Hydrol. Earth Syst. Sci. Discuss., 11, C1654–C1655, 2014 www.hydrol-earth-syst-sci-discuss.net/11/C1654/2014/

© Author(s) 2014. This work is distributed under the Creative Commons Attribute 3.0 License.

Interactive comment on "Climate regime and soil storage capacity interact to effect evapotranspiration in western United States mountain catchments" by E. S. Garcia and C. L. Tague

Anonymous Referee #3

Received and published: 1 June 2014

The authors investigate the controls on evaporation in three catchments in western US. On purpose, I did not look on the two previous reviews before my own reading of the manuscript, but when I did afterwards, I found many of my concerns already expressed. Most importantly, I think what the authors actually did, was a detailed sensitivity analysis of the RHESSys, but this does not become really clear, especially they also talk about a conceptual model of ET. After the introduction I expected another model, but after reading the entire manuscript, I think the conceptual refers just to the relations between the various controls and ET derived from RHESSys. So, I agree with

C1654

the other two reviewers, that a clear statement of the objectives of this study is missing. I am also confused about what we can learn from this study, and the authors do not help the reader in this respect by not providing any conclusion or concluding remarks section. A sensitivity study of RHESSys might be interesting, but then the results should be analyzed and discussed more in this respect. I also got the impression that the authors actually wanted to present their results not only as a model sensitivity study on ET controls but as a discussion of the 'real' controls on ET. However, for this, more evidence needs to be provided that RHESSys actually is a good representation of reality. As far as I can see, the authors do not provide any information on how their model performed in the three catchments.

In the end, I feel rather confused on what can be learnt from this study. Sure, soils are important for the sensitivity of ET on P and T, but in which respect do the results provide information beyond common hydrologic understanding. Where there any surprising results? Is a general quantification of the sensitivities possible based on these results (especially given the lack of model validation I am a bit skeptical).

To summarize, the study addresses a potentially important issue, but the work needs to be improved by a clearly stated objective, conclusions which clarify what can be learnt from this study and evidence that the model actually is a suitable representation of reality.

Minor comment: R75: I might be able to guess what you mean by this, but the def in Table 1 sounds strange, I assume it is the day until which 75% of the annual recharge has accumulated, not the single day at which 75% of some soil water recharge might occur.

Interactive comment on Hydrol. Earth Syst. Sci. Discuss., 11, 2277, 2014.