.   

 

iii. Percolation to the groundwater table and hydraulic conductivity for the 

interflow 
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In the soil and groundwater reservoirs, we modified the equations of deep 

percolation and hydraulic conductivity for the interflow component of the soil 

reservoir. 

For example, in the case of Fenicia et al. (2008), percolation to groundwater 

reservoir is modelled as: 

max ( )u
s

fe

S
P P

S
    

where  maxP  is maximum percolation, uS  soil storage and feS  is maximum soil 

storage. For details, refer to Fenicia et al. (2008). In our paper, this is conceptualized 

differently as given in the paper. Moreover, we made a distinction between the 

upper and deep soil hydraulic conductivities such that the hydraulic conductivity 

for the interflow component of the soil reservoir is dealt separately in our modelling 

approach. Details of the equations are shown in the paper. 

 

Eq 8 and 9. Equations applicable at hill-slope scale? Needs some further justification. 

 

Equations 8 and 9 are universal equations. Equation 8 is a universal equation for 

velocity. 

Displacement
velocity

Time
   

This equation is applicable anywhere as long as the displacement and time are 

determined accurately. In our case, the displacement is assumed to be the average 

slope length of the catchment (distance subsurface flow travels) and the time is the 

subsurface flow response time (the time the subsurface flow takes to reach to its 

exit). 

Equation 9 is Darcy’s equation that describes the flow of a fluid through a porous 

medium. It is applicable for a porous medium as long as the flow is laminar (which 

generally is the case in the case of a natural groundwater flow). Similar application 

of Darcy’s Law to the groundwater aquifer within a planar hillslope has been 

indicated in Jothityangkoon et al. (2001). 

 

How can all these parameters be justified? Why are there only seven – they need 

estimated for each of the three slope classifications? 

 

The model parameters are justified from calibration, validation, sensitivity analysis 

and performance studies of the model. From the model development, we identified 

seven parameters and these were calibrated using the Particle Swarm Optimization 

(PSO) technique. From the model sensitivity analysis, we showed that three of the 

seven model parameters are poorly sensitive and there is little confidence in the 

model’s correspondence with these parameters and they can be reduced without 

appreciable impact on the model (This is shown on pages 5306 and 5307 in the 

paper under Section 6.3). The seven parameters for the three slope classifications 

are reached as follows. 
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Parameters for the recharge  ( 1  and 2 ) 

In the three slope classification, 1  is to consider for the recharge from the steeply 

slope into the medium slope surface and 2 is for the recharge from the medium 

slope surface into the flat slope surface. There is no parameter for the steeply slope 

surface since there is no surface that recharges it. So, there are two parameters for 

the three slope classifications. 

 

Parameter for the impermeable surface of the catchment ( )   

In this case, the catchment is divided into two surfaces (impermeable surface with 

no or little soil cover and the soil surface). The parameter   is introduced to 

represent the fraction of impermeable surface within the total catchment and this 

part of the catchment is not classified as steeply, medium and flat slopes since the 

classification of this part of the catchment into such classes is not important. So we 

have one parameter.  

 

The parameters  , , 1k  and ,s uK  

These parameters   and   are introduced to account variability of permeability 

and deep percolation of soil with soil water storage. 1k relates discharge and storage 

for the ground water and ,s uK  is the saturated hydraulic conductivity in the upper 

soil layer.  We assumed that these parameters are less influenced by topography and 

each model parameter is assumed to be same for each slope classification of the 

catchment. Moreover, it looks quit inconsistent to separate the groundwater system 

in the catchment and we preferred all the three slope based classified catchments to 

share the same groundwater reservoir. 

In this perspective, we will have in total seven parameters for the three slope 

classifications. We agree with the reviewer that we did not provide this explanation 

in the paper. In the revised version of the paper, we will add these clarifications. 

 

5300, 1-4. Local relevance of the text book values? Really the textbook should provide 

ranges, which are fed into calibration (further increasing the calibration problem). 
 

We estimated porosity and field capacity of the soils and the saturated hydraulic 

conductivity for the deep percolation from literature recommendations. We agree 

with the comment and understand the limitation. However, owing to the high 

scarcity of data in the study area, it still remains necessary to consider data from 

relevant sources with caution. Hence, the soil texture class data of the catchments 

were used to estimate porosity and field capacity of the soils. From studies by Cosby 

et al. (1984), we note that soil texture is closely related to the variability in soil 

moisture parameters (porosity and field capacity of the soils). Similar procedures 

are followed for the saturated hydraulic conductivity for the deep percolation in 

that its value is estimated by identifying the likely aquifer formation of the study 

area. In fact, the literatures provide a range of values. In such instances, we 

considered average values and we tried to optimize the values by iterating to get the 

best model performance results. 
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5300, 12. We need to see location map of these gauges – as precipitation is the key input 

–and know something about their accuracy. Was the PE spatially variable? 

What assumptions have been made about stream flow routing and stream-groundwater 

interactions? 

 

The location map of the rain gauges is provided below and will be included in the 

revised version of the paper. 

Generally rainfall data are obtained on daily basis. The data for most of the stations 

are consistent and continuous, particularly for first class stations like Dangila, Adet 

and Debretabor. However, we encountered gaps in some stations like Sekela Station 

for some periods in the year. In such instances, only the rainfall data from the other 

stations is considered. As discussed in the paper, most of the rainfall stations in 

Gilgel Abay catchment are installed at the water divides and there is no station in 

the middle of the catchment. In this regard, the Gumara catchment is with higher 

density of rainfall stations. PE is also spatially variable. 

 

 
 

Fig. 1C. Location map of rainfall stations for the study catchments 

 

In this paper of hydrological modeling, stream-groundwater interactions are 

assumed to be minimal and the groundwater is assumed to recharge the streams 

from deep percolation of rainfall on the catchments that produces baseflow of the 
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rivers/streams. The storage effect of the streams when considered on the basis of 

average daily flows of the streams is assumed to be negligible and hence streamflow 

routing was not considered for such smaller streams. 

 

Figure 6. Does not look like great performance to me. Needs some more insightful 

plots to elucidate magnitude and nature of errors. 

 

The quality of the model outputs and the errors associated with them are usually 

evaluated based on model performance indicators like the Nash-Sutcliffe Efficiency 

(NSE), Root Mean Squared Error (RMSE), the coefficient of determination (R2), 

Bias, etc.  The visual comparison (Plots) can also give an overall judgment. The 

authors used NSE, RMSE and R2 in addition to the plot comparison of the observed 

and simulated outputs. The statistical results for NSE and R2 were greater than 0.7, 

which shows the good performance of the model. The plots of the simulated and 

observed discharges of Figure 6 in the paper can show this, but it is true that there 

are some deviations of the simulated discharge from the observed ones at some 

points in the time series. There can be various reasons for this, as explained in the 

paper. One instance can be the rainfall data. As can be seen from Fig.1C, there are 

no rain gauges in the middle of the Gilgel Abay catchment and given the high spatial 

variability of the rainfall in the whole Blue Nile basin, this can create its own 

uncertainty on the model performance. 

Fig.2C. below shows plot of the errors (difference of predicted discharge to observed 

discharge) to give more insight to the errors for Figure 6 in the paper. 
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Fig.2C. Comparison of predicted and observed discharge together with the error 

(difference of the two) and precipitation of the Gumara and the Gilgel Abay 

catchments for the calibration period 

 

Eq 20, 21. Authors claim that the gauged flow data are high accuracy – it would be useful 

for the reader to see the rating curves, together with the range of levels to which the 

rating curves were applied. 

Stochastic optimization implies the stochastic nature of the input errors were considered? 

How are rainfall errors considered? Stochastic optimization gives stochastic outputs, 

which is misprepresented, or at least under-utilized, by reporting optimal parameter 

values. 
 

The rating curves together with the range of levels to which the rating curves were 

applied have been provided below (Fig.3C and Fig.4C). We will also incorporate the 

figures in the revised paper. 

In the model calibration, we did not use stochastic optimization that depends on one 

or more of the input data subject to randomness. The input data (for example 

rainfall) are observed data (soil data have been estimated from relevant sources 

when observed data are absent). For the model calibration, we used the particle 

Swarm Optimization (PSO) technique. PSO optimizes a problem by having a 

population of candidate solutions, here dubbed particles, and moving these particles 

around in the search-space according to simple mathematical formulae over the 

particle's position and velocity. Each particle's movement is influenced by its local 

best known position but, is also guided toward the best known positions in the 

search-space, which are updated as better positions are found by other particles. 
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This is expected to move the swarm toward the best (global) solutions. We used 30 

particles in the PSO. 

 

 
Fig. 3C. Stage-Discharge relationship (Rating curve) for Gumara at Wanzaye 

Station 

 

 
Fig. 4C. Stage-Discharge relationship (Rating curve) for Gilgel Abay at Picolo 

Station 

 

5302, 5. Why only 7 parameters? Each catchment was split into different runoff 

production units to represent variation in catchment properties using topography, so why 

not 21 parameters? 

Can the splitting into three areas be shown on a map, e.g. using color coding? 

 

This comment is similar to a comment given by the reviewer above. The explanation 

is given below.  

The seven parameters for the three slope classifications are reached as follows. 

 

Parameters for the recharge  ( 1  and 2 ) 
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In the three slope classification, 1  is to consider for the recharge from the steeply 

slope into the medium slope surface and 2 is for the recharge from the medium 

slope surface into the flat slope surface. There is no parameter for the steeply slope 

surface since there is no surface that recharges it. So, there are two parameters for 

the three slope classifications. 

 

Parameter for the impermeable surface of the catchment ( )   

In this case, the catchment is divided into two surfaces (impermeable surface with 

no or little soil cover and the soil surface). The parameter   is introduced to 

represent the fraction of impermeable surface within the total catchment and this 

part of the catchment is not classified as steeply, medium and flat slopes since the 

classification of this part of the catchment into such classes is not important. So we 

have one parameter.  
 

The parameters  , , 1k  and ,s uK  

These parameters   and   are introduced to account variability of permeability 

and deep percolation of soil with soil water storage. 1k relates discharge and storage 

for the groundwater and ,s uK  is the saturated hydraulic conductivity in the upper 

soil layer.  We assumed that these parameters are less influenced by topography and 

each model parameter is assumed to be same for each slope classification of the 

catchment. Moreover, it looks quit inconsistent to separate the groundwater system 

in the catchment and we preferred all the three slope based classified catchments to 

share the same groundwater reservoir. 

In this perspective, we will have in total seven parameters for the three slope 

classifications. We agree with the reviewer that we did not provide this explanation 

in the paper. In the revised version, these clarifications will be included. 

 

Fig.5C. shows the splitting of the Gilgel Abay and Gumara catchments (the study 

catchments) into three slope categories (steeply, medium and flat slope surfaces). 

 
Fig.5C. The three slope categories for the Gilgel Abay and Gumara catchments 
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5304, 5. Figures 5 and 6 do not show this very well. Some more insightful plots about the 

errors are needed. In Figure 5, it seems there are some rather serious errors. E.g. the 

wetting up period deserves some discussion, In Fig 6, I cannot really see the nature or 

magnitude of the errors; however there are clearly some systematic errors that need 

critical discussion. The flow regime / climate in the validation period seems quite similar 

to the calibration period, so comparable performance is expected. 

Validation should ideally test the model to breaking point. 

 

This comment is similar to one of the comments above. Figures 5 and 6 in the paper 

are plots of predicted and observed discharge and precipitation of the Gumara and 

the Gilgel Abay catchments for the calibration and validation periods. We still 

believe that the plot simulates well the general behavior of the observed streamflow 

hydrographs. Fig.6C and Fig.7C below show plot of the errors (difference of 

predicted discharge to observed discharge) to give more insight to the errors. 

Generally, the errors look to have no trend. However, we notice that the model 

errors tend to increase during wetting up periods in most instances. Initially, the 

soils are relatively dry and most of the rainfall during the beginning of the rainy 

season is not effective to produce runoff in the model as the soil reservoir has to be 

filled first to generate the faster component of the runoff. In the model, mostly 

average conditions prevail owning to average input data (rainfall, soil, catchment 

characteristic, etc.). Besides model uncertainties, the rainfall data quality can also 

affect the model performance, mainly in the case of the Gilgel Abay catchment as 

discussed in the paper. 

The flow data used for validation is from 2000-2005 (6 years data) and for 

calibration is the 2011 and 2012 years data for Gumara and the 2012 data for Gilgel 

Abay. Each year data is different, depending on the climate of the year and 

catchment conditions. However, the trend is similar each year such that there is 

high discharge in the rainy season (June to September) and a decreasing trend of 

discharge after September in line with the dry season. The 6 years discharge data is 

considered sufficient to run validation tests. 

 



12 

 

 
 

 
Fig. 6C. Comparison of predicted and observed discharge together with the error 

(difference of the two) and precipitation of the Gumara and the Gilgel Abay 

catchments for the calibration period 
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Fig.7C. Predicted and observed discharges together with the error (difference of the 

two) and precipitation of the Gumara and the Gilgel Abay catchments for the 

validation period. 

 

5304, 14. I didn’t follow what this meant. Which data are averaged over the year? 

 

The modelled discharges appear to be less variable over time than the observed 

discharges. Therefore, the sentence on page 5304, line 14 in the paper is to explain 



14 

 

this. We used average daily rainfall data, average soil data (e.g. porosity, field 

capacity, and soil depth), average catchment characteristics data (e.g. slope, slope 

length) to mention some for the model inputs. Hence, this averaged condition may 

be one source of error such that the model may not exactly mimic extremes like 

peak discharges. We include these clarifications in the revised paper. 

 

5305-5306. I don’t see how these observations are meaningful given the errors in the 

model. There seem to be large errors in the flow peaks, so the model cannot be used as a 

basis for concluding upon importance of direct runoff. 

 

Generally, the model performance and the model errors have to be explained based 

on commonly employed model performance indicators. In modeling practice, the 

usual practice is that if the model performance indicator results are above a 

recommended value (for example > 0.5 for NSE and R2), then the model is taken as 

acceptable and model results are considered meaningful. Our modeling approach is 

not different from this. The authors used NSE, RMSE and R2 in addition to the plot 

comparison of the observed and simulated outputs. The statistical results for NSE 

and R2 were greater than 0.7, which shows the good performance of the model. The 

plots of the simulated and observed discharges of Figures 5 and 6 (in the paper) or 

Fig. 6C and 7C (above) can show this, but it is true that there are some deviations of 

the simulated discharge from the observed ones at some points in the time series. 

This is the limitation of the model. But still we understand that the model results are 

very important clues to understand the runoff processes in this data scarce region of 

the Upper Blue Nile basin and for the general water resources planning in the area. 

On Pages 5305-5306 in the paper, we discussed the runoff processes in the study 

areas based on the model results, but we do not dare to say that the results are 

absolutely perfect. 

 

Figure 7. Local sensitivity analysis – value of this is unclear give high uncertainty in 

parameter values. Global analysis would be more useful. 

5307 - Sensitivity analysis results support the view that the model is too complex; or at 

least components of it are too complex 

 

The reviewer’s idea is not very clear here. In one case, he (she) states as the 

sensitivity analysis is unclear, but in another case gives comments based on the 

sensitivity analysis. The optimal model parameters are obtained using the particle 

Swarm Optimization (PSO) algorithm, which performs global analysis. In Figure 7 

(in the paper), we investigated the sensitivity of each model parameter when the 

parameter value is different from the optimal one, keeping the other model 

parameter values constant (equal to the global optimal value). Based on the 

comments of reviewer 1, we also made global sensitivity analysis and results are 

depicted in Fig.8C. 
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Fig.8C. Model parameter sensitivity analysis for Gumara catchment. Parameters 

are explained in table 2 in the Paper. 

 

 

5307, 23. This is not an encouraging performance. Probably a two or three-parameter 

model could achieve this. 

As shown in the paper, the results of NSE and R2, for the direct parameter 

transferability test to other catchment were 0.58 and 0.6 respectively. The authors’ 

suggestion of encouraging performance is based on these results. As it can be seen, 

the results are not bad. But the authors still stressed the need for further tests on 

similar catchments, as shown in the paper. We understand that various types of 

models with different number of parameters can be considered. Probably a two or 

three-parameter model could also give acceptable performance results, but such 

types of models are black box types and may not help for understanding the runoff 

processes in a particular catchment. 

 

5309, 10. This conclusions is not justified from the results. The effect of the 

topographically-based division of the catchment has not been explored at all? 

 

In the paper, the effect of the topographically-based division of the catchment is 

reflected mainly with respect to the input data to the model. Since the model was not 

a fully distributed model, it was necessary to use average catchment data. For this, 

we used topography as a proxy for the variability of most of the catchment 

characteristics like soil data (soil depth, porosity and field capacity) and undertake 

catchment classification. The explanations on page 5309, lines 9 and 10 in the paper 

are to emphasize this role of topography in the model.  Moreover, we also showed 

the effects of topography on runoff and we obtained that hillslopes (medium and 

steep slope areas) generated almost no direct runoff as saturated excess flow. We 

will further elaborate the effect of the topographically-based division of the 

catchment in the revised version of the paper to make this clearer.  
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