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Abstract. The Direct Sampling technique, belonging to the family of multiple-point statistics, is

proposed as a non-parametric alternative to the classical autoregressive and Markov-chain based

models for daily rainfall time-series simulation. The algorithm makes use of the patterns contained

inside the training image (the past rainfall record) to reproduce the complexity of the signal without

inferring its prior statistical model: the time-series is simulated by sampling the training dataset5

where a sufficiently similar neighborhood exists. The advantage of this approach is the capability of

simulating complex statistical relations by respecting the similarity of the patterns at different scales.

The technique is applied to daily rainfall records from different climate settings, using a standard

setup and without performing any optimization of the parameters. The results show that the overall

statistics as well as the dry/wet spells patterns are simulated accurately. Also the extremes at the10

higher temporal scale are reproducedexhaustively
✿✿✿✿✿✿✿✿✿✿

adequately, reducing the well known problem of

over-dispersion.

1 Introduction

The stochastic generation of rainfall time-series is a key topic for hydrological and climate sci-

ence applications: the challenge is to simulate a syntheticsignal honoring thehighorder
✿✿✿✿✿✿✿✿✿

high-order15

statistics observed in the historical record, respecting the seasonality and persistence from the daily

to the higher temporal scales. Among the different proposedtechniques, exhaustively reviewed by

Sharma and Mehrotra(2010), the most commonlyused
✿✿✿✿✿✿✿

adopted
✿

approach to the problem, adopted

since the ’60, is the Markov-chain (MC) simulation: in its classical form,it is a linear model

which cannot simulate the variability and persistence at different scales.Somerecentlyadopted20

solutionsto overtakethislimit
✿✿✿✿✿✿✿✿

Solutions
✿✿

to
✿✿✿✿

deal
✿✿✿✿

with
✿✿✿✿

this
✿✿✿✿✿✿✿✿✿

limitation consist of introducing exogenous
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climatic variables and large-scale circulation indexes (Hay et al., 1991; Bardossy and Plate, 1992;

Katz and Parlange, 1993; Woolhiser et al., 1993; Hughes and Guttorp, 1994; Wallis and Griffiths,

1997; Wilby, 1998; Kiely et al., 1998; Hughes et al., 1999), lower-frequency daily rainfall covari-

ates (Wilks, 1989; Briggs and Wilks, 1996; Jones and Thornton, 1997; Katz and Zheng, 1999) or25

an index based on the short-term daily historical or previously generated record (Harrold et al.,

2003a,b; Mehrotra and Sharma, 2007a,b) asconditional
✿✿✿✿✿✿✿✿✿✿✿

conditioning
✿

variables for the estimation of

the MC parameters. By doing this, non-linearity is introduced in the prior model, the MC parameters

changing in time as a function of some specific low-frequencyfluctuations. An alternative proposed

method is model nesting (Wang and Nathan, 2002; Srikanthan, 2004, 2005; Srikanthan and Pegram,30

2009), that implies the correction of the generated daily rainfall using a multiplicative factor to com-

pensate the bias in the higher-scale statistics. These techniques generally allow a better reproduction

of the statistics up to the annual scale, but they imply the estimation of a more complex prior model

and cannot completelycatch
✿✿✿✿✿✿✿

capturea complex dependence structure.

In this paper, we propose the use of some lower-frequency covariates of daily rainfall in a com-35

pletely unusual framework: the Direct Sampling (DS) technique (Mariethoz et al., 2010), which be-

longs to multiple-point statistics (MPS). Introduced byGuardiano and Srivastava(1993) and widely

developed during the last decade (Strebelle, 2002; Allard et al., 2006; Zhang et al., 2006; Arpat and Caers,

2007; Honarkhah and Caers, 2010; Straubhaar et al., 2011; Tahmasebi et al., 2012), MPS is a family

of geostatistical techniques widely used in spatial data simulations and particularly suited to pattern40

reproduction. MPS algorithms use a training image, i.e. a dataset to evaluate the probability distri-

bution (pdf) of the variable simulated at each point (in timeor space), conditionally to the values

present in its neighborhood. In the particular case of the Direct Sampling, the concept of training

image is taken to the limit by avoiding the computation of theconditional pdf and making a ran-

dom sampling of the historical dataset where a pattern similar to theconditional
✿✿✿✿✿✿✿✿✿✿✿

conditioningdata is45

found. If the training dataset is representative enough, these techniques can easily reproduce high-

order statistics of complex natural processes at differentscales. MPS has already been successfully

applied to the simulation of spatial rainfall occurrence patterns (Wojcik et al., 2009). In this paper,

we test the Direct Sampling on the simulation of daily rainfall time-series. The aim is to reproduce

the complexity of the rainfall signal up to the decennial scale, simulating the occurrence and the50

amount at the same time with the aid of a multivariate dataset. Similar algorithms performing a

multivariate simulation had been previously developed byYoung(1994) andRajagopalan and Lall

(1999) using a bootstrap-based approach. As discussed in detailsin Section2.3, the advantage of

the Direct Sampling with respect to the mentioned techniques is the possibility to have a variable

high-order time-dependence, without incurring excessivecomputation since the estimation of the55

n-dimensional conditional pdf is not needed. Moreover, we propose a standard setup for rainfall

simulation: an ensemble of auxiliary variables and fixed values for the main parameters required

by the Direct Sampling algorithm, suitable for the simulation of any stationary rainfall time-series,
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without the need of calibration. The technique is tested on three time-series from different climatic

regions of Australia. The paper is organized as follows: in Section2 the DS technique, thedataset60

used
✿

is
✿✿✿✿✿✿✿✿✿✿

introduced
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

compared
✿✿✿✿

with
✿✿✿✿

the
✿✿✿✿✿✿✿

existing
✿✿✿✿✿✿✿✿✿✿✿

resampling
✿✿✿✿✿✿✿✿✿✿✿

techniques.
✿✿✿✿

The
✿✿✿✿✿✿✿

dataset
✿✿✿✿✿

used,
✿✿✿✿

the

✿✿✿✿✿✿✿✿

proposed
✿✿✿✿✿

setup
✿

and the method of evaluation are described
✿

in
✿✿✿✿✿✿✿

Section
✿✿

3. The statistical analysis of

the simulated time-series is presented and discussed in Section 4 and Section5 is dedicated to the

conclusions.

2 Methodology65

In this section we recall the basics of multiple-point statistics and we focus on the Direct Sampling

algorithm. The dataset used is then presented as well as the methods of evaluation.

2.1 Background on multiple-point statistics

Before entering in the details of the DS algorithm, let us introduce some common elements of MPS.

The whole information used by MPS to simulate a certain process is based on theTraining Image70

(TI) or training dataset: the dataset constituted of one or more variables used to infer the statistical

relations and occurrence probability of any datum in the simulation. The TI may be constituted of

a conceptual model instead of real data, but in the case of therainfall time-series it is more likely

to be a historical record of rainfall measurements. TheSimulation Grid (SG) is atotally or partially

uninformedN-dimensionalarray
✿✿✿✿

time
✿✿✿✿✿✿✿✿✿✿

referenced
✿✿✿✿✿✿

vector
✿

in which thealgorithmgeneratesvaluesto75

obtaintheactualoutputof
✿✿✿✿✿✿✿✿✿

generated
✿✿✿✿✿✿

values
✿✿✿

are
✿✿✿✿✿✿

stored
✿✿✿✿✿✿

during
✿

the simulation.It usuallyhasthesame

dimensionalityasthe training image. In the caseof a rainfall time-seriessimulation
✿✿✿✿✿✿✿✿✿

Following
✿✿

a

✿✿✿✿✿✿✿✿✿

simulation
✿✿✿✿✿

path
✿✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿✿✿

usually
✿✿✿✿✿✿✿✿

random, the SG isa time-referencedone-dimensionalvector of

randomvariables(referredto asonevariablefor the sakeof simplicity), eachof which represents

therainfall amountfor acertaintime-step
✿✿✿✿✿✿✿✿✿✿✿✿

progressively
✿✿✿✿✿

filled
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿

simulated
✿✿✿✿✿✿

values
✿✿✿✿

and
✿✿✿✿✿✿✿✿

becomes
✿✿✿

the80

✿✿✿✿✿

actual
✿✿✿✿✿✿

output
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

simulation. Theconditioning data (CD) are a group of given data (e.g. rainfall

measurements) situated in the SG. Being already informed, no simulation occurs at those time-steps.

The presence ofCD
✿✿✿✿✿✿✿✿✿✿✿

conditioning
✿✿✿✿

data
✿

affects, in their neighborhood, the conditional law used for

the simulation and limits the range of possible patterns. MPS, as well some MC based algorithm

for rainfall simulation (see Section1), may include the use ofauxiliary variables to condition the85

simulation of the target variable.An auxiliaryvariableisnormallygivenasCD but, in thecaseof the

DirectSampling,it canalsobe
✿✿✿✿✿✿✿✿✿

Auxiliary
✿✿✿✿✿✿✿✿

variables
✿✿✿✿

may
✿✿✿✿✿✿

either
✿✿

be
✿✿✿✿✿✿✿

known
✿✿✿✿✿

(fully
✿✿

or
✿✿✿✿✿✿✿✿✿

partially)
✿✿✿

and
✿✿✿✿✿

used

✿✿

to
✿✿✿✿✿

guide
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

simulation,
✿✿✿

or
✿✿✿✿

they
✿✿✿✿

may
✿✿✿

be
✿✿✿✿✿✿✿✿

unknown
✿✿✿

but
✿✿✿✿

still
✿

co-simulatedwith thetarget,withoutbeing

necessarilyinformed
✿✿✿✿✿✿✿

because
✿✿✿✿✿

their
✿✿✿✿✿✿✿✿✿

structures
✿✿✿✿✿✿✿✿

contains
✿✿✿✿✿✿✿✿✿✿

important
✿✿✿✿✿✿✿✿✿✿✿✿✿

characteristics
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

signal. For

rainfall time-series, it could be for example: covariates of the original or previously simulated data90

(e.g. the number of wet days in a past period), a correlated variable for which the record is known,

a theoretical variable that imposes a periodicity or a trend(e.g. a sinusoid function describing the
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annual seasonality over the data). Finally, thesearch neighborhood is a moving window, i.e. the

portion of time-series located in the past and future neighborhood of each simulated value, used to

retrieve thedata event, i.e. the group of time-referenced values used to conditionthe simulation.95

2.2 The Direct Sampling algorithm

Classical MPS implementations create a catalog of the possible neighbors patterns to evaluate the

conditional probability of occurrence for each event with respect to the considered neighborhood.

This may imply a significant amount of memory and always limits the application to categorical

variables. On the contrary, the Direct Sampling generates each value by sampling the data from100

the TI where a sufficiently similar neighborhood exists. TheDS implementation used in this paper

is calledDeeSse software(Straubhaar, 2011), the .
✿✿✿✿✿

The
✿

following is the main workflow of the

algorithm.
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

simulation
✿✿

of
✿✿

a
✿✿✿✿✿

single
✿✿✿✿✿✿✿✿

variable.
✿✿✿✿

For
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

multivariate
✿✿✿✿

case
✿✿✿✿

see
✿✿✿

the
✿✿✿

last
✿✿✿✿✿✿✿✿✿✿

paragraph
✿✿

of

✿✿✿

this
✿✿✿✿✿✿✿

section.
✿

Let us denotex= [x1, ...,xn] the time vector representing the SG,y = [y1, ...,ym] the one repre-105

senting the TI andZ(·) the target variable, object of the simulation, defined at each element ofx and

y. Before the simulation begins, all continuous variables are normalized using the transformation

Z 7−→ Z · (max(Z)−min(Z))−1 in order to have distances (see step3) in the range[0,1]. Dur-

ing the simulation,all the
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

uninformed
✿

time-steps of the SG are visited in a random order.
✿✿✿

The

✿✿✿✿✿✿✿

random
✿✿✿✿✿✿✿✿✿✿

simulation
✿✿✿✿

path
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

t ∈ {1,2, ...,M}
✿✿

is
✿✿✿✿✿✿✿✿

obtained
✿✿✿

by
✿✿✿✿✿✿✿✿✿

sampling
✿✿✿✿✿✿✿

without
✿✿✿✿✿✿✿✿✿✿✿

replacement
✿✿✿✿

the
✿✿✿✿✿✿✿

discrete110

✿✿✿✿✿✿✿

uniform
✿✿✿✿✿✿✿✿✿✿✿

distribution
✿✿✿✿✿✿✿

U(1,M)
✿✿✿✿✿✿

where
✿✿✿

M
✿✿

is
✿✿✿

the
✿✿✿

SG
✿✿✿✿✿✿✿

length.At each uninformedxt, the following steps

are executed:

1. The data eventd(xt) = {Z(xt+h1
), ...,Z(xt+hn

)} is retrieved from the SG according to a

fixed neighborhood of radius R centered onxtit
✿

.
✿✿

It
✿

consists of at most N informed time-

steps, closest toxt. This defines a set of lagsH = {h1, ...,hn}, with |hi| ≤R andn≤ N. The115

size ofd(xt) is therefore limited by the user-defined parameter N and the available informed

time-steps inside the search neighborhood.

2. A random time-stepyi in y is visited and the corresponding data eventd(yi), defined accord-

ing to thesameH , is retrieved to be compared withd(xt).

3. A distanceD(d(xt),d(yi)), i.e. a measure of dissimilarity between the two data events, is120

calculated. For categorical variables (e.g. the dry/wet rainfall sequence), it is given by the

formula:

D(d(xt),d(yi)) =
1

n

n
∑

j=1

aj , aj =







1 if Z(xj) 6= Z(yj)

0 if Z(xj) = Z(yj)
(1)

while for continuous variables the following one is used:

D(d(xt),d(yi)) =
1

n

n
∑

j=1

|Z(xtj)−Z(yj)| (2)125
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wheren is the number of elements of the data event. Theneighbors
✿✿✿✿✿✿✿✿

elementsof d(xt), inde-

pendently from their position, play an equivalent role in conditioning the simulation ofZ(xt).

Note that, using the above distance formulas, the normalization is not needed for categorical

variables, while for the continuous ones it ensures distances in[0,1].

4. If D(d(xt),d(yi)) is below a fixed threshold T, i.e. the two data events are sufficiently similar,130

the iteration stops and the datumZ(yi) is assigned toZ(xt). Otherwise, the process is repeated

from point2 until a suitable candidated(yi) is found or the prescribed TI fraction limit F is

scanned.

5. If a TI fraction F has been scanned and the distanceD(d(xt),d(yi)) is above T for each visited

yi, the datumZ(y∗i ) minimizing this distance is assigned toZ(xt).135

This procedure is repeated for the simulation at eachxt until the entire SG isinformed
✿✿✿✿✿✿

covered.

Figure1 illustrates the iterative simulation using the Direct Sampling and stresses some of its pe-

culiarities. First, simulatingZ(xt) in a random order allowsx to be progressively populated at

non-consecutive time-steps. Therefore, the simulation ateachxt can be conditioned on both past

and future, as opposed to the classical Markov-chain techniques, that use a linear simulation path140

starting from the beginning of the series, allowing conditioning on past only.

FIG.1 ABOUT HERE

In the early iterations, the closest informed time-steps used to condition the simulation are located

far from xt and its number is limited by the search window, i.e. conditioning is mainly based on

large past and future time lags. On the contrary, the final iterations dispose of a more populated SG,145

conditioning is thus done on small time lags since only the closest N values are considered. This

variable time-lag principle may not respect the autocorrelation on a specific time-lag rigorously,

but it shouldreproduce
✿✿✿✿✿✿✿

preserve
✿

a more complex statistical relationship, which cannot be explored

exhaustively using a fixed-dependence model.

The DS can simulate multiple variables together similarly to the univariate case,but using a150

multivariatedatasetasTI. In this case,we have
✿✿✿✿✿✿✿

dealing
✿✿✿✿✿

with a vector of variablesZ(xt) defined

at eachtime-step. point
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

considering
✿✿

a
✿✿✿✿

data
✿✿✿✿✿✿

event
✿✿✿

dk
✿✿✿✿✿✿✿✿

different
✿✿✿

for
✿✿✿✿✿

each
✿✿✿✿

k-th
✿✿✿✿✿✿✿✿✿

variable,
✿✿✿✿✿✿✿

defined

✿✿

by
✿✿✿✿

Nk
✿✿✿

and
✿✿✿✿

Rk.
✿✿✿✿✿✿✿

Unlike
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

implementation
✿✿✿✿✿✿✿✿✿

presented
✿✿

in
✿

(Mariethoz et al., 2010),
✿✿✿✿✿✿✿

DeeSse
✿✿✿✿✿

also
✿✿✿✿

uses

✿

a
✿✿✿✿✿✿✿

specific
✿✿✿✿✿✿✿✿✿✿

acceptance
✿✿✿✿✿✿✿✿✿

threshold
✿✿✿

Tk
✿✿✿

for
✿✿✿✿✿

each
✿✿✿✿✿✿✿✿

variable.
✿✿✿✿✿✿

Point3 of the algorithm isthereforerepeated

for eachvariableusinganindependentdataeventandacceptationthreshold.It hasto beremarked155

✿✿✿✿✿✿✿

repeated
✿✿✿✿✿

until
✿✿

a
✿✿✿✿✿✿✿✿✿

candidate
✿✿✿✿✿

with
✿✿

a
✿✿✿✿✿✿✿✿

distance
✿✿✿✿✿✿

below
✿✿✿

the
✿✿✿✿✿✿✿✿✿

threshold
✿✿✿✿

for
✿✿✿

all
✿✿✿✿✿✿✿✿

variables
✿✿✿

is
✿✿✿✿✿✿

found.
✿✿✿

If
✿✿✿✿

this

✿✿✿✿✿✿✿✿

condition
✿✿

is
✿✿✿

not
✿✿✿✿✿

met,
✿✿✿

the
✿✿✿✿

scan
✿✿✿✿✿

stops
✿✿

at
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

prescribed
✿✿✿

TI
✿✿✿✿✿✿✿

fraction
✿✿

F
✿✿✿

and
✿✿✿✿

the
✿✿✿✿

error
✿✿✿

for
✿✿✿✿✿

each
✿✿✿✿✿✿✿✿✿

candidate
✿✿

yi

✿✿✿

and
✿✿✿✿

k-th
✿✿✿✿✿✿✿✿

variable
✿✿

is
✿✿✿✿✿✿✿✿✿

computed
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿

following
✿✿✿✿✿✿✿✿

formula:
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Ek(yi) = (D(dk(xt),dk(yi))−Tk)T
−1

k ,

✿✿✿✿✿

where
✿✿✿✿✿✿✿

D(·, ·)
✿✿

is
✿✿✿✿✿✿✿

defined
✿✿

as
✿✿✿

in
✿✿✿✿✿

Point
✿✿✿

3.
✿✿✿✿✿✿✿

Finally,
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

candidate
✿✿✿✿✿✿✿✿✿✿

minimizing
✿✿✿✿✿✿✿✿✿✿✿✿✿

max(E(yi))
✿✿

is
✿✿✿✿✿✿✿✿

assigned

✿✿

to
✿✿✿✿✿✿

Z(xt).
✿✿✿✿✿✿

Note that the entire data vectorZ(xt) is simulated in one iteration, reproducing exactly160
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the same combination of values found for all the variables atthe sampled time-step,excludedthe

alreadyinformedones(conditioningdata)
✿✿✿✿✿✿✿✿

excluding
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

conditioning
✿✿✿✿✿

data,
✿✿✿✿✿✿✿

already
✿✿✿✿✿✿✿

present
✿✿✿

in
✿✿✿

the

✿✿✿

SG. This feature, although reducing the variability in the simulation, has been adopted to
✿✿✿✿✿✿✿✿✿

accurately

reproduce the correlation between variablesaccurately.

2.3 Comparison with existing resampling techniques165

The resampling principle is at the base of some already proposed techniques for rainfall and hydro-

logic time-series simulation. There exist two principal families of resampling techniques: the block

bootstrap (Vogel and Shallcross, 1996; Srinivas and Srinivasan, 2005; Ndiritu, 2011), which implies

the resampling with replacement of entire pieces of time-series with the aim of preserving the statis-

tical dependence at a scale minor than the blocks size, and the k-nearest neighbor bootstrap (k-NN),170

based on single value resampling using a pattern similarityrule. This latter family of techniques,

introduced byEfron(1979) and inspired to the jackknife variance estimation, has seen several devel-

opments in hydrology (Young, 1994; Lall and Sharma, 1996; Lall et al., 1996; Rajagopalan and Lall,

1999; Buishand and Brandsma, 2001; Wojcik and Buishand, 2003; Clark et al., 2004). Having dif-

ferent points in common with the Direct Sampling, its general framework is briefly presented in175

the following. Each datum inside the historical record is characterized by a vectordt of predictor

variables, analogous to the data event for the DS. For example, to generateZ(xt) one could use

dt = [Z(xt−1),Z(xt−2),U(xt),U(xt−1)], meaning that the simulation is conditioned to the 2 pre-

vious time-steps ofZ and the present and previous time-steps ofU , a correlated variable. In the

predictor variables spaceD, the historical data as well asZ(xt), which still has to be generated,180

are represented as points whose coordinates are defined bydt. Consequently, proximity inD corre-

sponds to similarity of the conditioning patterns.Z(xt) is simulated by sampling an empirical pdf

constructed on the k points closest toZ(xt); the closer the point is, the higher is the probability to

sample the corresponding historical datum. Proposed variations of the algorithm include transforma-

tions of the predictor variables space, the application of kernel smoothing to the k-NN pdf to increase185

the variability beyond the historical values, and different methods to estimate the parameters of the

model, e.g. k and the kernel bandwidth.

Going back to the Direct Sampling, the similarities with thek-NN bootstrap are: i) they both make

a resampling of the historical record conditioned by an ensemble of auxiliary/predictor variables; ii)

they both compute a distance as a measure of dissimilarity between the simulating time-step and190

the candidates considered for resampling. Nevertheless, there are several points of divergence in

the rationale of the techniques: i) in the k-NN bootstrap, the distance is used to evaluate the re-

sampling probability, while in the DS it is used to evaluate the resampling possibility. This means

that, using the k-NN resampling, the conditional pdf is a function of the distance, while in the DS

the distance is only used to define its support. In fact, usingthe DS, the spaceD is not restricted195

to the k nearest neighbors but it is bounded by the distance thresholds: outside the boundary, the
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resampling probability is zero, while inside, it follows the occurrence of the data in the scanned TI

fraction, without being a function of the pattern resemblance. Only in case of no candidate found,

the closest neighbor outside the bounded portion ofD is chosen for resampling. The latter can be

considered as an exceptional condition which usually does not lead to a good simulation and seldom200

occurs using an appropriate setup and training dataset. ii)Using the DS, the conditional pdf remains

implicit, its computation is not needed: the historical record is randomly visited instead and the first

datum presenting a distance below the threshold is sampled.This is an advantage since it avoids

the problem of the high-dimensional conditional pdf estimation which limits the degree of condi-

tioning in bootstrap techniques (Sharma and Mehrotra, 2010). iii) The k-NN technique considers a205

fixed time-dependence, while it varies during the simulation in the case of the DS. iv) Finally, the

simulation path (in the SG) is always linear in the k-NN technique, while it is random using the DS,

allowing conditioning on future time-steps of the target variable.

3 Application

The dataset chosen for this study is composed of three daily rainfall time-series from different cli-210

matic regions of Australia: Alice Springs (hot desert), with a very dry rainfall regime and long

droughts, Sydney (temperate), with a far wetter climate dueto its proximity to the ocean, and Dar-

win (tropical savannah), showingand
✿✿

an
✿

extreme variability between the dry and wet seasons.

TAB.1 ABOUT HERE

Table 1 delineates
✿✿✿✿✿✿✿

presents
✿

the dataset used: the chosen stationspresent
✿✿✿✿✿✿

provide
✿

a considerable215

record of about 70 years for Darwin and Alice Springs and 150 years for Sydney. Any gaps or trends

have been explicitly kept to test the behavior of the algorithm with incomplete or non-stationary

datasets. The Direct Sampling treats gaps in the time-series in a simple way: each data event found

in the TI is rejected if it contains any missing data. This allows incomplete training images to be

dealt with in a safe way, but, as one could expect, a large quantity of missing data, especially if220

sparsely distributed, may lead to a poor simulation.About datasetreconstructionusingthe direct

samplingseeMariethoz and Renard(2010)
✿✿✿✿✿

show
✿✿✿✿✿

how
✿✿✿

the
✿✿✿✿✿✿

Direct
✿✿✿✿✿✿✿✿✿✿

Sampling
✿✿✿

can
✿✿✿

be
✿✿✿✿✿

used
✿✿✿✿

for
✿✿✿✿

data

✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction.

Since rainfall is a complex signal exhibiting not only multi-scale time dependence but also inter-

mittence, the classical approach is to split the daily time-series generation in two steps: the occur-225

rence model, where the dry/wet daily sequence is generated using a Markov-chain, and the amount

model, where the rainfall amount is simulated on wet days using an estimation of the conditional pdf

(e.g.,Coe and Stern, 1982). The simulation framework proposed here is radically different: we use

the Direct Sampling to generate the complete time-series inone step, simulating multiple variables

together. In particular, the TI used iscomposedof
✿✿✿✿✿

based
✿✿✿

on
✿

the past daily rainfall record(∗) and230

the following auxiliary
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

composed
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

following variables (Table2): 1) the average rainfall
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amount on a 365 days centered moving window (365MA) [mm], 2) the sum of the current and the

previous day amounts (2MS) [mm], 3) and 4) two out-of-phase of triangular functions (tr1 andtr2)

with frequency 365.25 days, similar to trigonometric coordinates expressing the position of the day

in the annual cycle, 5) the dry/wet sequence, i.e. a categorical variable indicating the position of a235

day inside the rainfall pattern (1 = wet, 0 = dry, 2 = solitary wet, 3 = wet day at the beginning or at

the end of a wet spell),
✿✿✿

6)
✿✿✿

the
✿✿✿✿✿

daily
✿✿✿✿✿✿✿

rainfall
✿✿✿✿✿✿✿✿

amount,
✿✿✿✿✿✿

which
✿✿

is
✿✿✿

the
✿✿✿✿✿✿

target
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

simulation. The first

two auxiliary variables are covariates used to force the algorithm torespectmorestrictly
✿✿✿✿✿✿✿✿

preservethe

inter-annual structure and the day-to-day correlation, which are known to exist a priori. The other

ones are used to reproduce the dry/wet pattern and the annualseasonality accurately.
✿✿✿✿✿✿✿✿✿

Moreover,
✿✿✿✿

any240

✿✿✿✿✿✿✿✿

unknown
✿✿✿✿✿✿✿✿✿✿✿

dependence
✿✿

in
✿✿✿✿

the
✿✿✿✿✿

daily
✿✿✿✿✿✿✿

rainfall
✿✿✿✿✿

signal
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿

generically
✿✿✿✿✿

taken
✿✿✿✿

into
✿✿✿✿✿✿✿✿

account
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

simulation

✿✿

by
✿✿✿✿✿

using
✿✿

a
✿✿✿✿

data
✿✿✿✿✿

event
✿✿✿

of
✿✿✿✿✿✿✿

variable
✿✿✿✿✿✿

length
✿✿✿

as
✿✿✿✿✿✿✿✿✿

explained
✿✿

in
✿✿✿✿✿✿✿

Section
✿✿✿✿

2.2. It has to be remarked that, apart

from 3) and 4), which are known deterministic functions imposed asCD
✿✿✿✿✿✿✿✿✿✿✿

conditioning
✿✿✿✿

data, the rest

of the auxiliary variables are transformations of the rainfall datum, automatically computed on the

TI and co-simulated with the daily rainfall.245

To summarize, the main parameters of the algorithm are the following: the maximum scanned TI

fraction F∈ (0,1], the search neighborhood radius R, the maximum number of neighbors N, both

expressed in number of elements of the time vector, and the distance threshold T∈ (0,1]. Recall

that, apart from F, each parameter is set independently for each simulated variable. The setup shown

in Table2 is used together with F= 0.5 and proposed as a standard for daily rainfall time-series. A250

sensitivity analysis, notshowed
✿✿✿✿✿✿

shown
✿

here, confirmed the generality of this setup which is not the

result of a numerical optimization on a specific dataset, butit is rather in accordance to the criteria

used to define the order and extension of the variable time-dependence, as shown below. Applying it

to any type of single-station daily rainfall dataset, the user should obtain a reliable simulation without

needing to change any parameter or give supplementary information. An additional refinement of255

the setup is also possible, keeping in mind the following general rules:

– R limits the maximum time-lag dependence in the simulation and should be set according to

the length of the largest sufficiently repeated structure orfrequency in the signal that has to

be reproduced. Being interested to condition the simulation upon the inter-annual fluctuations

(visible in the 10-years MA time-series in Figure9), we set R365MS = Rrainfall = 5000 for260

the 365MS and daily rainfall variables. We recommend keeping R below the half of the

training dataset total length, to condition on sufficientlyrepeated structures only. Regarding

dry/wet pattern conditioning, we prefer limiting the variable time dependence within a 21-

days window (Rdw = 10). In generalRdw
✿✿✿✿

This
✿✿✿✿✿✿✿

window
✿

should be set between the median and

the maximum of the wet spell length distribution, in order toproperly catch the continuity of265

the rainfall events over multiple days.

– N controls the complexity of the conditioning structure butalso influences the specific time-lag

dependence. For instance, if one increases N, higher-orderdependencies are represented, but
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the weight accorded to a specific neighbor in evaluating the distance between patterns becomes

lower. This leads to a less accurate specific time-lag conditioning, but a more complex time-270

dependence is respected on average. For the rainfall amountand365MA variables, N≪ R

follows the same setup rule as for Rdw. In this way, in the initial iterations, the conditioning

neighbors will be sparse in a 10001 days window (R= 5000) to respect low-frequency fluc-

tuations, whereas, in the final iterations, they will be contained in a N-days window to respect

the within-spell variability. The standard value proposedhere (N365MA = N365MA = 21) cor-275

responds approximately to the spell distribution median ofthe Darwin time-series, remaining

in the appropriate range for the other considered climates.Conversely, Ndw is kept lower in

order to focus the conditioning on the small-scale dry/wet pattern. Ndw = 5 gave in general

the best result in terms of dry/wet pattern reproduction, with a gradualdegradationof the

statisticsdepartingfrom thisvalue.280

– The combinationN = R= 1 for the
✿✿✿

For
✿

2MSand tr auxiliary variablesis equivalentto a

lag-(0,1) dependenceand
✿

,
✿✿✿

tr1
✿✿✿✿

and
✿✿✿✿✿

tr2,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

time-dependence
✿✿

is
✿✿✿✿✿✿✿

limited
✿✿✿

to
✿✿✿

lag
✿✿

1
✿✿✿

by
✿✿✿✿✿✿

using

✿✿✿✿✿✿✿✿✿✿

N = R= 1.
✿✿✿✿✿

This
✿✿✿✿✿✿✿✿✿✿✿

combination
✿

should not be changed since we have no interest in expanding

or varying the
✿✿✿✿

time lag-dependencein thiscase
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

mentioned
✿✿✿✿✿✿✿✿

variables.

– T determines the tolerance in accepting a pattern. The sensitivity analysis done until now285

on different types of heterogeneities (Meerschman et al., 2013) confirmed that the optimum

generally lies in the interval[0.01,0.07]
✿✿

(1
✿✿

to
✿✿✿✿

7%
✿✿✿

of
✿✿✿

the
✿✿✿✿✿

total
✿✿✿✿✿✿✿✿✿

variation). Higher T values

usually lead to poorly simulated patternsand
✿

,
✿✿✿

but
✿

lower ones may induce a bias in theglobal

statistics
✿✿✿✿✿✿✿✿

marginal
✿✿✿✿✿✿✿✿✿✿✿

distributionand increase the phenomenon of verbatim copy, i.e. the exact

reproduction of an entire portion of data by oversampling the same pattern inside the TI.290

For these reasons, we recommend keeping the proposed standard valueT = 0.05 for all the

variables.

– F should be set sufficiently high to have a consistent choice of patterns but a value close

to 1, i.e. all the TI is scanned each time, may lower the variability of the simulations and

increase the verbatim copy. Using a training dataset representative enough, the optimal value295

corresponds to a TI fraction containing some repetitions ofthe lowest-frequency fluctuation

that should be reproduced. Considering the randomness of the TI scan, the value F= 0.5

chosen in this paper is sufficient to serve the purpose.

TAB.2 ABOUT HERE

3.1 Imposing a trend300

The
✿✿

As
✿✿✿✿✿✿✿

already
✿✿✿✿✿✿✿

shown
✿✿

in
✿

(Chugunova and Hu, 2008; Mariethoz et al., 2010; Honarkhah and Caers,

2010; Hu et al., 2014)
✿

,
✿✿

in
✿✿✿✿

case
✿✿✿

of
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿

non-stationary
✿✿✿✿✿✿

target
✿✿✿✿✿✿✿✿

variable,
✿✿✿

the
✿

simulation can be constrained
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to reproduce the same type of trend found in the TI by making use of an auxiliary variable. The

auxiliaryvariableproposedherefor anytype of non-stationarityisL(yt) = yt, correspondingto the

TItime vector. An exactcopyL(xt) = L(yt) is presentin .
✿✿✿✿✿

The
✿✿✿

one
✿✿✿✿✿✿✿✿✿

proposed
✿✿✿✿✿

here
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿

integer305

✿✿✿✿✿

vector
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

L= [1,2, ...,M],
✿✿✿✿✿✿

where
✿✿✿

M
✿✿

is
✿✿✿

the
✿✿✿✿✿✿

length
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

time-series,
✿✿✿✿✿✿✿

tracking
✿✿✿✿

the
✿✿✿✿✿✿✿

position
✿✿✿

of
✿✿✿✿

each
✿✿✿✿✿✿

datum

✿✿✿✿✿

inside
✿✿✿✿

the
✿✿✿

TI.
✿✿✿

L
✿✿

is
✿✿✿✿✿✿✿✿

assigned
✿✿✿

to
✿

the SG as conditioningdata. The parametersforL(·) are set as

follows
✿✿✿✿✿✿

datum
✿✿✿✿

with
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

following
✿✿✿✿✿✿✿✿✿✿

parameters: RL = 1, NL = 1 and TL = 0.01. Therefore
✿✿✿✿✿✿✿✿✿

According

✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

threshold
✿✿✿

TL, the samplingfor eachsimulateddatumZ(xt) is forced to remaininsidethe

time neighborhoodI(xt) = yt ±TLV (L), V (L) beingthetotal variationof L, i.e. thetotal length310

of the series. For example,for
✿

is
✿✿✿✿✿✿✿✿✿

therefore
✿✿✿✿✿✿✿✿✿✿✿

constrained
✿✿

to
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿

neighborhood
✿✿

of
✿✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿✿✿✿✿✿

time-step

✿✿✿✿✿

inside
✿✿✿

the
✿✿✿✿

TI:
✿✿✿

for
✿✿✿✿✿✿✿✿

example,
✿✿

in
✿

the Darwin case, beingV (L) = 26356
✿✿✿✿✿✿✿✿✿✿✿

M = 26356 and TL = 0.01
✿✿✿✿

(1%

✿✿

of
✿✿✿

the
✿✿✿✿✿

total
✿✿✿✿✿✿✿✿

variation
✿✿✿✿✿✿✿✿✿

allowed), the sampling to simulateZ(xt) is constrained toI(xt)≈ yt ± 263

✿✿✿

the
✿✿✿✿✿✿✿

interval
✿✿✿✿✿✿✿✿

yt ± 263
✿

[days]. In this way, themainstatisticsare
✿✿✿✿✿✿✿✿

marginal
✿✿✿✿✿✿✿✿✿✿

distribution
✿✿✿

is respected,

but the local variability isalmostcompletelyrestricted to the one found inside the training dataset,315

reproducing thenon-stationarity
✿✿✿✿

same
✿✿✿✿✿

trend. The following remarks are noteworthy: i)any type

of non-stationarityis automaticallyimposedby L but, to properly catchthe trend and
✿

to
✿

avoid

an unnecessary restrictionto the local variability, I should beequal
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

sampling,
✿✿✿

TL
✿✿✿✿✿✿✿

should

✿✿✿✿✿✿✿✿✿✿

correspondto the maximum time interval for which the target variable can be considered stationary;

ii) the simulationcannot
✿✿✿✿✿

should
✿✿✿✿

notbe longer than the training dataset, having no basis to extrapolate320

the trend in the past or future; iii) the local variability isnot completely limited byL: a pattern outside

the tolerance range (i.e. with a distance over the threshold) could be sampled if no better candidate

is found.

3.2 Validation

Tovalidate
✿✿

To
✿✿✿✿

testthe proposed technique the visual comparison of the generated time-series with the325

reference as well as several groups of statistical indicators are considered. The empirical cumulative

probability distributions, obtained using the Kaplan-Meier estimate (Kaplan and Meier, 1958), of

the daily, the annual and decennial rainfall time-series, obtained by summing up the daily rainfall,

are compared using quantile-quantile (qq-) plots. Moreover, the
✿✿✿✿✿✿✿✿✿

minimum
✿✿✿✿✿✿✿

moving
✿✿✿✿✿✿✿✿

average,
✿✿✿✿

i.e.

✿✿✿

the
✿✿✿✿✿✿✿✿✿

minimum
✿✿✿✿✿

value
✿✿✿✿✿✿

found
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿

moving
✿✿✿✿✿✿✿

average
✿✿

of
✿✿✿✿✿

each
✿✿✿✿✿✿✿✿✿✿✿

time-series,
✿✿

is
✿✿✿✿✿✿✿✿✿

computed
✿✿✿✿✿✿

using
✿✿✿✿✿✿✿✿

different330

✿✿✿✿✿✿✿

running
✿✿✿✿✿✿✿

window
✿✿✿✿✿✿✿✿

lengths
✿✿

up
✿✿✿

to
✿✿✿

60
✿✿✿✿✿

years
✿✿

to
✿✿✿✿✿✿✿

assess
✿✿✿

the
✿✿✿✿✿✿✿✿✿

efficiency
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

algorithm
✿✿✿

in
✿✿✿✿✿✿✿✿✿✿

preserving
✿✿✿

the

✿✿✿✿✿✿✿✿✿

long-term
✿✿✿✿✿✿✿✿✿✿

dependence
✿✿✿✿✿✿✿✿✿✿✿✿✿

characteristics
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

rainfall.
✿

✿✿✿✿

Thedaily rainfall statistics have been analyzed separately for each month considering the average

value of the following indicators: the probability of occurrence of a wet day and the mean, standard

deviation, minimum and maximum on wet days only. For instance, the standard deviation is com-335

puted on the wet days of each month of January, then the average value is taken as representative of

that time-series. We therefore obtain a unique value for thereference and a distribution of values for

the simulations represented with a box-plot.
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Another used validation criterion is the comparison of the dry and wet spells length distributions.

Each series is transformedin
✿✿✿

into
✿

a binary sequence with zeros corresponding to dry days and ones340

to the wet days. Then, counting the number of days inside eachdry and wetregion
✿✿✿✿

spell, we obtain

the distributions of dry and wet spells length, that can be compared using qq-plots. This is an

important indicator since it determines, for example, the efficiency of the algorithm in reproducing

long droughts or wet periods.

Since the DS works by pasting values from the TI to the SG, it isstraightforward to keep track of345

the original location of each value in the training image. Ifsuccessive values in the TI are also next

to each other in the SG, then a patch is identified. A multiple box-plot is then used to represent the

number of patches found in each realization as a function of the patch length to keep track of the

verbatim copy effect.

The last group of indicators considered is the sample Partial Autocorrelation Function (PACF)350

(Box and Jenkins, 1976) of the daily, monthly and annual rainfall. Given a time-series Xt, the

sample PACF is the estimation of the linear correlation index between the datum at timet and the

ones at previous time-stepst− h, without considering the linear dependence with the in-between

observations. For a stationary time-series the sample PACFis expressed as a function of the time-lag

h with the following formula:355

ρ̂(Xt,
✿✿✿

h) = Corr[Xt − Ê(Xt|{Xt−1, ...,Xt−h+1}),Xt−h− Ê(Xt−h|{Xt−h+1, ...,Xt−1})] (3)

whereÊ(Xt|{Xt−1, ...,Xt−h+1}) is the best linear predictor knowing the observations{Xt−1, ...,Xt−h+1}.

ρ(h) varies in[0,1], with high values for a highly autocorrelated process. Thisindicator is widely

used in time-series analysis since it gives information about the persistence of the signal.
✿✿✿

The

✿✿✿✿✿✿✿✿✿✿✿✿✿

autocorrelation
✿✿✿✿✿✿✿✿

function
✿✿✿✿✿

could
✿✿✿

be
✿✿✿✿

used
✿✿✿✿✿✿✿

instead,
✿✿✿

but
✿✿✿✿✿✿

PACF
✿✿

is
✿✿✿✿✿✿✿✿

preferred
✿✿✿✿

here
✿✿✿✿✿

since
✿✿

it
✿✿✿✿✿✿

shows
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

autocorrelation360

✿✿

at
✿✿✿✿

each
✿✿✿

lag
✿✿✿✿✿✿✿✿✿✿✿✿✿

independently.
✿

In the case of daily rainfall, the partial autocorrelation is usually very low,

while the higher-scale rainfall may present a more important specific time-lag linear dependence.

As suggestedby ,
✿✿✿✿✿✿✿

usually
✿✿✿✿✿

donein the absence of any prior knowledge aboutXt, anaccurateway

to detectasignificantautocorrelationat acertainlag, is tocompareit with anIID ∼ N(0,σ2) noise.

Sucha signal is totally non-autocorrelatedand presentsa samplePACF (ρ̂AN) nearzero for any365

h > 1. Moreover,ρ̂AN follows theasymptoticnormaldistributionAN(0,n−1), n beingthenumber

of observationsin theconsideredsample.The95% confidenceinterval of this distributioncan be

usedto test
✿✿✿

Xt,
✿✿✿

the
✿✿✿✿✿✿✿✿

5− 95%
✿✿✿✿✿✿✿✿✿✿

confidence
✿✿✿✿✿✿

limits
✿✿

of
✿✿✿

an
✿✿✿✿✿✿✿✿✿✿✿

uncorrelated
✿✿✿✿✿✿

white
✿✿✿✿✿

noise
✿✿✿

are
✿✿✿✿✿✿✿✿

adopted
✿✿

to
✿✿✿✿✿✿

assess

the significance ofany ρ̂(h). That is, in the estimationof the autocorrelationfor X t, at all the

ρ̂(h) valueswithin 0± 1.96n−1/2 can beconsiderednegligible,being of the samemagnitudeas370

ρ̂AN . Conversely,the valuesoutsidetheseboundariesareprobablytheexpressionof asignificant

autocorrelationandshouldbereproducedby the simulation. The fact that the varianceof ρ̂AN as

well asthesizeof the95% confidenceintervalincreasewith n−1, allows acorrectPACFevaluation

with respectto thelimited informationgivenby theconsideredsample.
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✿✿✿

the
✿✿✿✿✿✿

PACF
✿✿✿✿✿✿✿✿

indexes.
✿

Since the time-series used in this paper are not necessarilystationary, any375

sample PACF is computed from the standardized signalXs
t , obtained by applying moving average

estimationm̂t and standard deviation̂st filters with the following formula:

Xs
t =

Xt − m̂t

ŝt
, m̂t = (2q+1)−1

q
∑

j=−q

Xt+j , ŝt = [(2q+1)−1

q
∑

j=−q

(Xt+j−m̂t)
2]−

1

2 , q+1≤ t≤ n−q

(4)

whereq = 2555 (15 years centered moving window). It is important to note that this operation may

exclude from the PACF computation a consistent part of the signal (q+1≤ t≤ n− q), especially380

on the higher time-scalesignal. In the case of the datasets used, the annual time-series is reduced

to less than 60 values for Alice Springs and Darwin: a barely sufficient quantity, considering that

a generic
✿✿✿

the minimum amount of data for a useful sample PACF estimationgiven
✿✿✿✿✿✿✿✿✿

suggested
✿

by

Box and Jenkins(1976) is of about 50 observations.

4 Results and discussion385

To evaluate the proposed technique, a group of 100 realizations of the same length as the reference

is generated for each of the 3 considered datasets to obtain asufficiently stable response in both the

average and the extreme behavior. The setup used is the one presented in Section3 with the fixed

parameters values shown in Table2. The obtained results are shown and discussed in the following

✿✿✿✿✿✿

section.390

4.1 Visual comparison

Figure2 shows the comparison between random samples from both the simulated and the reference

time-series. For each dataset, the generated rainfall looks similar to the reference: the extreme

events inside the 10-years samples are reproduced with an analogous frequency and magnitude. The

annual seasonality, particularly pronounced in the Darwinseries, is accurately simulated as well as395

the persistence of the rainfall events, visible in the 100-days samples. These aspects are evaluated

quantitatively in the following sections.

FIG.2 ABOUT HERE

4.2 Multiple-scale probability distribution

The qq-plots of the rainfall empirical distributions are presented in Figure3, where all the range400

of quantiles is considered. The distribution of the daily rainfall (computed on wet days only) is

generally respected, although some extremes that are present only once in the reference and, in

particular, at theborder
✿✿✿

start
✿✿✿

or
✿✿✿✿

endof the time-series, may not appear in the simulation. It is the

case of the Darwin series, with a mismatch of the very upper quantiles. Moreover, the DS being an

12



algorithm based on resampling, the distribution of the simulated values is limited by the range of405

the training dataset: this is shown in the Alice Springs and Sydney qq-plots, where the distribution

of the last quantiles is clearly truncated at the maximum value found in the reference. This result

is normally expected using this type of techniques: the direct sampling is of course not able to

extrapolate extreme intensities higher than the ones foundin the TI at the scale of the simulated

signal.410

FIG.3 ABOUT HERE

On the contrary, the distribution of the rainfall amount on the solitary wet days is accurately re-

spected, with some realizations including higher extremesthan the reference. More importantly, the

annual and 10-years rainfall distributions are correctly reproduced and do not show over-dispersion.

This phenomenon, common among the classical techniques based on daily-scale conditioning, con-415

sists in the scarce representation of the extremes and underestimation of the variance at the higher

scale. This problem is avoided here because a variable dependence is considered, up to a 5000-days

radius on the365MA auxiliary variable, that helpsrespecting
✿✿✿✿✿✿✿✿✿

preserving
✿

the low-frequency fluctu-

ations. We also see that, at this scale, the DS is capable of generating extremes higher than the ones

found in the reference, meaning that new patterns have been generated using the same values at the420

daily scale. This results is purely based on the reproduction of higher-scale patterns: the acceptance

threshold value chosen for the365MA auxiliary variable allows enough freedom to generate new

patterns although maintaining an unbiased distribution. Nevertheless, this approach is not meant to

replace a specific technique to predict long recurrence-time events at any temporal scale, since it is

not focused on modeling the tail of the probability distribution.425

4.3 Annual seasonality and extremes

Figure4 shows the principal indicators describing the annual seasonality of the reference and the

generated time-series: each different season is accurately reproduced by the algorithm, with almost

no bias. The probability of having a wet day, usually imposedby a prior model in the classical

parametric techniques, is indirectly obtained by samplingfrom the rainfall patterns of the appropriate430

period of the year. This goal is mainly achieved using the auxiliary variablestr1 andtr2 asCD

✿✿✿✿✿✿✿✿✿✿✿

conditioning
✿✿✿✿

data
✿

(see Section3).

FIG.4 ABOUT HERE

Regardingthe
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

simulation
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

average
✿

extremes, shown in Figure5, thereis a moreaccurate

simulationof themaximawith respecttotheminima,slightlyunderestimatedin theSydneyseries
✿✿✿

also435

✿✿✿✿✿✿

follows
✿✿✿✿

the
✿✿✿✿✿✿✿✿

reference
✿✿✿✿✿✿

rather
✿✿✿✿✿✿✿✿✿✿

accurately.

FIG.5 ABOUT HERE
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4.4 Rainfall patterns and verbatim copy

The statistical indicators regarding the dry/wet patternsshown in Figure6 demonstrate the efficiency

of the proposed DS setup in simulating long droughts or wet periods according to the training dataset:440

the dry and wet spells distributions arerespected
✿✿✿✿✿✿✿✿✿

preservedand extremes higher than the ones present

in the TI are also simulated.

The verbatim copy box-plots show the distribution of the time-series pieces exactly copied from

the TI as a function of their size for the ensemble of the realizations: the number of patches decreases

exponentially with their size. The phenomenon is mainly limited to a maximum of few 8-days445

patches, with isolated cases up to 14 days.

The 10-years rainfall moving sum, shown at the bottom of Figure 6, shows
✿✿✿✿✿✿✿✿✿

illustrates
✿

the low-

frequency time-series structure: the quantiles of the simulations at each time-step confirm that the

global
✿✿✿✿✿✿

overall
✿

variability is correctly simulated, but the local fluctuationsandglobal trendsdo not

match the reference. For example, the Darwin reference series shows a clear upwardglobaltendency450

✿✿✿✿

trend
✿

which is not present in the superposed randomly-picked DS realization. Generally, the TI is

supposed to be stationary or the non-stationarity should beat least described by an auxiliary variable.

If it is not the case, as for the Darwin time-series, the algorithm respectstheglobalvariation
✿✿✿✿✿✿

honors

✿✿✿

the
✿✿✿✿✿✿✿✿

marginal
✿✿✿✿✿✿✿✿✿✿

distribution
✿

of the reference, but it does not reproduce a specific trend. This problem is

treated separately in Section4.6.455

FIG.6 ABOUT HERE

✿✿✿✿

The
✿✿✿✿✿✿✿✿✿

minimum
✿✿✿✿✿✿✿✿

moving
✿✿✿✿✿✿✿

average
✿✿✿

on
✿✿✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿

window
✿✿✿✿✿✿✿

lengths
✿✿✿

up
✿✿✿

to
✿✿✿

60
✿✿✿✿✿

years
✿✿✿✿✿✿✿✿

(Figure
✿✿✿

7)
✿✿✿✿✿

gives

✿✿✿✿✿✿✿✿✿✿

information
✿✿✿✿✿✿

about
✿✿✿

the
✿✿✿✿✿✿✿✿✿

long-term
✿✿✿✿✿✿✿✿

structure
✿✿

of
✿✿✿✿✿✿✿✿

rainfall.
✿✿✿✿

The
✿✿✿✿

zero
✿✿✿✿✿✿

values
✿✿✿

are
✿✿✿

in
✿✿✿✿✿✿✿✿✿✿

accordance
✿✿✿✿

with
✿✿✿✿

the
✿✿✿

dry

✿✿✿✿

spell
✿✿✿✿✿✿✿✿✿✿✿

distribution
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿✿✿

Figure
✿✿

6:
✿✿✿✿

for
✿✿✿✿✿✿✿✿

example,
✿✿✿✿✿

Alice
✿✿✿✿✿✿✿✿

Springs
✿✿✿✿✿✿✿✿

presents
✿

a
✿✿✿✿✿

zero
✿✿✿✿✿✿✿✿✿

minimum
✿✿✿✿✿✿✿

moving

✿✿✿✿✿✿✿

average
✿✿✿✿

until
✿✿

5
✿✿✿✿✿✿✿

months,
✿✿✿✿✿✿✿✿✿

meaning
✿✿✿

that
✿✿

it
✿✿✿✿✿✿✿✿

contains
✿✿✿

dry
✿✿✿✿✿✿

spells
✿✿

of
✿✿✿✿

this
✿✿✿✿✿✿✿

length.
✿✿✿✿✿

Alice
✿✿✿✿✿✿✿

Springs
✿✿✿✿

and
✿✿✿✿✿✿✿

Sydney460

✿✿✿✿✿

show
✿

a
✿✿✿✿✿

very
✿✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿✿

long-term
✿✿✿✿✿✿✿✿✿

structure:
✿✿✿✿

the
✿✿✿✿✿✿

former
✿✿✿✿✿

with
✿✿✿✿✿

long
✿✿✿

dry
✿✿✿✿✿✿

spells,
✿✿✿✿

the
✿✿✿✿✿

latter
✿✿✿✿✿

with
✿

a
✿✿✿✿✿✿

wider

✿✿✿✿✿

range
✿✿

of
✿✿✿✿✿✿✿✿✿✿

minimum
✿✿✿✿✿✿✿

values.
✿✿✿✿✿✿✿

Darwin
✿✿✿✿✿✿✿✿

presents
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

peculiarities
✿✿✿

of
✿✿✿✿

both
✿✿✿✿✿✿✿✿

climates
✿✿✿✿✿

with
✿✿

a
✿✿✿✿✿

sharp
✿✿✿✿✿✿

rising

✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿

annual
✿✿

to
✿✿✿

the
✿✿✿

60
✿✿✿✿✿

years
✿✿✿✿✿✿

scale.

✿✿✿✿✿✿

FIG.7
✿✿✿✿✿✿✿✿

ABOUT
✿✿✿✿✿✿

HERE

✿✿✿✿✿✿✿✿✿

According
✿✿

to
✿✿✿✿

this
✿✿✿✿✿✿✿✿✿

indicator,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

simulation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

long-term
✿✿✿✿✿✿✿✿✿

structure
✿✿

is
✿✿✿✿✿

fairly
✿✿✿✿✿✿✿✿

accurate.
✿✿✿✿

The
✿✿✿✿✿✿✿✿

negative465

✿✿✿✿

bias,
✿✿✿✿✿✿

lower
✿✿✿✿

than
✿✿✿

0.5
✿

mm
✿

,
✿✿✿✿✿✿

shows
✿✿

a
✿✿✿✿✿✿✿

modest
✿✿✿✿✿✿✿✿

tendency
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿✿✿

underestimate
✿✿✿

the
✿✿✿✿✿✿✿✿✿

minimum
✿✿✿✿✿✿✿✿

moving
✿✿✿✿✿✿✿

average

✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿

annual
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

decennial
✿✿✿✿✿

scale
✿✿✿

for
✿✿✿✿

wet
✿✿✿✿✿✿✿✿

climates
✿✿

as
✿✿✿✿✿✿✿

Sydney
✿✿✿✿

and
✿✿✿✿✿✿✿

Darwin.
✿

4.5 Linear time-dependence

The specific linear time-dependence of the generated and referencesignal
✿✿✿✿✿✿

signals
✿

has been evaluated

at different scales using the sample Partial Autocorrelation Function (PACF, Figure??
✿

8, Equation470

4).
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FIG.??
✿

8
✿

ABOUT HERE

At the daily scale, the data show the same level of autocorrelation at lag-1 and a low but significant

linear dependence until lag 3 for Alice Springs and Sydney, while Darwin presents a longer tailing

which asymptotically approaches the confidence bounds oftheGaussian
✿✿

an
✿✿✿✿✿✿✿✿✿✿✿

uncorrelated
✿

noise. The475

DS simulation shows a tendency to a slight underestimation of the lag-1 PACF, with a maximum error

around 0.1(theSydneytime-series).Therestof thelagsarereproducedquiteaccurately
✿✿

for
✿✿✿✿✿✿✿✿

Sydney.

✿✿✿✿✿

Since
✿✿✿

the
✿✿✿✿✿✿✿✿✿

algorithm
✿✿✿✿✿✿✿✿

operates
✿✿

in
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

non-parametric
✿✿✿✿

way
✿✿✿✿

and
✿✿✿✿✿✿✿✿

imposes
✿

a
✿✿✿✿✿✿✿✿

variable
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

time-dependence,
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿

eventuality
✿✿

of
✿✿✿✿✿✿✿✿✿✿

modifying
✿✿✿

the
✿✿✿✿✿✿✿✿

structure
✿✿

of
✿✿✿✿

the
✿✿✿✿

daily
✿✿✿✿✿✿

signal
✿✿✿✿✿✿✿

cannot
✿✿

be
✿✿✿✿✿✿✿✿✿

excluded
✿

a
✿✿✿✿✿✿

priori,
✿✿✿

for
✿✿✿✿

this
✿✿✿✿✿✿

reason

✿✿✿

the
✿✿✿✿✿

PACF
✿✿✿✿

has
✿✿✿✿✿

been
✿✿✿✿✿✿✿✿✿

calculated
✿✿✿

up
✿✿

to
✿✿✿

the
✿✿✿✿✿

20th
✿✿✿✿

lag,
✿✿✿✿✿✿✿✿

assuring
✿✿✿

that
✿✿✿

no
✿✿✿✿✿

extra
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

linear-dependence
✿✿✿

has
✿✿✿✿✿

been480

✿✿✿✿✿✿✿✿✿

introduced.

At the monthly scale, the linear time-dependence structureis clearly related to the annual season-

ality, with a negative autocorrelation around lag 6 and a positive one around lag 12. The climate

characterization is also evident: from Alice Springs to Darwin we see a more marked seasonality re-

flected in the PACF. The simulation follows the reference fairly well, with a maximum error around485

±0.1.

At the annual scale, the limited length of the time-seriesreducesleads to wider confidence bounds

for the non-significant values (see section3.2). The reference does not show a clear linear time-

dependence structure which is not similarly reproduced by the simulation. Some more relevant

discrepancy is present in the Darwin series,presenting
✿✿✿✿✿✿✿✿

showing
✿

a more discontinuous structure.490

However, using such a limited dataset for the time scale considered here, it is difficult to determine

if the reference PACF is really indicative of an effective linear dependence.

4.6 Non-stationary simulation

Figure9 shows the Darwin time-series simulationrealizedby imposing
✿✿✿✿✿✿✿✿✿✿

preservingthe same non-

stationaritywith
✿✿✿✿✿✿✿✿

contained
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

reference
✿✿✿

by
✿✿✿✿✿

using
✿

the technique proposed in Section3.1. The 10-495

years moving sum plot shows that thelocal andglobaltrendof
✿✿✿✿

trend
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿

low-frequency
✿✿✿✿✿✿✿✿✿✿

fluctuation

✿✿✿✿✿✿

present
✿✿✿

in the reference are accuratelyreproduced
✿✿✿✿✿✿✿✿

simulated: the median of the realizations follows

the reference and a variability of about 4m m between the 5-th and 95-th percentile is present.The

accuracyin theglobalstatistics
✿✿✿✿✿✿✿✿✿

Regarding
✿✿✿

the
✿✿✿✿✿

other
✿✿✿✿✿✿✿✿✿✿

considered
✿✿✿✿✿✿✿✿✿

statistical
✿✿✿✿✿✿✿✿✿

indicators,
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

performance

appears to be essentially the same as for the stationary simulation: the only remarkable difference is500

a modest positive bias in the maximum wet periods length.

FIG.9 ABOUT HERE

The fact that, to impose the trend, the sampling is restricted to a local region of the reference reduces

the local variability with respect to the stationary simulation. Consequently, alittle
✿✿✿✿✿✿

modest
✿

increase

of the verbatim copy effect occurs.505
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✿✿✿✿

This
✿✿✿✿✿✿✿✿✿

technique
✿✿✿

can
✿✿✿✿

find
✿✿✿✿✿✿✿✿✿✿

application
✿✿

in
✿✿✿✿✿

cases
✿✿✿✿✿✿

where
✿✿

a
✿✿✿✿✿✿✿

specific
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

non-stationarity
✿✿✿✿✿✿✿✿

extended
✿✿

to
✿✿✿✿✿✿✿✿✿✿

high-order

✿✿✿✿✿✿✿✿

moments
✿✿✿✿✿✿

should
✿✿✿

be
✿✿✿✿✿✿✿✿

imposed,
✿✿✿✿

e.g.
✿✿✿✿✿✿✿✿✿

exploring
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

uncertainty
✿✿

of
✿

a
✿✿✿✿✿✿

given
✿✿✿✿

past
✿✿

or
✿✿✿✿✿✿

future
✿✿✿✿✿✿✿✿

scenario,
✿✿✿✿✿✿

where

✿

a
✿✿✿✿✿✿✿

simple
✿✿✿✿✿

trend
✿✿

or
✿✿✿✿✿✿✿✿✿✿✿

seasonality
✿✿✿✿✿✿✿✿✿✿

adjustment
✿✿✿

is
✿✿✿✿✿✿✿✿✿✿

insufficient
✿✿✿✿

and
✿✿✿

an
✿✿✿✿✿✿

overly
✿✿✿✿✿✿✿✿✿

complex
✿✿✿✿✿✿✿✿✿✿

parametric
✿✿✿✿✿✿

model

✿✿✿✿✿

would
✿✿✿

be
✿✿✿✿✿✿✿✿✿

necessary
✿✿

to
✿✿✿✿✿✿✿✿

preserve
✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿✿✿✿✿✿✿

long-term
✿✿✿✿✿✿✿✿

behavior.
✿

5 Conclusions510

The aim of the paper is to present an alternative daily rainfall simulation technique based on the

Direct Sampling algorithm, belonging to multiple-point statistics family. The main principle of the

technique is to resample a given dataset using a pattern-similarity rule. Using a random simulation

path and a non-fixed pattern dimension, the technique allowsimposing a variable time-dependence

and reproducing the reference statistics at multiple scales. The proposed setup, suitable for any type515

of rainfall, includes the simulation of the daily rainfall time-series together with a series of auxiliary

variables including: a categorical variable describing the dry/wet pattern, the 2 days moving sum

which helps respecting the lag-1 autocorrelation, the 365 days moving average to condition upon

inter-annual fluctuations and two coupled theoretical periodic functions describing the annual sea-

sonality. Since all the variables are automatically computed from the rainfall data, no additional520

information is needed.

The technique has been tested on three different climates ofAustralia: Alice Springs (desert),

Sydney (temperate) and Darwin (tropical savannah). Without changing the simulation parameters,

the algorithm correctly simulates both the rainfall occurrence structure and amount distribution up

to the decennial scale for all the three climates, avoiding the problem of over-dispersion, which525

often affects daily-rainfall simulation techniques. Being based on resampling, the algorithm can

only generate data which are present in the training dataset, but they can be aggregated differently,

simulating new extremes in the higher-scale rainfall and dry/wet pattern distributions. The technique

is not meant to be used as a tool to explore the uncertainty related to long recurrence-time events,

but rather to generate extremely realistic replicates of the datum, to be used as inputs in hydrologic530

models.

Reproducinga trend in the simulation
✿✿✿

the
✿✿✿✿✿✿✿✿

specific
✿✿✿✿✿

trend
✿✿✿✿✿✿

found
✿✿

in
✿✿✿✿

the
✿✿✿✿

data
✿

is also possible by

making use of an additional auxiliary variable which simplyrestricts the sampling to a local portion

of the TI. This way, any type of non-stationarity present in the TI is automatically imposed on the

simulation. The Darwin example demonstrates the efficiencyof this approach in reproducing 100535

different realizations showing the same type of trend andglobalstatistics
✿✿✿✿✿✿✿

marginal
✿✿✿✿✿✿✿✿✿✿✿

distribution.
✿✿✿✿✿

This

✿✿✿✿✿

setup
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿

useful
✿✿

to
✿✿✿✿✿✿✿✿

simulate
✿✿✿✿✿✿✿✿

multiple
✿✿✿✿✿✿✿✿✿✿

realizations
✿✿✿

of
✿

a
✿✿✿✿✿✿✿✿

specific
✿✿✿✿✿✿✿✿✿✿✿✿✿

non-stationary
✿✿✿✿✿✿✿✿

scenario
✿✿✿✿✿✿✿✿✿

regardless

✿✿

of
✿✿

its
✿✿✿✿✿✿✿✿✿✿✿

complexity.

In conclusion, the Direct Sampling technique used with the proposed generic setup can produce

realistic daily rainfall time-series replicates from different climates without the need of calibration or540
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additional information. The generality and the total automation of the technique makes it a powerful

tool for a routine use in scientific and engineering applications.
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✿

performed by the Direct Sampling: the

chainrepresentstheSG,with circlescorrespondingto uninformedtime-stepsandfull dotsdenotingsimulated

data. The dashed rectangle represents the search neighborhood of radius R, the datum being simulated is
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✿
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✿

and the ones composing the data event arenumbered
✿

in
✿✿✿

red. In this example,
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TI.

Table 1. Summary of theuseddataset
✿✿✿✿

used.

Location Station Period [years] Record length [days] Missing data [days]

Alice Springs A.S.Airport 1940-2013 26347 305

Sydney S.Observatory Hill 1858-2013 56662 184

Darwin D.Airport 1941-2013 26356 0
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Fig. 2. Visual comparison between the simulated and the reference daily rainfall [mm] time-series: 10-years

(left column) and 100-days (right column) random samples.
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Fig. 3. qq-plots of the empirical probability rainfall amount [mm] distributions: median of the realizations

(dotted line
✿✿✿✿

blue
✿✿✿✿

dots), 5th and 95th percentile (dashed lines). The bisector (solid line) indicates the exact

quantile match.
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Fig. 4. Box-plots of the average wet days probability, mean daily rainfall amount [mm] and its standard

deviation per month. The solid line indicates the reference.

Fig. 5. Box-plots of the average extremes per month [mm]. The solid line indicates the reference.
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Fig. 6. Main indicators describing the rainfall pattern: qq-plotsof the dry and wet spells [days] distributions,

verbatim copy box-plots as function of the patch size [days] and daily 10-years Moving Sum (MS) time-series

[mm] of the reference (black line), median, 5-th and 95-th percentile of the realizations (gray lines) and a

randomly picked simulation (dashed blue line).
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Fig. 9. Darwin daily rainfall non-stationary simulation: 10-years Moving Sum time-series (top) of the reference

(black line), median, 5-th and 95-th percentile of the realizations (gray lines) and a randomly picked simulation

(dashed blue line); main quantile-comparisons (center); main seasonal indicators and verbatim copy box-plot

(bottom).
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Table 2. Standard setup proposed for rainfall simulation. The parameters are: search window radius R, max-

imum number of neighbors N and distance threshold T. The variables are: 1) the 365 days Moving Average

(365MA), 2) the Moving Sum of the current day and the one before (2MS), 3) and 4) annual seasonality

triangular functions (tr1 andtr2), 5) the dry/wet sequencedw and∗
✿

6) the
✿✿✿✿

daily
✿

rainfall amount as the target

variable.
✿✿✿

On
✿✿✿

the
✿✿✿✿

right,
✿✿

a
✿✿✿✿✿✿

portion
✿✿

of
✿✿✿✿✿✿✿✿✿✿

multivariate
✿✿

TI
✿✿

is
✿✿✿✿✿

given
✿✿

as
✿✿✿✿✿✿✿✿

example.

Variable R N T

1) 365MA 5000 21 0.05

2) 2MS 1 1 0.05

3) tr1 1 1 0.05

4) tr2 1 1 0.05

5) dw 10 5 0.05

∗
✿

6) rainfall 5000 21 0.05 600 800 1000 [days]
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