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Abstract

Catastrophe risk models used by the insurance industry are likely subject to significant
uncertainty, but due to their proprietary nature and strict licensing conditions they are not
available for experimentation. In addition, even if such experiments were conducted, these
would not be repeatable by other researchers because commercial confidentiality issues
prevent the details of proprietary catastrophe model structures from being described in public
domain documents. However, such experimentation is urgently required to improve decision
making in both insurance and re-insurance markets. In this paper we therefore construct our
own catastrophe risk model for flooding in Dublin, Ireland in order to assess the impact of
typical precipitation data uncertainty on loss predictions. As we consider only a city region
rather than a whole territory and have access to detailed data and computing resources
typically unavailable to industry modellers, our model is significantly more detailed than
commercial products. The model consists of four components, a stochastic rainfall module, a
hydrological and hydraulic flood hazard module, a vulnerability module and a financial loss
module. Using these we undertake a series of simulations to test the impact of driving the
stochastic event generator with four different rainfall data sets: ground gauge data, gauge
corrected rainfall radar, meteorological re-analysis data (ERA-Interim) and a satellite rainfall
product (CMORPH). Catastrophe models are unusual because they use the upper three
components of the modelling chain to generate a large synthetic database of unobserved and
severe loss-driving events for which estimated losses are calculated. We find the loss
estimates to be more sensitive to uncertainties propagated from the driving precipitation
datasets than to other uncertainties in the hazard and vulnerability modules, suggesting that
the range of uncertainty within catastrophe model structures may be greater than commonly
believed.

1.0 Introduction and Literature Review
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The repeated occurrence of high profile flood events across the British Isles, such as Carlisle
in January 2005, Gloucestershire in July 2007 and Dublin in October 2011, has resulted in
sustained public, commercial, political and scientific interest in flood risk. Recent
catastrophic flood events in other countries, such as the Indus floods in Pakistan (2010), the
Australian and Thai floods (2011), and the Central European Floods (2013) have further
raised the profile of flood risk through extensive global news coverage. The economic cost
associated with flooding is often high. It is estimated that the October and November 2000
floods in the UK caused insured losses of £1.3 billion (Pall et al., 2011), whilst household
losses resulting from the summer 2007 floods reached £2.5 billion, with business losses
accounting for a further £1 billion (Chatterton et al., 2010; Pitt, 2008). The reinsurance firm
Munich Re estimates that total economic losses from the Australian and Thailand events were
USD 2.8 billion and USD 40 billion respectively (Munich Re, 2012), whilst the reinsurance
firm Swiss Re estimates these figures at USD 6.1 billion and USD 30 billion (Swiss Re,
2012). Much of the total insured loss was from business interruption and contingent business
interruption claims, demonstrating the global impact of such events.

Due to the scale of potential losses the insurance and reinsurance industries require accurate
flood risk estimates, and the current accepted approach is to use calculation chains
comprising linked stochastic and physically-based models. These calculation chains, known
as catastrophe or ‘CAT’ models, are at the core of a methodological framework employed by
the insurance industry to produce probabilistic estimates of natural catastrophe risk. First
developed in the late 1980s to model earthquake risk, the methodology was widely adopted
throughout the 1990s to model a range of hazards such as tropical cyclone windstorms and
storm-surge floods (Wood et al., 2005). Today, such models are relied upon by the
insurance and risk management industries to guide a wide range of financial decisions
(Grossi et al., 2005). Whilst being applicable to a wide range of hazards, commercial
‘vendor’ CAT models typically share a common structure that can be broken down into four
component parts:

i.  Stochastic module. The stochastic module is used to generate a database of plausible
event driving conditions. In the case of flooding, this could be a database of extreme
precipitation events over the catchment(s) that drive fluvial or pluvial risk where the
insured assets are located. The stochastic module is typically trained on historically
observed data. As observational records of natural hazards are typically short (10
years) relative to return periods of interest to the insurance industry (10 to 10* years),
the module must be capable of simulating events whose magnitude exceeds that of the
largest observed event.

ii.  Hazard module. The hazard module is used to simulate a selection of events from the
database generated by the stochastic module. The hazard module needs to produce an
estimate of damage-driving characteristics across the area where insured assets are
located. In the case of flooding this is likely to take the form of a map of water
depths.

iii.  Vulnerability module. The vulnerability module calculates the expected damage to
assets as a result of the event modelled by the hazard module. These damages are
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expressed as a damage ratio that varies between 0 (no damage) and 1 (total loss).
Factors influencing the susceptibility of an asset to damage may include terms such as
building age, occupancy type, construction materials, or height. These parameters are
typically uncertain, and thus vulnerability may be represented by an uncertain
measure that maps the expected damage to a particular asset against a continuously
variable hazard module output such as water depth and/or velocities. This is often
done using a beta distribution with non-zero probabilities for damage ratios of 0 and
1.

iv.  Financial module. The financial module transforms the per event damage estimates
produced by the vulnerability module into an estimate of insured loss. Estimates of
insured losses are generated by aggregating the losses from all assets being considered
and applying policy conditions such as limits and deductibles to the total estimate of
loss. The financial module resamples the database of simulated events to produce a
large number of different time series realisations from which time-aggregated loss
curves are produced.

As with any study that involves the modelling of environmental processes, it is important to
address the presence of uncertainty within the system. Previous studies that consider flood
risk using a model cascade framework have found the ‘driving” component at the top of the
cascade to be the most significant source of uncertainty (Kay et al., 2008; McMillan and
Brasington, 2008). Cloke et al. (2012) also highlight the problem of uncertainty propagating
from global and regional climate models when attempting to assess flood hazard on the River
Severn in the UK. Due to their focus on low frequency, high magnitude events, the
stochastic component of a CAT model inevitably has to extrapolate to event scales beyond
those in the observational record. As a result, the loss estimates produced by CAT models
may be particularly sensitive to the propagation of uncertainty in the data used to drive the
stochastic component. If true, this will indicate that CAT model cascades are even more
sensitive to driving uncertainties than other previously studied hydrological model cascades.
As the stochastic module forms the driving component of a CAT model, this study attempts
to assess the uncertainties derived from the choice of data used to calibrate, and therefore
govern, the behaviour of the stochastic module. In order to provide context for this analysis,
further limited analysis of the effect of parametric uncertainty within the hazard module and
uncertainty within the vulnerability model were performed.

When developing a CAT model, it is important to bear in mind that the recent Solvency Il
legislation in Europe (European Parliament and European Council, 2009) requires that model
users are able to understand and communicate how their models function. Many users will
not be specialists in the field of environmental sciences and thus such legislation favours
simpler model structures. A further reason to favour simpler model structures lies in their
ease of application. Simpler models typically require less data than complex models, and
therefore should be easier to apply to the wide array of locations that are of interest to
insurance markets. It is also important to minimise the computational requirements of the
cascade due to the extremely large number of events that may need to be modelled in order to
estimate losses at very high return periods. The model structure used for this study was
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developed with such operational concerns in mind, and as such simple methods capable of
delivering adequate performance against historical observations were favoured.

The following section of the literature review briefly explains the choice of model
components employed in this study. The methodology that follows explains in more detail
how each component functions within a CAT model framework.

1.1 Stochastic Module

Stochastic rainfall models are data-based approaches that use statistical information extracted
from observations to parameterise a mechanism used to generate synthetic rainfall records.
Such approaches are attractive in this context due to their relative simplicity and low
computational costs.  Stochastic rainfall models can generally be split into two
methodological groups, namely profile-based and pulse-based, although there have been
attempts to test alternative approaches including chaotic (Rodriguez-Iturbe et al., 1989;
Sivakumar et al., 2001), artificial neural networks (Burian and Durran, 2002), simulated
annealing (Béardossy, 1998) and multiplicative cascade disaggregation (Gaume et al., 2007).
Profile-based models typically use statistical distributions to characterise storms in terms of
intensity, duration and inter-arrival time, whereas pulse-based models use statistical
distributions to define raincells occurring within larger storm units characterised by duration
and inter-arrival time distributions. The raincells take the form of pulses with individual
durations and intensities, and the total storm intensity at a given time can therefore be
calculated through summation of all active cell intensities at that time.

For the purposes of building a flood catastrophe model, it is necessary to select a model
formulation that is able to reproduce the extreme events that drive flood risk. Several
comparison studies have noted that while pulse-based models are able to simulate storm
inter-arrival times and precipitation averages well, their ability to capture extreme statistics is
variable and often particularly poor over short timescales (Cameron et al., 2000; Khaliq and
Cunnane, 1996; Onof and Wheater, 1993; Verhoest et al., 1997). By comparison, the profile-
based models have shown skill at simulating extreme events (Acreman, 1990; Blazkov and
Beven, 1997; Cameron et al., 2000), although their ability to perform well for such events is
dependent on the length and quality of the historical record used for their calibration. Due to
its demonstrated ability to represent a range of different extreme precipitation events, this
study employs a model developed from the profile-based Cumulative Distribution Function
Generalised Pareto Distribution Model (CDFGPDM) of Cameron et al. (1999).

1.2 Hazard Module

In order to convert the rainfall input from the stochastic module into an estimate of water
depths across the spatial domain containing the insured assets, two components are required:
a hydrological rainfall-runoff model to produce an estimate of river discharge and a hydraulic
model to transform the estimate of river discharge into a map of water depths. Hydrological
models vary in complexity from process-rich, spatially distributed models such as the
Systeme Hydrologique Europeen (Abbott et al., 1986a, 1986b) and the US Department of
Agriculture’s Soil and Water Assessment Tool (Muleta and Nicklow, 2005), to simple,
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spatially lumped conceptual models such as TOPMODEL (Beven and Kirkby, 1979) or
HBV (Bergstrom and Forsman, 1973). Increasing model complexity inevitably entails
increased dimensionality and data requirements, a situation that is often at odds with the
requirements of a CAT model. Furthermore, the fundamental argument as to how much
complexity is valuable in a model has not yet been conclusively answered in the literature
(Bai et al., 2009; Beven, 1989; Bldschl and Sivapalan, 1995), and a number of studies have
found that model performance does not necessarily improve with increased model complexity
(e.g. Butts et al., 2004; Reed et al., 2004). As a result, a simple variant of the HBV model
(Bergstrom and Forsman, 1973; Bergstrom and Singh, 1995; Seibert and Vis, 2012) was
chosen here thanks to its ease of application, low data and computation cost and
demonstrated performance across a large number of studies (Cloke et al., 2012; Deckers et
al., 2010; e.g. Seibert, 1999).

In order to translate estimates of river discharge into maps of water depth across a domain, an
additional hydraulic modelling component is required. The flow of water in urban areas is
inherently multi-dimensional and requires a model of commensurate dimensionality able to
run at the fine spatial resolutions needed to represent urban environments where vulnerability
to losses will be most critical. The computational expense of such simulations has resulted in
a research drive to develop efficient methods of modelling high resolution two-dimensional
shallow water flows. Hunter et al. (2008) benchmarked a suite of commercial and research
2D codes on a small urban test scenario and found all to give plausible results, with predicted
water depths typically differing by less than the vertical error in the topographical error
despite the model governing equations varying from full 2D shallow-water equations to Xx-y
decoupled analytical approximations to the 2D diffusion wave. These results are supported
by further recent studies that have found highly efficient simplifications of the 2D shallow
water equations to be appropriate for a number of urban inundation modelling (Neal et al.,
2011; Néelz and Pender, 2010). As a result, this study employs the latest inertial formulation
of the highly efficient 2D storage cell inundation model LISFLOOD-FP (Bates et al., 2010).
This approach offers a more sophisticated representation of flow dynamics than the methods
adopted by most vendor CAT models; vendor models typically represent the channel and
floodplain using a 1D model, with a limited number of models also offering 2D modelling of
‘off-floodplain’ processes (AIR Worldwide, 2013; RMS, 2006).

1.3 Vulnerability Module

Flood damage models typically use water depths to predict damage based on a depth-damage
function derived from empirical data (Black et al., 2006; Merz and Thieken, 2009; Merz et
al., 2004), synthetic data (Penning-Rowsell et al., 2005), or a combination of both (ICPR,
2001). Studies have demonstrated significant variation in the curves produced by each
methodology (Merz and Thieken, 2009; Merz et al., 2010), with the greater accuracy of
empirical data compared to synthetic data (Gissing and Blong, 2004) being countered by the
limited transferability of empirical data between sites (Smith, 1994). Depth damage
functions are inherently uncertain due to the large number of factors that may influence the
level of damage that results from a water depth. These include, but are not limited to,
building type, building construction method, building age, building condition and
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precautionary measures). Although there is ongoing research into the possibility of
accounting for these factors explicitly within multivariate depth-damage functions (Kreibich
et al., 2010; Merz et al., 2013), such methods have not been widely adopted within the
insurance market as a lack of observed damage data in most regions prevents calibration of
such complex functions. Many commercial models instead attempt to represent much of the
total CAT model uncertainty within the vulnerability module by sampling around the depth-
damage curve. This is typically done using beta distributions to represent the probabilities of
experiencing a range of damage ratios of between 0 and 1 for a given water depth. As the
focus of this study is on the uncertainty due to driving precipitation data, we employ fixed
depth-damage curves for most of our experiments. However, as recent studies (Jongman et
al., 2012; Moel and Aerts, 2010) have suggested that the vulnerability module may be the
dominant source of uncertainty, we also undertake a limited analysis using uncertain
vulnerability curves in section 3.4 in order to provide an indication of relative contributions
to modelled uncertainty. The curves and distribution parameters were supplied by Willis
Global Analytics and were derived from a combination of synthetic and empirical data,
claims data, and industry expertise.

1.4 Financial Module

Due to their proprietary nature, public domain literature describing the financial component
of CAT models is very limited. Generally the role of financial modules is to transform
damage estimates from the vulnerability module into estimates of insured ground up loss (i.e.
loss before application of deductibles and/or reinsurance) before aggregating the location-
specific losses to produce portfolio-wide loss estimates for a given event. These can then be
transformed into estimates of gross insured loss by applying policy conditions such as
deductibles, coverage limits, triggers, reinsurance terms, etc. (Grossi et al., 2005). Where the
hazard module is computationally expensive, the financial module is often used to fit curves
to the loss distributions generated by calculation chain, allowing much larger synthetic
databases of event losses to be generated by subsequent resampling of the distributions. The
primary output of a financial model takes the form of a curve that describes the probability of
exceeding a certain level of loss within a fixed time period (typically annual). The two most
common exceedence probability (EP) curves are the annual occurrence exceedence
probability (OEP), representing the probability of a single event loss exceeding a certain level
in a given year, and the aggregate exceedence probability (AEP), representing the probability
of aggregate losses exceeding a certain level in a given year. Details of the financial module
employed in this study are shown in section 2.2.4.

2.0 Study Site, Data and Methodology

Dublin, Ireland, was selected as the test site for this study due to its flood prone nature and
the availability of suitable data sources. Historically, Dublin has been prone to fluvial,
pluvial and tidal flooding, with fluvial risk being largely concentrated along two rivers,
namely the River Dodder and the River Tolka. The River Dodder has its source in the
Wicklow Mountains to the South of the city and drains an area of approximately 113 km?.
High rainfall intensities over the peaks of the Wicklow Mountains (annual totals can reach
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2000 mm) coupled with steep gradients results in the River Dodder exhibiting flashy
responses to storm events, with a typical time to peak of less than 24 hours. The River Tolka
has its source in gently sloping farmland to the North West of the city and drains an area of
approximately 150 km?; it exhibits a slightly less flashy response than the Dodder with a time
to peak of approximately 24 hours. As a result of the short catchment response times, sub-
daily (ideally hourly) rainfall data are required to drive hydrological models of the rivers.
Both catchments contain a mixture of urban and rural land use. Figure 1 is a map showing
the location of these rivers and their respective catchment boundaries upstream of their
gauging stations, as well as the boundary of the hydraulic model, the location of river
gauging stations and the location of rain gauges. The calculation chain uses hydrological
models of the Dodder and Tolka catchments to drive a hydraulic model of the rivers as they
flow through the city and out into Dublin Bay. A third major river, the River Liffey, is also
shown. The Liffey is not modelled in this study as its flow is controlled by three reservoirs
that supply a hydroelectric generator upstream; serious flooding downstream of these features
has not been observed since their construction was completed in 1949. River flow records
are available from 1986 to present on the River Dodder and 1999 to present on the River
Tolka.

[FIGURE 1 AROUND HERE]

In section 2.1, the four types of precipitation data (ground rain gauge, radar, meteorological
reanalysis and satellite) used to drive the model are introduced along with the methods used
to derive a catchment average precipitation series from each type of data. This step was
required as using the stochastic module to generate extremely long (>500,000 years) spatial
rainfall fields on an hourly time step would not have been computationally feasible, nor was
it necessary given the input requirements of the simple hydrological model used here. The
four types of precipitation data were chosen to represent the range of rainfall products
available, from the high resolution localised gauge and radar data to the coarser (but globally
available) reanalysis and satellite products. The record lengths of the different data sources
were variable, but all four were available for the period January 2002 — May 2009; for
experiments comparing the different data sources this was the period used.

In section 2.2, the components and data used to build and calibrate the stochastic, hazard,
vulnerability and financial modules are presented.

2.1.1 Rain Gauge Record

The catchments surrounding Dublin are relatively well served by a network of rain gauges
operated by Dublin City Council and the Irish weather service, Met Eireann. The gauges are
primarily daily, with hourly weather stations sited at Dublin airport and Casement aerodrome.
However, the network is subject to the usual limitations of gauge data which include missing
data and inconsistent recording periods across the network. While some of the daily rain
gauges have been operating for over 100 years, others were recently installed or retired. The
gauges shown in figure 1 are the ones selected for use in this study following a significant
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pre-processing effort to check the availability of uninterrupted records from each gauge for
periods coinciding with the available river flow records.

The daily catchment average time series were constructed by generating a gridded
precipitation record at 50 m resolution for each of the catchments; the relatively fine grid was
chosen due to the negligible computational cost of this process. The contribution of each
daily gauge within a catchment to a given grid cell was calculated using an inverse distance
weighting function. The difference in altitude between a given gauge and grid cell was also
accounted for by correction using a precipitation-altitude gradient derived from the gauge
record. Once the precipitation in all cells within a catchment was calculated, the catchment
average precipitation was obtaining by averaging the value across all cells. The daily record
was then distributed according to the nearest hourly station (Casement Aerodrome in the
Dodder; Dublin Airport in the Tolka) to produce an hourly catchment average record.

2.1.2 Radar Record

The radar rainfall data were provided by the Met Eireann from a C-band radar located at
Dublin Airport. A number of different products are produced for this radar, and the 1 km pre-
gridded 15 minute Precipitation Accumulation (PAC) product is used in this study. The PAC
product estimates the rainfall intensity at 1 km above the topographical surface, and the data
were supplied for the period 2002 — 2009. Pre-processing was required to remove an echo
signal present over mountainous parts of the Dodder catchment that was expressed in the data
as anomalous near-continuous low intensity rainfall. An hourly timestep catchment average
series was generated by averaging the cells that fell within the boundaries of a catchment.
Whilst radar data are able to provide an estimate of the spatial distribution of precipitation,
correction using ground-based observations is required in order for reasonable estimates of
rainfall intensities (Borga, 2002; Germann et al., 2006; O’Loughlin et al., 2013; Steiner et al.,
1999). Adjustment factors were therefore used to match the radar-derived catchment rainfall
volume to the gauge-derived catchment rainfall volume on a three-monthly basis. The
adjustment factor values were assumed to be time invariant for the duration of each three
month period (Gjertsen et al., 2004).

2.1.3 ECMWF ERA-Interim Reanalysis

ERA-Interim is a global atmospheric reanalysis produced by the European Centre for
Medium-Range Weather Forecasts (ECMWEF) (Dee et al., 2011). The reanalysis covers the
period 1979-present and produces gridded surface parameters. The ERAI configuration has a
spectral T255 horizontal resolution, which corresponds to approximately 79 km spacing on a
reduced Gaussian grid. The vertical resolution is using 60 model levels with the top of the
atmosphere located at 0.1 hPa. ERA Interim data have been used in a wide range of
applications such as mapping of drought, fire, flood and health risk (Pappenberger et al.,
2013). Precipitation data are available in the form of 3-hour rainfall accumulation
totals. Three—hourly timestep catchment average precipitation time series were produced
using a weighted average of the ERA-Interim cells that covered the catchment, where weights
were assigned based on the fraction of the catchment covered by each cell.
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2.1.4 CMORPH Satellite Precipitation

The Climate Prediction Center morphing method (CMORPH) precipitation record is
produced by using motion vectors derived from half-hourly interval geostationary satellite
infrared imagery to propagate passive microwave precipitation estimates (Joyce et al., 2004).
Data are available from 1998 — present day at a 3 hourly timestep on a 0.25 degree spatial
grid. Three-hourly timestep catchment average precipitation time series were produced in the
same way as with the ERA-Interim reanalysis data.

2.2.0 Catastrophe Model Framework

The CAT model framework employed in this study replicates the logic used by proprietary
commercial models but uses detailed and transparent components that allow us to experiment
in a controlled and repeatable fashion. The stochastic event generator creates a long time
series of rainfall events that are used to drive the hazard module. When a flood event occurs,
the predicted water depths are input into the vulnerability module to produce an estimate of
loss. The event ID and loss ratio (event loss expressed as a percentage of the total sum
insured across the portfolio) are recorded in an event loss table. The number of events
occurring in each year is also recorded. Finally, the financial module resamples the event
loss table in order to produce an aggregate annual loss exceedence probability (AEP) curve.
Table 1 summarises the implications of a number of key uncertainties and assumptions
present in the four modules.

[TABLE 1 AROUND HERE]

As we demonstrate in section 3.0, the sampling uncertainty associated with extreme events
can be large. This is because different realisations of events with a common return period
produce different losses, and multiple stochastic model runs of a given length may generate
very different sets of extreme events. Whilst it is possible to handle this uncertainty by
producing an extremely large stochastic event set, using the hazard module to simulate every
small scale event that occurs in such a large event set is not computationally feasible. This
computational restraint requires that a simple event similarity criterion based on hydrograph
peak and hydrograph volume is used to test for similar previously simulated events. Events
are only simulated with the hydraulic model if the hydrograph peak or hydrograph volume on
either river differs from a previously simulated event by more than a preset threshold of 10%.
If this requirement is not met then it is assumed that a similar event has already been
simulated, and the calculated loss from this earlier simulation is selected and added again to
the event loss table.

2.2.1 Stochastic Rainfall Module

The Cumulative Distribution Function Generalised Pareto Distribution Model CDFGPDM
employed here uses statistical distributions to define storms in terms of mean durations,
intensities and inter-arrival times. The CDFGPDM is a profile-based stochastic rainfall
model that generates a series of independent rainstorms and ‘inter-arrival’ periods (dry-
spells) via a Monte Carlo sampling procedure. The model retains the Eagleson (1972)
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approach of characterising a storm in terms of inter-arrival time, duration and mean intensity
whilst incorporating a profiling component to distribute the total precipitation throughout the
duration of the storm. Storms in the observational record are classed by duration and their
intensities are recorded using empirical cumulative distribution functions (CDFs). In order to
enable the simulation of storms of greater duration or intensity than in the observational
record, the tails of the CDFs are modelled using maximum likelihood Generalised Pareto
Distributions (GPD). The threshold above which the GPD was fitted depended on the
number of observations in each class and ranged from the 75" to 95" quantile. The empirical
CDFs are then combined with their modelled GPD tails to generate hybrid distributions from
which storm characteristics can be sampled. Previous studies have argued that rainfall runoff
models can be realistically driven by such a model structure as the shape parameter within the
GPD allows a wide range of upper tail shapes to be adequately captured (Cameron et al.,
2000, 1999). Following Cameron et al. (1999) we here define a rainstorm as any event with
an intensity of > 0.1 mm/hour, a duration of > 1 hour and an inter-arrival time of > 1 hour,
where no zero-rainfall periods are permitted within a storm. It should be noted that for the
ERA-Interim and CMORPH driven models, the minimum duration and inter-arrival times
were 3 hours due to the 3 hour timestep of these products. This definition encapsulates all
recorded precipitation in the 1 hour interval historical records available for Dublin, making it
appropriate for characterisation and subsequent generation of continuous rainfall records.
The rainstorm generation procedure is identical to the method detailed in Cameron et al.
(1999). In order to evaluate the model’s ability to recreate the extremes seen in the observed
series, a total of 50 synthetic series of 40 years length were simulated using the rain gauge
derived series for the Dodder catchment. The annual maximum rainfall totals (ANNMAX)
for each duration class were extracted from the synthetic series and plotted against their
counterparts from the observed catchment average series (figure 2). The reduced variate
plots show that the observed ANNMAX values are well bracketed by those from the 50
synthetic series, indicating the ability of the model to recreate a reasonable distribution of
extreme events suited to a study of flood risk.

[FIGURE 2 AROUND HERE]

Due to the need to limit model complexity and computational expense, it was necessary to
assume a spatially uniform rainfall across the modelled catchments. Such an assumption may
be justified for Dublin as the modelled catchments are relatively small (<130 km?) and floods
in this region are driven by large weather systems such as frontal depressions and decaying
hurricanes rather than by small scale convective cells. The gauge-based catchment average
records produced for the Dodder and Tolka catchments were tested for correlation, yielding a
Pearson’s linear correlation coefficient of 0.89 and a Kendall tau of 0.69. These values
indicate that rainfall in the two catchments is indeed strongly correlated; however the lack of
perfect correlations implies that the approach will result in a slight overestimation of domain-
total rainfall for a given event. The assumption allows a spatially uniform, time varying
rainfall series to be generated for all catchments by training the CDFGPDM on a single,
centrally located, observation site. However, due to significant variation in altitude across the
domain, it was necessary to correct the rainfall intensities of the generated series for each
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catchment as the observed precipitation intensity distributions varied between the catchment
mean records and the central training site. To achieve this, a quantile-quantile bias correction
method (Boé et al., 2007) was used on each observed record type in turn, where adjustment
factors for each quantile bin were obtained by comparing the observed time series at the
training site to the observed catchment average rainfall series. Therefore, for each of the
modelled catchments, a different set of adjustment factor values were generated for the
ground gauge, radar, ERA-Interim and CMORPH data, allowing precipitation time series to
be generated in which the correct precipitation intensity distributions of each individual
catchment are persevered despite all catchments sharing a common temporal rainfall pattern.

2.2.2 Hazard Module

The hazard module consists of a hydrological model and a hydraulic model. The
hydrological model employed here is the widely used conceptual rainfall runoff model HBV
(Bergstrom and Forsman, 1973; Bergstrom and Singh, 1995). While there are many variants
of the HBV model, the one used for this study is most closely related to HBV Light (Seibert
and Vis, 2012). The model uses precipitation, temperature and potential evaporation as
inputs, the latter of which is calculated from extraterrestrial radiation and temperature using
the McGuiness model (McGuinness and Bordne, 1972), to produce an estimate of river
discharge at the gauge station locations shown in figure one with an hourly timestep. Model
calibration was undertaken to generate behavioural parameter sets for each precipitation data
source in each catchment. Initially, the 15-parameter space was explored using Monte Carlo
simulation and parameter ranges were set by visually identifying upper and lower limits from
the resultant simulations. Where the model did not exhibit detectable parameter range limits,
ranges from previous studies were employed (Abebe et al., 2010; Cloke et al., 2012; Shrestha
et al., 2009). Once defined, the parameter ranges were sampled using Latin hypercube Monte
Carlo sampling to produce 100,000 parameter sets, a number of samples which proved
computationally feasible whilst providing adequate exploration of the parameter space. The
parameter sets were then used to simulate discharge during a period for which observations
were available, and those that failed to produce behavioural simulations, defined by a Nash-
Sutcliffe (NS) score exceeding a threshold of 0.7 (Nash and Sutcliffe, 1970), were discarded.
The choice of performance measure and threshold used to define what constitutes a
behavioural simulation is necessarily subjective (Beven and Freer, 2001); NS was chosen as
it is particularly influenced by high flow performance, and the threshold of 0.7 was selected
following visual inspection of hydrographs generated from a preliminary sample of parameter
sets. In order to assign weights, the behavioural parameter sets were then ranked and
weighted by their ability to minimise error in the top 0.1% of the flow duration curve. Due to
computational constraints imposed by the subsequent hydraulic model, the number of
behavioural parameter sets was limited to the 100 highest ranked sets. Weighting was
performed by calculating the inverse sum of absolute errors between the simulated and
observed series in the top 0.1% of the flow duration curve for each of the behavioural
parameter sets. These values were then normalised to give the best performing parameter set
a weight of 1 and the worst a weight of 0. This approach favours behavioural parameter sets
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that best simulate high-flow periods and is therefore appropriate for a study concerned with
flood risk.

Initially, attempts were made to calibrate HBV using each precipitation data type. However,
only those simulations driven using the gauge-derived precipitation data were able to satisfy
the behavioural NS threshold in all catchments. Models driven using ECMWF and
CMORPH data were especially poor; this may be explained by their reduced spatial and
temporal resolution compared to the gauge and radar data. As the model was only able to
adequately represent observed catchment flow characteristics using the behavioural
parameter sets identified using gauge data, it was therefore decided to employ these
parameter sets for all simulations. The very large number of event simulations required to
produce an EP curve precluded HBV parametric uncertainty from being incorporated directly
into the CAT model; such an approach would have further increased the required
computational resource to an unfeasible level. Due to this limitation, the highest ranked
parameter set produced using gauge data was used to generate the EP curves. The impact of
parametric uncertainty is addressed separately on an event basis in section 3.3, where the
weighted behavioural parameter sets are used to produce uncertain loss estimates with 5-95%
confidence intervals for four synthetic flood events.

The hydraulic model LISFLOOD-FP (Bates and De Roo, 2000) is used to generate flood
inundation maps from the event hydrographs produced by HBV. The configuration
employed here uses a subgrid representation of the channel (Neal et al., 2012b) coupled to a
2D flood plain model that uses a simplified ‘inertial formulation’ of the shallow water
equations (Bates et al., 2010) solved using the numerical method of de Almeida et al. (2012).
The channel models include weirs and were constructed using surveyed river cross sections
supplied by Dublin City Council, and the digital elevation model (DEM) for the 144 km? 2D
hydraulic model was constructed from 2 m resolution bare-earth LiDAR data that was
coarsened to 10 m and 50 m resolution (1,440,000 and 57600 cells respectively) using
bilinear resampling (Fewtrell et al., 2008). Where >50% of the surface area of a cell was
occupied by building(s), identified through Ordinance Survey Ireland data, the cell elevation
was increased by 10 m to become a ‘building cell’. Model calibration of channel floodplain
friction was undertaken by driving the hydraulic model with observed discharges and
comparing the observed and simulated flood inundation extents for the August 1986
Hurricane Charlie and the November 2002 flood events. These are the largest events for
which observed discharge and inundation data are available, with the 2002 event generating
$47.2 million in unindexed losses (AXCO, 2013), and have been attributed with ~700 and
~100 year return periods respectively (RPS Consulting Engineers, 2008; RPS MCQOS, 2003).
The extent of the larger 1986 event was digitised from hand drawn post-event flood outline
maps, which included indications of dominant flow directions, although the completeness of
these maps is uncertain. The November 2002 flood outlines were supplied by Dublin City
Council. Both of these datasets will be subject to considerable uncertainty as they were
constructed from eye witness accounts and post-event ground based observations; they
should therefore be considered as approximations of the true maximum extents. Observed
and simulated flood outlines for the calibration events are shown in figure 3. The quantitative
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F-squared performance measure (Werner et al., 2005) was calculated for each calibration run,
with the optimised model yielding values of 0.62 and 0.44 for the 10 m and 50 m resolution
models respectively. Some of the variation between the observed and simulated extents may
be explained by errors in the observed data; some may also be explained by land
development and engineering works that occurred between the events and the date on which
the modern DEM terrain data were collected; this latter factor may have an especially strong
influence for the 1986 event results. Nevertheless, the F-squared values still compare
favourably with a previous study of urban inundation modelling (Fewtrell et al., 2008), in
which it is noted that performance of models in urban areas is strongly affected by the ability
of the DEM to represent urban structures; subsequent studies have also highlighted the
influence of detailed terrain features on urban inundation processes (Fewtrell et al., 2011;
Sampson et al.,, 2012). These findings are further evidenced here, as the reduced
representation of buildings on the 50 m DEM removes flow restrictions and results in an
overestimation of flood extents with a corresponding reduction in water depths near the
channel. Despite this, qualitative assessment of the modelled dynamics with reference to the
observations suggests that, at both resolutions, the model is capturing the dominant process
well, with water entering the floodplain in the correct areas. Unfortunately, the
computational expense of the 10 m resolution model was several orders of magnitude greater
than the 50 m model, resulting in simulation times of several hours compared to ~ 20 seconds
for a 48 hour event. Due to this cost, the 50 m model was adopted for use within the CAT
model. Whilst this will result in some lost predictive skill relative to the 10 m model, the
representation of 2D flow both on and off the floodplain ensures the model remains more
sophisticated than the 1D or quasi-2D approaches typically employed by vendor CAT
models. The implication to loss estimates of this decision is briefly discussed in section 3.3.

[FIGURE 3 AROUND HERE]

2.2.3 Vulnerability Module

A synthetic portfolio of insured properties, modelled on real data, was provided by Willis
Global Analytics for use in this study. This was necessary to preserve the anonymity of real
policy holders, and the portfolio was built by resampling a distribution of asset values for the
region. As is common for insurance portfolios, the data were aggregated to postcode level.
The portfolio took the form of an insured sum for three lines of business (residential,
commercial and industrial) for each postcode area. It is common practice in industry to
disaggregate such datasets using proxy data (Scott, 2009), and the approach adopted here to
use the National Oceanic and Atmospheric Administration (NOAA) Impervious Surface Area
(ISA) dataset as a proxy for built area (Elvidge et al., 2007). This method assumes a linear
relationship between the percentage of a grid cell that is impervious and its insured value, and
allows the sum insured within each postcode to be distributed around the postcode area based
on ISA pixel values. From these data we built a simple industry exposure database (IED) that
contained the values of insured assets for each line of business within each grid cell.
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When a cell is flooded, the damage sustained within the cell is calculated using depth-damage
functions supplied by Willis Global Analytics that were derived from historical data of floods
in European cities. In this paper we employ both a simplified deterministic depth damage
curve approach and a more sophisticated uncertain vulnerability function. The simplified
approach involves separate curves for the residential, commercial and industrial lines of
business that relate the water depth within a cell to the percentage of the cell’s insured value
that is lost. These simple curves therefore represent a mean damage ratio and were used for
all experiments other than the wvulnerability uncertainty analysis in order to reduce
computational cost and better isolate the subject of each experiment. The more sophisticated
functions used in the vulnerability uncertainty analysis sample around the fixed curves using
modified beta distributions. Here, the depth in a cell determines the mean damage ratio as
well as the probabilities of zero damage (PO) and total loss (P1). A stratified antithetic
sample of values between 0 and 1 is performed, with all values below PO being assigned a
damage ratio of 0 and all values above P1 being assigned a damage ratio of 1. The values
between PO and P1 are rescaled to between O and 1 and used to sample from a beta
distribution whose parameters are calculated based on the mean damage ratio, PO, P1 and an
assumed variance. The result is a sample of damage ratios, with a mass of values at zero, a
mass of values at one, and an intermediary range drawn from a beta distribution. As the
water depth in a cell increases, the mass of zero damages becomes smaller, the mass of total
losses becomes larger, and the mean of the intermediary sampled beta distribution moves
towards one (total loss). This method is currently used by Willis on an operational basis and
therefore represents industry practice at the date of publication.

2.2.4 Financial Module

The financial module employed here is used to aggregate simulated losses from the hazard
module across a specified aerial unit (here the entire domain) before generating and
resampling occurrence and loss distributions from the results. The occurrence distribution
represents the distribution of event counts for a given time period (here defined as one year)
using an empirical CDF. The main body of the loss distribution is modelled using an
empirical CDF, with a GPD fitted to the tail to produce a smooth curve where data are sparse.
A synthetic series can then be rapidly generated by adopting a Monte Carlo resampling
method. This procedure samples first from the occurrence distribution to find the number (n)
of events occurring in a given year. The loss distribution is then sampled n times to assign a
loss to each event. Finally, the annual aggregate loss is found by summing the losses for that
year. By repeating this process a large number of times, multiple synthetic series can be
generated. From these series, an annual AEP curve can be generated that includes confidence
intervals derived from the spread of values at any given return period. The annual AEP curve
is a standard insurance tool that is used to express the expected probability of exceeding a
given level of loss over a one year period, i.e. the expected ‘1 in 100 year loss’ is equivalent
to a loss with an annual exceedence probability (AEP) of 0.01.

3.0 Results - Event Sampling Uncertainty
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A known source of uncertainty within a CAT model originates in the event generation
procedure used to build an event set. This is referred to as ‘primary uncertainty’ by the
insurance industry (Guin, 2010). A key difficulty in calculating the expected loss at a given
AEP is that the predicted insured loss will vary from one model run to another due to the
random component of the stochastic module. One method of reducing this ‘sampling
uncertainty’ is to simulate a series that is considerably longer than the desired recurrence
interval (Neal et al., 2012a). Alternatively a large number of realisations can be simulated,
and the expected loss can then be defined by the mean loss across the realisations. The
second method also allows the sampling uncertainty to be investigated by looking at the
spread of values across the realisations. The number of realisations that it is feasible to
simulate is determined by the required series length and the available computational resource.
Here the stochastic module is trained using the rain gauge record and used to generate 500
realisations of a 1000 year rainfall series in order to investigate the effect of sampling
uncertainty on the 1-in-1000 year loss.

The object of this experiment is to determine the number of realisations required to
adequately capture the range of possible losses at a given event scale. One way to examine
such ‘sampling uncertainty is to assemble batches of realisations and observe how key
descriptors (such as the mean loss or standard deviation of losses) vary between batches. By
altering the number of realisations in each batch, it is possible to observe how the variation of
descriptors between batches changes as the batch size changes. It is then possible to predict
the expected average variation, in terms of the descriptors, between the simulated batch of n
realisations and any other batch of n realisations.

To do this, the maximum losses recorded in each of the 500 realisations were randomly
sampled to produce batches containing 5, 10, 25, 50, 100 or 250 loss ratios (‘batch A’). The
process was repeated to produce a second batch (‘batch B’) of identical size to batch A. The
mean and standard deviation of loss ratios in batch A (L, and s,) were then calculated and
compared to their equivalent values in Batch B (L and sg), yielding two simple measures:

M = |ZA - ZB| (1)
S = |sa — sgl (2)
[FIGURE4AROUND HERE]

By repeating this process a large number of times (10,000 for each batch size), the expected
uncertainty due to sampling variability can be assessed. The results of this experiment are
shown in figure 4a, where M is expressed as a percentage of the mean 1-in-1000 year loss
across all 500 realisations and S is equivalently expressed as a percentage of the standard
deviation across all 500 realisations. The plots show that differences between batches A and
B decrease as the number of samples within a batch increases, with the median value of M
decreasing from 23.0% to 3.8% as the batch size increases from 5 to 250. This finding can be
explained by the underlying distribution of loss ratios being increasingly well represented as
the sample size is increased; this is observed in the diminishing value of S as sample size
increases. By transforming the median values of M with reciprocal 1/M? and fitting a linear
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regression model, the expected value of M for the 500 realisations was calculated as 2.7%.
This indicates that the mean loss ratio of any 500 simulated realisations will typically differ
from any other batch of 500 realisations by ~ 3% of the mean loss ratio itself; the same
process yields a value of 2.3% for the standard deviations (figure 4b). Primary uncertainty is
an accepted facet of catastrophe modelling and, relative to inherent aleatory uncertainty,
uncertainty of this order due to sampling variability is reasonable (Guin, 2010). Whilst the
uncertainty caused by sampling variability could be reduced by significantly increasing the
number of realisations simulated, the additional computational cost of such an increase would
be large and the benefit questionable in the presence of other uncertainties within the
calculation chain. For the purpose of this study we identify 50 realisations as the minimum
required; at this level the mean and median values of M and S are <10% of the mean and
standard deviation of all 500 realisations respectively. The practical implication of this
analysis is that it is necessary for the hazard module to simulate >50 time series of length
equal to the return period of interest.

3.1 Variability across data sources

The availability and quality of observed precipitation records varies greatly between sites. In
order to investigate how the use of different types of precipitation data might affect predicted
losses, each of the data types described in section 2.1 was used to train the stochastic module.
The training record length was defined by the longest period for which a continuous record
was available from all data sources; this ran from the 1% January 2002 to the 1% May 2009.
This period is clearly shorter than ideal and it is likely that the true variability within each
data source is underrepresented as a result; however it was necessary to ensure that the
records were of equal length over the same period in order to fairly compare between data
types. All parameters in the hazard, vulnerability and financial modules were identical across
the simulations. Taking a maximum return period of interest to be the 1-in-10,000 year
event, 500,000 years’ worth of simulations was performed for each data type (giving the
required 50 realisations of the 1-in-10,000 year event). The annual aggregate EP curves
resulting from these model runs are shown in figure 5, with uncertainty bounds that represent
the 5 — 95% confidence intervals generated by the financial module. Also plotted are the
modelled losses of two observed historical floods (August 1986 and November 2002),
produced by driving the hydraulic and vulnerability components with observed river
discharges.

[FIGURE 5 AROUND HERE]

It is immediately apparent from figure 5 that the different precipitation data sets produce very
different EP curves despite the fact that each record covered the same spatial area over a
common period of time. At certain points the difference can be as great as an order of
magnitude — for example, the ERA-Interim driven model predicts a 1-in-100 year (AEP = 10°
%) loss ratio of 0.02% whereas the CMORPH driven model predicts a loss ratio of 0.17%.
The pronounced differences between the curves can be explained in terms of the ability of
each of the data sources to represent the local rainfall patterns. The gauge and radar driven
models produced EP curves of similar shape, with losses from the radar driven model being

16



649
650
651
652
653
654
655

656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675

676

677

678
679
680
681
682
683
684
685
686
687
688
689

slightly lower than from the gauge record. Their relative similarity compared to the ERA-
Interim and CMORPH driven models was expected as both are detailed local data sources
rather than global products. Furthermore the adjustment factors for radar rainfall intensity
were derived from the gauge record so that the two records had equal 3-monthly rainfall
volumes. As a result, storms were usually captured in both records and attributed with
similar rainfall totals, yielding similar stochastic model calibrations and therefore similar loss
projections.

The curves produced by the ERA-Interim and CMORPH driven models differ greatly from
those produced by the local gauge and radar datasets. The ERA-Interim curve shows only
gradual growth in losses as the return period increases to the maximum modelled value of the
1-in-10,000 year event, and at all return periods the ERA-Interim model under predicts
compared to the other data sources. By contrast, the losses predicted by the CMORPH driven
model are consistently higher than the others, especially at lower return periods. Figure 6a
shows cumulative daily precipitation for all four data types. As previously found by Kidd et
al. (2012) in a study of rainfall products over Northwest Europe, CMORPH is found to
consistently underestimate rainfall totals compared to the local data whereas ERA-Interim
consistently overestimates rainfall totals. Given the pattern of cumulative rainfall totals, the
opposite pattern found in the loss projections is initially surprising. However, once hourly
rainfall intensities are considered (figure 6b) the findings can be explained. CMORPH is
found to underestimate rainfall totals in this region because of the limited sensitivity of
satellite products to very low intensity rainfall (‘drizzle’) (Kidd et al., 2012). However, it
exhibits higher rainfall intensities in the upper (>95™) quantiles of rainfall intensity than the
other records. Severe storms in the CMORPH record typically had slightly higher rainfall
volumes than the same storms in other records, the result of which is an increased expected
loss at all return periods. ERA-Interim has the opposite problem whereby the frequency of
low intensity precipitation is over predicted and high intensity precipitation is severely
underestimated.

[FIGURE 6 AROUND HERE]
3.2 Uncertainty due to record length

A similar approach to the above comparison between data sources was adopted to examine
the sensitivity of projected losses to the length of record used to train the stochastic module.
For this test the gauge precipitation data were cropped to produce training records of 5, 10, 20
and 40 years in length. The training records share a common end date (September 2011) and
therefore the longer records extend further into the past. As with the data sources test, all
other parameters were held constant across the other components, and the resulting EP curves
are plotted in figure 7. The EP curves demonstrate that altering the training record length has
a significant impact on the projected losses for a given return period. At AEP = 107, the
median expected loss ratio ranges from 0.05 to 0.28; at AEP=107, representing the 1-in-1000
year event, the expected loss ratios vary from 0.12 to 0.60. The relative overestimation of
loss ratios by the 5 year training data set demonstrates how the presence of a large event in a
short training set is able to skew the results. There are two storms that generate exceptionally
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high precipitation volumes in the 40 year observed record, and the second of these falls
within the final five years that form the 5 year training record. When trained with this short
record, the stochastic module inevitably over predicts the rate of occurrence of such storms,
leading to an overestimation of expected flood losses. Modelled uncertainty increases as the
return period increases; in the case of the 10 year training period, the range of modelled
losses at the 10 AEP level is greater than the median estimate of 0.36%.

[FIGURE 7 AROUND HERE]
3.3 Hazard module uncertainty

In order to provide some context for the uncertainty associated with the choice of driving
data, the uncertainty resulting from the choice of parameter set used with HBV was also
investigated. Due to computational limitations it was not feasible to produce EP curves for a
large number of parameter sets, so instead we focussed on individual events. The largest
event was extracted from each of four 500 year runs of the stochastic module. Each event
was then simulated using the 100 best performing HBV parameter sets, all of which had
previously been selected and assigned weights as described in section 2.2.2. The resulting
hydrographs were then used to drive the hydraulic model, and the event loss from each
simulation was calculated and weighted according to their respective parameter set weights.
Figure 8 shows each event hyetograph, the range of hydrographs produced by the different
parameter sets on both the Dodder and Tolka rivers, and the resulting weighted CDF of loss
ratios. The weighted 95% confidence interval values for peak discharge, hydrograph volume
and loss ratio are shown in table 2.

[FIGURE 8 AROUND HERE]
[TABLE 2 AROUND HERE]

The results of this exercise demonstrate the impact of parametric uncertainty within the
hydrological model on expected losses. For the smallest of the events (event 3), the ratio of
the 95™ to 5™ quantile peak discharges for the Dodder and Tolka was ~1.1. Despite these
relatively modest increases, the ratio of 95" to 5™ quantile losses across the whole domain
was ~1.7. For a larger event (event 4), the equivalent 95" to 5™ quantile peak discharge ratio
increased to ~1.2 and yielded a ratio of losses of ~3.25.

The high sensitivity of expected losses to relatively smaller percentage changes in
hydrograph peak or volume is due to the fact that losses are only affected by the part of the
hydrograph that drives flood inundation — namely the portion of flow that is out-of-bank.
This region of the hydrograph is clearly sensitive to parametric uncertainty, leading to the
high degree of uncertainty in modelled losses exhibited here. It should also be noted that
these results are sensitive to the subjective choice of behavioural threshold and performance
measures employed. Had a higher threshold been chosen, the available parameter space from
which behavioural sets could be selected would be smaller, leading to a reduction in the
modelled loss ratio uncertainty. However, despite parametric uncertainty clearly being
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important, in the context of this study the choice of driving precipitation data source remains
the greater source of uncertainty in modelled losses.

As noted in the hazard module description (section 2.2.2), the high computational cost of
hydraulic simulations on a 10m grid prevented the finer resolution model from being adopted.
The earlier qualitative assessment of the hydraulic model at 50 m relative to 10 m indicated
that both exhibited similar first order dynamics, with the coarser model producing a greater
simulation extent with reduced water depths as a result of the reduced building blockages and
terrain smoothing. In order to provide a general indication as to how this might affect loss
estimates, the losses from the 10 m and 50 m calibration simulations were calculated. These
calculations yielded loss ratios of 0.101 and 0.146 respectively, indicating that areas of deep
localised flooding present in the 10 m simulations were generating high losses not adequately
captured by the 50 m model. However, although a more detailed study is required before
firm conclusions can be drawn regarding the importance of hydraulic model resolution in this
context, this result does suggest that the contribution of the hydraulic model to the total
hazard model uncertainty may be small relative to the hydrological model.

3.4 Vulnerability module uncertainty

Contemporary CAT models typically account for uncertainty within the vulnerability module
by using historical claims data to develop a distribution of damage ratios for any given water
depth as described in sections 1.3 and 2.2.3. In order to investigate the uncertainty imparted
onto the EP curves by the vulnerability module, the 500,000 years’ worth of hazard module
simulations performed for section 3.1 were coupled to the uncertain vulnerability module.
This process generated EP curves for each data source in which the 5-95% confidence
intervals are defined by uncertainty within the vulnerability module (figure 9).

[FIGURE 9 AROUND HERE]

Figure 9 demonstrates that the uncertainty imparted by the vulnerability module is large
relative to uncertainty generated by the financial model (figure 5) for small to moderate event
scales (1 in 10 to 1 in ~250 year). However, for the more extreme events the two contribute
uncertainty of a broadly similar magnitude. This is due to the nature of uncertainty within the
vulnerability module. At small event scales the vulnerability module is able to generate a
wide range of loss ratios even when water depths are relatively low. This produces
significant uncertainty within the EP curve relative to a model that uses fixed depth-damage
curves, as loss ratios from the fixed curves will typically be low when water depths are
shallow. However, during more extreme events where high loss ratios dominate the curve
due to increased water depths, the relative uncertainty of the vulnerability model is seen to
decrease as both the uncertain and fixed vulnerability methods cannot generate losses
exceeding 1 (total loss). This exhibition of asymptotic behaviour highlights the fact that
uncertainties vary both in absolute terms and relatively to each other as event scale changes.

4.0 Discussion
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The results presented above examine how the loss estimates produced by a flood catastrophe
model are affected by the choice of data used to drive the model’s stochastic component.
Parametric uncertainty from the hydrological model has also been examined on an event
basis to contextualise the scale of uncertainty induced by the stochastic component and
uncertainty from the vulnerability module has also been modelled. The findings highlight the
difficulty in producing robust EP curves using a cascade methodology, as the uncertainty
associated with each component is large and increases as event scale increases. Furthermore,
not all sources of uncertainty have been considered — for example flood defence failure rates.
Despite this, the model presented here is very detailed compared to standard industry
practice, and contains detailed local information (such as river channel geometry and
features) that would often be unavailable under the time and financial constraints of most
commercial catastrophe modelling activities. The required computational resource would
also exceed what is practicably available if models of this detail were extended to cover
entire national territories. As a result, the uncertainty estimates made in this study are likely
to be conservative. The CMORPH and ERA-Interim precipitation records have global
coverage and are typical of the kind of product that could be used to drive a commercial CAT
model. However, the hydrological model was unable to generate behavioural results when
driven by these data sources, indicating their inability to produce realistic storm precipitation
and thus runoff in the modelled catchments. It is therefore unsurprising that they generated
EP curves that were both very different to each other and to the curves produced using more
detailed local records. Examination of the observed precipitation records reveals that the
precipitation intensity distributions vary significantly between the data sources. The
observed records are relatively short; a common record across all four data sources was only
available for a little over seven years due to the short length of radar records and gaps in the
ground gauge data. The divergence in estimates of precipitation totals for heavy storms
between the observational records is reflected in the synthetic series produced by the
stochastic module, and this divergence inevitably continues as the simulated event scale
increases. This results in the pronounced differences in higher return period loss estimates
produced by the model when trained with each of the data sources in turn. Whilst access to
longer overlapping records might have reduced the severity of this divergence, the
consistently different storm rainfall intensities recorded by the four data types means that the
stochastic module would still be expected to generate very different estimates of high return
period rainfall events depending on which data it was driven with. It is also worth noting at
this point that we did not consider the parametric uncertainty associated with fitting GPDs to
the precipitation intensity and duration tails; this source of epistemic uncertainty is likely to
be large given the relatively short rainfall records to which the GPDs are fitted and therefore
the true uncertainty is most likely greater than reported here. Unfortunately, investigating the
impact of this on modelled losses would have required a number of runs of the entire model
cascade that was computationally prohibitive.

The EP curves were also found to be sensitive to the length of record used to train the
stochastic module. Unfortunately, satellite and model reanalysis precipitation records are
typically short (CMORPH runs from the mid-1990’s; ERA-Interim from 1979) and the
results presented here demonstrated significant differences between the EP curves produced
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by records of 5, 10, 20 and 40 years in length. Lack of available data prevented longer
records from being tested, but our results do indicate that extra care is required when using
short (<10 years) records due to the ability of a single extreme observation to skew results.
Furthermore, the fact that there is an appreciable difference between the 20 and 40 year
curves suggests that records of at least 40 years in length should be used where possible.
Future reanalysis products hoping to extend records further back in time may help to alleviate
this issue; the European Reanalysis of Global Climate Observations (ERA-CLIM) project
aims to provide a 100 year record dating back to the early 20™ century. The impact of
parametric uncertainty within HBV should also be of concern to practitioners. The model in
this study was calibrated with detailed precipitation and discharge records and might
therefore be considered tightly constrained compared to commercial models that will have to
operate at national scales. Despite this, the variation in predicted loss ratios over a range of
behavioural parameter sets for individual events was very large. Due to computational
constraints we were unable to also consider uncertainty in the hydraulic model component of
the hazard module, although it is believed that the hydraulic model is a relatively minor
source of uncertainty in this context (Apel et al., 2008a). Former studies have indicated that
topography is the dominant driver of uncertainty within hydraulic models if we consider the
inflow boundary condition uncertainty to be associated with the hydrological model (Fewtrell
et al., 2011; Gallegos et al., 2009; Schubert et al., 2008; Yu and Lane, 2006), and given the
differences seen between the calibration runs at 10 m and 50 m resolution (figure 3) it is very
likely that the uncertainty reported in this study is an underestimate of the total uncertainty
present within the hazard module.

The final uncertainty source considered was the vulnerability module. This module was
found to contribute significantly to the uncertainty at smaller event scales but, due to the
inherently asymptotic nature of a damage function, its relative contribution was shown to
decrease as event scale increased.  Of particular interest is the fact that, in contrast to some
previous studies (e.g. Moel and Aerts, 2010), the vulnerability module uncertainty is smaller
than the uncertainty resulting from choice of data used to drive the hazard module. This is
likely due to such studies using relatively constrained event scenarios in which under which
hazard uncertainty is more limited than in a stochastic model. Studies which considered a
wider range of events (Apel et al., 2008b; Merz and Thieken, 2009) have found uncertainty in
the features controlling the occurrence and magnitude of events (e.g. stage discharge
relationships, flood frequency analysis) to be similar to or greater than the vulnerability
uncertainty, especially at larger event scales.

Spatial scales are an important consideration in the context of this study. The catchments
modelled in this study are relatively small, and it is reasonable to suggest that the relatively
coarse reanalysis and satellite products might perform better for major rivers where fluvial
floods are driven by rainfall accumulations over longer time periods and large spatial areas.
Some of their inherent traits, such as tendency for the reanalysis product to persistently
‘drizzle’ while underestimating storm rainfall accumulations, will negatively impact their
applicability to flood modelling across most catchment scales although the severity of the
effect may reduce as catchment sizes increase. However, it is wrong to assume that the
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dominant driver of flood risk is always large events on major rivers. A significant proportion
of insurance losses resulting from the 2007 UK floods and 2013 Central European Floods can
be classified ‘off-floodplain’ — that is to say they occurred either as a result of surface water
(pluvial) flooding or as a result of fluvial flooding in small catchments (Willis, personal
communication). This suggests that even when considering large events, the ability to
produce realistic hazard footprints in small catchments remains critical and thus for
practitioners concerned about such events, the findings of this paper remain relevant.

When considered together, the above findings make it difficult to commend a stochastic flood
model driven by precipitation data as a robust tool for producing EP curves for use in
portfolio analysis. The sensitivity of the stochastic component to the driving data is of
fundamental concern due to the high degree of uncertainty in observed precipitation
extremes, suggesting that alternative driving mechanisms such as flood frequency analysis
should be evaluated in this context. Furthermore, the results demonstrate sensitivity to model
parametric uncertainty that will be difficult to overcome. However, these shortcomings do
not mean that such a model has no value. Although it may be difficult to use such a system
to project accurately how often events of a certain magnitude will occur, and thus estimate
probable losses over a given time window, the model could still be used to assess the relative
risk of assets within a portfolio. We argue that understanding and quantifying the
uncertainties generated by the stochastic and hazard modules for a given portfolio may be
important to managing assets effectively. Although the computational demand of the hazard
module in particular will likely render this unfeasible on an operational basis, studies such as
this may be used to inform judgments regarding the total uncertainty within such model
structures. A valuable exercise for users of commercial models may be to compare such
findings to the uncertainty generated by their own models, many of which may attempt to
account for hazard uncertainty via sampling widened distributions within the vulnerability
module.

5.0 Conclusions

In this study, stochastic, hazard, vulnerability and loss modules have been assembled into a
cascade framework that follows the same principles as an insurance catastrophe model. The
model operates by generating a large synthetic series of events in the stochastic component
which is then simulated by the hazard component. The vulnerability component assesses the
damage and loss caused by each event, building up a database of occurrence intervals and
event losses. Finally, the loss component resamples from the modelled occurrence and loss
distributions, producing exceedence probability curves that estimate the expected annual
aggregate loss for a range of return periods. The model simulates fluvial flood risk in Dublin,
Ireland, and the components were calibrated using local historical observations where
appropriate data were available.

A number of different precipitation datasets were tested with the model, including high
resolution local gauge and radar records, model reanalysis records (ERA-Interim) and
satellite records (CMORPH). The exceedence probability curves produced by the model
were found to be very sensitive to the choice of driving precipitation data, with different
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driving datasets producing loss estimates that varied by more than an order of magnitude in
some instances. Examination of the observational records reveals that the precipitation
intensity distributions over a common period vary markedly between the different data types.
These differences are inevitably reflected in the output produced by the stochastic module
and result in large differences in the modelled magnitude of high return period events. The
calculation chain was also found to be sensitive to the length of observational record
available, with the presence of a large event in a short training set resulting in severe
overestimation of losses relative to models driven by a longer record. The sensitivity of the
model to parameterisation of the hydrological model was tested on an event basis. Modelled
loss ratios were found to be highly sensitive to the choice of parameter set. Despite all being
classified as behavioural, the loss ratios for one event varied by up to six times dependent on
the parameter set selected. Finally uncertainty in the vulnerability module was considered.
Due to the asymptotic nature of damage functions it was found to be a larger relative
contributor at small event scales than large, although even at large scales its contribution
remained high. However, the impact of both hydrological parameter uncertainty and
vulnerability uncertainty were both smaller than the impact of uncertainty within the driving
precipitation data.

Considered together, the results of this study illustrate the difficulty in producing robust
estimates of extreme events. The uncertainty in the observed record, along with the short
length of records relative to return periods of interest, is of particular concern as observed
differences diverge when the event scale is extrapolated far beyond what has historically been
observed. A lack of suitable observational data for model calibration makes it challenging to
envisage how similar methods to those employed in this study could be used to produce the
national scale models required by industry without uncertainty bounds becoming
unmanageably high. Further issues that will compound these problems are the scarcity of
data relating to the condition and location of flood defences, another important source of
uncertainty (Gouldby et al., 2008), and the requirement to build models in data-poor
developing regions where insurance market growth is greatest. The results of this study have
emphasised the dramatic impact of data uncertainties on loss estimates, and it is important
that the users and developers of catastrophe models bare such results in mind when assessing
the validity of the uncertainty mechanisms within their models. At present, the combination
of short record lengths and highly uncertain precipitation intensities during storm events
make it difficult to recommend the use of rainfall-driven model cascades to estimate fluvial
flood risk, especially where estimates of return period are necessary. Looking forward,
increased resolution regional reanalysis products with improved rainfall process
representation may help to reduce these uncertainties as may the assimilation of local data
into global observational datasets to produce improved regional calibrations for rainfall
products (Dinku et al., 2013). Further effort should also be concentrated on developing
alternative means of characterising the loss driving properties of river basins. One such
alternative may be to revisit methods based on geomorphology and flood frequency analysis
(Leopold and Maddock, 1953; Meigh et al., 1997) in conjunction with modern observational
databases (such as the Global Runoff Data Centre) and remotely sensed data. As
supercomputing power continues to grow exponentially, large ensemble stochastic
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frameworks that combine such approaches will likely become tenable projects over the
coming decade.
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Key Data Key Key Additional Key
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train GPD fit
Short observational cons'raln . s
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Stochastic - Rainfall intens! y./ uration Uniform rainfall let.aly over
- DEM distributions pattern estimation of
Module Precipitation Modelled losses modelled losses
intensities vary . e
highly sensitive to
between data
cources chosen data source
Parametric
uncertainty
Small number of Modelled losses
flood events in sensitive to
discharge records parameterisation Overestimation of
Hazard - Rainfall Observed flood and calibration losses. especiall
Module: - Temperature discharges River Dodder when ,anthedeth
. - PET P uncertain artificial reservoirs conditions are dr
Hydrological : Small number of not modelled o
Model - Discharge flood events in and reservoir level
discharge records Uncertainty range would be low
choice sf dependent on
behavioural performance
performance measure
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E in ob d
e:(tc?e;st;n observe No significant flood Model may
Observed flood defence additions simulate losses in
discharaes since observed newly defended
uncertagin Unknown sensitivity | events areas
f modelled |
Hazard - Discharge Roughness ormode e. 0sses . . Relationship
Flood extents coefficients to hydraulic model Choice of which between
. - ICI . Wi
Module: R structure events to simulate
. - River channel based on hydrograph
Hydraullc geometry Unrepresented properties and loss
Model - DEM channel features hydrograph peak may be
and volume s
oversimplified
Flood extents and Depth in building .
R Likely over-
DEM resolution depths influenced cell assumed to be estimation of
by DEM; losses not mean of surround modelled losses
grid independent cell depths
. Likely etjrors in loss Fixed damage fixed Loss for a given
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- Water depths unknown depth building type
Vulnerability - Postcode areas P 'blg P
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damage curve duration events
respectively
Financial Policy t.erms suchas | Overestimation of
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Table 1. Table showing the required data sources for each module, along with key

uncertainties, assumptions and their respective implications for modelled losses.
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Measure Event 1 Event 2 Event 3 Event 4
_ Peak 1015 256 185 - 226 185 - 203 250 — 291
Discharge (m")
Dodder Volume
7 3 1.69-1.89 1.66 —1.84 1.76 — 1.97 1.74-1.92
(x 10" m°)
Peak
) 3 125 - 150 130 - 147 113 - 124 118 -139
Discharge (m")
Tolka Volume
7 3 1.50-1.64 154 -1.64 1.49-1.60 1.35-1.47
(x 10" m°)
Entire .
) Loss Ratio (%) | 0.03-0.14 0.04-0.07 0.03-0.05 0.04-0.13
Domain

Table 2. Weighted 5™ — 95™ quantile values for event based HBV uncertainty simulations.
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Figure Captions

Figure 1. Map of Dublin region. Modelled rivers are shown by thick blue lines.
Hydrological model boundaries are shown in red. Hydraulic model boundary is shown in
yellow. Rain gauge locations shown by black crosses. River flow gauges are shown by
yellow triangles.

Figure 2. Modelled annual maximum rainfall totals for each duration class compared to
observational record for the Dodder catchment. The annual maxima for each class in the 40
year catchment average observed record are ranked and plotted using Gringorten plotting
positions (black circles). The process was repeated for 50 x 40 year simulated series (grey
Crosses).

Figure 3. Hydraulic model calibration results. Red shaded area shows observed flood extent.
Blue outline shows flood outline from 10 m resolution model. Yellow outline shows flood
outline from 50 m resolution model. Underlying DEM is 10 m resolution.

Figure 4. Box plots that show the variation between two batches of simulations reducing as
the number of simulations in each batch increases. The top plot (4a) shows the difference
between the means of the two batches, expressed as a percentage of the mean loss across all
500 simulations. The bottom plot (4b) shows the difference between the standard deviations
of the two batches, expressed as a percentage of the standard deviations across all 500
simulations.

Figure 5. Exceedence probability plots produced by the catastrophe model when trained
using the four different precipitation datasets. The grey shaded area denotes the 5-95%
confidence intervals generated by the financial model. The losses simulated when the
hydraulic and vulnerability modules are driven with observed flows for two historical events
are shown for reference.

Figure 6. Top plot (6a) showing cumulative precipitation for each source. Bottom plot (6b)
shows anomalies in >90™ quantile precipitation intensities between gauge and other sources.

Figure 7. Exceedence probability plots produced by the catastrophe model when trained
using the gauge record cropped to four different lengths. The grey shaded area denotes the 5-
95% confidence intervals generated by the financial model. The losses simulated when the
hydraulic and vulnerability models are driven with observed flows for two historical events
are shown for reference.

Figure 8. Plots showing event hyetographs and hydrographs for the River Dodder (rows 1
and 2) and River Tolka (rows 3 and 4), and cumulative distribution function plots of
modelled losses across the entire domain (row 5). The number of parameter sets simulating
discharge at or above a given level at time t is represented by the hydrograph colour, ranging
from all 100 (dark blue) to 1 (dark red). The weighted 5" - 95" quantile values from these
plots are shown in table 2.
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Figure 9. Exceedence probability plots produced by the model when trained using the four
different precipitation datasets. The grey shaded area denotes the 5-95% confidence intervals

generated by uncertainty within the vulnerability model.
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