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Abstract 16 

Hydrological classification has emerged as a suitable procedure to disentangle the inherent 17 

hydrological complexity of river networks. This practice has contributed to determine key 18 

biophysical relations in fluvial ecosystems and the effects of flow modification. Thus, a 19 

plethora of classification approaches, which agreed in general concepts and methods but 20 

differed largely in specific procedures, have emerged in the last decades. However, few 21 

studies have compared the implication of applying contrasting approaches and specifications 22 

over the same hydrological data. In this work, using cluster analysis and modelling 23 

approaches, we classify the entire river network covering the northern third of the Iberian 24 

Peninsula. Specifically, we developed classifications of increasing level of detail, ranging 25 

from 2 to 20-Class levels, either based on raw and normalized daily flow series and using two 26 

contrasting approaches to determine class membership: Classify-Then-Predict (ClasF) and 27 

Predict-Then-Classify (PredF). Classifications were compared in terms of their statistical 28 

strength, the hydrological interpretation, the ability to reduce the bias associated to 29 

underrepresented parts of the hydrological space and their spatial correspondence. The results 30 

highlighted that both the data processing and the classification strategy largely influenced the 31 

classification outcomes and properties, although differences among procedures were not 32 

always statistically significant. The normalization of flow data removed the effect of flow size 33 

and generated more complex classifications in which a wider range of hydrologic 34 

characteristics were considered. The application of the PredF strategy produced, in most of 35 

the cases, classifications with higher discrimination ability and presented greater ability to 36 

deal with the presence of distinctive gauges in the data set than using the ClasF strategy.  37 

 38 
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1 Introduction 39 

Understanding the natural variability of hydrology ate the regional scale has become crucial 40 

for river ecology and management because of three main reasons: (i) it is a primary factor 41 

influencing river geomorphology (Peñas et al., 2012; Richter et al., 1998; Benda et al., 2004), 42 

water (Álvarez-Cabria et al., 2010; Chinnayakanahalli et al., 2011) and biological 43 

characteristics (Poff and Zimmerman, 2010), (ii) its variability reflects climate (Morán-Tejeda 44 

et al., 2011) and catchment attributes (second order driver; Monk et al., 2007) and (iii) 45 

freshwater resources are essential to maintain many human activities (Naiman and Dudgeon, 46 

2011). 47 

Much progress has been made over the last 20 years in understanding hydrologic variability 48 

and how it promotes self sustaining ecosystems (Poff et al., 2006; Gurnell et al., 2000). 49 

However, the inherently complexity of flow regimes hinders both the quantification of direct 50 

responses of hydrology to catchment characteristics, and the identification of key hydrology 51 

and ecology relationships. The identification and characterization of relevant ecological 52 

aspects of the flow regime and the arrangement of similar rivers into a geographical context 53 

(Poff, 1996), trough the definition of hydrological classifications, has emerged as a relevant 54 

procedure to structure analyses in hydroecological studies. Specifically, inductive 55 

hydrological classification approaches have been used to group river reaches into classes 56 

within similar attributes regarding the flow regime (Snelder et al., 2009) and ecological 57 

attributes (McManamay et al., 2012).  58 

Many of the existing hydrological classifications following the inductive approach rely on the 59 

use of statistical procedures to minimize the redundancy of the hydrological information 60 

(Olden and Poff, 2003) and also, to reduce the intra-group and increase the inter-groups 61 

variability (Snelder and Booker, 2013). Nevertheless, many specific steps within the 62 

classification process may be influenced by a series of subjective decisions depending on the 63 

rationale, objectives and available data. For example, many hydrological classifications are 64 

based on normalized flow data (McManamay et al., 2012; Kennard et al., 2010; Reidy 65 

Liermann et al., 2012) while others used raw flow series (Zhang et al., 2012; Belmar et al., 66 

2011; Alcázar and Palau, 2010). However, normalization can be viewed as a completely 67 
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subjective choice that depends on the purpose of the classification (Olden et al., 2012). If the 68 

range of flow magnitude varies largely within a region, classification based on the raw flow 69 

series would be subjected uniquely to this attribute. In contrast, other flow attributes that 70 

present a lower degree of variability and that  are not affect by the normalization of the series, 71 

would be masked in classifications. The main reason for normalization is to remove the scale 72 

dependence of flow magnitude indices to promote the classification of rivers according to a 73 

larger set of hydrological attributes. Therefore, the larger the number of hydrological aspects 74 

taken into account in the classification the larger its potential uses. For example, the 75 

normalization of flow series allows segregating rivers attending the intra-annual variability of 76 

flows magnitude, i.e. the shape of the hydrographs. Undoubtedly the shape of the hydrograph  77 

influences river reach ecology (Bunn and Arthington, 2002; Richter et al., 1998) and are key 78 

elements for understanding the relationship between climatic and streamflow patterns 79 

(Gámiz-Fortis et al., 2011). Nonetheless the size of a river reach and the absolute magnitude 80 

of flows also play a key role in ecological processes (Bunn and Arthington, 2002; Vannote et 81 

al., 1980) and it is a critical element to manage water resources.  82 

In addition, the scientific and management utility of hydrologic classifications relies on the 83 

capacity to extrapolate the class membership to ungauged sites, providing a map of natural 84 

flow regimes at the regional scale (Snelder et al., 2009; Reidy Liermann et al., 2012). The 85 

Classify-then-Predict (ClasF) strategy has been the most common approach to fulfil this 86 

objective (e.g. Kennard et al., 2010; Reidy Liermann et al., 2012). ClasF predicts class 87 

membership to ungauged sites based on environmental data (climate, topography, geology or 88 

land-use). However, this method might pose some flaws when predicting onto an entire 89 

region, especially if the distribution of gauges is biased, i.e. specific kinds of rivers are under 90 

or overrepresented  (Snelder and Booker, 2013). If this is the case, the cluster step would fail 91 

in accounting for those hydrological features underrepresented in the data set. This is a critical 92 

issue since the low representation in the gauged network does not imply a low representation 93 

in the entire river network. The way in which these underrepresented data or distinctive 94 

gauges (i.e. those ones presenting a large hydrologic dissimilarity to the other ones present in 95 

the data set) are classified may lead to the loss of their “rare” hydrologic character when 96 

classes are predicted to the whole river network. Due to this reason, some researchers have 97 
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attempted other approaches such as the Predict-then-Classify (PredF) strategy (Ferrier and 98 

Guisan, 2006; Snelder and Booker, 2013). Using this approach, hydrological indices obtained 99 

from the flow series are predicted onto the entire river network based on climate and 100 

catchment characteristics. Then, classification of all river segments is performed as a final 101 

stage within the procedure.  102 

The aim of this study was to investigate how the normalization of flow series data previous to 103 

the classification procedure and the use of ClasF and PredF influences (i) the classification 104 

performance, (ii) the hydrological interpretation of the classifications, (iii) their ability to 105 

reduce the bias associated to the underrepresented parts of the hydrological space and (iv) the 106 

degree of spatial correspondence between classifications. To achieve this aim we will develop 107 

hydrological classifications of natural conditions over an entire river network in the northern 108 

third of the Iberian Peninsula, covering catchments of contrasting climate and spatial 109 

configuration. We hypothesised that normalization of river flow data will tend to classify 110 

rivers according to their annual regime and not only to the size of the river and also increase 111 

the contribution of other hydrological variables not related to flow magnitude. In addition, we 112 

hypothesised that the application of the PredF classification procedure will reduce within 113 

class heterogeneity. 114 

 115 

 116 
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2 Methods 117 

2.1 Study Area 118 

The study area comprises the northern third of the Iberian Peninsula (Fig. 1) covering a total 119 

area greater than 124000 km2. It represents heterogeneous environmental conditions and can 120 

be broadly segregate in three main zones. On one hand, the area draining into the Cantabric 121 

sea encompass several small basins with drainage areas ranging from 30 km2 to 4907 km2 122 

covering a total area of 22000 km2. Rivers are confined by the Cantabrian Cordillera, which 123 

reaches up to 2600 m.a.s.l. and runs parallel to the coast. Thus, they are characterized by high 124 

slopes and short main stream lengths. This region has a humid oceanic temperate climate 125 

(Rivas-Martínez et al., 2004). Precipitation is abundant throughout the year with mean of 126 

1300 mm year-1, with maximum rainfalls in December (150 mm month-1) and minimum in 127 

July (50 mm month-1). However, the precipitation magnitude and distribution varies 128 

significantly according to local topography. Snow precipitation is frequent in winter above 129 

1000 m.a.s.l. More than 50% of the surface is occupied by deciduous forest, scrubs and 130 

grasslands, while 10% is occupied by agriculture. The population in this area amounts to 131 

almost 3500000 inhabitants with a population density of 175 hab km-2 although it varies 132 

between regions. On the other hand, the Mediterranean area is mainly occupied by the Ebro 133 

basin along with a set of medium size basins in the eastern zone. The Ebro basin covers a total 134 

extension of 85530 km2. It is enclosed by the Cantabrian Mountains and the Pyrenees (3400 135 

m.a.s.l.) in the North, by the Catalan Coastal Chain (1712 m.a.s.l.) in the East and from the 136 

North-West to the South-East by the Iberian massif (2300 m.a.s.l.) which creates a dense river 137 

network in the catchment boundaries and an extended flat surface in the interior. The Ebro 138 

Basin receives both temperate and Mediterranean climate influences. The Pyrenean area 139 

(northwest) and the northern part of the Iberian massif present oceanic temperate climate that 140 

change gradually to a typical Mediterranean climate in the central Ebro depression. Annual 141 

precipitation is 656 mm, however it varies from 300 mm in the centre to the 1700 mm in the 142 

highest mountains (Bejarano et al., 2010) where snow is also common during the winter 143 

months. The precipitation regime in the Mediterranean region has its maxima in autumn and 144 

spring and minima in winter and summer. The temperature regime also oscillates through the 145 
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year with temperatures over 30 ºC in summer and below 5 ºC during winter. Population 146 

density is below 35 hab km-2 which could be considered low, however more than 40% of the 147 

surface is occupied by agricultural land and, thus, the catchment is subjected to an intensive 148 

water resource control by more than 216 large dams and other water engineering systems. The 149 

eastern zone of the study area comprises several medium catchments ranging from 72 to 5000 150 

km², occupying a total extension of 16500 km² that drain directly from the Pyrenees or the 151 

Catalan costal chain to the sea. This area is dominated by the Mediterranean oceanic climate 152 

in the coast and by a temperate climate in the mountains. Precipitation declines from an 153 

annual mean of 1200 mm year-1 in the northern river heads to less than 500 mm year-1 in the 154 

Southern catchments. Coniferous and broadleaf forest, scrubs and grasslands occupies more 155 

than 60% of the surface in the northern catchments which are progressively replaced by 156 

agriculture lands in the south. There are a total of 6600000 inhabitants in this area, mostly 157 

concentrated in the city of Barcelona and its metropolitan area. Therefore, most of the water 158 

resources are allocated to urban and industrial uses.   159 

2.2 Hydrologic Data 160 

The initial data set consisted in series of mean daily flow recorded at 428 gauging stations 161 

operated by different Spanish water agencies and regional governments. Only gauges 162 

unaffected by impoundments (defined as large engineering structures) or large upstream 163 

abstractions were selected for analyses. In addition, we selected those gauges with available 164 

data for the period 1976-2010 and analyzed the quality of the series. First, an analysis of the 165 

flow series was carried out to eliminate those years without desirable data quality, which 166 

could be due to the presence of (i) periods of consecutive repeated values, (ii) non-natural 167 

extreme low flows for short time periods, (iii) periods of zero flow values in non- intermittent 168 

rivers, (iv) non-natural flow magnitude rises and falls or (v) large differences between two 169 

periods, probably due to changes to flow recorder method. Years with more than 30 days of 170 

missing data were removed from the analysis. In the last step, we discarded the gauges that 171 

accounted with less than 8 years. After applying these restrictions, 156 gauges were selected 172 

with an average length of 17 years of data (Table 1).  173 
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In this study we developed four sorts of classifications (Fig. 2 ). Two of them were obtained 174 

from normalized flow series and the other two from non-normalized (raw) series. 175 

Normalization is used to eliminate the influence of flow magnitude (Snelder et al., 2009). 176 

Flow series were normalized by dividing all daily flow values by the mean annual flow (Poff 177 

et al., 2006) 178 

A set of 103 and 101 hydrologic indices, which represent a wide range of ecologically 179 

meaningful aspects of the flow regime  (Olden and Poff, 2003), were calculated for the raw 180 

and normalized flow series, respectively (Appendix A). These indices characterize the central 181 

tendency and dispersion of: (i) magnitude of annual and monthly flows conditions, (ii) 182 

magnitude of severe high and low flow conditions, (iii)  timing of flows, (iv) frequency and 183 

duration of high flow pulses and (v) rate of change of flow (Richter et al., 1996; Olden and 184 

Poff, 2003). It must be pointed out that among the indices representing flow magnitude, l1 185 

and lcv, were excluded from the set of indices extracted from the normalized flow series. 186 

After dividing each daily flow data by the mean annual flow, l1 became equal to 1 in all the 187 

gauges. In addition, lcv became equal to lca (as lcv = lca/l1).  188 

Given the strong correlation between several indices, the initial set of indices was reduced to a 189 

set of non-correlated synthetic indices using the procedure outlined in Olden and Poff (2003) 190 

and followed by many others (Chinnayakanahalli et al., 2011; Zhang et al., 2012; Belmar et 191 

al., 2011). According to Olden and Poff (2003), a principal components analysis (PCA) was 192 

used to determine the patterns of correlation between the hydrological indices. It allow 193 

identifying the subsets of synthetic indices, that describe the major sources of variation while 194 

minimize redundancy. The broken stick method (Jackson, 1993) were performed to obtain 195 

and define the optimal set of PCs to be retained. Each of the selected PC was used as a 196 

hydrologic synthetic index in subsequent analysis. Two PCAs were carried out independently, 197 

one for the hydrologic indices calculated from the raw flow series and another for hydrologic 198 

indices calculated from the normalized flow series. Each PC was standardized before 199 

conducting further analysis to give them equal weights. Snelder and Booker (2013) 200 

demonstrated that this additional step increased classification performance. 201 
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2.3 Environmental Data 202 

A Synthetic River Network (SRN) was delineated using a 25-m digital elevation model 203 

(DEM) using the NestStream software (Miller, 2003). The SRN comprises 667406 segments 204 

with lengths ranging from 16 to 800 m and was used as a spatial network to integrate the 205 

hydrological and environmental information. 206 

Climate, topography, land cover and geology are hypothesised to be important discriminator 207 

of the hydrologic regime regardless of geographic location. Thus, environmental variables 208 

were used to explain the hydrological character of the recorded flow series and predict this 209 

character onto the whole river network. Predictor variables describing several environmental 210 

attributes including climate, topography, land cover and geology were extracted from existing 211 

databases provided by several national and regional organizations. The variables for each 212 

segment represented the mean value of the variables in the upstream catchment. An initial set 213 

of 25 environmental variables with potential influence on the hydrological regimes were 214 

selected. Pearson’s correlation coefficient between each pair of variables was calculated and 215 

variables with correlation higher than 0.7 were discarded. A final set of 16 variables were 216 

selected (Table 2): 217 

i) Climate (n=3): Precipitation, precipitation range and evapotranspiration were derived from 218 

monthly climate variables calculated in a 1 km grid map. This map was obtained by means of 219 

an interpolation procedure based on data recorded in more than 5000 weather stations of the 220 

Spanish network. These data were originally developed to be implemented into the Integrated 221 

System for Rainfall-Runoff modelling (in Spanish SIMPA model) by the Centre for 222 

Hydrographic Studies (CEDEX, Ministry of Public works and Ministry of Agriculture and 223 

Environment, Spain).  224 

ii) Topography (n=5): Catchment area, slope, elevation, confluence density and drainage 225 

density were derived from the 25 m DEM.  226 

iii) Land cover (n=6): The percentage surface occupied by broadleaf forest, coniferous forest, 227 

pasture, agricultural land, denuded areas and urban areas was derived from the Soil 228 

Occupancy Information System (in Spanish SIOSE) developed by the National Geographic 229 
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Institute of the Spanish Government. SIOSE presents a scale of 1:25000 and integrates 230 

satellite and aerial images from several sources of information.  231 

iv) Geology (n=2): The average rock hardness and the terrain permeability were derived from 232 

the litostatigraphic and permeability map at scale 1:200,000 developed by the Spanish 233 

Geologic and Miner Institute of the Spanish Government. The base of the calculation of these 234 

variables was the percentage of area occupied by the original classes of rocks included in the 235 

data layer. These classes were then reclassified into broader ones and then, we assigned them 236 

a numerical value based on geological hardness and soil permeability (see Fernández et al., 237 

2012 for details; Snelder et al., 2008).  238 

2.4 Classification procedures 239 

In this study, we derived classifications with increasing numbers of levels using the synthetic 240 

hydrologic indices extracted from the raw or the normalized flow series and using two 241 

contrasting strategies (sensu Snelder and Booker, 2013): (i) the classify-then-predict 242 

(rawClasF and norClasF) and the (ii) predict-then-classify (rawPredF and norPredF). The 243 

prefix raw and nor indicates whether classification was based on the hydrological indices 244 

extracted from the raw or normalized flow series respectively. 245 

Given the high number of gauges removed due to the presence of impoundments or 246 

abstraction upstream, it is probable that selected gauges do not represent the whole spectrum 247 

of natural hydrologic conditions in the study area. In addition, the SRN developed for this 248 

study presented many rivers of first and second order which are underrepresented in the gauge 249 

data base. The prediction of the class membership (ClasF) or the hydrological synthetic 250 

indices (PredF) beyond the hydrological space represented in the selected gauges could lead 251 

to misleading results. Therefore, the prediction stage of the ClasF and PredF approaches was 252 

not based on the whole SRN (667406 segments) but in a reduced SRN. All the segments of 253 

the SRN that presented values of the predictor variables out of the range 254 

(maximum/minimum) defined by these predictors in the selected gauges were discarded. The 255 

reduced SRN kept 178297 segments. 256 
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2.4.1 Classify-Then-Predict classification (ClasF) 257 

Partitioning Around Medoids (PAM; Kauffman and Rousseeuw, 1990) algorithm based on 258 

the synthetic indices was used to cluster gauges (Fig. 2). This technique allows the user to 259 

specify the number of clusters. We produced classifications with numbers of classes ranging 260 

from 2 to 20. We then used Random Forest (RF; Breiman, 2001) to developed predictive 261 

models that relate class memberships and  the environmental variables (Fig. 2). We fitted one 262 

specific RF for each classification level (2 to 20-Class level) and then, these models were 263 

used to establish the most probable class of each segments of the SRN for each classification, 264 

i.e. 19 sets of predictions.  265 

2.4.2 Predict-Then-Classify classification (PredF) 266 

For the PredF strategy, empirical models were first fitted to each of the standardized synthetic 267 

indices as a function of environmental variables using RFs (Fig. 2). Then predictions of the 268 

synthetic indices are made for each segment of the SRN. Finally, classifications were 269 

produced by clustering all the modelled sites using the PAM algorithm varying again between 270 

2 and 20-Class levels.  271 

As stated before, ClasF and PredF strategies are based in the use of RF (Breiman, 2001). RF 272 

fits many classification and regression trees (CART; Breiman et al., 1984), each of them 273 

grown with a randomized subset of sites and predictor variables from the initial data. Each 274 

CART is then used to predict the sites initially excluded from the data set, named the out-of-275 

bag (OOB) samples. These predictions are used to calculate the predictive accuracy of the 276 

model and the importance of each predictor variable (Snelder et al., 2011).  277 

2.5 Comparison of classification performance 278 

The performance of the classifications was measured using the classification strength (CS; 279 

Van Sickle, 1997) and ANOVA.  280 

CS estimate the degree of dissimilarity between gauges explained by the classifications 281 

(Snelder and Booker, 2013). This analysis was performed on the hydrological indices with the 282 

highest loading on each of the retained PCs. Briefly, CS results from the difference between 283 
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the mean dissimilarity of the gauges in the same class (Dwithin) and the mean dissimilarity of 284 

gauges in the other classes (Dbeetwen.). Higher values of CS indicate a greater uniformity within 285 

classes and greater differences between classes (Van Sickle, 1997). We calculated CS for each 286 

classification (rawClasF, rawPredF, norClasF and norPredF each with 2-20-Class levels). We 287 

applied the restriction that classes comprising a minimum of five gauges to reduce the 288 

influence in the analysis of classes represented by a very low number of gauges.  289 

In addition, we performed an ANOVA on all the hydrological indices (103 and 101 for raw 290 

and normalized series, respectively) with the class membership as the explanatory variable. 291 

ANOVA allows analyzing the potential of classifications to discriminate each of the 292 

hydrological indices. The coefficient of determination (r2) was calculated for each level (2 to 293 

20-Class level) of the 4 classifications. The restriction of the five gauges per class was also 294 

applied.  295 

Following the procedure outlined in Snelder and Booker (2013) and Snelder et al. (2012), 296 

both the CS and ANOVA analysis were performed on gauges not used in the fitted models by 297 

means of a five-fold cross validation procedure (Hastie et al., 2001) . This allowed us 298 

focusing on the “predictive performance” of the classifications. Each cross validation 299 

procedure was repeated 5 times in order to “smooth out” the variability inherent to each 300 

subset. Therefore, results of 25 estimates of predictive CS and r2 statistics for each 301 

hierarchical level of classifications were obtained. Based on the “one standard error rule”, two 302 

classifications were assumed significantly different if standard errors of the statistics did not 303 

intersect. 304 

2.6 Hydrological interpretation of classifications 305 

We selected the five hydrological indices included in the initial set (103 and 101 indices for 306 

the raw and normalized series, respectively) with the highest values in each retained PCs to 307 

interpret the hydrological meaning of the new synthetic indices. The retained PCs accounted 308 

with the greatest part of the hydrological variability so, they are the major determinants of the 309 

classification patterns. In addition, we used the ANOVA results to interpret each classification 310 

by looking at the different coefficients of determination for specific indices. We assumed that 311 
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the higher the coefficient of determination the higher the importance of that index to 312 

discriminate among classes. 313 

2.7 Analysis of distinctive gauges 314 

We also analyzed how each classification strategy resolved the problem associated with the 315 

presence of distinctive gauges (DGs). DG can be defined as those that showed the most 316 

distinctive regimes (i.e. gauges presenting the largest hydrologic dissimilarity relative to the 317 

other ones present in the data set). The way the classification procedure deal with the DGs is 318 

very important. For instance, DGs can be grouped to other ones that are completely dissimilar 319 

or in very exclusive classes with lower dissimilarity between gauges but a very restricted 320 

number. In both cases, the hydrologic character represented by the DGs may underrepresented 321 

when classes are predicted to the whole river network. We quantified how the different 322 

strategies deal with the presence of DGs in the data set.  323 

Independent analyses were made for classification based on raw and normalized flow series. 324 

Firstly, we calculated, based on the synthetic indices scores, the dissimilarity between each 325 

pair of gauges and then, the corresponding mean dissimilarity for each gauge. This value 326 

allowed selecting the gauges with the most distinctive hydrological regime, i.e. the DGs. We 327 

ordered the gauges from the most to the less dissimilar gauge and analysed how the 328 

dissimilarity values decayed. We select 4 DGs for each type of series (raw or normalized), 329 

corresponding to the first important inflexion point in the decay trend of the dissimilarity. It is 330 

important to stress than dissimilarity values decreased from DG1 to DG4. Finally, we 331 

recorded the classes where the DGs belong after classifying the SRN.  332 

For each DG two analyses were performed. Firstly, we calculate the distance between the DG 333 

and the medoid of the classes. This value was weighted by the mean distance between the 334 

medoid and all the other gauges belonging to the class. This distance indicates how much 335 

different is the DG relative to the other gauges included in the class. Secondly, we analyzed 336 

the proportion of the classification domain assigned to the classes where the distinctive 337 

gauges were included. Low frequency of a class in the observed space (i.e. in the gauge 338 

network) does not imply low frequency in the complete fluvial network. Therefore, we 339 

expected higher frequencies of the class in the SRN than those observed in the gauge network.  340 
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Low frequency of these classes indicated the inability of the procedure to predict properly the 341 

hydrological characteristics represented by the DGs.  342 

2.8 Correspondence between classifications 343 

The spatial agreement between each pair of classifications was evaluated by means of the 344 

Adjusted Rand Index (ARI; Hubert and Arabie, 1985). ARI analyze the relationship of each 345 

pair of gauges and how they differ between two cluster solutions. It ranges between 0 346 

(indicating that agreement between two clustering solutions is not better than chance) and 1 347 

(indicating perfect agreement). Given the large number of segments in the SRN, we randomly 348 

selected a subset of 1000 segments and computed ARI for all pairs of the four classifications. 349 

This process was repeated 10 times to avoid the effect of the variability in the selected data 350 

set 351 

Bespoke functions written in R were use to analyse flow series and calculate hydrological 352 

indices (Snelder and Booker 2013).  353 

 354 

 355 
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3 Results 356 

3.1 PCA and Predictive mapping 357 

The broken stick method selected the first five PCs of the PCA performed on the raw series. 358 

They explained 91% of the variance, accounting the PC1 alone for the 68 % (Table 3). The 359 

OOB misclassification rate of the RF models in the rawClassF ranged from 0.13 for the 2 360 

classes level to 0.77 for the 20-Classes level (Fig. 3). The most important predictor variables 361 

of the RF were catchment area, precipitation, agriculture, pasture and elevation. For the 362 

rawPredF classification, the mean OBB r2 for the RF models of the 5 synthetic indices was 363 

0.4 decreasing from 0.65 for PC1 to 0.18 for the PC5. Predictors varied according to the 364 

modelled PC, but most of them included topography (catchment area, slope), climate 365 

(precipitation) and land cover (agriculture, coniferous and broadleaf forest) variables. 366 

Parallel, the first six PCs of the PCA performed on the normalized flow series were retained. 367 

They explained 83.3 % of the variance (Table 3). The OOB misclassification rate of the RF 368 

models in the norClasF strategy ranged from 0.22 to 0.66 (Fig. 3). The most important 369 

variables differed between classifications comprising different class levels but in general 370 

precipitation, elevation, gradient and broadleaf forest were present in most models. For the 371 

norPredF strategy the mean OBB r2s was 0.31 for the 6 PCs decreasing from 0.63 for PC2 to 372 

0.08 for the PC6. The most important variables were not consistent between RF models 373 

although precipitation, elevation, pasture and broadleaf forest were present in most of them. 374 

3.2 Comparison of classification performance 375 

CS statistics for the classifications based on the raw flow series (rawClasF and rawPredF) 376 

showed similar patterns. CS increased from 2 to 6-Class level and in general, the analysis did 377 

not reveal significant differences (i.e. overlapped among standard error bars) beyond the 6-378 

Class level (Fig. 4A). RawPredF showed generally higher CS values than rawClasF, although 379 

differences were not always significant. 380 

The discrimination power of classifications for each of hydrological indices (ANOVA) got 381 

higher with increasing number of classes (Fig. 5 and Supplementary material, Table S1). 382 
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However, in most cases there were not significant differences between classifications 383 

comprising a number of classes ranging from 6 to 20 classes. Moreover, rawPredF 384 

outperformed rawClasF, especially for those indices representing flow magnitude and 385 

duration (Fig. 5 and Supplementary material, Table S1).  386 

NorPredF presented a progressive increment of CS from 2 to 10-Class level where it reached 387 

the maximum value, suffering then only slight variations (Fig. 4B). NorClasF presented a 388 

more unstable CS pattern than norPredF. Except for specific class levels (2 and 4-Class 389 

levels), norPredF reached higher CS than norClasF. 390 

The discrimination ability of norClasF and norPredF on individual indices showed similar 391 

patterns to those found for classifications based on raw series. An increase in r2 with 392 

increasing number of classes and the presence of an inflexion located between 6 and 10-Class 393 

levels were observed (Fig. 6 and Supplementary material, Table S2). In addition, although 394 

norPredF performed better than norClasF, differences were not significant in several cases.  395 

In general, the classifications based on the raw flow series (rawClasF and rawPredF) provided 396 

slightly higher CS (Fig. 4) and r2 values (Figs. 5 and 6) than those based on normalized series 397 

(norClasF and norPredF).  398 

3.3 Hydrological Interpretation of classifications 399 

According to the hydrological indices with the highest values on each axis in the PCA 400 

performed on the raw flow series, PC1 represented the magnitude of the mean annual and 401 

high flows, while PC2 represented the frequency of high flow events and the magnitude of 402 

low flows. PC3 was also related to the frequency of high flow events while PC4 and PC5 403 

represented the interannual variability of different hydrological characteristics (Table 3). The 404 

hydrological interpretation of the PCs became more difficult as explained variance decreased. 405 

In addition, ANOVA analysis revealed higher r2 values of indices related to flow magnitude 406 

and frequency than those representing other aspects of the flow regime (Fig. 5 and 407 

Supplementary material, Table S1).  408 

The PCA performed on the normalized flow series showed that PC1 represented the 409 

variability of the annual mean flow and the magnitude and duration of extreme low flows and 410 
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PC2 represented the variability of the magnitude and duration of high flow events. PC3 to 411 

PC6 are mainly related with indices representing flow magnitude in different months. Thus, 412 

they represented the shape and variability of the hydrograph across the year. In regard to the 413 

ANOVA, the highest r2 values were obtained for the indices representing mean monthly 414 

flows. The maxima reached by the indices representing mean and duration of extreme flows 415 

was 0,3 (Fig. 6  and Supplementary material, Table S2). In addition, both norClasF and 416 

norPredF showed high discrimination ability on indices representing the frequency of high 417 

flow events, despite these indices not identified as important in any PCs.  418 

3.4 Analysis of distinctive gauges 419 

Three of the four DGs selected from the raw flow series were situated in the Ebro catchment 420 

and one in the Cantabric region. The distance between each distinctive gauge and its 421 

respective class medoid in the rawClasF classifications was lower than the distance in the 422 

rawPredF classification more than two thirds of the times. However, the relative differences 423 

were generally below 20 % (Table 4). In addition, for the rawClasF it was observed that the 424 

proportion of the classification domain assigned to the classes in which the distinctive gauges 425 

were included presented very low frequencies. This was especially visible beyond the 6-Class 426 

level where this proportion was below 1 % for the four distinctive gauges (Fig. 7A). 427 

Regarding the rawPredF the proportions of the classes containing the distinctive gauges were 428 

higher than those for the rawClasF (Fig. 7B).  429 

The classifications based on the normalized flow series presented two distinctive gauges 430 

situated in the Ebro catchment and the other two in two Catalan catchments. NorPredF 431 

showed smaller distances between the distinctive gauges and their respective class medoids 432 

than norClasF 95 % of the times. In addition, more than one half of the times differences were 433 

over 40 % (Table 4). The comparison of the frequency of the classes containing the distinctive 434 

gauges did not revealed important differences between norClasF and norPredF (Fig. 7C and 435 

7D). 436 
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3.5 Correspondence between classifications 437 

The ARIs for each pair of classifications were in the range 0.12-0.4 for the 6-Class level and 438 

in the range 0.14-0.34 for the 11, 16-Class level and the mean of all classification levels 439 

(Table 5). The highest ARI was obtained between rawPredF and norPredF (≥ 0.4). Contrary 440 

rawClasF and norClasF showed the lowest correspondence (≤ 0.15). 441 
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4 Discussion  442 

As expected the different data specification and classification procedures analysed in this 443 

study exerted a significant influence in the classifications outcomes. The normalization of 444 

flow data generated hydrological classifications that were not completely subjected to the 445 

flow magnitude and the size of the river as if data were not normalised. Consequently, 446 

classifications based on normalized series were more difficult to interpret and predict. In 447 

addition, classifications based on PredF outperformed those obtained with ClasF and 448 

presented a greater ability than ClasF to deal with the underrepresented parts of the 449 

hydrological space. 450 

4.1 Comparison of classification performance 451 

Similar classification performance measured through CS and ANOVA was observed in 452 

relation to the results obtained by Snelder and Booker (2013) in New Zealand rivers. The 453 

specific classification characteristics depend upon the selected gauged network and the 454 

hydrological behaviour of the rivers in the target study zone. However, the similarity of the 455 

results with those obtained by Snelder and Booker (2013) highlights the possibility to discern 456 

more clearly the benefits and drawbacks of the different classification strategies and data 457 

specification.   458 

Our analysis demonstrated that the PredF performed better than ClasF and significant 459 

differences in the ability to discriminate hydrological characters were found for several class 460 

levels. The higher performance of PredF classifications is supported by the conceptual basis 461 

of this approach. ClasF imposes sharp barriers to the observed hydrological space, i.e. the 462 

gauged network, and not over the whole hydrologic space of the fluvial network. Then, the 463 

prediction step enforces congruence of all the river segments of the SRN with those 464 

previously created classes. However, the real extent to which such discrete groupings exist is 465 

uncertain (Kennard et al., 2010). In contrast, the aim of PredF is to account for the whole 466 

hydrological variability in the SRN before conducting the classification. This process 467 

generates a more complete distribution of the hydrologic variables which is in accordance 468 

with the actual hydrologic of the SRN, avoiding the bias associated to gauge location. 469 
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Moreover, PredF does not assume any interactions between the various dependent variables 470 

for each RF, which is true as the PCA created orthogonal and independent variables.  471 

In general, the specification of the initial hydrological data has also significant consequences 472 

in the classification performance. Classifications based on raw flow series had higher 473 

discrimination ability for individual indices than those based on normalized flow series (Figs. 474 

5 and 6). As discussed below, classifications based on raw series discriminated rivers based 475 

almost exclusively on flow magnitude, which greatly depends on river size. In contrast, 476 

classifications based on normalized flow series considered a greater range of hydrological 477 

aspects. Obviously, the variability of river size shows a clear pattern within river networks 478 

and thus, it is a straightforward approach to segregate river reaches. In contrast, the 479 

consideration of a higher spectrum of hydrologic aspects hampered the creation of so evident 480 

classes and thus classifications achieved lower discrimination ability. 481 

4.2 Hydrological interpretation of classifications 482 

To our knowledge this is the first study that has compared the consequences of classifying 483 

river networks attending to the initial data specification: the use of raw or normalized flow 484 

series. The PCA performed on the raw series showed that the first PC explained more than 485 

two thirds of the hydrological variability in the study region. This PC was mainly related to 486 

the magnitude of mean annual and high flows. Thereby, the magnitude of flow was the major 487 

determinant to segregate rivers, as expected. In addition, indices accounting with the 488 

frequency of high flow events were also represented in other PCs and therefore, this flow 489 

attribute also showed a relatively important contribution in the classifications (Table 6). 490 

Moreover, the ANOVA analysis also showed that all the indices related to flow magnitude, 491 

even those not included as the most important ones in any PC presented important differences 492 

between classes. This is not surprising given the high correlation between all the flow 493 

magnitude indices. However, although these classifications segregated river reaches according 494 

to flow magnitude, they were unable to incorporate the severity droughts, i.e. the magnitude 495 

that these episodes represent in relation to the mean flow condition. The pattern of droughts in 496 

the study area is an essential element that should be considered in the classifications given the 497 

Mediterranean character of the study zone. The fact that the high differences in flow 498 
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magnitude between large and small rives have accounted with the largest percentage of 499 

variability, have probably masked the effects of low flow attributes. Contrary to our results, 500 

Belmar et al (2011) and Chinnayakanahalli et al (2011) working in areas influenced by the 501 

Mediterranean climate influence found that several hydrologic characteristics related to 502 

drought were considered in the synthetic hydrologic indices, even if the series were not 503 

normalized by the mean annual flow. We expected that the characteristic intermittency of 504 

many Mediterranean streams had been represented in the synthetic indices. However, the lack 505 

of this attribute in our classifications may be attributed to the scarcity of gauges situated in 506 

intermittent streams.   507 

On the other hand, the interpretation of the classifications based on normalized flow series 508 

differed completely to those derived from raw flow series (Table 6). The main differences can 509 

be summarized in two essential aspects. First, the proportion of variance explained by the 510 

different PCs was more evenly distributed in the normalized than in the raw flow series. 511 

Therefore these classifications were not uniquely subjected to just one hydrologic attribute. 512 

Second, it was observed that the indices with the highest loading in each PC and hence, their 513 

interpretation, varied considerably depending on the data processing and specification (Table 514 

6). Magnitude and duration of low flow conditions were represented in PC1. Hence, the 515 

Mediterranean character of the rivers was one of the main attributes for classification. In 516 

addition, PC3 to PC6 were related to the magnitude of flows in different months and periods 517 

through the year, therefore classification accounted with the shape of the hydrograph as it has 518 

been observed in other works (Bejarano et al., 2010; Solans and Poff, 2013; Snelder et al., 519 

2009). Contrary to expected, other indices not related to flow magnitude, such as the 520 

frequency of high flow events were not included as important indices in any PC. Nonetheless, 521 

the ANOVA analysis showed the high ability of classifications based on normalized flow data 522 

to discriminate the indices representing frequency (Fig. 6). Therefore it was assured that such 523 

an important hydrological aspect played an important role to define the classification patterns. 524 

Finally, it must be pointed out that any of the classifications, whether they were based on raw 525 

or normalized data, failed to represent some other important hydrologic aspects such as timing 526 

of extreme flow events and rate of change (Table 6). These attributes presented a modest 527 
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spatial variability within the study area which ultimately resulted in a small contribution to the 528 

hydrologic classifications.   529 

4.3 Analysis of distinctive gauges 530 

The analyses demonstrated that the PredF approach presented greater capability than ClasF to 531 

deal with the underrepresented parts of the hydrological space in the data set. If data were not 532 

normalized, rawClasF approach generated classes that were comprised by the distinctive 533 

gauge plus a very limited number of gauges, in most of the cases less than four. In these 534 

cases, the distance between the DG and the medoid of the class was similar to mean distance 535 

calculated for the other gauges included in the class. Therefore, it can be assumed that these 536 

classes were relatively homogeneous in regard to its hydrologic characteristics. However, 537 

when classes where predicted to the SRN, their frequencies were normally lower than 1 %. 538 

This means that the hydrological characteristics accounted in these classes where almost lost 539 

after the prediction step in of the rawClasF. Moreover, their frequencies were probably well 540 

below the actual frequencies of those river classes.  541 

On the other hand, the normalization of the flow series smoothed the differences between 542 

gauges due to the reduction of the influence of low magnitude, which implied that DGs in the 543 

norClasF classifications were not isolated into such exclusive classes as those found in 544 

rawClasF. This greatly reduced the problem associated with the low frequency of these 545 

classes when they were predicted to the SRN. However, the distance between the DGs and the 546 

medoid was normally over two times the mean distance of the other gauges included in the 547 

class. This indicated that DGs were grouped to other gauges that are not hydrologically 548 

similar. Hence, it is assumed that the hydrologic characteristics accounted by the DG were not 549 

represented at all in any of the classes.  550 

By contrast, when the PredF approach was applied, these rare hydrologic characteristics are 551 

predicted to a larger number of segments before classifying the SRN. Consequently, the 552 

proportion of segments accounting with these rare characteristics increased. In the subsequent 553 

step of classification, these segments accounting with the rare hydrological characteristics 554 

were grouped in specific classes and hence, the frequencies of these classes were more 555 

adjusted to the actual distribution of river types in the study area. 556 
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4.4 Correspondence between classifications 557 

The ARI analysis has shown that the correspondence between rawClasF and rawPredF and 558 

between norClasF and norPredF presented a similar pattern. The ARI values in these two 559 

cases were around 0.2 which implies important differences in the spatial distribution of 560 

classes. This indicated that the strategy used to predict class membership to the SRN (ClasF 561 

vs. PredF) is a critical specification in the classification procedure. In contrast to the expected 562 

outcome, ARI analyses also showed that classifications obtained through the PredF approach, 563 

regardless of the initial data processing (i.e. rawPredF or norPredF), presented the highest 564 

spatial correspondence. This result highlights that the prediction of the hydrological 565 

characteristics to the SRN before classifying is probably generating classifications more 566 

adjusted to the actual spatial distribution of river types, even if classifications presented 567 

different interpretation.  568 

5 Conclusion  569 

In conclusion, this study shows that the methodological specifications used throughout the 570 

classification process greatly influences classification outcomes and performance. Although 571 

the comparison between ClasF and PredF did not reveal significant differences for several 572 

classification levels, the classifications based on PredF produced, in general, higher 573 

classification performance, greater ability to deal with the presence of distinctive gauges in 574 

the data set and a spatial distribution of classes more adjusted to the actual river types. . PredF 575 

produced classes that presented higher intra-class homogeneity and higher inter-class 576 

heterogeneity than ClasF. These features are very valuable when applying these 577 

classifications with different objectives. For instance, classifications developed trough PredF 578 

represents the best strategy to further detect not only the hydrological alteration caused by 579 

human perturbations but the ecological impact associated to this alteration. Given all these 580 

strengths, we recommend the application of the PredF strategy to develop hydrological 581 

classifications at the regional scale.  Finally, the specification of flow data influenced the 582 

interpretation of the hydrological classes. The normalization of flow data removed the effect 583 

of flow magnitude and generated classifications in which a larger spectrum of hydrologic 584 

characteristics was considered. This widens the potential range of management and ecological 585 

applications of the classification as classifications would not be subjected to a unique 586 
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hydrological attribute. However, the use of raw or normalized data is subject to the final 587 

objective and particular application of the classification. In all the cases, the selection of the 588 

most suitable number of classes is difficult to be accomplished from completely objective 589 

criteria, as many times, classifications with different level of detail presented similar 590 

statistical performance. 591 

 592 
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APPENDIX A: Hydrological indices used in the classification 593 

Table A1: Hydrological indices used in the classification. Overall mean and standard 594 

deviation (referred in the manuscript by the prefix sd) of annual values for each index except 595 

for I1, I2, lca, lcv, ikur, X5, X25, X75 and X95. I1 was not calculated for Normalized flow 596 

series. 597 

Group Name Description 

1) Magnitude of 

annual and 

monthly flows 

l1 

Linear moment that represents the 

mean of the calculated flow duration 

curve 

 

l2 

Linear moment that represents the 

variance of the calculated flow 

duration curve 

 

lca 

Linear moment that represents the 

skewness of the calculated flow 

duration curve 

 

lcv 

Linear moment that represents the 

coefficient of variation of the 

calculated flow duration curve 

 

ikur 

Linear moment that represents the 

kurtosis of the calculated flow duration 

curve 

 

M1-M12  

Mean monthly flow. Standard 

deviation for each index was 

calculated. 

 MxM1-MxM12 Maximum monthly flow  
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 MnM1- MnM12 Minimum monthly flow  

2) Magnitude 

and duration of 

annual extremes 

1LF 

Magnitude of minimum annual flow of 

1 day duration. sd was also calculated 

 
7LF 

Magnitude of minimum annual flow of 

7 day duration.  

 
30LF 

Magnitude of minimum annual flow of 

30 day duration.  

 
90LF 

Magnitude of minimum annual flow of 

90 day duration.  

 
X75 

Mean magnitude of flow exceeded 

75% of the time 

 
X95 

Mean magnitude of flow exceeded 

95% of the time 

 
1HF 

Magnitude of maxima annual flow of 1 

day duration 

 
7HF 

Magnitude of maxima annual flow of 7 

day duration 

 
30HF 

Magnitude of maxima annual flow of 

30 day duration 

 
90HF 

Magnitude of maxima annual flow of 

90 day duration 

 X25 Magnitude of the flows exceeded 25 % 
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of the time. High flow pulses 

 
X5 

Magnitude of the flows exceeded 5 % 

of the time. 

 ZFD Number of zero flow days 

 
BFI 

Seven-day minimum flow divided by 

mean annual daily flows 

3) Timing of 

extreme flow 

events 

JMin Julian day of minimum flow 

 JMax Julian day of annual maximum flow 

 Pred Predictability (sensu Colwell, 1974)  

4) Frequency 

and duration of 

high pulses 

FRE1 

Number of high flow events per year 

using an upper threshold of 1 time 

median flow over all years 

 

FRE3 

Number of high flow events per year 

using an upper threshold of 3 time 

median flow over all years 

 

FRE7 

Number of high flow events per year 

using an upper threshold of 7 time 

median flow over all years 

 
nPHigh 

Number of high pulses within each 

year 

 dPHigh Duration of high pulses within each 
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year 

4) Rate and 

frequency of 

flow changes 

Pos 

Mean of all positive differences 

between days 

 nPos Number of days with increasing flow 

 
Neg 

Mean of all negative differences 

between days 

 nNeg Number of days with decreasing flow 

 Rev Number of hydrologic reversals 

 598 
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Table 1. Number of retained years for flow time-series used in the analysis. 734 

N. of years N. of gauges Frequency Freq. acum. 

>19 52 33.3 33.3 

19 3 1.9 35.3 

18 7 4.5 39.7 

17 6 3.8 43.6 

16 16 10.3 53.8 

15 7 4.5 58.3 

14 8 5.1 63.5 

13 8 5.1 68.6 

12 11 7.1 75.6 

11 9 5.8 81.4 

10 9 5.8 87.2 

9 9 5.8 92.9 

8 11 7.1 100.0 

 735 

 736 
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Table 2. Environmental variables used to predict classes or the synthetic hydrologic indices 737 

onto the ungauged segments of the river network (TG: Topography; CL: Climatic LC: Land 738 

Cover; GL: Geology) 739 

Variable Type Units Description Source 

Precipitation CL Mm Annual catchment precipitation SIMPA 

Precipitation range CL mm Range between maximum and minimum SIMPA 

Evapotranspiration CL Mm Annual catchment evapotranspiration SIMPA 

Catchment area TG Km2 Total catchment area DEM 

Slope TG % Average catchment gradient DEM 

Elevation TG m Average catchment elevation DEM 

Confluence density TG - Number of rivers confluences by DEM 

Drainage density TG - Number of segments divided by the DEM 

Broadleaf forest LC % Surface occupied by broadleaf forest SIOSE 

Coniferous forest LC % Surface occupied by coniferous SIOSE 

Pasture LC % Surface occupied by pasture SIOSE 

Agriculture LC % Surface occupied by agricultural land SIOSE 

Denuded LC % Surface occupied by denuded areas SIOSE 

Urban  LC % Surface occupied by urban areas SIOSE 

Permeability GL - Terrain permeability IGM 

Hardness GL - Rock hardness IGM 

 740 
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Table 3. The 5 hydrologic indices with the highest loadings in each PC and variation 741 

explained by the retained PCs using the raw (above) and the normalized flow series (below). 742 

A minus sign indicates negative relation with the PC. 743 

Axe 

Hydrologic variables with  

the highest values in the PCs 

Variation 

Explained (%) 

PC1 -l1, -X25, -90HF, - 30HF, -M11 68 

PC2 -FRE7, -FRE3, -lcv, BFI, sdBFI 10.6 

PC3 -FRE1, -nPH, -FRE3, dPH, sdZFD 5.9 

PC4 sdnPos, sdnNeg, ikur, lca 3.6 

PC5 -sdnPH, sdJMax, -sdRev, -sdFRE3, -sdJmin 3.5 

PC1 - l2, X75, 90LF, 30LF, 7LF 38.6 

PC2 sd30HF, sd7HF, sd3HF, sd90HF, sdM5   20.4 

PC3 -M10, -sdM10, -MXM10, -FRE1, sdM9  11.6 

PC4 ikur, X25, MnM9, MnM2, MnM11 7.1 

PC5 -M1, M5, sdZFD, -sdM1,  -MxM1,  6.1 

PC6 SdM8, MXM8, sdnPH, -MxM11, -sdM11 4.5 



 

38 

 

Table 4. Euclidean distance between the distinctive gauges (DG) and the medoid of the 744 

classes in which they were included for the 4, 6, 8, 10, 12, 16 and 20-Class levels 745 

classification. Distances were weighted by the mean difference of all the gauges included in 746 

the same class as the DG.  Empty cells indicated that the gauge is the unique gauge in the 747 

class. Bold letters indicate the procedure that showed the lowest distance.  748 

Raw series 

 MG 1 MG 2 MG 3 MG 4

 rawClasF rawPredF rawClasF rawPredF rawClasF rawPredF rawClasF rawPredF

4 2.95 2.92 2.52 2.97 1.30 1.46 1.46 1.65

6 6.45 4.05 2.15 3.07 1.40 1.53 1.67 1.60 

8  4.30 2.06 2.28 1.20 1.60 1.83 1.45 

10  3.64 2.06 2.91 1.20 1.50 1.58 1.51 

12   3.63 3.51 1.35 1.51 1.88 1.70 

16  3.15  2.18 1.05 1.47 1.47 1.71 

20  2.71  2.39 1.05 1.26 1.26 1.66 

Normalized series

 MG 1 MG 2 MG 3 MG 4

 norClasF norPredF norClasF norPredF norClasF norPredF norClasF norPredF

4 3.46 1.67 1.96 1.55 1.85 1.60 1.98 1.69

6 2.16 1.42 1.93 1.50 2.88 1.72 1.96 1.34 

8 2.22 1.69 1.94 1.30 1.87 1.40 1.44 1.39 

10 1.59 1.71 2.10 1.44 1.89 1.46 1.46 1.25 

12 1.66 1.32 2.14 1.33 1.88 1.73 1.45 1.19 

16  1.34 0.94 0.75 1.83 1.22 1.82 1.20 

20  1.45 1 1.50 1.83 0.92 1.82 0.91 
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Table 5. Adjusted Rand Index (ARI) for the 6, 11 and 16-Class level and the mean of all class 749 

levels classifications following the four approaches. 750 

Level Classification Classification 

  rawClasF rawPredF norClasF 

 rawPredF 0.22   

6 norClasF 0.12 0.16  

 norPredF 0.19 0.39 0.19 

 rawPredF 0.23   

11 norClasF 0.14 0.23  

 norPredF 0.19 0.32 0.23 

 rawPredF 0.20   

16 norClasF 0.17 0.17  

 norPredF 0.17 0.34 0.21 

Mean rawPredF 0.22   

of all norClasF 0.16 0.18  

 levels norPredF 0.18 0.32 0.21 

 751 

 752 



 

40 

 

Table 6. Relative representativeness of each flow regime aspect according to the data 753 

processing previous to classification procedure. (–None; *Limited; ** Moderate; *** High) 754 

Flow Aspect  Raw Normalized 

Magnitude of annual flows Mean ***  

Variability * *** 

Magnitude of monthly flows 

(shape of the hydrograph) 

Mean - *** 

Variability - ** 

Magnitude and duration of low flows Mean - *** 

Variability - - 

Magnitude and duration of high flows Mean *** - 

Variability - *** 

Timing of extreme flow events Mean - - 

Variability * - 

Frequency and duration of high pulses Mean ** ** 

Variability - - 

Rate and frequency of flow change Mean - - 

Variability * - 

 755 

 756 

 757 

 758 
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Figure caption 759 

Fig. 1. Map of unregulated gauges (; n=156) in the study area. Black lines divide the 760 

Cantabric, the Ebro and the Catalan catchments. (CS: Cantabric sea; MS: Mediterranean sea). 761 

Fig. 2. Schematic diagram summarising the 4 classifications strategies. 762 

Fig. 3. Out-of-Bag misclassification rate of the random forest models developed for the 2 to 763 

20-Class level classifications using ClasF strategy based on the synthetic indices derived from 764 

the raw (; rawClasF) and the normalized flow series (: norClasF).  765 

Fig. 4. Performance of the classifications based on the Classification Strength statistic A) 766 

classifications based on raw flow series (: rawPredF; : rawClasF); B) classifications 767 

based on normalized series (: norPredF; : norClasF). 768 

Fig. 5. Performance of the classifications derived from the raw flow series based on ANOVA 769 

analysis on individual indices analysis (: rawPredF; : rawClasF). We selected one index 770 

representing each aspect of the natural flow regime to illustrate the results (the values 771 

obtained for the 103 indices are included in Supplementary material, Table S1).  772 

Fig. 6. Performance of the classifications derived from the normalized flow series based on 773 

individual indices analysis(norPredF;  norClasF). We selected one index representing 774 

each aspect of the natural flow regime to illustrate results (the values obtained for the 101 775 

indices are included in Supplementary material, Table S2). 776 

Fig. 7. Frequency (%) of the segments of the classification domain assigned to the classes 777 

where the distinctive gauges were included. (A: rawClasF ;B: rawPredF; C: norClasF; D: 778 

norPredF).  779 
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Figure 1 780 
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Figure 5 791 
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Figure 6 794 
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Figure 7 797 
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