

ASSESSMENT OF OPEN THERMODYNAMIC SYSTEM CONCEPTS FOR FLUVIOKARST TEMPERATURE CALCULATIONS – AN EXAMPLE, THE CENT-FONTS RESURGENCE (HÉRAULT, FRANCE)

Philippe Machetel¹, David A Yuen²

1 : Geosciences Montpellier, UMR5243 CNRS-Université Montpellier 2, CC60, place Eugène Bataillon, 34095 Montpellier cedex5, France.

2 : Minnesota Supercomputing Institute and Department of Geology and Geophysics, University of Minnesota, 310 Pillsbury Dr., SE, Minneapolis, MN 55455, USA.

Answers to the anonymous review 1

26 février 2014

1 Dear colleague,

2

3 First we want to thank you for your work and comments about our paper. You will find

4 below our detailed answers to your comments we recalled in italic and smaller font.

5

6 *General comments*

7 *In this manuscript, the authors aim to quantify the error made when no heat exchange between the*

8 *conduit system and the porous fraction matrix of a karstic system is taking into account. Apparently,*

9 *this heat exchange is often ignored in fluvikarst studies (I am not an expert on this) and therefore this*

10 *study may be worth publishing. However, I have the feeling that the state of the art in, for example,*

11 *stream temperature modelling is much further and therefore the authors should better explain the*

12 *novelty of this study.*

13

14 Indeed, since years, numerous works have tried to describe the thermal and hydrologic

15 behavior in the karstic structures by recording and modeling external data as recession

16 curves and/or temperature. This approach does not deny the internal heat propagation

17 processes but renounce to assess their local consequences. From a fluid mechanic point of

18 view, the mass and energy conservative principles that drive the physical exchanges involved

19 in the heart of these black boxes are well known. The existence of such internal processes

20 prevent from using temperature as a conservative tracer, at least without caution.

21

22 In this work, we aim to quantify the first order of the error done considering temperature as

23 a conservative tracer. The benefit that could be obtained of such an assessment and the

24 deciphering of conditions for which it could be applied is obvious because of the low cost

25 and easiness of such measurements. However, conversely to the feeling of the reviewer

26 (who did not mention any reference to support this point), we do not know any precise

27 article that treats this objective and that could have been added to the reference list as a

28 precursor.

29

30 We will explain below that our approach aims for preserving as far as possible the generality

31 of the problem against the hydrological and geometrical local particularities. If we had such

32 purpose, and with the knowledge of detailed internal boundary conditions we would have

33 developed numerical models including particular boundary conditions and local hydrologic

34 values; and solved the equations on the basis of existing scientific works and methods.

35 Doing this we would have definitively lost the generality which is aimed in the present work.

36 Conversely, we have chosen to describe à more sophisticated fluid mechanics physic in the

37 simplest geometry adapted to describe the problem. This allows cautious extrapolation of

38 the work results to most of the karstic configurations.

39

40 *A second important point is that there are several shortcomings in this manuscript (including several*

41 *formulas) that should be fixed (see below). This makes me advice at least major revisions (and close to*

42 *rejection). I think all the 'shortcomings' could be fixed, but the authors have to explain clearly the*

43 *novelty of this work...*

44

45 *Major issues:*

46

47 1) *The English is of poor quality. Often articles are missing, but also strange sentences occur that are*
48 *difficult to understand. Since there are so many, I won't list them here. I advice to let the manuscript be*
49 *corrected by a native speaker.*

50
51 We apologize for the poor quality of the language. The new version of the paper will be
52 corrected by a specialized scientific translator in order to reach the HESS quality standard.

53 2) *The manuscript is written in an unnecessary complicated manner:*

54 a. *It sometimes reads as a mathematical paper. This is not by definition wrong, but makes it*
55 *more difficult to read. For example, Eq (1) can also be replaced by a phrase like "we assumed*
56 *water to be an uncompressible fluid".*

57
58 It is indeed a presentation choice that has been done for the whole paper and that is
59 coherent with the aims of the work. Indeed we do not wish wander from mathematical and
60 physical conservative principles that drive fluid mechanics. As an example, within this
61 context we prefer using a classical equation describing the effect of water uncompressibility
62 instead of a sentence, especially as its mathematical expression (Eq. 1) determines further
63 equations through the mathematical development (Eqs. 4, 6, 7 and 11).

64 We will emphasize these points in the new version of the article, which is written more in a
65 fluid mechanics modelisation spirit than local hydrological study.

66 b. *The introduction of the 'wall' between the CS and PFM is unnecessary. Instead of explaining*
67 *that in one case the wall is only permeable to water and in the other case also to heat*
68 *exchange, it is enough to explain that in one case diffusive heat exchange is not taken into*
69 *account and in the other it is.*

70
71 The word « wall » and the concept of wall are commonly used by the community that works
72 on modeling of karst conduit systems behavior (see e.g. Luehman et al, 2011 ; Covington et al,
73 2011, 2009, 2012 ; Saar et al, 2011 whose detailed references are given in the paper).
74 However, beyond this semantic aspect, the physical difference between the AW and CW
75 cases goes beyond the existence of the wall. Indeed as a consequence of the CW, heat
76 propagates from the CS deep in the PFM (not only at the wall). We worry that a shorter
77 description, without employing the word « wall » may hide the complexity of the physics
78 that is taken into account in the CW model with the computation of the convective and
79 conductive terms in the whole volume of the PFM (not only at the wall). However,
80 considering that this important point was not enough described, we will improve the
81 discussion of these aspects in the new version of the paper.

82
83 c. *The model of the CS is explained as a "sequence of open thermodynamic systems segments".*
84 *Also this is not by definition wrong, but it boils down to numerical grid cells for which water*
85 *flow and heat exchange is calculated. In this respect, the title was also a bit misleading to me,*
86 *since the study boils down to the effect of heat diffusion with the PFM.*

87
88 We agree with the comment above that it is not wrong to speak of open thermodynamic
89 systems but that may be not enough to give a suitable idea of the actual work. We propose
90 to modify the title of the paper as :

91 « Assessment of Conservative Tracer Approximation for Temperature in Open
92 Thermodynamic Context for Fluvikarst – an Example, the Cent-Fonts Resurgence (Hérault,
93 France) »

97 d. *The same is true when referring to the Ostrogradsky theorem (conservation law) and the first*
98 *law of thermodynamics (conservation of energy)*

100 This remark is in accordance with the point a above and appeals, for us, the same answer
101 related to the global spirit of the paper. The concepts of mass and energy conservations,
102 Ostrogradsky theorem and resulting basic fluid mechanics equations seems sufficiently well
103 known among the scientific community to build a didactic footing to describe after the more
104 sophisticated developments necessary to the actual work and physical assumptions done in
105 the paper.

106 e. *Is it really necessary to rewrite the formulas in terms of dimensionless numbers? The study is a*
107 *sensitivity study, where (if I understand it correctly) only the radius of the CS, the thermal*
108 *diffusivity and the total length of the system are changed. Since some of these parameters*
109 *occur in more than one dimensionless parameter, another parameter should be changed as*
110 *well in order to only change one dimensionless parameter. This makes the results fuzzier than*
111 *when only the sensitivity to one physical parameter is shown.*

112 We are here on a very important point. As we mentioned above, we put as an unavoidable
113 condition to preserve the generality of the study, avoiding considering particular cases (even
114 if it could be interesting from a local point of view). Since the beginning, theoretical fluid
115 mecanics progresses have been built on universal mass and energy conservation principles.
116 Thanks to the rescaling of the problems with dimensionless equations, scientists have
117 overtaken the problems inherent to the diverse unit systems and allowed accurate
118 comparison of empirical and, more recently, numerical results. Furthermore, dimensionless
119 expression of the equation opens the possibility of analogous treatment of the huge
120 variability of geophysical systems and boundary conditions. Indeed we must keep in mind
121 that if a physical effect often depends on a particular physical parameter, its final relative
122 importance in a natural system depends mostly of its combination with other physical
123 effects, which also depend on various other physical parameters. These combinations
124 appear clearly in the classical fluid mechanic dimensionless numbers as the Peclet, Reynold
125 or Prandtl numbers. The dimensionless approach is therefore unavoidable to keep the
126 generality of the approach.

127 3) *There are simplifications and errors in several formulas:*

128 a. *Eq. 3: No storage of heat is taken into account.*

129 The heat capacity C_p appears (with density) in both sides of Eq. 3. As we have considered
130 these physical parameters do not depend on temperature, they can be removed that leads
131 to the present expression of Eq. 3. However this is not said in the text of the paper. This will
132 be added in the new version.

133 b. *Eq. 4: RH is not hydraulic radius, but a pipe radius. Hydraulic radius is the ration of*
134 *crosssectional area and wetted perimeter, which is for a completely filled circular pipe given*
135 *by: pipe radius divided by 2. Make clear that the radius flux is pointed outwards (explaining*
136 *the negative sign). It is assumed here that with increasing flow, only the flow velocity*
137 *increases, while I expect also the pipe radius to increase. This is indirectly also mentioned on*
138 *P177, L3 and 4, but not taken into account in this formula*

146 You comment is right : R_h is the pipe radius and not the hydraulic radius. This will be
147 corrected in the new version of the paper. However, the equations and results will be
148 absolutely not changed by this semantic (and necessary) correction. The radius flux is
149 actually pointing outward that explains the negative sign. The effects related to pipe radius
150 value and to the flow velocity conditions determine the Peclet and Reynolds numbers
151 through the scaling of the equations (see Table 1).

152
153 Working on this answer we saw that the viscosity does not appear in Table 1 in the
154 expression of the Reynolds number (as it should do). This seems to be due to a font problem
155 (since the viscosity symbol also disappeared a few lines above) and has not been corrected
156 during the proof reading. This will be done in the next version of the paper.

157
158 c. *Eq. 9: Units don't match: An area should be added on the right-hand side.*
159
160 The units of Eq. match. Both RHS and LHS are (K/s) (Kelvin divided by second). Confusion
161 may have been induced by the laplacian sign in the RHS of Eq. 9. It will be replaced by its full
162 development in term of partial derivatives in the new version of the paper.

163
164 d. *Eq. 10: Units don't match.*
165
166 e. *Eq. 11: Unit don't match.*
167
168 f. *Eq. 12: Units don't match.*
169
170 g. *Eq. 13: Units don't match: $T_\infty/\Delta T$ has the wrong unit. I also suggest not normalizing the error:
171 it becomes less intuitively and it matters if temperature is given in Kelvin or Celsius.*
172

173 Eqs. 10, 11, 12 and 13 have not unit that explains the presence of dimensionless numbers as
174 Pe, Red and thermal diffusivity ratio. The error must be rescaled simultaneously with the
175 other equations to keep its homogeneity with the others parameters of the study. The
176 scaling scheme given in Table 1 allows converting easily the dimensionless values from/into
177 physical values for lengths, velocities, temperatures and errors. This has been done in the
178 paper to show the error level reached in the example case.

179
180 4) *A couple of more specific comments:*
181
182 a. *At which distance is T_∞ taken? And how is the temperature in PFM calculated (how many grid
183 cells, which grid size, numerical scheme)? These aspects may influence the temperature for
184 the CW case significantly.*
185

186 In the model T_∞ is taken at the dimensionless radial distance 0.2, which means that the
187 computation box for the CW model has an aspect ratio of 5 (ratio of the axial to the radial
188 lengths). The computation grid use 100 points in the radial direction and 500 points in the
189 axial dimension. We used an Alternate Direction Implicit method with second order accurate
190 finite differences in the x and r directions (Douglas and Rachford, 1956 – full reference given
191 in the paper). It is clear from Fig. 2, that the influence of heat conduction through the
192 CS/PFM is more important near the beginning of the CS (low values of x) and decreases very
193 rapidly to become negligible when the radial distance to the axis increases. However we
194 agree that it is necessary to give more information about the numerical method. This will be
195 done in the new version of the paper.

196
197
198
199

b. *P180, L10-11: This is the diffusivity for stagnant water: In moving water, heat exchange also occurs by dispersion, which is highly dependent on the turbulence of the water and is often treated as a calibration parameter.*

200

201 The convective heat transport is taken into account thanks to the advection terms in the LHS
202 of Eqs. 8 and 9. It is clear that in karstic conduit systems the fluid motions may be turbulent
203 (according to the value of the Reynolds number). In that case, the cooling will be more
204 efficient by a better dissipation of heat near the wall of the CS. A better assessment of this
205 effect will be studied in a further work. However, we must keep in mind that, in the PFM, the
206 velocity of water motion is several orders of magnitude lower than in the CS that prevent
207 from using a calibration parameter for turbulence in this part of the model.

208

c. *The figures are of poor quality and therefore difficult to read.*

209

210

211

d. *Figure 2: What is on the z-axis? Also the x and y-axes are difficult to read.*

212

213

214

215

e. *Figure 4: The error on the y-axes has a different formulation than Eq 13.*

216

217 We agree that the Figures were of poor quality. This is why we have redrawn the figures 1, 2
218 and 4 in order to increase their readability. The new versions of the figures are included in
219 this comment answer. Furthermore, the label of error on the Fig. error axis was effectively
220 wrong. This has been corrected in the new version of the figure. These new figures will be
221 included in the new version of the paper.

222

223

224 We want to thank you again for your comments that greatly improve the form and the
225 quality of this work.

226

227 Philippe Machetel and David Yuen

228

230 **Table 1**

231 Acronyms

232 AW	Adiabatic Wall conduit system
233 CS	Conduit System (assumed cylindrical for the study)
234 CW	Conductive Wall conduit system
235 CV	Control volume of the open thermodynamic system
236 PFM	Porous Fractured Matrix

237

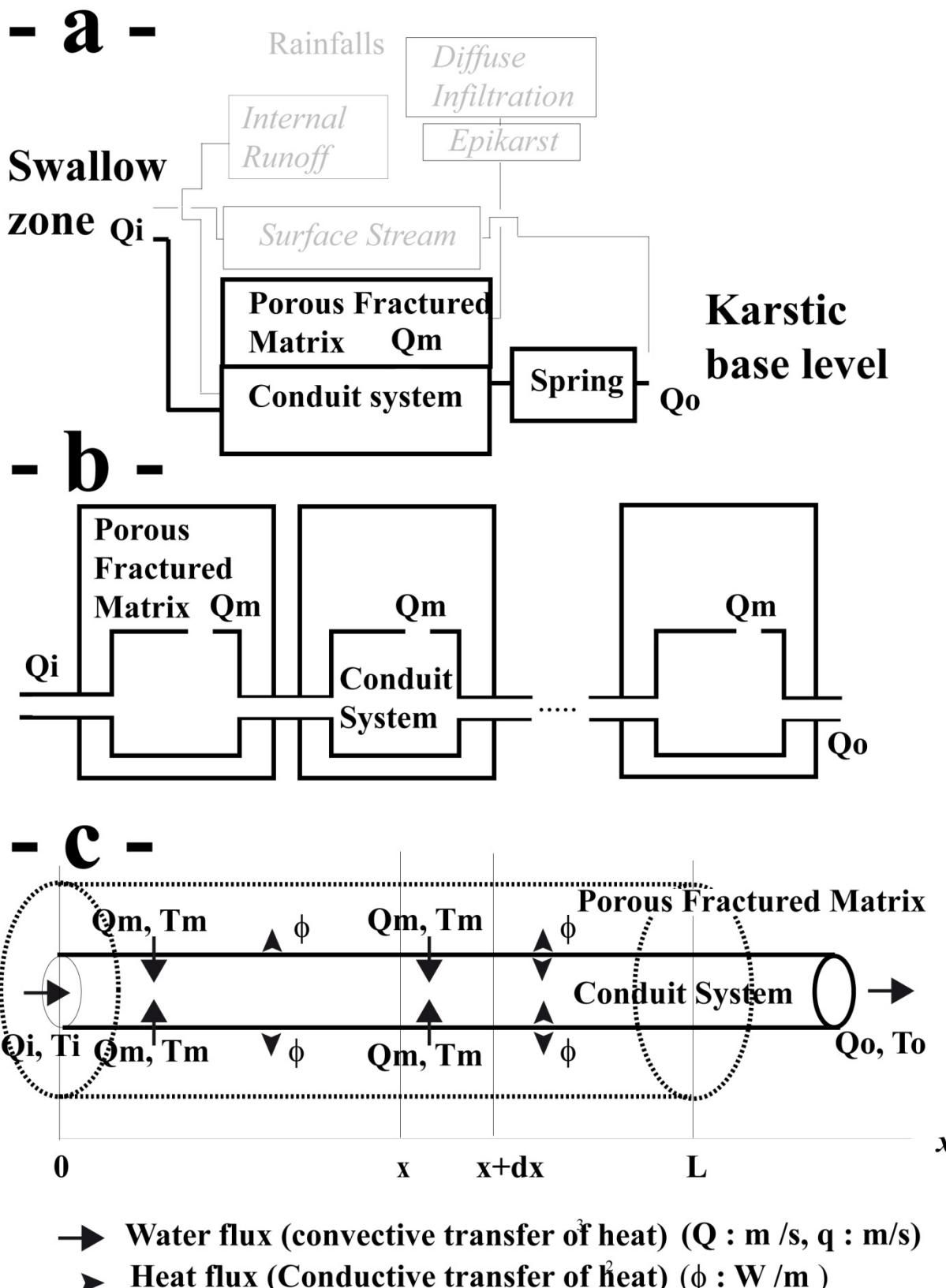
238 Notations, units, description

239 D_m	(m^2/s)	Thermal diffusivity of porous matrix
240 D_w	(m^2/s)	Thermal diffusivity of water
241 ν	(m^2/s)	Kinematic viscosity
242 N		number of AW in the sequence
243 Q_m	(m^3/s)	total discharge of matrix-conduit flow in the CS
244 Q_i	(m^3/s)	total discharge of intrusion in the CS at swallow zone
245 Q_o	(m^3/s)	total discharge of spring output of the CS
246 $Q_{i,n}$	(m^3/s)	Intrusive flow in the nth AW of the sequence
247 $Q_{m,n}$	(m^3/s)	Discharge of matrix-conduit flow in the n^{th} AW
248 $Q_{o,n}$	(m^3/s)	Output flow in the nth AW of the sequence
249 r	(m)	radial coordinate from CS cylindrical axis (positively oriented outward)
250 R_H	(m)	Hydraulic radius of the CS
251 t	(s or -)	time
252 $T(x,r)$	($^{\circ}\text{K}$ or $^{\circ}\text{C}$ or -)	Temperature (function of x and r)
253 T_{∞}	($^{\circ}\text{K}$ or $^{\circ}\text{C}$)	Far field temperature in the fluviokarst
254 T_i	($^{\circ}\text{K}$ or $^{\circ}\text{C}$)	Temperature of the intrusive flow at the swallow zone
255 \overline{v}	(m/s or -)	Fluid velocity vector
256 $v_r(x,r)$	(m/s or -)	Radial component of velocity (function of x and r)
257 $v_x(x,r)$	(m/s or -)	x component of velocity (function of x and r)
258 x	(m or -)	x coordinate along the axis of the cylindrical CS

259

260 Scales

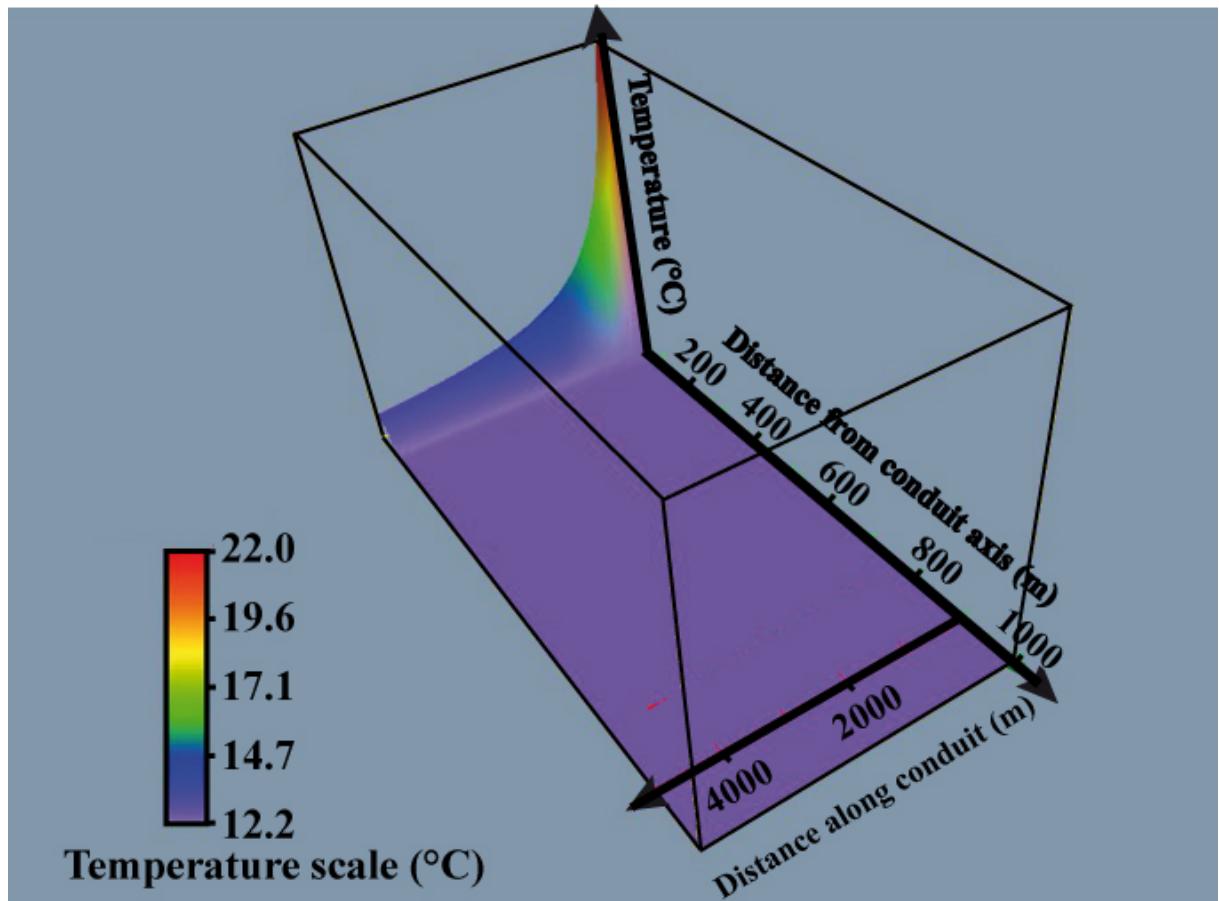
261 L	(m)	Scaling for lengths
262 V	(m/s)	Scaling for velocity ($V = (Q_s - Q_i)/(\pi R_H^2)$)
263 ΔT	($^{\circ}\text{K}$)	Scaling for temperature ($\Delta T = T_i - T_{\infty}$); ($T = \Delta T T' + T_{\infty}$)


264

265 Dimensionless numbers

266 Pe	(-)	Peclet number in the conduit ($Pe = LV/D_w$)
267 Pr	(-)	Prandtl number ($Pr = \nu / D_w$)
268 Re_d	(-)	CS Reynolds number $(Re_d = 2VR_H/\nu)$

269


270

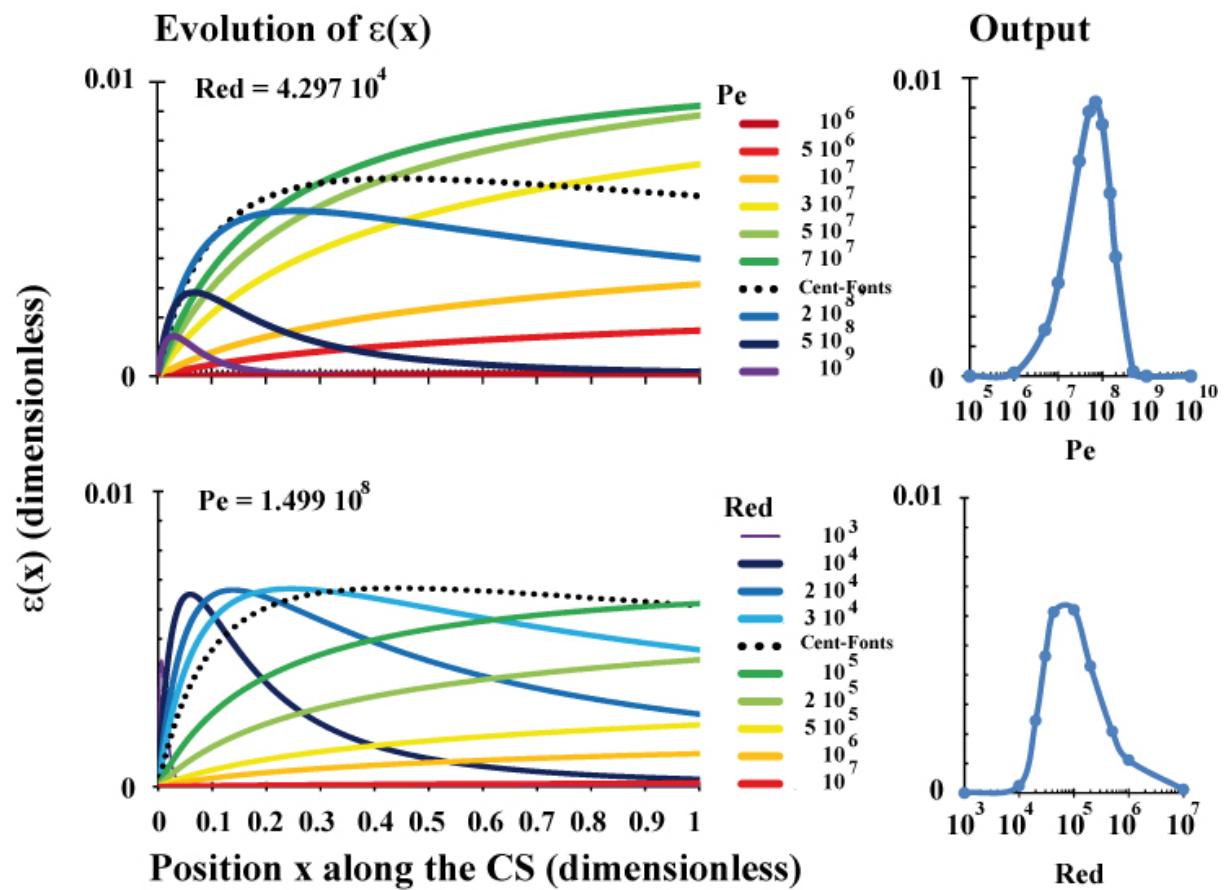
272 **Figure 1**

274 **Figure 2**

275

276

277


278

279

280

281 **Figure 4**

282

283

284

285