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Abstract  12 

Fluxes of the three main greenhouse gases (GHG) CO2, CH4 and N2O from peat and other 13 

organic soils are strongly controlled by water table depth. Information about the spatial 14 

distribution of water level is thus a crucial input parameter when upscaling GHG emissions to 15 

large scales. Here, we investigate the potential of statistical modeling for the regionalization 16 

of water levels in organic soils when data covers only a small fraction of the peatlands of the 17 

final map. Our study area is Germany. Phreatic water level data from 53 peatlands in 18 

Germany were compiled in a new dataset comprising 1094 dip wells and 7155 years of data. 19 

For each dip well, numerous possible predictor variables were determined using nationally 20 

available data sources, which included information about land cover, ditch network, protected 21 

areas, topography, peatland characteristics and climatic boundary conditions. We applied 22 

boosted regression trees to identify dependencies between predictor variables and dip well 23 

specific long-term annual mean water level (WL) as well as a transformed form of it (WLt). 24 

The latter was obtained by assuming a hypothetical GHG transfer function and is linearly 25 

related to GHG emissions. Our results demonstrate that model calibration on WLt is superior. 26 

It increases the explained variance of the water level in the sensitive range for GHG emissions 27 

and avoids model bias in subsequent GHG upscaling. The final model explained 45 % of WLt 28 

variance and was built on nine predictor variables that are based on information about land 29 
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cover, peatland characteristics, drainage network, topography and climatic boundary 30 

conditions. Their individual effects on WLt and the observed parameter interactions provide 31 

insights into natural and anthropogenic boundary conditions that control water levels in 32 

organic soils. Our study also demonstrates that a large fraction of the observed WLt variance 33 

cannot be explained by nationally available predictor variables and that predictors with 34 

stronger WLt indication, relying e.g. on detailed water management maps and remote sensing 35 

products, are needed to substantially improve model predictive performance. 36 

 37 

1 Introduction 38 

Greenhouse gas (GHG) emissions from organic soils can be high compared to mineral soils. 39 

In Germany, the fraction of organic soils classified as peatlands covers only 5 % of the land 40 

surface, but does account for 40 % of GHG emissions in the reporting categories 'agriculture' 41 

and 'land use, land use change and forestry' of the UN Framework Convention on Climate 42 

Change (UNFCCC) (UBA, 2012). Also other organic soils with a lower soil organic carbon 43 

content (SOC) but still meeting the definition of organic soils according to IPCC (2006) are 44 

important sources of persistently high GHG emissions (Leiber-Sauheitl et al., 2014). In our 45 

study, we also consider these soils. For simplification, we will refer in the following to the 46 

total of peatlands and 'other organic soils' as organic soils. Current estimates of GHG 47 

emissions from organic soils are fairly uncertain and reporting of most countries relies on 48 

IPCC default emission factors (EF) for CO2 emissions which are stratified for land use and 49 

climatic region, e.g. 10 t C ha-1 yr-1 for arable land in the warm temperate zone. 50 

Artificial drainage turned the function of former natural peatlands from a C sink into a C 51 

source. Experimental work with organic soils during the last two decades showed that the 52 

aerated soil pore space above the water level is one of the key variables explaining the amount 53 

of CO2 emissions (Moore and Dalva, 1993). Frequently, the water level relative to soil surface 54 

(further simply referred to as 'water level', with negative values below ground) is used as 55 

proxy for air-filled porosity, given the simplicity and availability of water level 56 

measurements. Additionally, low water levels and oxygen availability are also key drivers of 57 

nitrous oxide (N2O) production in organic soils (Regina et al., 1996), which increases the 58 

relevance of organic soils for climate change mitigation policy. During anaerobic conditions 59 

when water levels are at or above the land surface, substantial methane (CH4) emissions can 60 

occur (Levy et al., 2012).  61 
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It is postulated that the GHG-budget – the sum of the CO2-equivalents of the three main 62 

greenhouse gases (CO2, N2O, CH4) – is at minimum for annual mean water levels (annual 63 

mean further defined by the variable name WL) at about -0.05 to -0.1 m (Drösler et al., 2011). 64 

Following atmospheric sign convention, a positive budget stands for net emissions, while a 65 

negative sign indicates a net uptake of GHGs. Other parameters, as physical and chemical soil 66 

properties and vegetation, also influence the amount of the emissions, and thus weaken the 67 

relation between total GHG budget and WL. 68 

If available, information about the spatial distribution of WL can identify GHG hot spot 69 

regions and improve the accuracy of total GHG budgets at large scales. The application of 70 

transfer functions that relate GHG emissions to WL and potential other influencing site 71 

characteristics can refine the estimates derived from simple application of IPCC default EFs. 72 

However, in many countries and regions, as e.g. Germany and Europe, a map of WL in 73 

organic soils does not exist. The spatial availability of measured WL is much higher than of 74 

measured GHG fluxes, which suggests the use of WL as scaling parameter for upscaling 75 

GHG emissions. 76 

Several methods were applied in the past to produce WL maps. Their suitability is strongly 77 

related to data availability, which very often decreases in quality and spatial density with 78 

increasing scale of the study area. Spatially-distributed process-based modeling (Thompson et 79 

al., 2009) and semi-physical statistical approaches (Bierkens and Stroet, 2007), are well able 80 

to reproduce water level dynamics in wetlands environments, including peatlands. However, 81 

they heavily rely on spatial information about the system's physical properties and boundary 82 

conditions (peat hydraulic properties, hydraulic conductivity of peat base, drainage system); 83 

data that is often only available with sufficient detail at a regional scale (Limpens et al., 84 

2008). Despite this difficulty there are studies in which process-based models were applied to 85 

model peatland water level at large scale (national or continental). Gong et al. (2012) adopted 86 

a common SVAT model to account for the differing hydrological processes in pristine fens, 87 

pristine bogs and drained peatlands, and modeled water level fluctuations in boreal peatlands 88 

for whole Finland. But calibration and validation with data from only three mires does not 89 

allow conclusions about the accuracy and general applicability of the model. Numerous large 90 

scale hydrological wetland models are often developed with a focus on delineating wetland 91 

extent (Melton et al., 2013). TOPMODEL-based schemes (Ju et al., 2006) and more advanced 92 

large scale hydrologic frameworks (Fan and Miguez-Macho, 2011) are suited to model WL, 93 
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but do not account for anthropogenic drainage and thus are only applicable to pristine (or 94 

nearly-pristine) peatland systems. 95 

When detailed physical model input that is needed for a physically-based approach is lacking, 96 

statistical or machine learning tools represent a promising alternative (Finke et al., 2004). 97 

Potential predictor variables that are available at the final map scale are determined for each 98 

location with water level data and the algorithm identifies dependencies between potential 99 

predictors and target variables, as WL or other statistical values that describe water level 100 

dynamics. For areas rich in water level data, e.g. the Netherlands, residuals of the statistical 101 

model can afterwards be analyzed for spatial correlation. If this is present, it can be used to 102 

correct for spatially correlated model bias by kriging. This scheme has been applied to 103 

agricultural areas by Finke et al. (2004) and to nature conservation areas by Hoogland et al. 104 

(2010). Spatial interpolation approaches can include ancillary data like mapped geophysical 105 

parameters (Buchanan and Triantafilis, 2009). Statistical approaches strongly rely on both 106 

quantity and quality of the data on the target variable itself, i.e. the water level data. An 107 

important quality criterion for water level data from organic soils is the measurement depth. It 108 

is crucial that there is little or no hydraulic resistance by a low conductive layer between the 109 

perforated part of the monitoring well and the fluctuating water level. If the hydraulic 110 

resistance is too high, the monitoring well acts as a piezometer and water levels may 111 

substantially differ from the actual phreatic level as shown for peatlands by van der Gaast et 112 

al. (2009). If such piezometer data is part of a dataset and interpreted as phreatic water level 113 

data during model calibration, this can lead to an under- or overestimation of predicted water 114 

levels in organic soils. An underestimation of water level predictions (too dry) is discussed for 115 

Dutch modeling studies in van der Gaast et al. (2009). 116 

At present, in Germany a map on water levels in organic soils that could be used for GHG 117 

upscaling is missing. This and current efforts on improving GHG emission estimates for 118 

German organic soils were the main drivers for our study. Thus, the major goal of this study 119 

was the development of a model concept that produces a water level map at the scale of all 120 

organic soils in Germany that is specifically optimized for water level ranges to which GHG 121 

emissions react sensitively. We emphasize that the objective of our study was to regionalize 122 

annual mean water levels and not the GHG emissions themselves. The latter are influenced by 123 

more site characteristics, in particular soil properties. Furthermore, we suppose that annual 124 

mean water level is probably not the only and optimal statistical measure to describe the water 125 
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level effect on annual GHG emissions. However, we are not aware of well-established 126 

knowledge about transfer functions that relate more complex statistical measures of water 127 

level dynamics to GHG emissions. Therefore, we here focused on the simple and frequently 128 

applied 'annual mean water level'.  129 

In a first step, we compiled a new dataset of phreatic water level time series of organic soils 130 

with contributions from numerous data providers. Based on this data, we developed a 131 

modeling approach for the annual mean water level that follows the basic idea of the 132 

statistical regionalization presented in Finke et al. (2004). However, the data situation of our 133 

study substantially differed from their study. Our data covers only a small fraction of the 134 

peatlands of the final map and spatial interpolation of residuals was not possible. We thus 135 

extended their approach by: 136 

• including additional possible predictor variables,  137 

• using boosted regression trees as modeling tool to identify the influence of both 138 

numerical and categorical variables simultaneously, 139 

• applying a new weighting scheme that balances out heterogeneous water level datasets 140 

with highly variable spatial data density, 141 

• transforming the annual mean water level, WL, into a transformed annual mean water 142 

level, WLt, that shows a linear relationship with the GHG budget and optimizes model 143 

calibration for the WL range relevant for GHG emissions, and by 144 

• restricting the water level regionalization to phreatic water levels of organic soils. 145 

We present a detailed analysis of the influence of the individual predictor variables on water 146 

levels of organic soils as well as their interactions. Furthermore, the manuscript includes the 147 

estimation of model uncertainty and possible paths of future model improvement. Finally, the 148 

calibrated model is used to derive a map of WLt for all organic soils in Germany, and the 149 

regionalization results are presented. 150 

 151 
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2 Dataset and Methods 153 

2.1 Dataset of phreatic water levels in organic soi ls 154 

Available data of phreatic water levels in organic soils are scarce. In contrast to data of rather 155 

deeply drilled observation wells of official groundwater monitoring networks, short peatland 156 

observation wells of only one or two meter length that measure the phreatic water level of the 157 

peat layer are currently not collected in central data management systems in Germany or any 158 

of its Federal States. With a comprehensive questionnaire started in 2011, we collected water 159 

level time series of organic soils from local agencies, non-governmental organizations, 160 

universities, consultants and other sources, and combined this data with water level data from 161 

our projects. Time series included manual and automatic measurements. Years with less than 162 

six measurements or data gaps of more than three months were excluded. Water level time 163 

series of each dip well were visually checked on plausible dynamics by comparing with data 164 

from neighboring dip wells and weather data time series. Based on auxiliary data and local 165 

knowledge, we further identified dip wells that reached down to the underlying aquifer. If dip 166 

wells failed these quality checks, they were removed from the dataset.  167 

The final dataset comprised 7155 years of data from 53 German peatlands and 1094 dip wells. 168 

On average time series ranged over 7 years. All time series were collected at some period 169 

between the years 1988 to 2012. Data are well distributed over most of the German peatland 170 

regions and cover the three major types of organic soils (Figure 1). Compared with the 171 

distribution of the types of organic soils in Germany, the fraction of dip wells on bogs is 172 

overrepresented in the dataset by the factor of 2.5, while dip wells on fens and other organic 173 

soils are slightly underrepresented. Data also cover the common land use types (for data 174 

sources see Table 1). However, dip wells on organic soils that are neither used for agriculture, 175 

forestry or peat mining, further referred to as 'unused peatlands', are overrepresented in the 176 

dataset by a factor of 6 as data was collected more frequently and in higher spatial data 177 

density in the frame of conservation projects. The fraction of unused peatlands of the German 178 

organic soils is 6 %, and the fraction in the dataset is 36 %. In contrast, dip wells on arable 179 

land are underrepresented in the dataset by a factor of 6. The fraction of arable land on 180 

German organic soils is 24 %, and the fraction in the dataset is 4 %. The other two key land 181 

use types on organic soils in Germany, grassland and forest, are well represented in the 182 

dataset. The misbalance of the land use types in the dataset is accounted for in the weighting 183 

of data (see section 2.3.2). 184 Gelöscht: 2.3.3
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If land use changed within the measurement period of a dip well, the time series was split at 186 

the moment when the land use record indicates the transition. For each segment the annual 187 

mean water level, WL (here with negative values defined as water levels below ground), was 188 

calculated as multi-year average value over the whole measurement period of the specific land 189 

use. 190 

The primary application of the WL map produced in this study is for the upscaling of long-191 

term GHG emissions as emission reporting may only reflect anthropogenic effects, but no 192 

inter-annual climatic effects. As GHG transfer functions are developed on annual data, their 193 

application requires both the long-term annual mean water level, as well as its inter-annual 194 

variability. Due to the non-linear dependence of GHG emissions on WL, single years with 195 

extreme water levels can strongly influence long-term average GHG fluxes. This study is 196 

focused on the regionalization of the long-term annual mean water levels. For this objective, 197 

model building should be based on long-term water level time series to average out the effect 198 

of weather variation within a complete climatic period (commonly 30 years). The existing 199 

nationally available data on water level time series of organic soils, however, does not 200 

comprise a single time series with complete data coverage over the last 30 years. Due to the 201 

lack of sufficient long-term water level time series, we included all time series in the model 202 

building process. Average climatic boundary conditions (precipitation, reference 203 

evapotranspiration, water balance) of the specific measurement period of each dip well are 204 

part of the predictor variables (see section 2.2), and thus are supposed to partly account for the 205 

effect of specific weather conditions on WL in case of short measurement periods.  206 

2.2 Predictor Variables 207 

Spatial coverage of phreatic water level data of organic soils is too low to obtain WL maps by 208 

simple spatial interpolation (Figure 1). Additional spatial data is needed as basis for 209 

regionalization. Ancillary information that covers fully or at least most of the extent of the 210 

final map is necessary as predictor variables. A comprehensive set of variables (numerical and 211 

categorical) with potential indication for the hydrological condition of an organic soil were 212 

determined for each dip well (Figure 2 and Table 1).  213 

The predictor variables, which can partly be found also in Finke et al. (2004), can be divided 214 

into seven groups: 215 

Gelöscht: This ancillary information does 
not necessarily need to fully cover the total 
map extent, as the applied machine learning 
algorithm in this study (boosted regression 
trees, see section 2.3) allows for data gaps. 
However, the contribution to the final 
model decreases with increasing number of 
gaps in the predictor variable. 
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Land cover: As certain land use and vegetation requires and reflects certain WL, such 224 

information can be used as indicator for average drainage level around the dip well. Land use 225 

and vegetation information was based on the German Digital Landscape Model (ATKIS 226 

Basis-DLM), which is updated continuously by aerial photos as well as sporadic ground 227 

mapping and has a temporal accuracy of 3 months to 5 years. It is provided as fine-scaled 228 

polygons and represents the best uniform land cover information available in Germany. It 229 

contains information on primary land use type, few optional vegetation attributes and whether 230 

'wet soil' has been observed during mapping. As we noticed that the use of a large number of 231 

categorical variables lowers the performance of boosted regression trees, we further 232 

aggregated the three information types i) land use, ii) vegetation and iii) wet soil into a set of 233 

nine combined land cover classes (Table 1). These land cover classes were a trade-off 234 

between fine differentiation and the number of replicates in each class. For grasslands, a 'wet 235 

grassland' class was separated, when grassland was overlaid with wet soil and/or tree or 236 

shrubs vegetation, which may indicate a less intensive management. Forests overlaid with wet 237 

soil were separated as 'wet forest'. Further, unused peatlands overlaid with wet soil and 238 

showing no coverage with tree attribute were characterized by higher water levels and were 239 

thus separated as 'wet unused peatland'. The very few dip wells classified as open water (n=2) 240 

and peat cutting (n=5) were merged to the reed and arable land cover class, respectively. Land 241 

use type and land cover class were extracted at the dip well (point extraction) and as fractions 242 

in various buffers around the dip well (Table 1). As using too many weak predictor variables 243 

lowers model performance and increases overfitting, the numerous land cover fractions were 244 

further aggregated into two classes: the fraction of dry (arable and grassland) and wet (reed, 245 

wet grassland, wet forest, and wet unused peatland) land cover on organic soils. For the 246 

calculation of the fraction of dry land cover, we tested various factors for the reduction of the 247 

contribution of grassland compared to arable land, as the grassland class also includes wetter 248 

grasslands that could not be detected with the available land cover catalogue. A factor of 0.5 249 

was an optimal value, which was then set fixed.  250 

Drainage network: Locations of ditches that are included as lines in the Digital Landscape 251 

Model were used to obtain information about the drainage network. The total length of 252 

ditches was calculated for various buffer sizes. Further, the distance to the next ditch was 253 

calculated for each dip well. A short distance to the next ditch may indicate either lower or 254 

higher water levels, depending on whether the ditches are used for drainage or already 255 

blocked and used for rewetting measures. Similarly, the indication of total length of ditches is 256 

Gelöscht: , influence of the latter reduced 
by the factor 0.5
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not unique. Therefore, we defined two different sets of ditch variables. A first set, for which 259 

we calculated values for all land cover classes and a second one, for which we only calculated 260 

values for land cover classes for which ditches are undoubtedly used for drainage, i.e. arable 261 

and grassland.  262 

Peatland characteristics: The geological map of Germany (scale 1:200,000) defined the area 263 

for which WL predictions were modeled. It is also the basis for topological peatland predictor 264 

variables, i.e. the fraction of organic soils in different buffer sizes as well as the dip well 265 

distance to the edge of the peatland. Information about the peatland type and the substrate at 266 

the peat base is presented in more detail in a newly compiled raster map of organic soils 267 

(Roßkopf et al., submitted) and was thus extracted from this map. Peatland types were 268 

aggregated into five classes: Lowland bog (North German Plains and Alpine Forelands), 269 

upland bog (Central Uplands and Alps), fen neighboring surface water, fen without 270 

neighboring surface water, and a class of 'other organic soils' that do not fulfill the C content 271 

and thickness criteria to be classified as peatland. Substrates at the peat base included loose 272 

unconsolidated rock (alluvial sand and gravel deposits), consolidated rock (bedrock) and peat 273 

clay layer. The first type may indicate the occurrence of seepage (positive or negative), 274 

whereas the latter two types may indicate rather a hydraulic decoupling from the aquifer 275 

hydraulic head.  276 

Climatic boundary conditions: Climatic boundary conditions directly influence water level. 277 

On the one hand, the typical long-term climatic boundary conditions may indicate the general 278 

vulnerability of peatlands in a specific region. On the other hand, given the different lengths 279 

of measurement periods of the time series in this study, climatic boundary condition predictor 280 

variables may account for the effect of a climatically wetter or drier measurement period, 281 

compared to the long-term averages, on the water level. Climatic boundary conditions were 282 

extracted from a 1x1 km raster of the German Weather Service. Annual, summer and winter 283 

precipitation, FAO56 Penman-Monteith reference evapotranspiration, and climatic water 284 

balance (difference between precipitation and reference evapotranspiration) were determined 285 

for the individual measurement period of each dip well and as long-term averages (30 years). 286 

Relative altitude: Relative altitude was calculated by subtracting the median altitude of 287 

various buffer sizes from the absolute altitude at each dip well in the DEM. Relative altitude 288 

is expected to have two different indications depending on the applied buffer size: i) In many 289 

peatlands, the former smooth peatland relief at the scale of approximately > 5 m has been 290 

Gelöscht: {Roßkopf, submitted #610}
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disturbed due to peat cutting and differences in drainage and mineralization rate. As a 292 

consequence, the rather smooth phreatic surface often does not follow the uneven and patchy 293 

terrain. Relative altitude with respect to smaller buffer sizes (< 250 m) may therefore explain 294 

part of the WL variation, e.g. a dip well that is located at a surface much higher than the 295 

surrounding may indicate deeper water levels; ii) for large buffer sizes (> 250 m) relative 296 

altitude indicates whether the peatland lies in a larger morphological depression or elevation, 297 

and thus may indicate whether large scale lateral inflow of water can be expected or not. 298 

Similar indication is provided by the topographic index (see below). The accuracy of relative 299 

altitude values depends on the resolution and accuracy of the DEM. The nation-wide available 300 

DEM is based on datasets of varying quality, which may lower the influence of this variable.  301 

Topographic wetness index: The topographic wetness index is a common wetness indicator 302 

used in hydrology (Beven and Kirby, 1979). It is a combined measure of catchment area and 303 

slope at a given point and indicates the extent of flow accumulation. High values indicate 304 

wetter conditions. If calculated at larger scales, higher values may be a hint for the occurrence 305 

of positive seepage, i.e. upward flow of water from the aquifer. Topographic wetness index 306 

was calculated for various DEM resolutions using the GRASS 7 module r.watershed. 307 

Protection status: The protection status of a peatland area may reflect hydrological 308 

conditions. Therefore we checked for seven protection status at each dip well (see Table 1 for 309 

details). 310 

 311 

2.3 Model building scheme 312 

Model building was performed using boosted regression trees (BRT), implemented in the two 313 

R packages 'gbm' (Ridgeway, 2013) and 'dismo' (Hijmans, 2013). BRT is a machine learning 314 

algorithm, in which the final model is derived from the data. Functions that relate target to 315 

predictor variables are not predetermined but freely developed. BRT is based on the decision 316 

(or regression) tree concept. In the decision tree concept, the parameter space is searched 317 

sequentially for the best split that results into the lowest model mean squared error. The mean 318 

responses of the groups that result from the various splits, and correspond to certain parameter 319 

ranges, represent the model. The common procedure is the growth of a large tree which is 320 

subsequently simplified by dropping weak links that are identified with cross-validation. 321 

Growing only one single tree has several disadvantages like uneven functions that are very 322 
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sensitive to the specific sample of the data. Therefore, ensemble techniques have been 326 

combined with the decision tree concept. These were first the development of multiple models 327 

by bootstrapping of the samples (bagging technique) and the random creation of subsets of 328 

predictors at each split (random forest technique). Later, with the 'boosting' technique of BRT, 329 

a sequential procedure was developed in which data is reweighted after each tree to increase 330 

emphasis on data that is poorly modeled by the existing collection of trees (Elith et al., 2008).  331 

BRT modeling is increasingly applied in spatial modeling of species or numerical 332 

environmental variables (Elith et al., 2008, Martin et al., 2011), thereby often showing 333 

superior performance compared to other machine learning algorithms. The increasing 334 

application of BRT is related to several of its favorable characteristics: The strength of this 335 

method lies in the ability to fit complex functional dependencies including non-linear 336 

relationships and interactions between predictor variables. Based on its flexibility, BRT is 337 

invariant to monotonic transformations of predictors. Furthermore, BRT allows for missing 338 

values in the predictor variables, thus predictor variable information does not necessarily need 339 

to fully cover the total map extent. The gbm package handles missing values in predictor 340 

variables by introducing surrogate splits. The mean target value belonging to the missing 341 

predictor values is attributed to these surrogate splits during model building. We observed that 342 

the contribution of a predictor variable to the final model decreases with increasing number of 343 

missing values. This is intuitive, as target observations of missing predictor values are mostly 344 

supposed to scatter strongly. BRT is further fairly insensitive to outliers and allows estimating 345 

the relative contribution of each predictor variable to the model. Due to these characteristics 346 

we expected BRT to be very well suited for the very heterogeneous dataset of this study.  347 

BRT model calibration is prone to overfitting, and there are various options to reduce this 348 

behaviour. Due to the overfitting behaviour, cross validation is generally part of the model 349 

building process. However, cross validation can be performed in several ways and, if 350 

performed carelessly, can lead to over-optimistic model performance (De'ath, 2007). Here, 351 

cross validation was performed by leaving out whole peatland areas instead of a random set of 352 

dip wells. This represents a stricter cross validation, and we noticed that it strongly reduced 353 

overfitting of the water level data, and thus contributed to the development of a more robust 354 

model. 355 

Another option to avoid overfitting is to impose monotonic slopes on the effects of individual 356 

parameters, which can even lead to improved prediction performance (De'ath, 2007). For all 357 
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our numerical variables we expected monotonic slopes rather than optimum functions. To 368 

avoid predefining any expected direction, all numerical variables were added twice to the set 369 

of predictors, constraining the slope to a monotonic increase and decrease. We let the model 370 

decide whether monotonic increase or decrease has higher predictive power. 371 

Models were calibrated using a Gaussian response type, aimed at minimising deviance 372 

(squared error) (Ridgeway, 2013). In all calibration runs, we applied the gbm.step function of 373 

the dismo package, which assesses the optimal number of boosting trees using cross 374 

validation. We tested various learning rates (0.001 – 0.01), bag fractions (0.1 – 0.8) and levels 375 

of tree complexity (3 to 7), i.e. the number of nodes in a tree. By trial-and-error we 376 

determined the most effective algorithm parameters for our dataset being 0.005 for the 377 

learning rate, 0.6 for the bag fraction and 5 for the tree complexity. 378 

The final BRT model building is commonly performed as a two-step procedure (Elith et al., 379 

2008) which we basically also followed in our study:  380 

i) In the first step, the whole set of predictor variables is used to calibrate a BRT model.  381 

ii) In a second step, the number of parameters is reduced sequentially to avoid overfitting and 382 

to derive a more parsimonious model. We tracked predictive performance criteria during the 383 

simplification process. As various variables were calculated for different buffer sizes, our 384 

predictors included a large number of correlated variables. Correlation coefficients between 385 

predictor variables of > 0.7 are known to severely distort model estimation and subsequent 386 

prediction (Dormann et al., 2013). Thus, we performed this simplification process by first 387 

dropping those parameters with a correlation > 0.7 (either Pearson or Spearman type) to 388 

another parameter with a higher contribution (Clapcott et al., 2011). This avoided that two 389 

highly correlated parameters remain in the parameter set longer than the last parameter of 390 

another group of variables, which may contribute less compared to the two highly correlated 391 

parameters but provides extra information that is not covered by the other parameters. After 392 

all highly-correlated parameters have been dropped, further parameters with low contribution 393 

were dropped progressively. 394 

Predictor contributions are calculated as proportional contributions to the total error reduction, 395 

and can be considered as a measure for the influence of the individual predictors. 396 

Additionally, a BRT model allows to derive partial dependence plots which indicate how the 397 

response is affected by a certain predictor after accounting for the average effects of all other 398 

predictors in the model (Elith et al., 2008). These plots do not show the full effect of each 399 
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parameter on the model response due to interactions with other parameters that are fixed to 400 

derive theses plots as well as due to parameter co-correlation. However, they can be used for 401 

interpreting model behavior (Elith et al., 2008).  402 

 403 

2.3.1 WL t: Transformation of WL  404 

The map of water levels of this study was developed to improve the upscaling of greenhouse 405 

gas emissions from organic soils. Therefore, the final map should provide the highest 406 

accuracy for the water level range for which the highest differences of greenhouse gas 407 

emissions occur. This can be achieved by transforming WL into a transformed variable WLt, 408 

which shows linear relationship with GHG emissions. The sensitivity of greenhouse gas 409 

emissions to water level has been analyzed in several laboratory and field experimental and 410 

monitoring studies (Berglund and Berglund, 2011, Drösler et al., 2011, Hahn-Schöfl et al., 411 

2011, Leiber-Sauheitl et al., 2014, Moore and Roulet, 1993, Moore and Dalva, 1993, van den 412 

Akker et al., 2012). General trends are a strong increase of methane (CH4) emissions for 413 

annual mean water levels of approximately > -0.1 m and an increase of CO2 emissions for 414 

water levels < -0.1 m with a trend similar to a saturation function that levels out 415 

approximately between -0.4 and -0.8 m (Figure 3a). While studies agree over these general 416 

trends, the exact shape of the transfer function and the maximum levels of emissions as well 417 

as their dependence on soil properties and other environmental parameters are still discussed 418 

controversially. Here, we assume a hypothetical transfer function, relating the normalized 419 

GHG budget, ranging from 0 to 1, to the water level (see also Figure 3), 420 
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As GHG budget can be positive for both low and high WL, we introduced the transformed 422 

water level, WLt, as (Figure 3),  423 
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By calibrating the model to both WL and WLt, we test whether optimization on WLt provides 425 

highest model accuracy for the water level range relevant for GHG emissions and whether it 426 

optimizes the map for application to GHG upscaling. 427 
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 432 

2.3.2 Weighting scheme 433 

When considering possible data weighting schemes, it is worth emphasizing at this point that 434 

the goal of this study is the development of a statistical model that can explain both the water 435 

level variability within a peatland as wells as among different peatlands. The data on target 436 

and predictor variables for building this model is highly heterogeneous. First, the target 437 

variable dataset contains peatland areas that strongly differ in their spatial extent and in the 438 

number of installed dip wells. Second, the predictor variable dataset contains categorical and 439 

numerical data, and part of the predictor variables predominantly vary from peatland to 440 

peatland (e.g. climatic boundary conditions, large-scale topographic wetness index, peatland 441 

characteristics, ...) whereas others also show within peatland variability (e.g. land use, small-442 

scale topographic wetness index, drainage network, ...). As the influence of the individual 443 

predictor variables on our target WLt is expected being rather diffuse due to abundant 444 

interactions with other site characteristics, the robustness of derived dependencies will 445 

strongly depend on the number of different peatlands in the dataset. 446 

There are no universal data weighting rules for similarly heterogeneous data situations and 447 

some degree of expert judgment and subjectivity is inevitable involved when developing an 448 

appropriate scheme (Francis, 2011). The need of introducing a data weighting scheme is 449 

obvious, as without data weighting during calibration, too much influence would be given to 450 

small and highly equipped peatlands, which will reduce predictive model performance for 451 

large less well equipped peatland areas. To avoid this in a simple manner, weight could be 452 

reduced by the number of dip wells in each peatland, which results into each peatland being 453 

equally weighted. This scheme however does not sufficiently use the high information content 454 

provided by highly-equipped large peatlands, which should have a higher impact on model 455 

calibration than a small peatland with only few dip wells.  456 

Here, we propose a new weighting scheme that takes into account both factors, peatland size 457 

and local density of dip wells, to derive dip well specific weighting factors. It is based on 458 

principles of data uncertainty reduction by repeated measurements and of geostatistics. First, 459 

we consider our data situation as an analogue of meta-analysis with grouped data. It is has 460 

been shown for homogeneous problems (all data from same population) that optimal group 461 

weights for meta-analysis is 1/SE² (Hedges and Olkin, 1985) with SE being the standard error 462 

of each group, 463 

Gelöscht: The dataset contains peatland 
areas that strongly differ in their spatial 
extent and in the number of installed dip 
wells.

Gelöscht:  To use the information in the 
data in an optimal fashion, it is important to 
introduce a weighting of the data. W

Gelöscht: is

Gelöscht: s

Gelöscht: present 

Gelöscht: n objective



 15

N
eσ=SE             (3) 475 

where σe is the error standard deviation of a measurement and N is the number of 476 

measurements in a group. For homogeneous problems and uniform σe, this results in weights 477 

that are linearly dependent on N, which we here call the first end member of weighting. 478 

Heterogeneity (within-group variance) reduces the variation of the group weights which can 479 

be shown by random effects models (Cumming, 2012). As second end member of weighting, 480 

when heterogeneity totally dominates within-group variance, optimal group weights are 481 

uniform for all groups, i.e. weights are independent of N. We are not aware of a method that 482 

allows to estimating the degree of heterogeneity for the complex target and predictor data 483 

situation in this study, including data (spatial and temporal variability, measurement error) 484 

and model errors (missing parameters). As a trade-off between 1/SE² (homogeneous end 485 

member) and 1 (heterogeneous end member), we decided for a group weight that is the 486 

inverse of the standard error, 1/SE, which is e.g. often used in econometric studies (Dickens, 487 

1990). We emphasize that this is a subjective decision. 488 

The group weight, 1/SE, is the basis for the geostatistical part of our weighting scheme. There 489 

are two reasons why we cannot directly treat our peatlands as groups. First, there is within 490 

peatland variability that is related to changing site characteristics. It is one objective of our 491 

study to describe this variability by statistical modeling. Thus, dip wells must be treated 492 

individually and data cannot be aggregated at a peatland level. Second, we expect the model 493 

to learn more when the same number of dip wells is installed in a larger peatland. In a small 494 

peatland, spatial autocorrelation between dip wells is higher, i.e. the information content is 495 

lower than for large peatlands. As a consequence of the first point, we do not aggregate and 496 

keep all dip wells in the target variable dataset by attributing to each dip well the fraction 1/N 497 

of its group weight, so that the relative weights of the groups remain constant. As a 498 

consequence of the second point, we use principles of geostatistics in our weighting scheme. 499 

We replace the group size N (positive integer number) by the 'statistical' group size n (positive 500 

continuous number being >1), which we derive from the spatial autocorrelation among the dip 501 

wells.  502 

Therefore, we analyze the spatial autocorrelation structure of the dataset. A single spherical 503 

variogram model was fitted to the sample variogram of all data (Figure 4 in section 3.1). 504 

Variogram models allow to differentiating the total data variance (called 'sill') into a spatially 505 
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uncorrelated variance (called 'nugget') and a spatially correlated variance (called 'structural 514 

variance' and defined as sill - nugget) (Wackernagel, 2003). The variogram model allows to 515 

derive for any distance between two locations the average squared difference of values, here 516 

defined as γ. By definition, at distance 0, the average squared difference equals the nugget, 517 

and at distances greater than which is called the 'range' of spatial autocorrelation the average 518 

squared difference equals the sill. Accordingly, the autocorrelated fraction, f, of the average 519 

squared difference between two dip wells i and j is, 520 

.
nuggetsill

sill ,
, −

−
= ji

jif
γ

          (4) 521 

We now define the 'statistical' group size n of each dip well i to be the sum of one plus the 522 

autocorrelated fractions fi,j of all dip wells that are within the range of spatial autocorrelation 523 

of i,  524 
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According to the discussion above, dip well specific weights can then be calculated with 526 

.
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, iieii
i

nSEn
w

σ
==           (6) 527 

where ni is derived from Eq. (5). The equation shows that with increasing 'statistical' group 528 

size n, i.e. with increasing spatial data density, the weight of an individual dip well is 'down-529 

weighted' to some degree, a behavior that corresponds to our initial intention to lower the 530 

influence of small peatlands compared to large ones. The error standard deviation σe is 531 

dependent on several factors, e.g. the length of the time series, the temporal measurement 532 

density and the microtopography around the dip well. For simplicity, we here assumed σe to 533 

be uniform for all dip wells, which simplifies Eq. (6) to .
1

i

i
n

w =  534 

Only dip wells with the same land use type were summed up with Eq. (5), which avoids the 535 

down-weighting by dip wells having different land use type. The latter are mostly 536 

characterized by fairly different WLt, thus by rather low spatial autocorrelation to dip well i. 537 

After spatial correlation has been accounted for, the sum of the weights of all dip wells of 538 

each land use type were adjusted that they correspond to the fractions of this land use type in 539 
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Germany. This adjustment accounts for the overrepresentation in the dataset of dip wells in 561 

unused peatlands and underrepresentation of dip wells in arable land.  562 

 563 

2.3.3 Model performance criteria  564 

Model fit and predictive performance after cross-validation were quantified by the weighted 565 

root mean square error, 566 
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where m is the number of dip wells, iox ,  is observed WL or WLt of dip well i, isx ,  is 568 

simulated WL or WLt of dip well i, and wi is the data weight of dip well i (see below). We 569 

refer to the root mean square error of the predicted data of cross validation by RMSEcv. Model 570 

performance was further quantified by Nash-Sutcliffe Efficiency (NSE), 571 
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where ox  is the mean of all observed WL or WLt. It indicates how well observed vs. 573 

predicted values match the 1:1 line. NSE is a good overall indicator of predictive performance 574 

because it combines scatter and bias (common offset and/or slope difference from 1:1 line) 575 

(Nash and Sutcliffe, 1970). Values greater than 0 signify a model that is better than the 576 

reference model based on the data mean. We refer to the NSE of the training data by NSEcal, 577 

and of the predicted data of cross validation by NSEcv. 578 

Systematic errors were quantified by calculating the model bias, here defined as, 579 

( )∑ =
−= m

i isiioi xwxw
1 ,,BIAS          (9) 580 

2.4 Model uncertainty and stability evaluation  581 

Uncertainty of the model predictions was assessed by bootstrapping, cross-validation and 582 

residual analysis.  583 

For the bootstrapping analysis, we followed the procedure of Leathwick et al. (2006). We 584 

estimated the confidence intervals around the predictions and the fitted functions by taking 585 
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1000 bootstrap samples of the 53 peatlands. The number of peatlands in each sample was 617 

equivalent to the dataset, but peatlands were selected randomly with replacement. Using the 618 

predictor variables of the final model, a BRT model was fitted to each sample. Cross 619 

validation was again performed on peatlands, thus a peatland in the calibration dataset was 620 

not part of the cross-validation dataset to avoid over-optimistic results. Variances of the 621 

predictions and of the fitted functions of the 1000 models were evaluated. 622 

If datasets are relatively small (e.g. n < 1000, (De'ath, 2007)) then the small size of the 623 

training and test datasets lowers model accuracy. Given the fairly small number of peatlands 624 

in the dataset and the partly high spatial correlation of dip wells within these peatlands, we 625 

decided not to split the dataset into a training and test dataset. Estimates of model accuracy 626 

can then be based on cross-validation, thereby making effective use of all the data (De'ath, 627 

2007). The prediction uncertainty of the final model is estimated by the root mean square 628 

error of prediction (RMSEcv, see above) for each land cover class. After testing for normal-629 

like distribution of the residuals, RMSEcv can be used to derive the 68 and 95 % confidence 630 

intervals of the predictions with RMSEcv and 2 * RMSEcv, respectively.  631 

Finally, additional residual analysis was performed to evaluate whether the predictions are 632 

biased for different land cover classes or geographical regions. 633 

 634 

2.5 Regionalization 635 

In the final regionalization step, the predictor variables contributing to the final model were 636 

determined at a 25x25 m raster for all organic soil in Germany. Predictor variables were 637 

determined with the same map input that was used for model building. Land cover 638 

information including information on ditches was based on the data from year 2012 and the 639 

climatic data was based on the average of the last 30 years. The fine spatial resolution of 640 

25x25 m was not chosen to fool the reader with a spatially highly accurate model. But, this 641 

fairly fine scale was necessary to map the relatively small scale effects of the topography, 642 

land use and peatland geometry variables. The final model was then used to make a prediction 643 

for each of these raster cells. 644 

 645 
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3 Results and Discussion 646 

3.1 Spatial correlation structure of the dataset 647 

The variogram model fitted to the sample variogram provided a nugget (0.012 m2; 0.11 m), a 648 

sill (0.09 m2; 0.3 m), and a range of spatial correlation (2700 m) for our dataset of WL (Figure 649 

4). The nugget represents the very small-scale soil hydraulic variability and micro-topography 650 

effects on WL (van der Ploeg et al., 2012) and measurement error, e.g. by differences in the 651 

determination of the ground surface and in the timing of the manual measurements. 652 

Furthermore, micro-topography (e.g. hummocks) and oscillating peat surfaces of wet 653 

peatlands pose a challenge for an accurate determination of both ground surface and water 654 

level. The water level time series in the dataset were of different lengths and ranged from 1 to 655 

20 years. Interannual variability of water levels can be large (e.g., Knotters and van Walsum, 656 

1997). For simplicity, in our analysis, data were not harmonized by extrapolating WL time 657 

series using weather data to a 30-year period. Thus, the nugget also includes errors that are 658 

introduced by dip wells with different measurement periods that are located in the range of 659 

spatial correlation. In consideration of these error sources, the fitted nugget of 0.11 m appears 660 

to be a realistic value. The fitted sill matched with 0.3 m nearly perfectly the standard 661 

deviation of the data (0.31 m), which indicates consistency between semivariogram model 662 

and dataset. The fitted range of spatial correlation of 2700 m reflects both physical effects, i.e. 663 

the average range of lateral flows due to hydraulic gradients, as well as the effect of average 664 

land use patterns in Germany on spatial correlation of WL. Fitted values were used in the 665 

calculation of the dip-well specific weights using Eq. (6). 666 

3.2 Typical water levels for land use types in Germ an organic soils 667 

The land cover classes are characterized by plausible mean and median water levels, which 668 

show consistent differences among each other (Table 2 and Figure 5a). The mean values of 669 

arable land and grassland agree with what can be expected for their agronomic requirements, 670 

with slightly lower water levels for arable land. The high variability observed for both classes 671 

may be related to the variability of the efficiency of installed drainage systems, as e.g. the 672 

presence and condition of tile drains and the depth of ditches. Grasslands can be managed 673 

with very variable intensity, which is partly reflected in different water levels. Figure 5a 674 

further shows that deciduous forests seem to dominate on slightly drier organic soils 675 

compared to coniferous forests, which dominate under wetter conditions. A high variability of 676 
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water levels is observed for the land cover class 'unused peatland'. On the one hand, post peat-679 

cutting topography increases the variability of WL over short distances. It probably 680 

contributes to the high variance observed for this class. On the other hand, this class 681 

comprises both rather dry unused peatlands and wetter peatlands in which re-wetting 682 

measures already took place, which however do not show yet a 'wet soil' attribute in the 683 

ATKIS Digital Landscape Model. This may also cause part of the variance observed in the 684 

grassland and forest land cover class. All 'wet' land cover classes (reed, wet grassland, wet 685 

forest, and wet unused peatland) that were separated by wetness indication clearly show 686 

higher water levels, showing the wetness attribute of the Digital Landscape Model is a useful 687 

attribute.  688 

Figure 5b shows the transformed water level for all classes. It can be observed that the 689 

variances of the wetter land cover classes relatively increase compared to the variances of the 690 

dry land cover classes. This is due to the highest sensitivity of GHG emissions in the wet 691 

range of water levels (> -0.5 m). Consequently, the rather high variance of WL for arable land 692 

corresponds to a rather low variance of WLt, i.e. to a rather low assumed effect of WL 693 

variability on the GHG budget. 694 

3.3 BRT model calibration and validation: WL vs. WL t 695 

In contrast to land cover class, the other predictor variables showed, if at all, only weak 696 

relations to WL and WLt when evaluating them with box plots, 2D cross plots and simple 697 

correlation matrices. Here, we expected BRT to detect the strongest predictor interactions and 698 

to identify the most informative predictors.  699 

After model calibration with all predictors, subsequent model simplification successively 700 

dropped those parameters with correlation > 0.7 and lowest contribution. For both, WL and 701 

WLt, model performance improved during this simplification. For WLt, highest values of 702 

NSEcv of approximately 0.46 were achieved with 21 to 9 model parameters. The development 703 

of NSEcv for the last 50 parameters is shown in Figure 6. Further elimination of parameters 704 

led to a pronounced decline of model performance. Similar behavior was observed for the 705 

calibration on WL. In favour of a more parsimonious model we chose the model with the 706 

lowest number of parameters before the pronounced decline of model performance occurred. 707 

For the calibration on WLt, this corresponded to the model with lowest number of parameters 708 

that still achieved NSEcv values of > 0.45 (Figure 6). The final WLt model comprised nine 709 
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predictor variables, and the final WL model seven parameters. The percentages of parameter 710 

contributions to the final model and their individual influences are discussed for WLt in 711 

section 3.4.  712 

Table 3 summarizes the statistical performances of the models calibrated on WL and WLt. For 713 

both models NSEcal is considerably higher than NSEcv and shows the commonly observed 714 

overfitting behavior of BRT models. The different measures that we conducted to minimize 715 

overfitting (cross-validation on peatlands, restriction to monotonic responses, and model 716 

simplification including elimination of highly correlated variables) lowered the difference 717 

between NSEcal and NSEcv but could not totally avoid overfitting. NSEcv of the WLt model 718 

(0.453) indicates higher predictive model performance compared to the WL model (0.381). 719 

However, as the data ranges differ due to the transformation, this comparison may be 720 

misleading. Therefore, we transformed the predictions of the WL model to obtain WLt values 721 

from this model and equally calculated the performance criteria (Table 3, second column). 722 

Then, NSEcv is slightly increased (0.397), but does not achieve the values of the model that 723 

was calibrated on WLt. A better predictive model performance of the model calibrated on WLt 724 

is also visible for the RMSEcv values. The total RMSEcv, as well as the RMSEcv values for the 725 

dry (WL <-0.3 m) and wet range (WL >-0.3 m), show slightly lower values for the WLt model 726 

compared to WLt values from the model calibrated on WL. Given our hypothetical transfer 727 

function (Figure 3) in which the GHG budget is linearly related to WLt, the higher accuracy 728 

of WLt predictions directly corresponds to a higher accuracy of GHG budget predictions. 729 

Superior model performance is also evident when evaluating model bias. Only when 730 

calibrating directly on WLt, the WLt predictions are bias-free. Calibration on WL and 731 

subsequent transformation to WLt, introduces a model bias towards systematically lower WLt 732 

values. In subsequent applications to GHG emission upscaling, lower WLt values would lead 733 

to an overestimation of CO2 emissions and to an underestimation of CH4 emissions.  734 

3.4 Influence of predictor variables on WL t 735 

Given the beneficial characteristics of the model calibrated on WLt for GHG upscaling, 736 

presentation and discussion of further model results is restricted to the WLt model.  737 

The BRT method allows to analyze the parameter contributions to and influences on the 738 

model (Elith et al., 2008) and thus may contribute to the system understanding. The 739 

percentages of the contributions of the nine predictor variables to the final model ranged from 740 
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25.2 % to 5.6 % (Figure 7). Except of protection status, at least one parameter of each of the 741 

seven parameter groups contributed to the final model. All protection status information was 742 

dropped early during the simplification process due to low contribution, although WL showed 743 

slightly higher values for data from Nature Protection or Special Areas of Conservation. 744 

However, other parameters seem to be able to fully compensate the information that is lost by 745 

dropping this predictor.  746 

Land cover class, lc, at the dip well was the parameter with strongest contribution (25.2 %). It 747 

basically follows the trend illustrated in Figure 5b. The bootstrap error plotted as standard 748 

deviation (Figure 7) shows the variation of this influence over the 1000 bootstrap models. A 749 

second land cover parameter, the fraction of dry land cover classes on organic soils in a buffer 750 

of 2500 m radius, fdry(2500), contributed to the model with 10.3 %. The monotonic decrease 751 

of WLt with increasing fdry(2500) is plausible, as higher values reflect intensive land use in the 752 

surroundings of the dip well and thus indicate intensive artificial drainage. Together both 753 

parameter contributed by 35.5 % and thus land cover represents the parameter group with the 754 

strongest model contribution.  755 

Peatland characteristics are the second most important parameter group. The peatland type 756 

contributed by 16 %. The model indicates that peatlands without any connection to  surface 757 

water bodies (river or lake) and the class of other organic soils are characterized by lower WLt 758 

compared to the peatland types lowland bog, upland bog and fen neighboring surface water. 759 

As the class of other organic soils is generally expected to reflect lower water levels and as 760 

surface water may have a stabilization effect on water levels of organic soils, the influence of 761 

the peatland type can be considered as plausible. Besides peatland type, the substrate of the 762 

peat base contributes by 5.6 %. Here, organic soils overlying peat clay layers (e.g. limnic 763 

sediments like calcareous gyttja) or basement rock are characterized by higher WLt compared 764 

to organic soils overlying unconsolidated rock. This can be explained by the lower drainage 765 

resistance of unconsolidated rocks. This may cause an increased efficiency of anthropogenic 766 

drainage and/or a general higher vulnerability to seepage losses. Finally, slightly lower WLt 767 

values are indicated by a high fraction of organic soils for the 500 m buffer, fpeat(500). This 768 

may reflect the higher land use pressure on large peatlands compared to rather small 769 

peatlands, which tentatively are more easily preserved by nature protection efforts. 770 

The remaining four parameter groups are represented in the model by only one parameter 771 

each. The third most influential parameter was the length of ditches on arable land and 772 
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grassland for the 250 m buffer, dilen,dry(250). At first glance, it may be surprising that with 774 

increasing ditch density, WLt values tend to be higher, as ditches are supposed to drain the 775 

water when land is used as arable land and grassland. The fact that the model identifies a 776 

rather strong effect in the opposite direction may be caused by the incomplete information 777 

about the drainage network. There is not detailed information about the spatial distribution of 778 

tile drains. Based on expert knowledge, agricultural areas with a lower ditch density are more 779 

likely to be equipped with tile drains. As the latter, easily installed with a narrow drain 780 

spacing, are more effectively draining organic soils, low WLt values for arable land and 781 

grassland may be related to low ditch densities. Furthermore, ditches were originally dug at 782 

narrow spacing in especially wet areas of organic soils, but there is no information available 783 

whether these ditches still function properly.    784 

The parameters wbsummer, hrel and tiras25 all show expected trends. The model predicts higher 785 

WLt for increasing climatic water balance in the summer period (May to October), wbsummer, 786 

and for dip wells located in depressions (low values of hrel), and for higher small-scale 787 

topographic wetness indices calculated on the 25x25 digital elevation model (tiras25). 788 

The fact that all parameters show expected or explainable responses in the model corroborates 789 

the reliability of the calibrated WLt model. The standard deviation of the predictor responses 790 

based on the bootstrap samples shows the stability of the observed responses. 791 

Further insights into model behavior can be obtained by analyzing parameter interactions. 792 

This is obtained by changing two parameters simultaneously while keeping mean values for 793 

all other parameters (Elith et al., 2008). Figure 8 shows the two strongest parameter 794 

interactions. Parameter wbsummer strongly interacts with ptype. The generally lower values of 795 

WLt of fens without surface water connection and other organic soils show a stronger 796 

dependency on the summer climatic water balance. While a summer climatic water balance of 797 

> -80 mm shows rather low further effect on WLt for the wetter peatland types, in contrast for 798 

the two drier peatland types there is still a strong effect with increasing wbsummer. The trend for 799 

wbsummer >130 mm for the dry peatland types is supported by seven different peatlands.  800 

Another strong interaction is observed for pbase and fdry(2500). While a rather low effect of the 801 

fraction of arable land and grassland is observed for organic soils overlying basement rock 802 

and peat clay layer, strong effect is observed for organic soils overlying unconsolidated rock. 803 

This interaction reflects the higher lateral range of drainage effects for organic soils with little 804 
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flow resistance at the peat base. In these organic soils, intensive land use lowers water level 805 

over large areas.  806 

3.5 Discussion of model uncertainty 807 

Plotting observed vs. predicted WLt from cross-validation (Figure 9) illustrates the rather 808 

large residual variance that cannot be explained by the model. As indicated by the higher 809 

RMSEcv for the wet range (Table 3), scatter increases with increasing WLt. Error bars in the 810 

y-direction indicate data error derived from the nugget of the variogram. It is exemplarily 811 

shown for a few data points. Due to transformation, data error increases for higher WLt. 812 

Figure 9 demonstrates that the fraction of unexplainable variance related to data error is much 813 

higher for the wet than for the dry range. Bootstrap error that indicates the variation of the 814 

model predictions for 1000 bootstrap samples is shown in the x-direction for the same data 815 

points. Bootstrap error is lower than the data error for the wet range and slightly higher for the 816 

dry range.  817 

Bootstrap errors demonstrate the sensitivity of model predictions to changes of the dataset 818 

used for calibration. When a model possesses structural deficits, such as missing predictor 819 

variables, bootstrap errors should not be used to define confidence intervals for the model 820 

predictions. Figure 10 shows residuals from cross-validation and standard deviation of 821 

bootstrap predictions for all land cover classes. The residuals of each land cover class show 822 

normal-like distributions. For five of the nine land cover classes (wet forest, wet unused 823 

peatland, arable land, coniferous forest, and reed), Shapiro-Wilk test of normality is positive 824 

(p>0.05). Figure 10a further indicates that residuals of each land cover fairly well scatter 825 

around zero, indicating low bias for the various land cover classes. Land cover class specific 826 

confidence intervals of model predictions can thus be derived from the RMSEcv of each land 827 

cover class, e.g. 2*RMSEcv representing the 95% confidence interval.  828 

The prediction uncertainty derived from cross-validation is much higher than the bootstrap 829 

prediction uncertainty obtained from the bootstrap standard deviation (sd), with 2*sd 830 

corresponding to the 95% confidence interval (Figure 10). The large difference between these 831 

values indicates that the model has structural deficits that can be attributed to several error 832 

sources:  833 

i) Key influences on WLt are missing in the set of predictor variables. None of the predictor 834 

variables indicate whether and to which extent water level increase due to re-wetting 835 
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measures took place in the last years. Wetness indicators (wet soil and/or vegetation 836 

attributes) that are obtained from the Digital Landscape Model probably react with a delay of 837 

several years. Thus, we expect the occurrence of several observed high WLt values that 838 

cannot be explained by any of the predictor variables.  839 

ii) Small-scale topography that is not represented with sufficient detail and accuracy in the 840 

DEM may cause that several predictions strongly differ from what would be expected from 841 

the other predictor variables. A common example may be a dip well that is located on a 842 

narrow peat ridge, which remained after peat-cutting and is absent in the DEM, and that is 843 

situated in an area classified as wet soil by the Digital Landscape Model. Then, the model 844 

indicates a WLt that is much higher than the observed WLt, as for the observed value the 845 

reference surface was the surface of the peat ridge. 846 

iii) Consistent information about tile drains is missing and only exists regionally (Tetzlaff et 847 

al., 2009). At the national scale, however, there are no maps on tile drains. Tile drains are 848 

known to have a strong effect on WLt for arable land and grassland. As explained above, we 849 

expect parameter dilen,dry(250) to partially compensate for this missing information.  850 

iv) Another source of prediction uncertainty may comprise inconsistent and erroneous land 851 

cover classification of the Digital Landscape Model due to the high degree of subjectivity for 852 

many of the attributes. Furthermore, the temporal accuracy of the Digital Landscape Model 853 

may be as bad as 5 years which can cause time series with land use change to be split at the 854 

wrong date, and vegetation and wetness attributes not yet to be updated to the current 855 

conditions.  856 

v) The water balance of fens strongly depends on the size and the hydraulic head of the 857 

groundwater catchment, i.e. of the aquifer underlying the peat layer. Unfortunately, there is no 858 

consistent map on hydraulic heads or groundwater catchments for all Germany.  859 

We checked model predictions for geographical bias. Geographical location was not one of 860 

the model parameters. However, history and policy of land use on organic soils, current ditch 861 

water management and climate do show large-scale geographical trends. We divided our 862 

dataset into the three major German peatland regions (NE, NW and S) and evaluated the 863 

model residuals (Figure 11) to see whether our model is biased due to important missing 864 

geographical effects. A serious bias for any of the three major German peatland regions 865 

cannot be identified. 866 
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When applying calibrated statistical models during regionalization, it is important to check 867 

model behavior for extrapolation outside the range of the parameter space that is covered by 868 

the data upon which the model was built. BRT always extrapolates at a constant value from 869 

the most extreme environmental value in the training data. In contrast to other types of 870 

statistical models, e.g. generalized linear models, BRT does not continue the fitted trend 871 

beyond the last observation. Regarding the categorical variables, the dataset covers all classes 872 

occurring in Germany with several peatlands. The dataset also covers the major range of 873 

values occurring in Germany for the numerical predictor variables. Furthermore, Figure 7 874 

indicates that the constant values, at which the model extrapolates the influence of the 875 

variables, do not raise major concern for any extreme predictions outside the parameter range.   876 

3.6 Regionalization 877 

The map of WLt resulting from the application of the fitted WLt model to all grid cells shows 878 

gradients at the regional scale (Figure 12a). E.g., in the south of Germany, a gradient from 879 

wet to dry can be observed for the pre-alpine upland bogs and the peatlands of the moraine 880 

plain. In the north of Germany, the map indicates that organic soils in the very NE are wetter 881 

than the rest. For the rest of the north a slight gradient can be observed from less dry to dry 882 

from NW to E, which is mainly driven by the higher summer climatic water balance in the 883 

NW. As both categorical and numerical predictor variables do also vary at sub-regional scale, 884 

the resulting map also shows gradients within peatland areas, e.g. due to small-scale land use 885 

ditch density gradients and topography effects (Figure 12b).  886 

We calculated WLt averages of the land cover classes using the regionalized WLt from the 887 

map (Table 2, column 3). The given standard deviation comprises both the variability within a 888 

land cover class that is explained by the model as well as the uncertainty of each prediction. 889 

Resulting means and standard deviations slightly differ from the corresponding values of the 890 

dataset. The land cover specific WLt values obtained from the map can be considered as being 891 

more representative, as the regionalization procedure is supposed to partly account for 892 

potential bias in the dataset. 893 

When applying this map and its predicted WLt values in subsequent GHG upscaling, it is 894 

crucial that model uncertainty is propagated properly. An example demonstrates the necessity 895 

of uncertainty propagation. For a grid cell classified as wet grassland, the probability 896 

distribution of WLt is shown based on a normal distribution that was fitted to the residuals of 897 
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this land cover class (Figure 12c). Without propagating the uncertainty and when only 898 

translating the predicted WLt (eventually in combination with other parameters, e.g. soil 899 

properties) into a GHG budget, GHG budget is strongly underestimated as the WLt prediction 900 

is close to zero, indicating neither large CO2 nor CH4 emissions. When translating the full 901 

distribution of WLt into a GHG budget, the resulting GHG budget would be much higher, as 902 

at both sides of the predicted WLt the GHG budget increases. 903 

3.7 Possible paths for model improvement 904 

The model performance that is achieved by the statistical approach presented in our study 905 

raises the question whether collecting more WL data can improve model performance or 906 

whether the factor that is constraining the model performance is the limited strength of the 907 

nation-wide available predictor variables. To assess this question, additional ‘holdout models’ 908 

were developed by fitting the BRT model to various random sets of data with a limited 909 

number of peatland areas (from 10 to 50 peatlands). For each number of peatland areas, 500 910 

random selections were calibrated and model performance was evaluated with NSEcv. As 911 

expected, results indicate an increase of model performance with increasing number of 912 

peatlands used in the model building process (Figure 13). Results also indicate a substantial 913 

flattening of the learning curve. Thus, further collection of WL data may only lead to a 914 

substantial model improvement when including many more peatlands into the dataset. More 915 

promising would be the specific collection of more data on the weakly represented and/or 916 

important land cover classes arable land and grassland.    917 

Another path to achieve a stronger model improvement is the development of new predictor 918 

variables. In future, the availability of a more accurate DEM based on laser-scanning data, 919 

which is already available at full coverage for some federal states of Germany, may strongly 920 

increase the predictability of the observed WL data. Additionally, a nation-wide map on water 921 

management and on the distribution of tile drains may represent great potential to explain 922 

large parts of the residual variance and/or even allow setting up a large scale physically-based 923 

model that includes water management. Furthermore, data harmonization by extrapolating the 924 

water level time series of our dataset with the climatic boundary conditions of the last 30 925 

years may lower the unexplainable variance of the dataset due to short measurement periods 926 

(Bartholomeus et al., 2008), an effort that has been successfully conducted in Finke et al. 927 

(2004) using the transfer noise model of Bierkens et al. (1999). Finally, we believe that the 928 

inclusion of remote sensing products in our statistical model approach, as e.g. spaceborne 929 
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microwave soil moisture observations (Sutanudjaja et al., 2013), may hold large potential to 930 

improve model performance as moisture differences due to varying water levels are high for 931 

organic soils.  932 

 933 

4 Conclusions 934 

Our study demonstrates the potential of statistical modeling for the regionalization of water 935 

levels in organic soils when data covers only a small fraction of peatlands of the final map 936 

and thus spatial interpolation is not possible. With the available dataset of target and predictor 937 

variables, it was possible to predict 45 % of the GHG relevant water level variance in the 938 

dataset in a cross-validation scheme. The variance is explained by nine predictor variables. 939 

With the analysis of their effect on the water level it was possible to gain insights into natural 940 

and anthropogenic boundary conditions that control water levels of organic soils in Germany.  941 

Based on a hypothetical GHG transfer function relating GHG emissions to annual mean water 942 

levels (WL) we showed the advantage of transforming the annual mean water level into a new 943 

variable (WLt) to which GHG emissions linearly depend on. The transformation improved 944 

model accuracy, increased the explained variance of the water level range that is relevant for 945 

GHG emissions and avoided model bias.  946 

The presented approach is transparent and allows successive improvement when new input 947 

data and predictor variables become available. Our results show that model improvement by 948 

increasing number of WLt data, however, seems to be limited. If efforts are made, data 949 

collection should be concentrated in agriculturally used organic soils, for which relatively few 950 

data is available. We believe that the constraining factor of model performance is rather the 951 

weakness of the predictor variables that are currently available at large scales. The 952 

development of new more informative predictor variables, as e.g. water management maps 953 

and remote sensing products, may represent the more promising path for model improvement.  954 

The proposed regionalization approach is suited to application to any other country when 955 

similar data on target and predictor variables is available. It is important that the spatial 956 

resolution of the predictor variables is high enough (Finke et al., 2004). If predictor variables 957 

like land use and peatland type are only available at a much coarser scale and provided as 958 

percentages for grid cells, the dependency between predictor variables and the rather local 959 

WL will be probably lost for most of the predictor variables. 960 
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Our work must be considered as one piece of a broader framework for the regionalization of 961 

GHG emissions that includes other site characteristics and must be further developed in future 962 

research. For example, if for specific regions detailed information on peat properties becomes 963 

available and its effect on GHG emissions can be estimated by the use of multivariate transfer 964 

functions, the map of transformed water levels (WLt) can be used as an input for this follow-965 

up regionalization. 966 
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Table 1. Overview on predictor variables. 1 

Predictor Variable Variable name Values Point/Buffers (m) Data Source 

Land use type  
Arable, grassland, forest, shrubs, peat-mining, unused 
peatland, swamp, open water 

point, 100, 500, 1000, 2500  Digital Landscape Model1 

Vegetation attributes 
(optional) 

 
Deciduous forest, mixed forest, coniferous forest, reed, 
shrubs, grass 

point Digital Landscape Model1 

'Wet soil observed'   Yes, no point Digital Landscape Model1 
Combined land cover 
information (land use type + 
veg. + wet soil attr.) 

lc 
Arable, grassland, wet grassland, deciduous including mixed 
forest, wet forest, coniferous forest, reed, unused peatland, 
wet unused peatland 

point, 100, 500, 1000, 2500 Digital Landscape Model1 

Dry land cover fraction fdry(X) arable + 0.5*grassland on organic soil area; 0 to 1 100, 500, 1000, 2500 Digital Landscape Model1 

Wet land cover fraction  
reed+ wet grassland+wet forest+wet unused peatland on 
organic soil area; 0 to 1 

100, 500, 1000, 2500 Digital Landscape Model1 

Total length of ditches for 
all lc and only for arable 
and grassland (subscr.: 'dry') 

dilen,dry(X) ≥ 0 m point, 50, 250, 1000, 2500 Digital Landscape Model1 

Distance to next ditch  ≥ 0 m point Digital Landscape Model1 

Peatland type ptype 
Lowland bog, upland bog, fen neighboring surface water, fen 
without neighboring surface water, other 'low-C' organic soil 

point Map of organic soils2  

Material at peat base pbase Unconsolidated rock, peat clay layer, rock, no information point Map of organic soils2 

Peatland fraction fpeat(X) 
0 to 1  
 

point, 500, 1000, 2500 Geological Map (BGR) 3  

Distance to edge of peatland  > 0 m  Geological Map (BGR) 3  
Ratio of dpeat/fpeat   > 0 2500 Geological Map (BGR) 3  
Precipitation  ≥ 0 mm point raster map 1x1km (DWD)4 
Evapotranspiration  ≥ 0 mm point raster map 1x1km (DWD)4 
Climatic water balance wbsummer < 0 and ≥ 0 mm point raster map 1x1km (DWD)4 

Relative height  hrel(X)  < 0 and ≥ 0 m 
point - median 25, 50, 100, 250, 
500, 1000 

Digital Elevation Model5  

Topographic index tirasR(X) > 0 
point and 1000 buffer for 10, 
25, 250, 1000 raster values  

Digital Elevation Model5  

Protection status 
 

 

Nature Conservation Area, Special Areas of Conservation, 
Special Protection Area for wild birds, UNESCO-biosphere 
reserve, Nature Park, National Park, Landscape Protection 
Area 

point Maps of protected areas6 

1ATKIS Basis DLM, Federal Agency for Cartography and Geodesy, BKG; 2Map of organic soils (Roßkopf et al., submitted, Humboldt University of Berlin); 3Geological Map 1:200 000 2 
(GUEK 200, BGR - Federal Institute for Geosciences and Natural Resources); 4raster map 1x1 km of weather data (German Weather Service); 5BKG;Variable name indicated for the nine 3 
variables in the final model with (X) indicating buf. size and R indicating raster resolution. 6Federal Agency for Nature Conservation (BfN)4 

Gelöscht: Roßkopf et al., submitted
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Table 2. Weighted mean and standard deviation of WL and WLt data, and of the WLt map 1 

presented in section 3.6, for the nine land cover classes. 2 

 WL (m) 
mean ± sd 

WLt (-) 
mean ± sd 

WL t (-), map 
mean ± sd 

arable land -0.69±0.30 -0.76±0.17 -0.66±0.22 

deciduous f. -0.45±0.34 -0.49±0.37 -0.47±0.35 

grassland -0.44±0.29 -0.52±0.32 -0.49±0.30 

unused peatl. -0.39±0.36 -0.39±0.41 -0.37±0.40 

coniferous f. -0.36±0.36 -0.37±0.37 -0.46±0.35 

wet unused peatl. -0.22±0.27 -0.18±0.40 -0.17±0.36 

wet forest -0.22±0.29 -0.17±0.43 -0.21±0.39 

wet grassland -0.10±0.14 -0.00±0.31 -0.15±0.39 

reed -0.01±0.17 0.20±0.29 -0.06±0.32 

3 
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 1 

Table 3. Performance criteria of the different models; dry range defined as WL < -0.3 m and 2 

wet range as WL > -0.3 m. 3 

 WL (m) 
(calibrated 

on WL) 

WLt (-) 
(calibrated 

on WL) 

WLt (-) 
(calibrated 
on WLt) 

NSEcal 0.627 0.559 0.642 

NSEcv 0.381 0.397 0.453 

RMSEcv 0.269 0.299 0.284 

RMSEcv,dry 0.284 0.263 0.259 

RMSEcv,wet 0.222 0.382 0.355 

Bias -0.003 0.083 0.002 

Biasdry -0.012 0.070 0.003 

Biaswet 0.021 0.120 0.000 

 4 

5 
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 1 

 2 

Figure 1. Locations of the 1094 dip wells of the dataset. Base map (Geological map 3 

1:200,000, BGR) shows the distribution of bog and fen peat, and other organic soils. 4 

5 
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 2 

Figure 2. Illustration of the predictor variables determined for each dip well based on 3 

available national maps (see Table 1). 4 

5 
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 1 

2 
Figure 3. Illustration of the annual mean water level (WL) transformation. (a) Hypothetical 3 

transfer function relating GHG budget to WL (m). (b) GHG budget vs. the transformed water 4 

level (WLt). (c) WLt vs. WL. Rugs indicate the data quantiles of the analyzed dataset.  5 

 6 

 7 

8 
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 1 

Figure 4. Sample semi-variogram and fitted semi-variogram model of the annual mean water 2 

level data, WL.  3 

 4 

5 
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 2 

 3 

 4 

Figure 5. Water level relative to ground surface, WL (m), and transformed water level, 5 

WLt (-), by land cover class illustrated as weighted box plot. WLt = -1 corresponds to 6 

maximum CO2 emissions and WLt = 1 to maximum CH4 emissions. In the upper part, the 7 

number of dip wells in each class is indicated.  8 

9 
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 2 

Figure 6. NSEcv as a function of number of predictor variables used in the model of WLt 3 

during model simplification and shown for the last 50 parameter drops.  4 

5 
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 1 

Figure 7. Partial dependence plots for the predictor variables. For explanation of variables see 2 

Table 1. Y axes are on WLt scale and are centered around the mean WLt. Error bars and grey 3 

area indicate standard deviation of the response over 1000 bootstrap models. The relative 4 

contribution of each predictor is indicated as percentage. Rugs at bottom of each plot show 5 

distribution of data across that variable, in deciles.  6 

7 
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 1 

Figure 8. Partial dependence plots representing the two strongest interactions in the model: (a) 2 

between ptype and wbsummer and (b) between pbase and fdry. Fitted WLt is plotted on the y-axis 3 

which is obtained after accounting for the average effect of all other predictor variables. 4 

 5 

6 
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 2 

 3 

Figure 9. Observed vs. predicted transformed annual mean water level (WLt) from cross-4 

validation results. Error bars show selected data and bootstrap model errors as standard 5 

deviation. Data points are scaled by their weights. 6 

7 
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 2 

Figure 10. (a) Residuals (observation - prediction) of WLt predictions and (b) standard 3 

deviation (sd) of bootstrap predictions shown for the nine land cover classes. In the upper 4 

part, the number of dip wells in each class is indicated. 5 

 6 

7 
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Figure 11. Residuals (observation - prediction) of WLt predictions for the three major 2 

geographical peatland regions of Germany. In the upper part, the number of dip wells in each 3 

class is indicated. 4 

 5 

6 
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 2 

 3 

Figure 12. Map of  predictions of transformed annual mean water level (WLt) for all German 4 

organic soils (a) and an enlarged map section (b). Probability distribution in (c) exemplarily 5 

indicates the uncertainty of a specific point prediction for wet grassland. Here, predicted value 6 

is approximately WLt=0, but note that wet grassland predictions do vary in space depending 7 

on the values of the other model parameter. The histogram shows the residuals from cross-8 

validation for wet grassland, to which the probability distribution was fitted. 9 

10 
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 2 

 3 

Figure 13. NSE of cross-validation vs. number of randomly selected peatland areas. Dashed 4 

lines indicate NSEcv ± standard deviation.  5 
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