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peatlands optimized for greenhouse gas emission
upscaling
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Abstract

Fluxes of the three main greenhouse gases (GHG) C&, and NO from peat and other
organic soils are strongly controlled by water ¢allepth. Information about the spatial
distribution of water level is thus a crucial ingpatrameter when upscaling GHG emissions to
large scales. Here, we investigate the potentiatatistical modeling for the regionalization
of water levels in organic soils when data coveny a small fraction of the peatlands of the
final map. Our study area is Germany. Phreatic whdeel data from 53 peatlands in
Germany were compiled in a new dataset compris0gg dip wells and 7155 years of data.
For each dip well, numerous possible predictoraldeis were determined using nationally
available data sources, which included informatibout land cover, ditch network, protected
areas, topography, peatland characteristics amdatii boundary conditions. We applied
boosted regression trees to identify dependena@éseen predictor variables and dip well
specific long-term annual mean water level (WLWadl as a transformed form of it (WL
The latter was obtained by assuming a hypothet&dG transfer function and is linearly
related to GHG emissions. Our results demonsthratenhodel calibration on Wlis superior.

It increases the explained variance of the watesl e the sensitive range for GHG emissions
and avoids model bias in subsequent GHG upscalimg final model explained 45 % of WL

variance and was built on nine predictor varialtteg are based on information about land
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cover, peatland characteristics, drainage netwadgpography and climatic boundary
conditions. Their individual effects on Whnd the observed parameter interactions provide
insights into natural and anthropogenic boundargdd@mns that control water levels in
organic soils. Our study also demonstrates thatgelfraction of the observed \Wtariance
cannot be explained by nationally available prediotariables and that predictors with
stronger WL indication, relying e.g. on detailed water managetmmaps and remote sensing
products, are needed to substantially improve mpialictive performance.

1 Introduction

Greenhouse gas (GHG) emissions from organic saitsbe high compared to mineral soils.
In Germany, the fraction of organic soils classifas peatlands covers only 5 % of the land
surface, but does account for 40 % of GHG emissiiorise reporting categories ‘agriculture’

and 'land use, land use change and forestry' otJtlieFramework Convention on Climate

Change (UNFCCC) (UBA, 2012). Also other organidseiith a lower soil organic carbon_ - | Feldfunktion geéindert

content (SOC) but still meeting the definition afanic soils according to IPCC (2006) are - | Feldfunktion geéndert

important sources of persistently high GHG emissj@reiber-Sauheitl et al., 2014). In our - | Feldfunktion geéndert

study, we also consider these soils. For simptifice we will refer in the following to the
total of peatlands and 'other organic soils' asawiq soils. Current estimates of GHG
emissions from organic soils are fairly uncertaid aeporting of most countries relies on
IPCC default emission factors (EF) for £&missions which are stratified for land use and
climatic region, e.g. 10 t C Hayr™ for arable land in the warm temperate zone.

Artificial drainage turned the function of formeatmral peatlands from a C sink into a C
source. Experimental work with organic soils durihg last two decades showed that the

aerated soil pore space above the water leveleobthe key variables explaining the amount

of CO, emissions (Moore and Dalva, 1993). Frequentlyvihter level relative to soil surface - - Feldfunktion gesindert

(further simply referred to as 'water level', witkgative values below ground) is used as
proxy for air-filled porosity, given the simplicityand availability of water level

measurements. Additionally, low water levels angigin availability are also key drivers of

nitrous oxide (NO) production in organic soils (Regina et al., 1996hich increases the - | Feldfunktion geéndert

relevance of organic soils for climate change mtiwn policy. During anaerobic conditions
when water levels are at or above the land surfadestantial methane (GHemissions can

occur, (Levy et al., 2012). | Feldfunktion gesindert
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It is postulated that the GHG-budget — the sumhef €Q-equivalents of the three main
greenhouse gases (&MN,O, CH,) — is at minimum for annual mean water levels (ehn
mean further defined by the variable name WL) a&b0.05 to -0.1 m (Drésler et al., 2011).

\: Feldfunktion gedndert W

Following atmospheric sign convention, a positiveldet stands for net emissions, while a
negative sign indicates a net uptake of GHGs. Qiheameters, as physical and chemical soil
properties and vegetation, also influence the amotithe emissions, and thus weaken the
relation between total GHG budget and WL.

If available, information about the spatial distion of WL can identify GHG hot spot

regions and improve the accuracy of total GHG btgige large scales. The application of
transfer functions that relate GHG emissions to WAHAd potential other influencing site
characteristics can refine the estimates deriveh simple application of IPCC default EFs.
However, in many countries and regions, as e.gma@ey and Europe, a map of WL in
organic soils does not exist. The spatial availighdf measured WL is much higher than of
measured GHG fluxes, which suggests the use of Wiscaling parameter for upscaling
GHG emissions.

Several methods were applied in the past to profdcemaps. Their suitability is strongly

related to data availability, which very often dmases in quality and spatial density with

increasing scale of the study area. Spatially-thisted process-based modeling (Thompson et { Feldfunktion gezndert )

to reproduce water level dynamics in wetlands emvirents, including peatlands. However,
they heavily rely on spatial information about thatem's physical properties and boundary

conditions (peat hydraulic properties, hydraulioauoctivity of peat base, drainage system);

a common SVAT model to account for the differinglfglogical processes in pristine fens,

pristine bogs and drained peatlands, and model¢er wevel fluctuations in boreal peatlands
for whole Finland. But calibration and validationthvdata from only three mires does not
allow conclusions about the accuracy and generalcability of the model. Numerous large

scale hydrological wetland models are often dewedopith a focus on delineating wetland
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but do not account for anthropogenic drainage &g fare only applicable to pristine (or

nearly-pristine) peatland systems.

When detailed physical model input that is neededafphysically-based approach is lacking,

statistical or machine learning tools representransing alternative (Finke et al., 2004). - | Feldfunktion geéndert

Potential predictor variables that are availabléhatfinal map scale are determined for each
location with water level data and the algorithreritifies dependencies between potential
predictors and target variables, as WL or othetissiizal values that describe water level

dynamics. For areas rich in water level data, #hg.Netherlands, residuals of the statistical
model can afterwards be analyzed for spatial caticel. If this is present, it can be used to

correct for spatially correlated model bias by krgg This scheme has been applied to

guantity and quality of the data on the targetalae itself, i.e. the water level data. An
important quality criterion for water level datarfin organic soils is the measurement depth. It
is crucial that there is little or no hydraulic istance by a low conductive layer between the
perforated part of the monitoring well and the fuating water level. If the hydraulic
resistance is too high, the monitoring well actsaapiezometer and water levels may

substantially differ from the actual phreatic legsl shown for peatlands by van der Gaast et

data during model calibration, this can lead taiader- or overestimation of predicted water

levels in organic soils. An underestimation of wagéwel predictions (too dry) is discussed for

Dutch modeling studies in van der Gaast et al. 200 | Feldfunktion geéindert

At present, in Germany a map on water levels iranig soils that could be used for GHG
upscaling is missing. This and current efforts owprioving GHG emission estimates for
German organic soils were the main drivers for giudy. Thus, the major goal of this study
was the development of a model concept that pradaceater level map at the scale of all
organic soils in Germany that is specifically opzed for water level ranges to which GHG
emissions react sensitivelyte emphasize that the objective of our study wa®tionalize

annual mean water levels and not the GHG emissimmselves. The latter are influenced by

more site characteristics, in_particular soil pmigs. Furthermore, we suppose that annual

mean water level is probably not the only and oaltistatistical measure to describe the water
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level effect on annual GHG emissions. However, we @aot aware of well-established

knowledge about transfer functions that relate nmmplex statistical measures of water

level dynamics to GHG emissions. Therefore, we liecased on the simple and frequently

applied 'annual mean water level'.

In a first step, we compiled a new dataset of diveeater level time series of organic soils
with contributions from numerous data providers.s&h on this data, we developed a

modeling approach for the annual mean water lelat follows the basic idea of the

study substantially differed from their study. Cdata covers only a small fraction of the

peatlands of the final map and spatial interpofatid residuals was not possible. We thus

| = { Formatiert: Englisch (GroBbritannien) J

 including additional possible predictor variables,

e using boosted regression trees as modeling toatidatify the influence of both

numerical and categorical variables simultaneously,

P { Geldscht: an objective

with highly variable spatial data density,

» transforming the annual mean water level, WL, atwansformed annual mean water
level, WL, that shows a linear relationship with the GHG drtcand optimizes model

calibration for the WL range relevant for GHG erass, and by
 restricting the water level regionalization to pdtre water levels of organic soils.

We present a detailed analysis of the influencthefindividual predictor variables on water
levels of organic soils as well as their interacsioFurthermore, the manuscript includes the
estimation of model uncertainty and possible paftfsiture model improvement. Finally, the
calibrated model is used to derive a map of;\W all organic soils in Germany, and the
regionalization results are presented.
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2 Dataset and Methods

2.1 Dataset of phreatic water levels in organic soi  Is

Available data of phreatic water levels in orgasnds are scarce. In contrast to data of rather
deeply drilled observation wells of official groumdter monitoring networks, short peatland
observation wells of only one or two meter lengthttmeasure the phreatic water level of the
peat layer are currently not collected in centethdnanagement systems in Germany or any
of its Federal States. With a comprehensive quassioe started in 2011, we collected water
level time series of organic soils from local agesg non-governmental organizations,
universities, consultants and other sources, antbowd this data with water level data from
our projects. Time series included manual and aatiecnmeasurements. Years with less than
six measurements or data gaps of more than threghmevere excluded. Water level time
series of each dip well were visually checked @ugible dynamics by comparing with data
from neighboring dip wells and weather data timgese Based on auxiliary data and local
knowledge, we further identified dip wells thatebad down to the underlying aquifer. If dip
wells failed these quality checks, they were renddvem the dataset.

The final dataset comprised 7155 years of data B8rberman peatlands and 1094 dip wells.
On average time series ranged over 7 years. Al eries were collected at some period
between the years 1988 to 2012. Data are welliligéd over most of the German peatland
regions and cover the three major types of organits (Figure 1). Compared with the
distribution of the types of organic soils in Gempathe fraction of dip wells on bogs is
overrepresented in the dataset by the factor gfvhile dip wells on fens and other organic
soils are slightly underrepresented. Data also rctive common land use types (for data
sources see Table 1). However, dip wells on orgswiis that are neither used for agriculture,
forestry or peat mining, further referred to asused peatlands', are overrepresented in the
dataset by a factor of 6 as data was collected rfrequently and in higher spatial data
density in the frame of conservation projects. fraetion of unused peatlands of the German
organic soils is 6 %, and the fraction in the deitas 36 %. In contrast, dip wells on arable
land are underrepresented in the dataset by arfatté. The fraction of arable land on
German organic soils is 24 %, and the fractiorhim dataset is 4 %. The other two key land
use types on organic soils in Germany, grasslart farest, are well represented in the
dataset. The misbalance of the land use typesinldtaset is accounted for in the weighting
of data (see sectigh3.9).

- [ Geloscht: 2.3.3
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If land use changed within the measurement perfcal dip well, the time series was split at
the moment when the land use record indicatesrémsition. For each segment the annual
mean water level, WL (here with negative valuesraef as water levels below ground), was
calculated as multi-year average value over theevmeasurement period of the specific land

use.

The primary application of the WL map producedtiis tstudy is for the upscaling of long-
term GHG emissions as emission reporting may oefiect anthropogenic effects, but no
inter-annual climatic effects. As GHG transfer ftions are developed on annual data, their
application requires both the long-term annual meater level, as well as its inter-annual
variability. Due to the non-linear dependence ofGEmissions on WL, single years with
extreme water levels can strongly influence lompateverage GHG fluxes. This study is
focused on the regionalization of the long-termusainmean water levels. For this objective,
model building should be based on long-term wageelltime series to average out the effect
of weather variation within a complete climatic ipéer (commonly 30 years). The existing
nationally available data on water level time sered organic soils, however, does not
comprise a single time series with complete dateei@me over the last 30 years. Due to the
lack of sufficient long-term water level time sexieve included all time series in the model
building process. Average climatic boundary cowodisi (precipitation, reference
evapotranspiration, water balance) of the speaif@asurement period of each dip well are
part of the predictor variables (see section 28y, thus are supposed to partly account for the
effect of specific weather conditions on WL in caéshort measurement periods.

2.2 Predictor Variables

Spatial coverage of phreatic water level data gaoic soils is too low to obtain WL maps by
simple spatial interpolation (Figure 1). Additionapatial data is needed as basis for
regionalization. Ancillary information that covefidly or at least most of the extent of the
final map is necessary as predictor variables. tAgrehensive set of variables (numerical and

categorical) with potential indication for the hgtixgical condition of an organic soil were

determined for each dip well (Figure 2 and Table 1) __ - 1 Geléscht: This ancillary information doe;
S not necessarily need to fully cover the total
. ) . . . L. map extent, as the applied machine learning
The predictor variables, which can partly be foatgb in Finke et a. (2004), can be divided | aigorithm in this study (boosted regressiol
7777777777777777 trees, see section 2.3) allows for data gaps.
into seven groups: However, the contribution to the final
model decreases with increasing number|of
gaps in the predictor variable.

| Feldfunktion geéndert )
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Land cover: As certain land use and vegetation requires afidcte certain WL, such
information can be used as indicator for averagéndge level around the dip well. Land use
and vegetation information was based on the GerBigital Landscape Model (ATKIS
Basis-DLM), which is updated continuously by aenilotos as well as sporadic ground
mapping and has a temporal accuracy of 3 montts years. It is provided as fine-scaled
polygons and represents the best uniform land cmfermation available in Germany. It
contains information on primary land use type, fgtional vegetation attributes and whether
'wet soil' has been observed during mapping. AsietEed that the use of a large number of
categorical variables lowers the performance of skew regression trees, we further
aggregated the three information types i) land iiseegetation and iii) wet soil into a set of
nine combined land cover classes (Table 1). Thasd kover classes were a trade-off
between fine differentiation and the number of icgtés in each class. For grasslands, a 'wet
grassland' class was separated, when grasslandwealaid with wet soil and/or tree or
shrubs vegetation, which may indicate a less intermsanagement. Forests overlaid with wet
soil were separated as 'wet forest'. Further, uhyssatlands overlaid with wet soil and
showing no coverage with tree attribute were charaed by higher water levels and were
thus separated as 'wet unused peatland'. The eerdip wells classified as open water (n=2)
and peat cutting (n=5) were merged to the reedaaaiole land cover class, respectively. Land
use type and land cover class were extracted atipheell (point extraction) and as fractions
in various buffers around the dip well (Table 1% #sing too many weak predictor variables
lowers model performance and increases overfitting,numerous land cover fractions were
further aggregated into two classes: the fractibdry (arable and grassland) and-wet- (reed,
wet grassland, wet forest, and wet unused peatlamt) cover on organic soil§or the

calculation of the fraction of dry land cover, vestied various factors for the reduction of the

contribution of grassland compared to arable |asdthe grassland class also includes wetter

grasslands that could not be detected with thdablailand cover catalogue. A factor of 0.5

was an optimal value, which was then set fixed.

Drainage network: Locations of ditches that are included as linethi Digital Landscape
Model were used to obtain information about theirdrge network. The total length of
ditches was calculated for various buffer sizegtheu, the distance to the next ditch was
calculated for each dip well. A short distancehe hext ditch may indicate either lower or
higher water levels, depending on whether the dichre used for drainage or already

blocked and used for rewetting measures. Simil#inkyindication of total length of ditches is

8

-| Geloscht: , influence of the latter reduc
by the factor 0.5

j
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not unique. Therefore, we defined two differensggft ditch variables. A first set, for which
we calculated values for all land cover classessasecond one, for which we only calculated
values for land cover classes for which ditchesum@oubtedly used for drainage, i.e. arable

and grassland.

Peatland characteristics: The geological map of Germany (scale 1:200,006hee the area
for which WL predictions were modeled. It is albe basis for topological peatland predictor
variables, i.e. the fraction of organic soils irffelient buffer sizes as well as the dip well
distance to the edge of the peatland. Informatlmuathe peatland type and the substrate at

the peat base is presented in more detail in ayneampiled raster map of organic soils

aggregated into five classes: Lowland bog (Northrn@® Plains and Alpine Forelands),
upland bog (Central Uplands and Alps), fen neighmgprsurface water, fen without

neighboring surface water, and a class of 'othgardc soils' that do not fulfill the C content

and thickness criteria to be classified as peatl@udbstrates at the peat base included loose
unconsolidated rock (alluvial sand and gravel dégpsonsolidated rock (bedrock) and peat

clay layer. The first type may indicate the occooe of seepage (positive or negative),

whereas the latter two types may indicate rathéydraulic decoupling from the aquifer

hydraulic head.

Climatic boundary conditions: Climatic boundary conditions directly influencetesalevel.

On the one hand, the typical long-term climatic tsbary conditions may indicate the general
vulnerability of peatlands in a specific region. @e other hand, given the different lengths
of measurement periods of the time series in thidys climatic boundary condition predictor
variables may account for the effect of a climdljcaetter or drier measurement period,
compared to the long-term averages, on the watet.|€limatic boundary conditions were
extracted from a 1x1 km raster of the German We&Beevice. Annual, summer and winter
precipitation, FAO56 Penman-Monteith reference ewgmspiration, and climatic water
balance (difference between precipitation and esfee evapotranspiration) were determined

for the individual measurement period of each dgand as long-term averages (30 years).

Relative altitude: Relative altitude was calculated by subtracting thedian altitude of
various buffer sizes from the absolute altitudeath dip well in the DEM. Relative altitude
is expected to have two different indications dejireg on the applied buffer size: i) In many

peatlands, the former smooth peatland relief atstade of approximately > 5 m has been
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disturbed due to peat cutting and differences iaindlge and mineralization rate. As a
consequence, the rather smooth phreatic surfaea dfies not follow the uneven and patchy
terrain. Relative altitude with respect to smabaffer sizes (< 250 m) may therefore explain
part of the WL variation, e.g. a dip well that gchted at a surface much higher than the
surrounding may indicate deeper water levels;di) large buffer sizes (> 250 m) relative
altitude indicates whether the peatland lies iargdr morphological depression or elevation,
and thus may indicate whether large scale laterfédvi of water can be expected or not.
Similar indication is provided by the topographiciéx (see below). The accuracy of relative
altitude values depends on the resolution and acgwf the DEM. The nation-wide available

DEM is based on datasets of varying quality, whiay lower the influence of this variable.

Topographic wetness index: The topographic wetness index is a common wetinelssator

[ Feldfunktion gedndert

slope at a given point and indicates the exterfiosé accumulationHigh values indicate

wetter conditions. If calculated at larger scalégher values may be a hint for the occurrence

of positive seepage, i.e. upward flow of water frim aquifer. Topographic wetness index- { Geléscht: i

was calculated for various DEM resolutions usirgg @RASS 7 module r.watershed.

Protection status. The protection status of a peatland area may atefleydrological
conditions. Therefore we checked for seven praiacitatus at each dip well (see Table 1 for
details).

2.3 Model building scheme

Model building was performed using boosted regoestiees (BRT), implemented in the two

[ Feldfunktion gedndert

algorithm, in which the final model is derived fraime data. Functions that relate target to

(or regression}ree conceptin the decision tree concept, the parameter sgasearched

sequentially for the best split that results irfite bbwest model mean squared error. The mean

responses of the groups that result from the varsmlits, and correspond to certain parameter

subsequently simplified by dropping weak links tlaaie identified with cross-validation.

Growing only one single tree has several disademstdike uneven functions that are very

10
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combined with the decision tree concept. These Viestethe development of multiple models

by bootstrapping of the samples (bagging technigume) the random creation of subsets of

predictors at each split (random forest techniguafer, with the 'boosting' technique of BRT,

a sequential procedure was developed in which idaeweighted after each tree to increase

emphasis on data that is poorly modeled by thdiegisollection of trees (Elith et al., 2008).

BRT modeling is increasingly applied in spatial ralinly of species or numerical

environmental variables (Elith et al., 2008, Margh al., 2011), thereby often showing - { Feldfunktion gesndert ]

superior performance compared to other machinenitegr algorithms. The increasing
application of BRT is related to several of itsdeable characteristics: The strength of this
method lies in the ability to fit complex functidndependencies including non-linear
relationships and interactions between predictorabtes. Based on its flexibility, BRT is
invariant to monotonic transformations of predistofurthermore, BRT allow®r missing

valuesin the predictor variables, thus predictor vamainformation does not necessarily need

to fully cover the total map extent. The gbm paekdgndles missing values in predictor

variables by introducing surrogate splits. The m&aget value belonging to the missing

predictor values is attributed to these surrogaliessduring model building. We observed that

the contribution of a predictor variable to theafimodel decreases with increasing number of

missing values. This is intuitive, as target obadons of missing predictor values are mostly

BRT model calibration is prone to overfitting, atitere arevarious optiongo reduce this. -~ | cach decision tree has a reduced learnin

. - . . . . ho rate. Thus, the final model consists of
behaviour. Due to the overfitting behaviour, creatidation is generally part of the model | thousands of overlapping decision trees,
v | similar to the ensemble approach.

Geldscht: with the major difference that@‘;

building process. However, cross validation can peeformed in several ways and, if \{Gelﬁscht: several ways

J
performed carelessly, can lead to over-optimistidet performance (De'ath, 2007). Here, | Feldfunktion gesndert ]

cross validation was performed by leaving out wipdatland areas instead of a random set of
dip wells. This represents a stricter cross valisatand we noticed that it strongly reduced
overfitting of the water level data, and thus citmtred to the development of a more robust

model. | = {Formatiert: Englisch (USA) ]

> { Geldscht: way ]
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our numerical variables we expected monotonic slapgher than optimum functions. To
avoid predefining any expected direction, all nuarvariables were added twice to the set
of predictors, constraining the slope to a monatancrease and decrease. We let the model

decide whether monotonic increase or decreaseilasrtpredictive power.

Models were calibrated using a Gaussian responge, tgimed at minimising deviance

the dismo package, which assesses the optimal nmuwbdoosting trees using cross
validation. We tested various learning rates (0-8@101), bag fractions (0.1 — 0.8) and levels
of tree complexity (3 to 7), i.e. the number of esdin a tree. By trial-and-error we
determined the most effective algorithm paramefersour dataset being 0.005 for the
learning rate, 0.6 for the bag fraction and 5 ffar tree complexity.

\/ Feldfunktion gedndert

2008) which we basically also followed in our study
i) In the first step, the whole set of predictorighles is used to calibrate a BRT model.

i) In a second step, the number of parametersdaaed sequentially to avoid overfitting and
to derive a more parsimonious model. We trackediptige performance criteria during the
simplification process. As various variables weedcualated for different buffer sizes, our
predictors included a large number of correlatedattes. Correlation coefficients between

predictor variables of > 0.7 are known to sevediltort model estimation and subsequent

prediction, (Dormann et al., 2013). Thus, we perfednthis simplification process by first - | Feldfunktion gesindert

another parameter with a higher contribution (Ctdpet al., 2011). This avoided that two - | Feldfunktion geandert

highly correlated parameters remain in the paramsse longer than the last parameter of
another group of variables, which may contributssleompared to the two highly correlated
parameters but provides extra information thatasaovered by the other parameters. After
all highly-correlated parameters have been dropfugther parameters with low contribution

were dropped progressively.

Predictor contributions are calculated as propodi@ontributions to the total error reduction,
and can be considered as a measure for the inBuaidcthe individual predictors.
Additionally, a BRT model allows to derive part@d¢pendence plots which indicate how the

response is affected by a certain predictor afteoanting for the average effects of all other

predictors in the model (Elith et al., 2008). Thedets do not show the full effect of each - | Feldfunktion gesndert

12
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parameter on the model response due to interachithsother parameters that are fixed to

derive theses plots as well as due to parametepgetfation. However, they can be used for

[ Feldfunktion gedndert ]

2.3.1 WL Transformation of WL

The map of water levels of this study was develdpeiinprove the upscaling of greenhouse

gas emissions from organic soils. Therefore, tmalfimap should provide the highest

accuracy for the water level range for which thghbst differences of greenhouse gas

emissions occur. This can be achieved by transfayVL into a transformed variable WL

which shows linear relationship with GHG emissioiibie sensitivity of greenhouse gas

emissions to water level has been analyzed in aklayoratory and field experimental and

monitoring studiegBerglund and Berglund, 2011, Drésler et al., 20dahn-Schofl et al.,

2011, Leiber-Sauheitl et al., 2014, Moore and Rpul893, Moore and Dalva, 1993, van den

Akker et al., 2012)General trends are a strong increase of meth@hi) (emissions for__ - -| Geléscht: (Berglund and Berglund, 2011,
)

Drosler et al., 2011, Hahn-Schofl et al.,

annual mean water levels of approximately > -0.amd an increase of G@missions for 2011, Leiber-Sauheitl et al., 2014, Moore
and Dalva, 1993, Moore and Roulet, 199

water levels < -0.1 m with a trend similar to ausation function that levels out
approximately between -0.4 and -0.8 m (Figure B#)ile studies agree over these general
trends, the exact shape of the transfer functiahthe maximum levels of emissions as well
as their dependence on soil properties and othérommental parameters are still discussed
controversially. Here, we assume a hypotheticalstier function, relating the normalized
GHG budget, ranging from 0 to 1, to the water l€gek also Figure 3),

GHGBalance= —et" 1 WL <=-01 1)
1-e AWl WL >-01
As GHG budget can be positive for both low and High, we introduced the transformed

water level, Wi, as (Figure 3),

JwL+ol) _ WL <=-01
WL = { C } S @)

1- e—3(WL+O.1) WL >-01

By calibrating the model to both WL and Wlve test whether optimization on \Wbrovides
highest model accuracy for the water level randevest for GHG emissions and whether it

optimizes the map for application to GHG upscaling.
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2.3.2 Weighting scheme

When considering possible data weighting schemésworth emphasizing at this point that

the goal of this study is the development of aisitadl model that can explain both the water

level variability within a peatland as wells as amdlifferent peatlands. The data on target

and predictor variables for building this modelhghly heterogeneous. First, the target

variable datasatontains peatland areas that strongly differ inrthpatial extent and in the

number of installed dip wellSecond, the predictor variable dataset contairegosital and

numerical data, and part of the predictor varialdesdominantly vary from peatland to

peatland (e.g. climatic boundary conditions, lasgale topographic wetness index, peatland

characteristics, ...) whereas others also showimgibatland variability (e.g. land use, small-

scale topographic wetness index, drainage netwajk,As the influence of the individual

predictor variables on our target WIs expected being rather diffuse due to abundant

interactions _with other site characteristics, tlmbustness of derived dependencies will

strongly depend on the number of different peaiandhe dataset.

There are no _universal data weighting rules forilany heterogeneous data situations and

some degree of expert judgment and subjectiviipasitable involved when developing an

areas that strongly differ in their spatial
extent and in the number of installed dip
wells.

appropriate scheme (Francis, 2011). The need ofduting a data weighting scheme ,isw Geléscht: The datasetcontainspeaﬂaj

obvious, gs Vthout data weighting during calibration, too muofuencewould begiven to

e

small and highly equipped peatlands, whigli reduce predictive model performance beW Gelbscht: To use the information in the
0

data in an optimal fashion, it is important
introduce a weighting of the data. W

large less well equipped peatland areas. To avogin a simple manner, weight could b\e\\

reduced by the number of dip wells in each peatlawidch results into each peatland being\\ﬁe:ﬁsc::: o
eloscht: s

—

equally weighted. This scheme however does noicgeiftly use the high information content
provided by highly-equipped large peatlands, whsbbuld have a higher impact on model
calibration than a small peatland with only few diells.

> {Gelﬁscht: present ]

~ 7| Geldscht: n objective ]
and local density of dip wells, to derive dip weflecific weighting factorsit is based on

principles of data uncertainty reduction by repeéateasurementnd of geostatistics. First,

we consider our data situation as an analogue ¢d-arealysis with grouped data. It is has

been shown for homogeneous problems (all data Bame population) that optimal group

weights for meta-analysis is 1/SE2 (Hedges andmQk985) with SE being the standard error
of each group,
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/{ Formatiert: Tiefergestellt durch 14 pt J
7/

475 | SE=—= (3 /

476 | where g is_the error_standard deviation of a measuremewt [d is the number of -

477 | measurements in a group. For homogeneous probledardformag, this results in weights - - { Formatiert: Schriftart: Nicht kursiv |

478 | that are linearly dependent on N, which we heré tbel first end member of weighting.

479 | Heterogeneity (within-group variance) reduces thaation of the group weights which can

480 | be shown by random effects models (Cumming, 2082)econd end member of weighting,

481 | when heterogeneity totally dominates within-grousriance, optimal group weights are

482 | uniform for all groups, i.e. weights are indepertdefilN. We are not aware of a method that

483 | allows to estimating the degree of heterogeneitytli@ complex target and predictor data

484 | situation in this study, including data (spatiaba@emporal variability, measurement error)

485 | and model errors (missing parameters). As a trédeeiween 1/SE2 (homogeneous end

486 | member) and 1 (heterogeneous end member), we de@idea group weight that is the

487 | inverse of the standard error, 1/SE, which is efgn used in econometric studies (Dickens,
488 | 1990). We emphasize that this is a subjective @gtis

489 | The group weight, 1/SE, is the basis for the gdissitzal part of our weighting scheme. There

490 | are two reasons why we cannot directly treat oatlapds as groups. First, there is within

491 | peatland variability that is related to changinig siharacteristics. It is one objective of our

492 | study to describe this variability by statisticabaeling. Thus, dip wells must be treated

493 | individually and data cannot be aggregated at dgmehlevel. Second, we expect the model

494 | to learn more when the same number of dip welisstlled in a larger peatland. In a small

495 | peatland, spatial autocorrelation between dip wisllBigher, i.e. the information content is

496 | lower than for large peatlands. As a consequendbeofirst point, we do not aggregate and

497 | keep all dip wells in the target variable dataseatiributing to each dip well the fraction 1/N

498 | of its _group weight, so that the relative weighfs tlle groups remain constant. As a

499 | conseguence of the second point, we use princiflggostatistics in our weighting scheme.

500 | We replace the group size N (positive integer nuinigthe 'statistical' group size(positive - - { Formatiert: Schriftart: Kursiv ]

501 | continuous number being >1), which we derive frbm $patial autocorrelation among the dip

_ | Geléscht: 1
502 | wells., A = . )

.| Geldscht: Dip wells that represent only
i i . . I ‘partly repeated' measurements, i.e. indicate
503 | ,Therefore,we analyz the spatiabutccorrelation structure of the datasétsingle spherical some degdrt:e c:)f spatial correlation, can b
”””””””” R NN accounted for by

504 | variogram modelwas fittedto the sample variogram of all data (Figure 4 intisa 3.1). \3\\{Ge|5scht: ing

505 | Variogram model allow to differentiating the total data variarfcelled 'sill’) into a spatially }Ge"*“"“ Here, we fitted a %
"~ 1 Geléscht: The v
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uncorrelated variance (called 'nugget’) and a alhattorrelated variance (called 'structural

variance' and defined as sill - nugget) (Wackerh&#3). The variogram model allows to

derive for any distance between two locations terage squared difference of values, here

squared difference equals the sill. Accordinglye #utocorrelated fractiof, of the average - - { Formatiert: Schriftart: Kursiv ]
squared difference between two dip WﬂEliB:ldjﬁifS,ﬁ 777777777777777777777777777777 - {Formatiert: Schriftart: Kursiv ]
- ‘[Formatiert: Schriftart: Kursiv ]
_ sill - V.J _ | Geléscht: provides a nugget, a sill, and ja
i . - (‘_]') 7 | range of spatial correlation for the given
sill - anQet . dataset of WL. The fraction of spatial

correlation, i.e. the correlated data variance,
can now be obtained for any distance

We now define the 'statistical' group siz@f each dip weli to bethe sum ofone plus the ‘. | between wo dip wellsandj by:1
{Gelﬁscht: 8

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

of i LY ~ -
T AN TGeloscht: of Eq. (7) can be determined
\ | for
\

o osill -y,

n=1+)

 sill - nugget

‘\\i\\\\{ Geloscht: as

\\\\\\i Geldscht: contributions
B \\:\\{ Formatiert: Schriftart: Kursiv
According to the discussion above, dip well spedifeights can then be calculated with .  { Formatiert: Tiefgestellt

©

v _

\\\ { Geloscht: :
= 1 _ 1 _ (6) { Geléscht: o
n SEi Ue,i \/F. - { Formatiert: Englisch (USA)

weighted' to some degree, a behavior that correspém our initial intention to lower the

L o 0 U U U

influence of small peatlands compared to large ofié® error standard deviation is

dependent on several factors, e.g. the length eftithe series, the temporal measurement

density and the microtopography around the dip vk simplicity, we here assumggdto - - Formatiert: Schriftart: Kursiv ]
o ‘[Formatiert: Tiefgestellt ]

be uniform for all dip wells, which simplifies E¢f) to w =L

N

Only dip wells with the same land use type werersech up with Eq.%), which avoids the -~ | Geldscht: where gammg is

7777777 _777_7777777_777777777T7777_77777777777777777777 T calculated based on the variogram
down-weighting by, dip wells having different land use type. The latter are mostly | parameters and the distance between di
N\ well i and;.

characterized by fairly different VWlthus by rather low spatialitccorrelation to dip well. \\\i\\{eelascht: 5

, . , . " {Geloscht: of
After spatial correlation has been accounted fug, gum of the weights of all dip wells of. %Gelfscht O_th
\ eloscht: wi

each land use type were adjusted that they comésfmothe fractions of this land use type in { Formatiert: Tiefgestellt

A A o
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Germany. This adjustment accounts for the oversgmtation in the dataset of dip wells in

unused peatlands and underrepresentation of dip imedrable land.

2.3.3 Model performance criteria

Model fit and predictive performance after crosdation were quantified by the weighted

root mean square error,

1 m /
owse- [L 5l ) 0
Ziil i v 4//
where m is the number of dip well,; is observed WL or WlLof dip well i, X is
simulated WL or WL of dip welli, andw; is the data weight of dip well(see below). We
refer to the root mean square error of the predid&ga of cross validation by RMSEModel
performance was further quantified by Nash-Suglifficiency (NSE),

NSE=1- zir:lvvi (Xo,i = Xj )2

" w (- %,)

: ©)

v _ _

where X, is the mean of all observed WL or WIt indicates how well observed vs.

predicted values match the 1:1 line. NSE is a gnatall indicator of predictive performance
because it combines scatter and bias (common dcfsdbr slope difference from 1:1 line)

reference model based on the data mean. We refbe tNSE of the training data by NSE

and of the predicted data of cross validation bENS

Systematic errors were quantified by calculatirgriodel bias, here defined as,

BIAS = Zimﬂ(vvi Xoi WX, ) )

Uncertainty of the model predictions was assesseddwtstrapping, cross-validation and

residual analysis.

estimated the confidence intervals around the ptiedis and the fitted functions by taking
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0 variancea': . For dip welli the weight is:{]

[ Geloscht: 3 ]
/

[ Gelgscht: 4 ]
/| Feldfunktion ge&indert ]
" 1| Geloscht:

R

A common way to introduce individual da
weights is to use the inverse of the error

(O]
g,

e
Let us consider the extreme case that the
are two dip wells separated by only a few
meters, so they are basically totally
correlated regarding their water level
dynamics. The absolute water level,
however, may differ between the two dip
wells due to micro-topography and
measurement error. The second dip well
can be considered as a repeated
measurement. A reasonable approach
would be to take the mean of both
measurements and to reduce the error
variance by the inverse of the square roo
the number of measurements, for this
examplen=2, which is common statistics
for repeated measurements: |

1
| 1 "
2

T Je,i

Jn
Instead of taking the mean of the two dip
wells, it is equally possible to keep both d
wells. Then the weight of each dip must b
divided by the number of fully-correlated
measurements, hene2:§

W =

)1

W = 1 @)
i 1 )
N—=0;
Jn®
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1000 bootstrap samples of the 53 peatlands. Thébauwf peatlands in each sample was
equivalent to the dataset, but peatlands were tedleandomly with replacement. Using the
predictor variables of the final model, a BRT modeds fitted to each sample. Cross
validation was again performed on peatlands, thpeatland in the calibration dataset was
not part of the cross-validation dataset to avoigreptimistic results. Variances of the

predictions and of the fitted functions of the 1086dels were evaluated.

training and test datasets lowers model accuramen@he fairly small number of peatlands
in the dataset and the partly high spatial coritadf dip wells within these peatlands, we
decided not to split the dataset into a training test dataset. Estimates of model accuracy
can then be based on cross-validation, therebyngadifective use of all the data (De'ath,
2007). The prediction uncertainty of the final mbdeestimated by the root mean square

error of prediction (RMSE, see above) for each land cover class. Afterngdtr normal-

like distribution of the residuals, RMGFcan be used to derive the 68 and 95 % confidence

intervals of the predictions with RM$Eand 2 * RMSE,, respectively.

Finally, additional residual analysis was performedevaluate whether the predictions are

biased for different land cover classes or geodcaphegions.

2.5 Regionalization

In the final regionalization step, the predictorighles contributing to the final model were
determined at a 25x25 m raster for all organic soiGermany. Predictor variables were
determined with the same map input that was usednfodel building. Land cover
information including information on ditches wassbd on the data from year 2012 and the
climatic data was based on the average of the3lastears. The fine spatial resolution of
25x25 m was not chosen to fool the reader withatially highly accurate model. But, this
fairly fine scale was necessary to map the reltigenall scale effects of the topography,
land use and peatland geometry variables. Theinoalel was then used to make a prediction

for each of these raster cells.
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3 Results and Discussion

3.1 Spatial correlation structure of the dataset

The variogram model fitted to the sample variogmmvided a nugget (0.012%n0.11 m), a
sill (0.09 nf; 0.3 m), and a range of spatial correlation (2@)Gor our dataset of WL (Figure
4). The nugget represents the very small-scalehgdilaulic variability and micro-topography

determination of the ground surface and in the rnigmiof the manual measurements.
Furthermore, micro-topography (e.g. hummocks) arsgillating peat surfaces of wet
peatlands pose a challenge for an accurate detationinof both ground surface and water

level. The water level time series in the datasevef different lengths and ranged from 1 to

1997). For simplicity, in our analysis, data we harmonized by extrapolating WL time

series using weather data to a 30-year period.,Tthesnugget also includes errors that are
introduced by dip wells with different measurempatiods that are located in the range of
spatial correlation. In consideration of these lesa@urces, the fitted nugget of 0.11 m appears
to be a realistic value. The fitted sill matchedhwD.3 m nearly perfectly the standard

deviation of the data (0.31 m), which indicates sisiency between semivariogram model
and dataset. The fitted range of spatial corraladib2700 m reflects both physical effects, i.e.
the average range of lateral flows due to hydragdadients, as well as the effect of average

land use patterns in Germany on spatial correlado®VL. Fitted values were used in the

calculation of the dip-well specific weights usiBg. ©),

- { Geldscht: 7

~ { Geléscht: and (9)

3.2 Typical water levels for land use types in Germ  an organic soils

The land cover classes are characterized by plausiban and median water levels, which
show consistent differences among each other (Tafled Figure 5a). The mean values of
arable land and grassland agree with what can jpecéd for their agronomic requirements,
with slightly lower water levels for arable lanche high variability observed for both classes
may be related to the variability of the efficienaf/installed drainage systems, as e.g. the
presence and condition of tile drains and the depttlitches. Grasslands can be managed
with very variable intensity, which is partly refted in different water levels. Figure 5a

further shows that deciduous forests seem to ddmima slightly drier organic soils

compared to coniferous forests, which dominate unddter conditions. A high variability of
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water levels is observed for the land cover classsed peatland'. On the one hand, post peat-
cutting topography increases the variability of Wiver short distances. It probably
contributes to the high variance observed for ttlass. On the other hand, this class
comprises both rather dry unused peatlands andemegatlands in which re-wetting
measures already took place, which however do hotvsyet a 'wet soil' attribute in the
ATKIS Digital Landscape Model. This may also capset of the variance observed in the
grassland and forest land cover class. All ‘wettlaover classes (reed, wet grassland, wet
forest, and wet unused peatland) that were sephiatewetness indication clearly show
higher water levels, showing the wetness attrilp@itthe Digital Landscape Model is a useful

attribute.

Figure 5b shows the transformed water level forctdsses. It can be observed that the
variances of the wetter land cover classes relgtinerease compared to the variances of the
dry land cover classes. This is due to the higkessitivity of GHG emissions in the wet
range of water levels (> -0.5 m). Consequently réiber high variance of WL for arable land
corresponds to a rather low variance of yMLe. to a rather low assumed effect of WL
variability on the GHG budget.

3.3 BRT model calibration and validation: WL vs. WL

In contrast to land cover class, the other predigtriables showed, if at all, only weak
relations to WL and WLwhen evaluating them with box plots, 2D cross labd simple
correlation matrices. Here, we expected BRT toadte strongest predictor interactions and

to identify the most informative predictors.

After model calibration with all predictors, subsegt model simplification successively
dropped those parameters with correlation > 0.7 lamgst contribution. For both, WL and
WL, model performance improved during this simplifica. For WL, highest values of
NSE., of approximately 0.46 were achieved with 21 to&el parameters. The development
of NSE,, for the last 50 parameters is shown in Figurewgther elimination of parameters
led to a pronounced decline of model performanéeil® behavior was observed for the
calibration on WL. In favour of a more parsimoniomedel we chose the model with the
lowest number of parameters before the pronouneeting of model performance occurred.
For the calibration on WLthis corresponded to the model with lowest nundfgrarameters
that still achieved NSE values of > 0.45 (Figure 6). The final Winodel comprised nine
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predictor variables, and the final WL model sevanameters. The percentages of parameter
contributions to the final model and their indivadunfluences are discussed for Wh

section 3.4.

Table 3 summarizes the statistical performancéleomodels calibrated on WL and WEor
both models NSE; is considerably higher than N§Eand shows the commonly observed
overfitting behavior of BRT models. The differeneasures that we conducted to minimize
overfitting (cross-validation on peatlands, resimic to monotonic responses, and model
simplification including elimination of highly ccetated variables) lowered the difference
between NSE; and NSE, but could not totally avoid overfitting. NGEof the WL model
(0.453) indicates higher predictive model perforoeigcompared to the WL model (0.381).
However, as the data ranges differ due to the fwamation, this comparison may be
misleading. Therefore, we transformed the predistiof the WL model to obtain Whalues
from this model and equally calculated the perforogacriteria (Table 3, second column).
Then, NSE, is slightly increased (0.397), but does not achithe values of the model that
was calibrated on WLA better predictive model performance of the maddibrated on WL

is also visible for the RMSEvalues. The total RMSE as well as the RMSEvalues for the
dry (WL <-0.3 m) and wet range (WL >-0.3 m), shdigtstly lower values for the Wimodel
compared to WlLvalues from the model calibrated on WL. Given bypothetical transfer
function (Figure 3) in which the GHG budget is hnly related to WL, the higher accuracy
of WL, predictions directly corresponds to a higher amcyiof GHG budget predictions.

Superior model performance is also evident whenluatiag model bias. Only when
calibrating directly on WL, the WL predictions are bias-free. Calibration on WL and
subsequent transformation to \Wintroduces a model bias towards systematicalleoWL,
values. In subsequent applications to GHG emisgjstaling, lower W] values would lead

to an overestimation of G@&missions and to an underestimation of,@htissions.

3.4 Influence of predictor variables on WL

Given the beneficial characteristics of the modalibcated on WL for GHG upscaling,

presentation and discussion of further model ressiltestricted to the Wimodel.

The BRT method allows to analyze the parameterribanions to and influences on the

percentages of the contributions of the nine ptedicariables to the final model ranged from
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741 25.2 % to 5.6 % (Figure 7). Except of protecticatis$, at least one parameter of each of the
742 seven parameter groups contributed to the finalehddll protection status information was
743 dropped early during the simplification process tlutow contribution, although WL showed
744  slightly higher values for data from Nature Protattor Special Areas of Conservation.
745 However, other parameters seem to be able to doligpensate the information that is lost by

746 dropping this predictor.

747 Land cover class, Ic, at the dip well was the patamwith strongest contribution (25.2 %). It
748 basically follows the trend illustrated in Figurb.5The bootstrap error plotted as standard
749 deviation (Figure 7) shows the variation of thifiiance over the 1000 bootstrap models. A
750 second land cover parameter, the fraction of dng leover classes on organic soils in a buffer
751 of 2500 m radiusfy(2500), contributed to the model with 10.3 %. Thenetonic decrease
752 of WL, with increasindq,(2500) is plausible, as higher values reflect istemland use in the
753 surroundings of the dip well and thus indicate ristee artificial drainage. Together both
754  parameter contributed by 35.5 % and thus land ceemesents the parameter group with the
755 strongest model contribution.

756 Peatland characteristics are the second most imgoparameter group. The peatland type
757 contributed by 16 %. The model indicates that pealtt without any connection to surface
758 water bodies (river or lake) and the class of otiiganic soils are characterized by lower WL
759 compared to the peatland types lowland bog, uplogland fen neighboring surface water.
760 As the class of other organic soils is generallgezted to reflect lower water levels and as
761 surface water may have a stabilization effect otemdevels of organic soils, the influence of

762 the peatland type can be considered as plausilelgid8s peatland type, the substrate of the

763 | peat base contributes by 5.6 %. Here, organic soislying peat clay layeyge.qg. limnic - { Geléscht: limnic sediments

764 | sediments likecalcareous gyttja) or basement rock are charaeteby higher Wi.compared
765 to organic soils overlying unconsolidated rock.sTban be explained by the lower drainage
766 resistance of unconsolidated rocks. This may causicreased efficiency of anthropogenic
767 drainage and/or a general higher vulnerabilitygepage losses. Finally, slightly lower WL
768 values are indicated by a high fraction of orgesuds for the 500 m buffeffpea(500). This
769 may reflect the higher land use pressure on largatlands compared to rather small

770 peatlands, which tentatively are more easily preskby nature protection efforts.

771 The remaining four parameter groups are represantékde model by only one parameter

772 each. The third most influential parameter was ldmgth of ditches on arable land and
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grassland for the 250 m buffer,efiry(250). At first glance, it may be surprising thathw
increasing ditch density, Wlvalues tend to be higher, as ditches are suppiosddain the
water when land is used as arable land and graksldre fact that the model identifies a
rather strong effect in the opposite direction rbaycaused by the incomplete information
about the drainage network. There is not detaitéotination about the spatial distribution of
tile drains. Based on expert knowledge, agricultaraas with a lower ditch density are more
likely to be equipped with tile drains. As the dait easily installed with a narrow drain
spacing, are more effectively draining organic solbw WL; values for arable land and
grassland may be related to low ditch densitiestheanore, ditches were originally dug at
narrow spacing in especially wet areas of orgaails,sbut there is no information available
whether these ditches still function properly.

The parameters Whnmer hrel @nd tjaszs all show expected trends. The model predicts highe
WL, for increasing climatic water balance in the sumperiod (May to October), Whnmer
and for dip wells located in depressions (low valwé h,), and for higher small-scale
topographic wetness indices calculated on the 28l elevation model (tis29.

The fact that all parameters show expected or &gilée responses in the model corroborates
the reliability of the calibrated Wlmodel. The standard deviation of the predictopoeses

based on the bootstrap samples shows the statfilihe observed responses.

Further insights into model behavior can be obthibg analyzing parameter interactions.

This is obtained by changing two parameters simatiasly while keeping mean values for

interactions. Parameter whmerstrongly interacts withpy,e The generally lower values of
WL; of fens without surface water connection and otbayanic soils show a stronger
dependency on the summer climatic water balancéleVdtsummer climatic water balance of
> -80 mm shows rather low further effect on Vftir the wetter peatland types, in contrast for
the two drier peatland types there is still a gfreffect with increasing Wmmer The trend for
Whsummer>130 mm for the dry peatland types is supporteddwen different peatlands.

Another strong interaction is observed [Bgs.andfq,(2500). While a rather low effect of the
fraction of arable land and grassland is obsereecdfganic soils overlying basement rock
and peat clay layer, strong effect is observedfganic soils overlying unconsolidated rock.
This interaction reflects the higher lateral ranferainage effects for organic soils with little
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flow resistance at the peat base. In these orgails, intensive land use lowers water level

over Iarge areas.

3.5 Discussion of model uncertainty

Plotting observed vs. predicted Wirom cross-validation (Figure 9) illustrates trether
large residual variance that cannot be explainedhbymodel. As indicated by the higher
RMSE,, for the wet range (Table 3), scatter increaseh imitreasing WL Error bars in the
y-direction indicate data error derived from thegget of the variogram. It is exemplarily
shown for a few data points. Due to transformatidata error increases for higher WL
Figure 9 demonstrates that the fraction of unerplale variance related to data error is much
higher for the wet than for the dry range. Boofstearor that indicates the variation of the
model predictions for 1000 bootstrap samples isvshim the x-direction for the same data
points. Bootstrap error is lower than the datardiopthe wet range and slightly higher for the

dry range.

Bootstrap errors demonstrate the sensitivity of ehquiedictions to changes of the dataset
used for calibration. When a model possesses stalatieficits, such as missing predictor
variables, bootstrap errors should not be usedefmel confidence intervals for the model
predictions. Figure 10 shows residuals from crcaidation and standard deviation of
bootstrap predictions for all land cover classd® Tesiduals of each land cover class show
normal-like distributions. For five of the nine thrcover classes (wet forest, wet unused
peatland, arable land, coniferous forest, and regitBpiro-Wilk test of normality is positive
(p>0.05). Figure 10a further indicates that redsluwd each land cover fairly well scatter
around zero, indicating low bias for the variousdlaover classes. Land cover class specific
confidence intervals of model predictions can thegerived from the RMSEof each land

cover class, e.g. 2*RMSfrepresenting the 95% confidence interval.

The prediction uncertainty derived from cross-vatiidn is much higher than the bootstrap
prediction uncertainty obtained from the bootstrstandard deviation (sd), with 2*sd

corresponding to the 95% confidence interval (Fégl®). The large difference between these
values indicates that the model has structurakiiefthat can be attributed to several error

sources:

i) Key influences on WlLare missing in the set of predictor variables. &lohthe predictor

variables indicate whether and to which extent wagéwel increase due to re-wetting

24



836
837
838
839

840
841
842
843
844
845
846

847
848
849
850

851
852
853
854
855
856

857
858
859

860
861
862
863
864
865
866

measures took place in the last years. Wetnesgaitwls (wet soil and/or vegetation
attributes) that are obtained from the Digital Lscaepe Model probably react with a delay of
several years. Thus, we expect the occurrence \@raleobserved high Wlvalues that

cannot be explained by any of the predictor vaeabl

ii) Small-scale topography that is not representth sufficient detail and accuracy in the
DEM may cause that several predictions stronglfedifrom what would be expected from
the other predictor variables. A common example rnaya dip well that is located on a
narrow peat ridge, which remained after peat-cgtiind is absent in the DEM, and that is
situated in an area classified as wet soil by tlgit®l Landscape Model. Then, the model
indicates a WL that is much higher than the observed Wds for the observed value the
reference surface was the surface of the peat.ridge

al., 2009). At the national scale, however, thee rEo maps on tile drains. Tile drains are
known to have a strong effect on Whbr arable land and grassland. As explained abaee,

expect parameter giary(250) to partially compensate for this missing mfation.

iv) Another source of prediction uncertainty maynmise inconsistent and erroneous land
cover classification of the Digital Landscape Modat to the high degree of subjectivity for
many of the attributes. Furthermore, the tempocaleacy of the Digital Landscape Model
may be as bad as 5 years which can cause times sétieland use change to be split at the
wrong date, and vegetation and wetness attributésyet to be updated to the current
conditions.

v) The water balance of fens strongly depends ensike and the hydraulic head of the

groundwater catchmente. of the aquifer underlying the peat lay@nfortunately, there is no

consistent map on hydraulic heads or groundwateha@nts for all Germany.

We checked model predictions for geographical b&eographical location was not one of
the model parameters. However, history and polfdamd use on organic soils, current ditch
water management and climate do show large-scalgrgghical trends. We divided our
dataset into the three major German peatland regibiic, NW and S) and evaluated the
model residuals (Figure 11) to see whether our midbiased due to important missing
geographical effects. A serious bias for any of thieee major German peatland regions

cannot be identified.
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When applying calibrated statistical models duniegionalization, it is important to check
model behavior for extrapolation outside the raofjthe parameter space that is covered by
the data upon which the model was built. BRT alweysapolates at a constant value from
the most extreme environmental value in the trginitata. In contrast to other types of
statistical models, e.g. generalized linear modBRT does not continue the fitted trend
beyond the last observation. Regarding the categjorariables, the dataset covers all classes
occurring in Germany with several peatlands. Theask also covers the major range of
values occurring in Germany for the numerical prdi variables. Furthermore, Figure 7
indicates that the constant values, at which theleh@xtrapolates the influence of the

variables, do not raise major concern for any ex¢r@redictions outside the parameter range.

3.6 Regionalization

The map of Wkresulting from the application of the fitted \Whodel to all grid cells shows
gradients at the regional scale (Figure 12a). Engthe south of Germany, a gradient from
wet to dry can be observed for the pre-alpine uplogs and the peatlands of the moraine
plain. In the north of Germany, the map indicates brganic soils in the very NE are wetter
than the rest. For the rest of the north a slightiignt can be observed from less dry to dry
from NW to E, which is mainly driven by the higheummer climatic water balance in the
NW. As both categorical and numerical predictolialales do also vary at sub-regional scale,
the resulting map also shows gradients within pedtlareas, e.g. due to small-scale land use

ditch density gradients and topography effectsufadL2b).

We calculated WL averages of the land cover classes using theraigied WL from the
map (Table 2, column 3). The given standard deaxnatomprises both the variability within a
land cover class that is explained by the modelels as the uncertainty of each prediction.
Resulting means and standard deviations slighfferdirom the corresponding values of the
dataset. The land cover specific Whlues obtained from the map can be considerbeiag
more representative, as the regionalization praseds supposed to partly account for

potential bias in the dataset.

When applying this map and its predicted Whlues in subsequent GHG upscaling, it is
crucial that model uncertainty is propagated prypémn example demonstrates the necessity
of uncertainty propagation. For a grid cell classif as wet grassland, the probability
distribution of WL is shown based on a normal distribution that itesdfto the residuals of
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this land cover class (Figure 12c). Without propigathe uncertainty and when only
translating the predicted Wl(eventually in combination with other parametezyy. soil
properties) into a GHG budget, GHG budget is stipngderestimated as the Whrediction
is close to zero, indicating neither large £@r CH; emissions. When translating the full
distribution of WL into a GHG budget, the resulting GHG budget wdddmuch higher, as
at both sides of the predicted \Wthe GHG budget increases.

3.7 Possible paths for model improvement

The model performance that is achieved by thessizdal approach presented in our study
raises the question whether collecting more WL d=a improve model performance or
whether the factor that is constraining the modefgrmance is the limited strength of the
nation-wide available predictor variables. To assb&s question, additional ‘holdout models’
were developed by fitting the BRT model to varicandom sets of data with a limited
number of peatland areas (from 10 to 50 peatlais)each number of peatland areas, 500
random selections were calibrated and model peeoom was evaluated with N§EAs
expected, results indicate an increase of modedlopeance with increasing number of
peatlands used in the model building process (Eid®). Results also indicate a substantial
flattening of the learning curve. Thus, furtherleolion of WL data may only lead to a
substantial model improvement when including marmgyrarpeatlands into the dataset. More
promising would be the specific collection of matata on the weakly represented and/or

important land cover classes arable land and gnadsl

Another path to achieve a stronger model improvérigethe development of new predictor
variables. In future, the availability of a morecaate DEM based on laser-scanning data,
which is already available at full coverage for sofederal states of Germany, may strongly
increase the predictability of the observed WL datdditionally, a nation-wide map on water
management and on the distribution of tile draireymepresent great potential to explain
large parts of the residual variance and/or evienwvadetting up a large scale physically-based
model that includes water management. Furthernaata, harmonization by extrapolating the
water level time series of our dataset with thenatic boundary conditions of the last 30
years may lower the unexplainable variance of ttaskt due to short measurement periods

(2004) using the transfer noise model of Bierkeinal £(1999). Finally, we believe that the - { Feldfunktion gesndert

inclusion of remote sensing products in our stafstmodel approach, as e.g. spaceborne | Feldfunktion geéindert
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microwave soil moisture observations (Sutanudjajal.e 2013), may hold large potential to - | Feldfunktion gesndert

improve model performance as moisture differenaestd varying water levels are high for

organic soils.

4  Conclusions

Our study demonstrates the potential of statistigatieling for the regionalization of water
levels in organic soils when data covers only alkfrection of peatlands of the final map
and thus spatial interpolation is not possible.Witite available dataset of target and predictor
variables, it was possible to predict 45 % of thdGsrelevant water level variance in the
dataset in a cross-validation scheme. The vari@explained by nine predictor variables.
With the analysis of their effect on the water letv@vas possible to gain insights into natural

and anthropogenic boundary conditions that comtedér levels of organic soils in Germany.

Based on a hypothetical GHG transfer function nelpGHG emissions to annual mean water
levels (WL) we showed the advantage of transfornivegannual mean water level into a new
variable (WL) to which GHG emissions linearly depend on. Ttamsformation improved

model accuracy, increased the explained variant¢keoiater level range that is relevant for

GHG emissions and avoided model bias.

The presented approach is transparent and alloeeessive improvement when new input
data and predictor variables become available.r@sults show that model improvement by
increasing number of WLldata, however, seems to be limited. If efforts ara@de, data
collection should be concentrated in agriculturalted organic soils, for which relatively few
data is available. We believe that the constraifimgor of model performance is rather the
weakness of the predictor variables that are ctlyreavailable at large scales. The
development of new more informative predictor Vales, as e.g. water management maps

and remote sensing products, may represent the pnom@sing path for model improvement.

The proposed regionalization approach is suitedpplication to any other country when
similar data on target and predictor variables viailable. It is important that the spatial

resolution of the predictor variables is high ertoginke et al., 2004). If predictor variables - -| Feldfunktion geéindert

like land use and peatland type are only availabla much coarser scale and provided as
percentages for grid cells, the dependency betweedictor variables and the rather local
WL will be probably lost for most of the predicteariables.
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Our work must be considered as one piece of a brdsamework for the regionalization of

GHG emissions that includes other site characiesisind must be further developed in future

research. For example, if for specific regions itksdanformation on peat properties becomes

available and its effect on GHG emissions can kienaged by the use of multivariate transfer

functions, the map of transformed water levels §}¢an be-used-as an-input for-this-follew-

up regionalization.
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1 Table 1. Overview on predictor variables.

Predictor Variabl Variable nam

Value:

PointBuffers (m)

Data Sourc

Land use type

Arable, grassland, forest, shrubs, peat-miningsadu
peatland, swamp, open water

point, 100, 500, 1000, 2500

Digital Landscape Mbde

Vegetation attributes
(optional)

Deciduous forest, mixed forest, coniferous forestd,
shrubs, grass

point

Digital Landscape Model

'Wet soil observed'

Yes, no

point

Digital Landscape Model

Combineclandcover
information (land use type +Ic
veg. + wet soil attr.)

Arable, grassland, wet grassland, deciduous inetudiixed
forest, wet forest, coniferous forest, reed, unyseatland,
wet unused peatland

point, 100, 500, 1000, 2500

Digital Landscape Mbdel

Dry land cover fraction fary(X) arable + 0.5*grassland on organic soil area; 0 to 1 100, 500, 1000, 2500 Digital Landscape Mbdel

Wet land cover fraction reed+_wet_grass|.and+wet forest+wet unused peatiand 100, 500, 1000, 2500 Digital Landscape Model
organic soil area; 0 to 1

Total length of itches for

all Ic and only for arable itenan(X) >0m point, 50, 250, 1000, 2500 Digital Landscape Mbdel

and grassland (subscr.: 'dry’)

Distance to next ditc >0m point Digital Landscape Mod*
Lowland bog, upland bog, fen neighboring surfacéeewden . . .

Peatland type Pype without neighboring surface water, other 'low-Gjamic soil point Map of organic soifs

Material at peat base Phas: Unconsolidated rock, peat clay layer, rock, norimfation point Map of organic sofls

Peatland fraction frealX) Oto] point, 500, 1000, 2500 Geological Map (BGR)

Distance to edge of peatland >0m Geological Map (BGR)
Ratio ofdyeq/fpea >0 2500 Geological Map (BGR)
Precipitatiol >0 mn point rastermap 1xkm (DWD)
Evapotranspiration >0mm point raster map 1x1km (DWD)
Climatic water balance Whinme <0and>0 mm point raster map 1x1km (DWD)
) ) point- median 25, 50, 100, 25 . . )

Relative height hrel(X) <0and>0m 500, 1000 Digital Elevation Model
Topographic index Hise(X) >0 point and 1000 buffer for 10, Digital Elevation Model

25, 250, 1000 raster values

Protection status

Nature Conservation Area, Special Areas of Consierva
Special Protection Area for wild birds, UNESCO-libsre
reserve, Nature Park, National Park, Landscape@ioh
Area

point

Maps of protected aréas

2 |

3 (GUEK 200, BGR - Federal Institute for Geoscienmes Natural Resourcedjaster map 1x1 km of weather data (German Weatheic®);>BKG;Variable name indicated for the nine

IATKIS Basis DLM, Federal Agency for Cartography @Belodesy, BKG?Map of organic soilsfoRkopf et al., submittg¢Humboldt University of Berlin)’Geological Map 1:200 000

4 variables in the final model with (X) indicating fosize and R indicating raster resolutiifederal Agency for Nature Conservation (BfN)

= [ Geldscht: RoRkop'et al.,submitec
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Table 2. Weighted mean and standard deviation of aidl WL, data, and of the WLmap
presented in section 3.6, for the nine land colasses.

WL (m) WL()  WL(), map
mean +sd mean + sd mean * sd

arable land -0.69+0.30  -0.76+0.17 -0.66+0.22
deciduous f. -0.45£0.34  -0.49+0.37 -0.47+0.35
grassland -0.44+0.29  -0.52+0.32 -0.49+0.30
unused peatl. -0.39£0.36  -0.39:0.41 -0.374£0.40
coniferous f. -0.36£0.36  -0.37+0.37 -0.46%0.35
wet unused peatl. -0.22+0.27  -0.18+0.40 -0.17+0.36
wet forest -0.22+0.29  -0.17+0.43 -0.21+0.39
wet grassland -0.10+£0.14  -0.0040.31 -0.15+0.39
reed -0.01+0.17 0.20+0.29 -0.06+0.32
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Table 3. Performance criteria of the different meddry range defined as WL < -0.3 m and
wet range as WL > -0.3 m.

WL(m) WLi(-) WL¢()
(calibrated(calibrated(calibrated
onWL) onWL) onWL)

NSEca 0.627 0.559 0.642
NSE., 0.381 0.397 0.453
RMSE, 0.269 0.299 0.284

RMSEy dry 0.284 0.263 0.259

RMSEcy wet 0.222 0.382 0.355

Bias -0.003 0.083 0.002
Biasiry -0.012 0.070 0.003
Biasyet 0.021 0.120 0.000
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a b~ WN

Il Bog peat
Il Fen peat
B other org. soils

® Dipwells

Figure 1. Locations of the 1094 dip wells of thetadat. Base map (Geological map
1:200,000, BGR) shows the distribution of bog agwl feat, and other organic soils.
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Climatic
Boundary
Conditions
/ \
V.5
“Z

Drainage
Network

Optional « Protection Status
Topographic Index

Attributes .
C‘( Shrubs/ | Relative Height
so,i[/ reed
| 1094 dip wells

and Cover Information
(updated every 5 years)

Land Use
Type Peat- 53 peatlands
Cutting
Mire Grass- Dip well
rable,

L Forest \and land
Peatland
Characteristics + Fraction of peatland
(RoBkopf et al., in buffer
submitted) + Distance to edge

e+ Fraction of land
cover in buffer

Figure 2. lllustration of the predictor variablestermined for each dip well based on

available national maps (see Table 1).
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Figure 3. lllustration of the annual mean watereleVL) transformation. (a) Hypothetical
transfer function relating GHG budget to WL (m)) (BHG budget vs. the transformed water
level (WLy). (c) WL vs. WL. Rugs indicate the data quantiles of thalyaed dataset.
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Figure 4. Sample semi-variogram and fitted semiegmam model of the annual mean water
level data, WL.

41



56 91 418 65 81 382 38 57 30
Fay
1
1
1
1
1
1
1
:
1
.

0 F---mm-- -
(ER -
3 F--[ T
[ [ [ [ [
o 0 = 0 o
-~ o o 0. ~
() "I
30 +_A o
b o-{[}H0
S _.--:u-._ o
¥ o4 o
s F--{T }-4 o
s (L3 o
2 (g o
5 F-- --4 o
)% = ===
s AL
[ [ [ [ [
[t o 0 o 0
o o <Q 5 AN
(w) IMm

paal
puejsseld 1om
1S910§ }om

‘read pasnun jJom
'} SNOJBJIUOD
‘pead pasnun
pue|sselb

'} snonpiosp

s|qe.e

paal
puejsseld jom
15910} Jom

‘fead pasnun jom
'} SNOJBYIU0D
‘pead pasnun
puejsseldb

'} snonpiosp

s|qe.e

Figure 5. Water level relative to ground surfacel. \Wh), and transformed water level,

WL (-), by land cover class illustrated as weightexk Iplot. WL,

5
6
7
8

1 corresponds to

1 to maximum Cll emissions. In the upper part, the

maximum CQ emissions and WL:

number of dip wells in each class is indicated.

42



g b~ W0 N

< o
T CPo
S} P © %o
o
3 © 00
<} %P0
Oo
o
I AR °
- 7] 0o O
%) o
= e
o
g
S o
o]
@ 4 o
o
o
T T T T T
50 40 30 20 10

Number of predictor variables

Figure 6. NSE, as a function of number of predictor variablesduse the model of WL

during model simplification and shown for the |1&6tparameter drops.

43



N o o0~ WON P

(a) (b) (c)

~ | + o | N
o o =]
0
£ B LI R
§ S - S 1 S
k3]
g5 -H-H’ |+ T SV
® o '} o N
S ] S ] S
T T | T T | T T T T T T T I\ | ITTNTTT Y \I W \II TNV
o5 ot A o8t (0O e R R S A 0 2000 4000 6000
Ke’ 6\%‘%% e%eg o@%\a ¢ 0@"‘ :\a‘*e :\"’ i’a‘*e Z&\\@“ o
0\‘“?" ,‘(\0 e
(25.2%) A ptype (16%) diien_ary (250) [m] (12.1%)
(d) (e) ()
S N N
o o o
iy
< ST S b —L
c o b= X s
© s 7 S =2
‘g _ - -
& 97 S ] S
©
N N 8
' ”|l 1 \HHIIIi\III\IH\HJI\I Il i ' ' ' LU IIJII I]\I Ll ' ' 11 IIIII\HIHI \III
200 0 200 400 600 00 02 04 06 08 10 -5 0 5 10
Wbsymmer [Mm] (11.8%) fary (2500) [-] (10.3%) he1 (1000) [m] (6.8%)
(9) (h) (i)
o~ o o |
g
< S S S E
5 <4 o | M o | =+
8 o o o
22 ° ] =+
e < S 3
| N N
= 3 S
{ ' ' Junl \Iﬁl T 1 10 T 1l ' ' } T T T T
5 10 15 20 25 02 04 06 08 10 0\\4“’\“1@\@6@0‘ ‘oo‘*\ o
\ o
& Qe
0“0‘\
tirasos (1) [-] (6.4%) foeat (500) [-] (5.8%) v Poase [] (5.6%)

Figure 7. Partial dependence plots for the predicaniables. For explanation of variables see
Table 1. Y axes are on Wkcale and are centered around the meagq Bftor bars and grey

area indicate standard deviation of the response d000 bootstrap models. The relative
contribution of each predictor is indicated as patage. Rugs at bottom of each plot show

distribution of data across that variable, in deil

44



o o
o ] [SH
= 5
r-‘:"
J g4 !I ““““““““““ g o4
R = S
el el
) / o]
= z2 0
'S Q@ 7| === w Q@ 7
fen; no surface water
< --- fen; surface water < | e .
s v highland bog S 7| —— peatclay layer et eeaas
-=-= lowland bog --- rock
© / —— other organic soil e | unconsolidated rock
(=2 o
T T T T T ' T T T T T
-200 0 200 400 600 0.0 0.2 0.4 0.6 0.8
WDsummer fary(2500)

Figure 8. Partial dependence plots representingitbestrongest interactions in the model: (a)
betweenpype and whymmerand (b) betweeppaseandfyry. Fitted WL is plotted on the y-axis

which is obtained after accounting for the averafiect of all other predictor variables.

45



N o o b~ W

5
E

0 |
o

c

S

2

©

z o

Q o

0

el

o

=

<

=

B
@
:
o
=

-1.0 -0.5 0.0 0.5

WL, (-) Prediction

Figure 9. Observed vs. predicted transformed anmedn water level (W) from cross-
validation results. Error bars show selected dawad bBootstrap model errors as standard

deviation. Data points are scaled by their weights.

46



3 -l -4 | poal

5 _.A_H_H_]._ L puejsse.b jom

2 TDHT | js210) Jom

N .

8 ) _.:-l_H_u.._ | ‘pead pasnun jom

b Ob----- E._ |} snoJajuoo

9 OT:E._ | ‘pead pasnun

oo}

2 o _v:-_H_H_]AV L puejsselp

5 o t--[]]-40 L 1 snonppoap
m g oT--AE-J_ L siqele

I [ I I

o} o e} o

v - <o <

o o o o

suonolpaid delsysjooq Jo ps

8 o HIH o — poa

5 T:-DH_----._O | pue|sselt jom

2 _H—H_rlll_ | ‘pead pasnun jom

S [— H--._ L snoajuod

9 _.----_H_H_I--._ | ‘nead pasnun

e}

2 ok----- B:l._o L puejsselp

5 b------ _H_H_]-._ L "} snonpiosp
@ Q F-- - L s|qele

I I I I I
o 0 o 0 o

(uonoipaud - uoneAlasqo) sjenpisal

Figure 10. (a) Residuals (observation - predictioh)WL; predictions and (b) standard

3
4
5

deviation (sd) of bootstrap predictions shown tog hine land cover classes. In the upper

part, the number of dip wells in each class isdat#id.

47



427 246 545
o o
-~ o o
_
|
0 ' —_ T
S T ' ' |
) ! I :
© ! !
=) o
R o 7]
4 [
e I H !
| ! !
[Te} | ! 1
o PR —) !
o O
e _| o
N
I I I
NE NW S

Figure 11. Residuals (observation - prediction) WL predictions for the three major
geographical peatland regions of Germany. In th@eupart, the number of dip wells in each

class is indicated.

48



w

© 00 N o o b

10

(C) relative probability
1 ] 1 1 )
109 - 1.0
& - 0.5
47!
o gl
\ . 0.2
SIS N 0.5
N ]+ 0.0
5 0.0 E
= 00 4
g g
’ el - 02
-0.5 1

WLt ()
W >o00

‘B o1-00

Il -02--01

[ -0.3--0.2

[]-04--03

[]-05--04

[J-06--05 7
[]-07--06

[-08--07

[ -09--08 4

<09 m =)
M\,\ ¥

0 200 400
meeeesssssmm—mn  Kilometers » - 1 Kilometers

Figure 12Map of predictions of transformed annual mean wizteel (WL;) for all German
organic soils (a) and an enlarged map sectionRimbability distribution in (c) exemplarily
indicates the uncertainty of a specific point pctdn for wet grassland. Here, predicted value
is approximately W{=0, but note that wet grassland predictions do wargpace depending
on the values of the other model parameter. Thiadriam shows the residuals from cross-

validation for wet grassland, to which the probiypiistribution was fitted.

49



©w ]
=]
. oo
o © ° " _-
< o e
IS o -
P
-
) e
3 e
L ™ _] ,
»w o ° ,
z 7/
/
7/
/
~ ’
s 7/
© /
7/
7/
7’
-
o
T T I T T
10 20 30 40 50

Number of Peatlands

Figure 13. NSE of cross-validation vs. number ofd@nly selected peatland areas. Dashed

lines indicate NSE + standard deviation.

50



| Seite 34: [1] Geléscht Michel Bechtold 24.06.2014 11:10:00 |

Bartholomeus, R., Witte, J. P. M., van BodegomMP.and Aerts, R.: The need of data
harmonization to derive robust empirical relatiapshbetween soil conditions and vegetation,
J. Veg. Sci., 19, 799-808, d0i:10.3170/2008-8-182808.

Berglund, O. and Berglund, K.: Influence of watable level and soil properties on emissions
of greenhouse gases from cultivated peat soil, 8ail. Biochem., 43, 5, 923-931,
doi:10.1016/j.s0ilbio.2011.01.002, 2011.

Beven, K. J. and Kirby, M.: A physically based e contributing area model of catchment
hydrology, Hydrol. Sci. Bull., 24, 43-69, 1979.

Bierkens, M. F. P. and Stroet, C. B. M. T.: Modadlinon-linear water table dynamics and
specific discharge through landscape analysis, Jdrddl, 332, 3-4, 412-426,
doi:10.1016/j.jhydrol.2006.07.011, 2007.

Bierkens, M. F. P., Knotters, M. and van Geer, E.@libration of transfer function-noise
models to sparsely or irregularly observed timéeseMater Resour. Res., 35, 6, 1741-1750,
doi:10.1029/1999wr900083, 1999.

Buchanan, S. and Triantafilis, J.: Mapping Watebl&aDepth Using Geophysical and
Environmental Variables, Groundwater, 47, 1, 80¢;10.1111/j.1745-6584.2008.00490.x,
20009.

Clapcott, J., Young, R., Goodwin, E., Leathwick,add Kelly, D.: Relationships between
multiple land-use pressures and individual and doatb indicators of stream ecological
integrity, Department of Conservation, DOC Reseasid Development series 326,
Wellington, New Zealand, 2011.

De'ath, G.: Boosted trees for ecological modeling arediction, Ecology, 88, 1, 243-251,
doi:10.1890/0012-9658(2007)88[243:Btfema]2.0.CaI)7.

Dormann, C. F., Elith, J., Bacher, S., Buchmann,Gavrl, G., Carre, G., Marquez, J. R. G.,
Gruber, B., Lafourcade, B., Leitao, P. J., MunkdewlIT., McClean, C., Osborne, P. E.,
Reineking, B., Schroder, B., Skidmore, A. K., ZUrél. and Lautenbach, S.: Collinearity: a
review of methods to deal with it and a simulatistady evaluating their performance,
Ecography, 36, 1, 27-46, doi:10.1111/j.1600-058Y2207348.x, 2013.

Drosler, M., Freibauer, A., Adelmann, W., Augustin, Bergmann, L., Beyer, C., Chojnicki,
B., Forster, C., Giebels, M., Gorlitz, S., Hoper, Kantelhardt, J., Liebersbach, H., Hahn-
Schofl, M., Minke, M., Petschow, U., Pfadenhauer,Sthaller, L., Schagner, P., Sommer,



M., Thuille, A. and Wehrhan, M.: Klimaschutz durbtoorschutz in der Praxis, Ergebnisse
aus dem BMBF-Verbundprojekt ,Klimaschutz - Moornutgsstrategien® 2006-2010, vTI-
Arbeitsberichte 4/2011, 2011.

Elith, J., Leathwick, J. R. and Hastie, T.: A wargiguide to boosted regression trees, J.
Anim. Ecol., 77, 4, 802-813, d0i:10.1111/j.1365-26%08.01390.x, 2008.

Fan, Y. and Miguez-Macho, G.: A simple hydrologiarhework for simulating wetlands in
climate and earth system models, Clim. Dynam.,13Z, 253-278, doi:10.1007/s00382-010-
0829-8, 2011.

Fell, H., RoRkopf, N. and Zeitz, J.: Organic sailsGermany, their distribution and carbon

stocks, Catena, in prep.

Finke, P. A., Brus, D. J., Bierkens, M. F. P., Haogl, T., Knotters, M. and de Vries, F.:
Mapping groundwater dynamics using multiple soureegxhaustive high resolution data,
Geoderma, 123, 1-2, 23-39, do0i:10.1016/j.geoderd@&.D1.025, 2004.

Gong, J. N.,, Wang, K. Y., Kellomaki, S., Zhang, ®lartikainen, P. J. and Shurpali, N.:
Modeling water table changes in boreal peatlandsFiofand under changing climate
conditions, Ecol. Model., 244, 65-78, doi:10.10X8/pImodel.2012.06.031, 2012.

Hahn-Schoéfl, M., Zak, D., Minke, M., Gelbrecht, Aygustin, J. and Freibauer, A.: Organic
sediment formed during inundation of a degradedyf@ssland emits large fluxes of CH4 and
CO2, Biogeosciences, 8, 6, 1539-1550, doi:10.5188/539-2011, 2011.

Hijmans, R. J.: Species distribution modeling. Dueatation on the R Package ‘dismo’,
version 0.9-3, http://cran.r-project.org/web/pagsidismo/dismo.pdf, accessed February
2014, 2013.

Hoogland, T., Heuvelink, G. B. M. and Knotters, N\Mapping Water-Table Depths Over
Time to Assess Desiccation of Groundwater-Dependssdsystems in the Netherlands,
Wetlands, 30, 1, 137-147, doi:10.1007/s13157-00Et0 2010.

IPCC: IPCC guidelines for national greenhouse gasritories, In: Eggleston, H.S., Buendia,

L., Miwa, K., Ngara, T., K., T. (Eds.). IGES, Jap2006.

Ju, W. M., Chen, J. M., Black, T. A., Barr, A. Giccaughey, H. and Roulet, N. T.:
Hydrological effects on carbon cycles of Canadaredts and wetlands, Tellus B, 58, 1, 16-
30, doi:10.1111/j.1600-0889.2005.00168.x, 2006.



Knotters, M. and van Walsum, P. E. V.: Estimatihgtuation quantities from time series of
water-table depths using models with a stochastroponent, J. Hydrol., 197, 1-4, 25-46,
doi:10.1016/S0022-1694(96)03278-7, 1997.

Leathwick, J. R., Elith, J., Francis, M. P., Haslieand Taylor, P.: Variation in demersal fish
species richness in the oceans surrounding Nevadeéahn analysis using boosted regression
trees, Mar. Ecol. Prog. Ser., 321, 267-281, dds3®4/Meps321267, 2006.

Leiber-Sauheitl, K., Ful3, R., Voigt, C. and FreibglA.: High CO2 fluxes from grassland on
histic Gleysol along soil carbon and drainage gmaidi, Biogeosciences, 11, 735-747,
doi:10.5194/bg-11-749-2014, 2014.

Levy, P. E., Burden, A., Cooper, M. D. A., Dinsmoke J., Drewer, J., Evans, C., Fowler, D.,
Gaiawyn, J., Gray, A., Jones, S. K., Jones, T., &fwara, N. P., Mills, R., Ostle, N.,
Sheppard, L. J., Skiba, U., Sowerby, A., Ward, Said Zielinski, P.. Methane emissions
from soils: synthesis and analysis of a large UkKad#t, Global change biology, 18, 5, 1657-
1669, doi:10.1111/j.1365-2486.2011.02616.x, 2012.

Limpens, J., Berendse, F., Blodau, C., Canadeff.JFreeman, C., Holden, J., Roulet, N.,
Rydin, H. and Schaepman-Strub, G.: Peatlands andatbon cycle: from local processes to
global implications - a synthesis, Biogeosciendess, 1475-1491, doi:10.5194/bg-5-1475-
2008, 2008.

Martin, M. P., Wattenbach, M., Smith, P., Meersmahs Jolivet, C., Boulonne, L. and
Arrouays, D.: Spatial distribution of soil orgariarbon stocks in France, Biogeosciences, 8,
5, 1053-1065, doi:10.5194/bg-8-1053-2011, 2011.

Melton, J. R., Wania, R., Hodson, E. L., Poulter,Bingeval, B., Spahni, R., Bohn, T., Avis,
C. A, Beerling, D. J., Chen, G., Eliseev, A. Verilsov, S. N., Hopcroft, P. O., Lettenmaier,
D. P., Riley, W. J., Singarayer, J. S., Subin, Z, Man, H., Zurcher, S., Brovkin, V., van
Bodegom, P. M., Kleinen, T., Yu, Z. C. and KapldnO.: Present state of global wetland
extent and wetland methane modelling: conclusisosfa model inter-comparison project
(WETCHIMP), Biogeosciences, 10, 2, 753-788, dob194/bg-10-753-2013, 2013.

Moore, T. R. and Dalva, M.: The Influence of Tengiare and Water-Table Position on
Carbon-Dioxide and Methane Emissions from Laboyat@olumns of Peatland Soils, J. Soil
Sci., 44, 4, 651-664, doi:10.1111/j.1365-2389.1882330.x, 1993.

Moore, T. R. and Roulet, N. T.: Methane Flux - Wakable Relations in Northern Wetlands,
Geophys. Res. Lett., 20, 7, 587-590, do0i:10.1029(208, 1993.



Nash, J. E. and Sutcliffe, J. V.: River flow forstiag through conceptual models part | — A
discussion of principles, J. Hydrol., 10, 3, 282529 0i:10.1016/0022-1694(70)90255-6,
1970.

Regina, K., Nyk'anen, H., Silvola, J. and Martilean P. J.: Fluxes of nitrous oxide from
boreal peatlands as affected by peatland type,rwalde level and nitrification capacity,
Biogeochemistry, 35, 401-418, doi:10.1007/BF021&3096.

Ridgeway, G.: Generalized boosted regression mo@&lsumentation on the R Package
‘gbm’, version 2.1, http://cran.r-project.org/wpackages/gbm/gbm.pdf, accessed February
2014., 2013.

Sutanudijaja, E. H., van Beek, L. P. H., de Jon®.Svan Geer, F. C. and Bierkens, M. F. P.:
Using ERS spaceborne microwave soil moisture olasiens to predict groundwater head in
space and time, Remote sens. environ., 138, 172€b880.1016/j.rse.2013.07.022, 2013.

Tetzlaff, B., Kuhr, P. and Wendland, F..: A New Madhfor Creating Maps of Artificially
Drained Areas in Large River Basins Based on Aétfatographs and Geodata, Irrig. Drain.,
58, 5, 569-585, d0i:10.1002/1rd.426, 20089.

Thompson, J. R., Gavin, H., Refsgaard, A., SorendoiR. and Gowing, D. J.: Modelling the
hydrological impacts of climate change on UK lovdanet grassland, Wetl. Ecol. Manag.,
17, 5, 503-523, d0i:10.1007/s11273-008-9127-1, 2009

UBA: National Inventory Report for the German Greease Gas Inventory 1990 - 2008,
Submission under the United Nations Framework Cotiwe on Climate Change and the

Kyoto Protocol 2012, Dessau, Germany, 2012.

van der Gaast, J. W. J., Massop, H. T. L. and VrébmR. J.: Actuele grondwaterstandsituatie
in natuurgebieden: Een. Pilotstudie, Wettelijke @mudekstaken Natuur & Milieu, WOLt-
rapport, 94, Wageningen, 94, 2009.

van der Ploeg, M. J., Appels, W. M., Cirkel, D. Gg@sterwoud, M. R., Witte, J. P. M. and
van der Zee, S. E. A. T. M.: Microtopography asravidg Mechanism for Ecohydrological
Processes in Shallow Groundwater Systems, Vadosee Zd., 11, 3, 52-62,
doi:10.2136/Vzj2011.0098, 2012.



