
This paper investigates how a simple soil moisture model can be used at sites with no soil 

moisture measurements available for model training, but with similar climate and/or soil type. 

Given the sparsity of soil moisture measurements this is an important contribution as it allows to 

spatially generalize (soil moisture) model calibrations. 

 

We thank the reviewer for his/her compliments, as this was precisely our intention with this 

work.  We hope that our responses to the comments below improve the manuscript and satisfy 

the reviewer. 

 

General comments: 

The paper needs minor revisions. In my opinion the paper is very well written. It is 

straightforward to understand and clearly structured. There are other simple soil moisture models 

that do not require soil moisture information for calibration. (Koster and Mahanama 2012, JHM; 

Orth et al. 2013, JHM) A reference to such approaches (e.g. in the discussion section) could 

indicate another possible direction in which to apply the derived results. I appreciate the tables 

and information the authors provided in response to reviewer #1, I agree that these will improve 

the manuscript. 

 

We thank the reviewer for drawing our attention to the two listed papers.  Indeed, these works 

also provide estimates of soil moisture without antecedent soil moisture information.  Following 

line 13 on p. 2338, the following will be added: 
 

“The diagnostic soil moisture equation used in this paper (Pan et al, 2003; Pan, 2012) was an appropriate 

choice due to its ability to generate soil moisture estimates without the need for knowledge of antecedent 

soil moisture conditions.  Koster and Mahanama (2012) and Orth et al. (2013) have developed approaches 

to estimate soil moisture at the watershed scale by leveraging hydroclimatic variability and long-term 

streamflow measurements in a water-balance model – also without employing previous soil moisture 

conditions.  If the parameters calibrated and then generalized in this work produce point estimates of soil 

moisture at a diversity of locations, integration with a water balance approach could help with the up-

scaling process. 

 

Specific comments: 

Title: Maybe you want to consider simplifying your title such that a broader audience can 

understand it. I would think of e.g. "Using climate and soil information to generalize soil 

moisture prediction" 

 

Perhaps a different title would lead to wider appeal.  Consider: 

“Using similarity of soil texture and hydroclimate to enhance soil moisture estimation” 

 

page 2323, line 7: remove "(precipitation" 

 

Agreed.  The change will be made. 

 

page 2326: From equation 1, soil moisture content would never increase. I guess you add 

(possible) precipitation at each time step? 

 

In equation 1, the β term represents the convolution of previous hours of precipitation.  One can 

observe that if β is equal to zero (no precipitation during the relevant historical window), θest  is 



set to θre, the residual soil moisture of the soil.  Should β grow large (saturating the soil), θest  

approaches the porosity, φe.  At each time step, β changes, as its temporal window is fixed – at 

each time step, the oldest hour of precipitation data used to calculate β is replaced by the most 

recent hour.  In this manner, precipitation in the most recent hour (weighted more heavily in the 

convolution) increases θest. 

 

page 2326, lines 21-25: Why do you use different metrics (objective functions) that are 

minimized/maximized here? 

 

Does the reviewer refer to lines 21-25 of p.2327?  If this is the case, the reviewer’s question 

regards the fact that we maximize correlation for the first three parameters fit by genetic 

algorithm, yet minimize the sum of squared errors for the three parameters fit during the second 

stage.  The reason for this is that the β-series is characterized by a wholly different numerical 

scale than the soil moisture series were are ultimately attempting to estimate.  Moreover, it is 

still (at that point in the analysis) missing the three soil-specific parameters.  Thus, choosing 

optimal values for the first three parameters entails developing a β-series whose shape follows 

the shape of the measured soil moisture values.  Once this ‘shape’ is modeled,  choosing a 

lower-bound for θest (residual soil moisture, θre) and an upper-bound(porosity, φe), along with a 

rate of drainage (c4), allows the generation of a soil moisture series that should have a minimal 

total sum of square errors with respect to the observed soil moisture series.   

 

page 2333: Please mention that this error correction approach cannot deal with trends in the soil 

moisture data. 

 

The following sentence will be added, following line 18 of p. 2333: 

 
“This approach to error correction, as it relies on previous errors to predict future errors, will not address long-term 

trends within the soil moisture record.” 

 

page 2333, line 13: add "when considering the entire time series" before "but without flooding 

events ..." 

 

These sentences will amended at the behest of this and another reviewer.  The paragraph that 

begins on line 7 of p. 2333 will now read: 

 
“During the validation period, specifically 2010, wetter conditions were observed than were present during 

calibration.  At this SCAN, before 2010, the average soil moisture value observed as 28.55%, with only 

25% of values exceeding 35% volumetric soil moisture.  However, in 2010, the average soil moisture value 

measured was 33.16% with 45% of values exceeding 35%.  The machine learning driven error correction 

improves the diagnostic soil moisture equation (ρ = 0.846) significantly (ρ = 0.915), but fails to raise its 

forecasts to reach some of the wetter conditions experienced in validation.  Underestimations of this nature, 

although detrimental…” 

   

 

page 2333, lines 16-18: In terms of droughts this shortcoming has more serious consequences. 

Wheras it may not matter much if it is wet or very wet, it is important if it is dry (plants may 

survive) or very dry (plants may die), especially in the context of irrigation management. 



 

Agreed.  Small errors in terms matter more during dry conditions than during wet conditions.  

Generally, the model does make smaller errors, in absolute terms, during dry conditions.  

Following line 18 of p.2333, the following sentence will be added. 

 
“It is important to note that small errors are more significant in terms of decision support (specifically when 

and where to irrigate) during dry conditions.  Generally, the model’s errors are smaller, in absolute terms, 

during drier conditions.” 

 

page 2336, lines 15-18: Would you say hydro-climate and soil type are about equally important 

or is it too little data to make such a statement here? 

 

This is an important question – the data seem to suggest that hydroclimatic characteristics are 

slightly more important than edaphic features (the model performs better when hydroclimates 

align but soil textures do not than the converse).  However, what is not rigorously analyzed 

(though it could be, in a subsequent paper) is the extent of the hydroclimatic differences vs. the 

extent of the edaphic differences within those groups respectively.  As a result, it would be 

speculative to say which is more important – one can only state that both are important.  To this 

end, after line 18 of p. 2336, the following will be added: 

  
“…future modeling work, in which the relative importance of hydroclimates and soil textures can be 

examined in greater detail.” 

 

page 2337: The model may not only benefit from accounting for overland flow but also for 

subsurface flow/runoff, especially in hilly areas. 

 

Absolutely.  Line 19 of p. 2337 will read: 

 
“…by considering overland and subsurface flows, specifically in areas characterized by more complex 

topography.” 

 

page 2338: What is the soil depth considered in the model? Satellite data represents only the 

upper centimeters of the soil and may therefore be of limited use to improve total column soil 

moisture model estimates. 

 

Another reviewer (#2) has raised this question as well.  The response to that reviewer is 

reproduced below: 

  

“Given the general limitation of our datasets and the fact that shallow-depth soil moisture is 

most relevant to decision-support, all of our analyses occur with measurements of 2in (~5cm) 

depth.  A note to this effect has been added following equation two, to avoid any subsequent 

confusion.”  

 

—————————————– 

Figure 2: Please label the x-axis. You can cut the range of the y-axis such that it starts at 0.3 or 

so. 

 

The new Figure 2 appears below: 



 

 
Figure 2, Improvements from machine learning (KNN) models of residuals.   

 

Figures 3-6: Put exact dates/times on x-axis. 

 

In figures 3-6, the only hourly time stamps that appear are those for which the date falls between 

the 100
th

 and 300
th

 days of the year (to ensure analysis of unfrozen ground) and for which the 

precipitation and soil moisture values from the relevant sensor are available.  Thus, these are 

not wholly continuous time-series and consequently, it could confuse readers were dates to 

appear at inconsistent intervals.  Figures 3-6 have been updated slightly at the behest of other 

reviewers, appearing below. 

 



 

Figure 3, Soil Moisture Time Series, SCAN Site 2015, New Mexico (USA), Actual Soil 

Moisture (Blue Line), Diagnostic Soil Moisture Equation Estimate (Red Line), and 

Diagnostic Soil Moisture Equation with Machine Learning Error Correction (Green Line).  

Hydroclimate: IAQ (Intermediate Seasonality, Arid, Summer Peak Runoff)   

Soil Texture: Loamy Sand 

 

 

Figure 4, SM Time Series, SCAN Site 2068, Iowa (USA), line colors from Fig. 3 

Hydroclimate: ISCJ (Intermediate Seasonality, Semi-Arid, Winter Peak Runoff, Summer 

Peak Precipitation)   

Soil Texture: Silty Clay Loam 



 

 

Figure 5, SM Time Series, SCAN Site 2013, Georgia (USA), line colors from Fig. 3  

Hydroclimate: LWC (Low Seasonality, Winter Peak Precipitation, Winter Peak Runoff) 

Soil Texture: Sandy Loam 

 

 

Figure 6, Soil Moisture Time Series, SCAN Site 2015, New Mexico (USA), Actual Soil 

Moisture (Blue Line), Diagnostic Soil Moisture Equation Estimate (Red Line), and 

Diagnostic Soil Moisture Equation with Machine Learning Error Correction (Green Line) 

 

 



Figure 10: Some text is missing in the brown box. 

 

The correction has been made, see below: 

 

Figure 12, The 15 SCAN sensors, color-coded to match their hydro-climatic class, with 

similar soil textures shaded. 

Figure 11: Has it been referred to in the text? Use different colors for soil texture circle and 

hydroclimate circle. 

 

Figure 11 is referenced on line 12 of p. 2336.  It is reproduced below (it will be Figure 13 in the 

revised manuscript).  Green shades denote hydroclimatic similarity, brown shades denote 

similarity with respect to soil texture. 

 



 
Figure 13 Venn-Diagram of Modeling Errors with Similar and Different Soils and Hydro-climates 

 

Same Hydroclimate, 

Different Soils,
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