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Abstract

Fractional snow-covered area (SCA) is a key parameter in large-scale hydrological, meteoro-
logical and regional climate models. Since SCA affects albedos and surface energy balance
fluxes, it is especially of interest over mountainous terrain where generally a reduced SCA is
observed in large grid cells. Temporal and spatial snow distributions are, however, difficult to5

measure over complex topography. We therefore present a parameterization of SCA based on
a new subgrid parameterization for the standard deviation of snow depth over complex topog-
raphy. Highly-resolved snow depth data at peak of winter were used from two distinct climatic
regions, in eastern Switzerland and in the Spanish Pyrenees. Topographic scaling parameters are
derived assuming Gaussian slope characteristics. We use computationally cheap terrain param-10

eters, namely the correlation length of subgrid topographic features and the mean squared slope.
A scale dependent analysis was performed by randomly aggregating the alpine catchments in
domain sizes ranging from 50 m to 3 km. For the larger domain sizes, snow depth was predom-
inantly normally distributed. Trends between terrain parameters and standard deviation of snow
depth were similar for both climatic regions, allowing to parameterize the standard deviation of15

snow depth based on terrain parameters. To make the parameterization widely applicable, we
introduced the mean snow depth as a climate indicator. Assuming a normal snow distribution
and spatially homogeneous melt, snow cover depletion curves were derived for a broad range
of coefficients of variations. The most accurate closed form fit resembled an existing SCA pa-
rameterization. By including the subgrid parameterization for the standard deviation of snow20

depth, we extended the SCA parameterization for topographic influences. For all domain sizes
we obtained errors lower than 10% between measured and parameterized SCA.

1 Introduction

At peak of winter, a snow cover resembles a sparkling, smooth blanket. However, it is well
known that the spatial distribution of snow depths underneath is heterogeneous. Complex topog-25

raphy adds extra spatial variability due to spatial patterns of wind (sheltering/exposure), precip-
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itation (e.g. luv/lee), shortwave radiation (shading, sky view, terrain reflections) and longwave
radiation (sky view, terrain emission). Furthermore, in complex topography, snow relocation can
occur due to snow avalanches. To complicate matters, these processes operate at different spatial
scales (cf. Liston, 2004). The result is a patchy snow cover consisting of snow-free and snow-
covered areas. In various scientific and operational applications, knowledge about spatial snow5

depths plays a key role. Hydrologists are interested in predicting the timing of snow melt runoff
as well as the overall amount of snow in a catchment to estimate the water stored, allowing to
forecast available water resources. This is a relevant issue, e.g., in controling the drinking water
supply, in hydropower production planning or in warning of spring-floodings. Climatologists,
studying present and future climates, are interested in the snow coverage in a large-scale model10

grid cell which forms a key parameter in general circulation models (e.g. Roesch et al., 2001).
For instance, from fractional snow-covered areas (SCA), coarse-scale surface albedos can be
derived by weighting snow-free and snow-covered albedos (Liston and Hiemstra, 2011). Since
snow has a high surface albedo, it alters the energy and moisture fluxes on the earth and thus
the surface energy budget (Dingman, 1994). Knowing the actual spatial snow depth distribu-15

tion, especially in mountainous terrain, is therefore a relevant topic in large-scale hydrological,
meteorological and regional climate models. Due to computational constraints, large-scale mod-
els often have to simplify physical processes over snow surfaces and within snow. Frequently,
they lack a subgrid snow distribution representation which is a shortcoming that deteriorates
atmospheric interaction simulations (cf. Liston et al., 1999). In general, the purpose of subgrid20

parameterizations is to account for subgrid scale processes, i.e. unresolved processes, with ana-
lytical approximations in large-scale model systems. The IPCC (2007) considered subgrid snow
distributions as important for simulating observations of seasonal snow cover.

A few studies previously tackled subgrid snow distributions. Liston (2004) improved a re-
gional climate model by performing separate surface energy balance calculations over snow-25

covered and snow-free fractions of each model grid cell. Similar, Ménard et al. (2014) calcu-
lated vertical and horizontal energy fluxes between the atmosphere and snow, snow-free and
vegetation grid cell portions and found a warming feedback through decreases in surface albedo
and increases in sensible heat fluxes to the atmosphere. Liston (2004) computed SCA’s by as-
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suming log-normally distributed snow depth and by introducing a dichotomous key for coef-
ficient of variations for snow depth (CV = standard deviation divided by mean) depending
on topographic variability, air temperature and wind speed. Liston and Hiemstra (2011) intro-
duced a snow cover protruding vegetation fraction for grid cell portions covered by shrubs
or grass. Essery and Pomeroy (2004) validated previously published ad hoc closed forms of5

SCA over non- forested terrain with those derived from a peak of winter log-normal distri-
bution that undergoes homogeneous melt. They found the closest snow cover depletion (SCD)
curves using a functional form proportional to tanh, similar to what was proposed by Yang et al.
(1997) and Roesch et al. (2001). Instead of a roughness length of the surface (Yang et al., 1997)
or the standard deviation of the summer digital surface model (DSM) (Roesch et al., 2001),10

Essery and Pomeroy (2004) included the peak of winter standard deviation of snow depth in the
SCA parameterization. However, peak of winter standard deviations of snow depth are rarely
available.

Numerous studies analyzed catchment snow depth distributions by relating measured snow
depth data to small-scale terrain parameters (for a recent literature overview see Clark et al.,15

2011). Until now, multiple linear regressions were frequently applied to relate mean snow
depth, standard deviation of snow depth or deviations of the mean to small-scale terrain pa-
rameters such as elevation, slope or aspect. Others found linear (Pomeroy et al., 2004) or power
law (Egli and Jonas, 2009; Egli et al., 2011) relationships for the accumulation period, solely
between standard deviation of snow depth and mean snow depth using constant fit parameters.20

While the CV ’s presented by Liston (2004) depend on topographic variability, the relationships
of Pomeroy et al. (2004), Egli and Jonas (2009) and Egli et al. (2011) result in CV ’s which
neglect varying complexities of terrain. Even though previous parameterizations for the snow
distribution parameters provide good descriptions for the investigated regions, they might easily
fail in a different geographic region with other terrain characteristics. Recently, Grünewald et al.25

(2013) analyzed snow depth data from seven mountainous catchments around the world. For
each catchment, their developed multiple regression equations for the relative snow depth (HS
- catchment mean) using subgrid topographic parameters showed good performance. However,
a similar performance for a global model, based on all data sets, could not be achieved and
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Grünewald et al. (2013) argue, that the snow depth and topography are less universally related
than hypothesized by Lehning et al. (2011).

A poorer performance of a subgrid parameterization for the snow distribution can also arise
from the different scales on which the spatial variability of snow depths is created in complex
topography. Recently, Grünewald et al. (2013) and Melvold and Skaugen (2013) therefore in-5

vestigated the influence of scale on aggregated snow depth data. By analyzing snow depth data
in differently sized grid cells up to 800 m for several catchments, Grünewald et al. (2013) found
a lower limit of 400 m for the grid cell size to explain most of the remaining larger scale spatial
variability. By analyzing snow depth data from a large mountainous area in Norway in grid cell
sizes up to 1 km, Melvold and Skaugen (2013) however determined a larger lower limit of 1 km10

to eliminate most of the spatial variability such that the mean adequately represents the average
grid cell snow depth. A reason why a global parameterization might not be derivable at one
certain horizontal resolution is that too many different snow cover shaping processes are still
active, at that scale, making it a challenge to parameterize the subgrid snow distribution.

How can we acquire snow depth data spatially in order to better investigate subgrid snow15

depth distributions? Measuring snow distribution, both temporally and spatially, is a challeng-
ing task in mountainous terrain. To overcome the limitations of point measurements of auto-
mated stations or hand probing, terrestrial laser scanning (TLS) was introduced to continously
measure snow depths in very high resolutions (Prokop et al., 2008; Grünewald et al., 2010).
Airborne laser scanning (ALS) can cover larger regions in shorter time without the limitations20

of TLS (Hopkinson et al., 2004; Deems et al., 2006; Grünewald and Lehning, 2011). ALS mea-
surements are, however, quite expensive and for larger regions they require large investments to
gather snow depths in adequate temporal and spatial resolutions (e.g. NASA’s AirborneSnow Observatory,
2013). Visible satellite remote sensing provides information on snow coverage in various hori-
zontal and temporal resolutions. However, the interpretation of satellite signals is difficult and25

requires complex algorithms extracting clouds (e.g. Hüsler et al., 2012) and the influence of
topography on the signal (e.g. Stöckli, 2013). Small-scale distributed snow surface modeling
(e.g. Lehning et al., 2006) over complex topography could fill the gap of missing temporal and
spatial snow depth data. However, for large regions this is rarely feasible due to computational
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constraints and/or the lack of small-scale input data. Erroneous input data could easily blur mod-
eled distributed snow depths. For now, we therefore prefer spatially and temporally measured
snow depth data to investigate subgrid snow depth distributions.

To our knowledge, a systematic analysis of snow depth data from a large region, aggregated
in grid sizes comparable to those of large-scale models, is still missing. Here, we are aiming for5

grid cell sizes where the subgrid variability is deducible from the underlying characteristic ter-
rain lengths. We assume that the smoothing out of small-scale snow depth heterogeneties origi-
nating from processes such as snow-drift or avalanches reveals the large-scale topographic influ-
ences on precipitation and the shortwave radiation balance. Our hypothesis is motivated by the
observation of Liston et al. (1999), that, in contrast to summer convective-precipitation systems,10

the spatial distribution of winter precipitation is more influenced by topographic distributions.
Furthermore, it is motivated by the results of Grünewald et al. (2013) and Melvold and Skaugen
(2013), which confirmed that the snow depth distribution is dominated by topography at scales
of several hundred meters.

In this study our principal goal is thus to develop a subgrid parameterization of SCA for15

large-scale model grid cell sizes of a few kilometers that account for varying levels of com-
plex, treeless topography. For this, we relate snow depth data to terrain parameters in view
of a subgrid parameterization of the standard deviation of snow depth. We use easy accessi-
ble, computationally cheap terrain parameters calculated from the summer DSM. We employ
highly-resolved spatial snow depth data from alpine terrain of two large areas in the eastern20

Swiss Alps as well as from one in the eastern part of the Spanish Pyrenees, i.e. from two dis-
tinct climates. The snow depth data resolves for all small-scale variability of the snow cover.
We analyze the probability density functions (pdf) of snow depth and the two defining parame-
ters mean and standard deviation, and examine the data both within and between domain sizes
of various dimensions. Finally, we point out the limitations of our subgrid parameterizations25

originating from using measured snow depth data sets.
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2 Data

2.1 Site descriptions

To account for the influence of different climates on the spatial snow distribution, we used
snow depth data from three large, alpine areas in two distant geographical regions. Two alpine
areas, called ’Wannengrat’ and ’Dischma’, are located in eastern Switzerland around Davos5

(Fig. 1a). Wannengrat covers about 30 km2 and Dischma about 120 km2. In the Wannengrat
area, elevations range from 1517 m to 2781 m and in the Dischma area elevations range from
1516 m to 3227 m. The mean slope angle, which was computed from 2 m elevation differences,
is 26◦ for Wannengrat and 28◦ for Dischma.

The third alpine catchment, called ’Val de Núria’, is located in the eastern part of the Spanish10

Pyrenees (Fig. 1b) showing a dryer snow climate. Val de Núria covers about 28 km2 of treeless
mountainous terrain (Moreno Banos et al., 2009). Elevations range from 1910 m to 2910 m for
Val de Núria. The mean slope angle, which was computed from 1 m elevation differences, is
24◦.

2.2 Snow depth data15

2.2.1 Digital photogrammetry

For the Wannengrat and Dischma sites, spatial snow depth data were obtained using an opto-
electronic line scanner (Sensor ADS80, Leica Geosystems) mounted on a plane. Photogrammet-
ric image correlation techniques were applied for summer and winter aerial imagery to calculate
digital surface models (DSM) in 2 m horizontal resolution (Bühler et al., 2014). Spatial snow20

depths were obtained by subtracting the summer from the winter DSM. The winter DSM of
the Wannengrat area (cf. Fig 1a) shows a root-mean-square-error RMSE of approximately 33
cm with snow depths from simultaneously conducted TLS measurements and a RMSE of ap-
proximately 19 cm with snow depths from snow probing in plots with 5 by 5 probes per plot
(Bühler et al., 2014). The winter DSM of the Dischma area (cf. Fig. 1a) shows a larger RMSE of25
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approximately 43 cm with snow depths obtained from Ground penetrating radar measurements
at the valley bottom. The snow depth data sets were acquired at approximate peak of winter on
20 March 2012.

The mean snow depth at Wannengrat was 1.72 m and 2.07 m at the Dischma area.

2.2.2 Airborne laser scanning (ALS)5

For the Val de Núria site, point clouds of snow depth values were obtained by ALS measure-
ments (Moreno Banos et al., 2009). Based on this data, Grünewald et al. (2013) calculated sum-
mer and winter DSM in 1 m horizontal resolution, which they then subtracted to obtain the
spatial snow depth data. The mean accuracy in vertical direction is 30 cm which is similar to the
ADS80 data. The ALS campaign took place at approximate peak of winter on 9 March 2009.10

The mean snow depth at Val de Núria was 1.07 m.

2.2.3 Preprocessing

For Wannengrat and Dischma, we neglected all measurements that coincided with trees, build-
ings, rivers and glaciers. Negative snow depth values were set to zero. In total we obtained
about 6 106 usable snow depth measurements for Wannengrat and about 22 106 for Dischma.15

The dataset of Val de Núria was preprocessed as described in Grünewald et al. (2013) result-
ing in about 28 106 usable snow depth measurements. Figure 2 shows the probability density
functions (pdf) of all measured snow depths for the three areas.

3 Method

3.1 Aggregating snow depth data20

Analyzing a sufficiently large number of differently sized domains from a large mountainous
region allows to study snow distributions at different scales. By randomly selecting different
grid origins, we aggregated the snow depth data sets in different squared domain sizes L. Note

8
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that L can be seen as a coarse grid cell size ∆x in a large-scale model (cf. Fig. 1a). We chose
domain sizes of L= 50 m, 100 m, 200 m, 500 m, 750 m, 1000 m, 1250 m, 1500 m, 1750 m,
2000 m, 2500 m and 3000 m covering the range of typical grid cell sizes from hydrologic mea-
surement campaigns to the smallest grid cell sizes in meteorological models. For each domain
size we used 50 realizations allowing for overlap between domain sizes L (cf. Fig. 1a). In total5

we generated ensembles of 600 snow depth grids for each Swiss site. In Val de Núria we could
not aggregate snow depth data in domain sizes L larger than 1500 m, resulting in 400 snow
depth grids at this site.

For building domain averages, all data points were spatially averaged in a domain size L.
However, we only used domain sizes L with at least 75 % valid snow depth measurements10

(including zero values). For larger domain sizes L ≥ 1 km in Val de Núria we had to allow for
a maximum of 40 % of missing values due to the irregular perimeter of that catchment (cf. Fig
1b). In the following, we omit the normally used overbars for domain-averaged variables.

3.2 Terrain characteristics

To relate the snow depth distribution parameters to topographic features, we computed several15

terrain parameters from the summer DSMs. For selecting terrain parameters, we exploited the
fact that real topographic slope characteristics are reasonably well described by Gaussian statis-
tics (Helbig and Löwe, 2012). Gaussian random fields with a Gaussian covariance such that
topography is reduced to only two underlying large length scales in a model domain of size
L, were previously used to systematically investigate radiative transfer in complex terrain via20

the radiosity approach (Helbig et al., 2009; Helbig and Löwe, 2012; Löwe and Helbig, 2012) as
well as to develop a parameterization for domain-averaged sky view factors in complex terrain
(Helbig and Löwe, 2014). Assuming a Gaussian covariance for the summer topography, the
two underlying characteristic length scales are: a valley-to-peak elevation difference σ (typical
height of topographic features), which is the standard deviation of the elevation model, and a25

lateral extension ξ (typical width of topographic features), which is the correlation length of the
elevation model. We use a terrain parameter µ=

√
2σ/ξ, which is related to the mean squared

slope and which can be derived from first partial derivatives ∂xz and ∂yz (slope components) in
9
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orthogonal directions:

µ =
{
[(∂xz)2+(∂yz)2]/2

}1/2
, (1)

using 2µ2 = (∂xz)2+(∂yz)2 = tan2ζ = 4(σ/ξ)2 as outlined by Löwe and Helbig (2012). We
also use the L/ξ-ratio where a large ratio indicates that more topographic features are included
in a domain size L. Note that the typical width of topographic features ξ in a domain size L can5

be obtained via ξ =
√
2σz/µ, with the standard deviation of the summer DSM σz. Helbig et al.

(2009) showed that to minimize influences of (subgrid) grid size ∆x and domain size L on
domain-averaged shortwave terrain reflected radiation, the condition ∆x≪ ξ ≪ L must be ful-
filled. The relevance of including enough terrain in a domain, here LxL, was confirmed by
Helbig and Löwe (2014) where errors of a subgrid parameterization for the sky view factor10

over complex topography decreased with increasing L/ξ-ratio. We believe that in complex ter-
rain for domain-averaged snow depths, the above condition should always be met in order to
accurately capture the predominant subgrid processes shaping the snow distribution at the cor-
responding scale. Consequently, we need to detrend the summer DSM’s in order to obtain the
correct characteristic length scales for the corresponding domain size L. Linearly detrending15

reveals the dominant processes that shape the scale dependent characteristic snow depth dis-
tribution by shifting the scaling parameters. For small domain sizes L this leads to smaller
correlation lengths ξ and thus to larger L/ξ-ratios.

3.3 Parameterizing spatial variability of snow depth

In order to specify the spatial variability of snow depth over mountainous, treeless topogra-20

phy for large-scale grid cells, we first need to define the probability density function (pdf) of
snow depths in a domain size L. Commonly applied snow depth distributions at peak of win-
ter range from log-normal for complete snow cover (Donald et al., 1995; Pomeroy et al., 1998;
DeBeer and Pomeroy, 2009) to gamma (Skaugen, 2007; Egli et al., 2012) to normal in forests
(Marchand and Killingtveit, 2005). Second, we need to scale the defining parameters mean and25

standard deviation of the snow depth distribution, HS and σHS, respectively, with the underlying
10
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subgrid terrain characteristics. Previously published linear (Pomeroy et al., 2004) or power law
(Egli and Jonas, 2009) relationships, solely between σHS and HS, lead to snow depth coeffi-
cient of variations CV which do not depend on varying topography. Yet, we computed a mean
CV for L≥ 1 km of 0.63 for the Wannengrat and 0.48 for the Dischma region. The CV for the
catchment in the eastern Spanish Pyrenees for L≥ 1 km is 1.04, i.e. considerably larger than for5

the two large areas in the eastern Swiss Alps. Deriving the CV ’s from the power law relation-
ship (via σHS = HS0.84) results in overall larger but similar CV values among the three regions:
0.91 for Wannengrat, 0.89 for Dischma and 1.01 for Val de Núria. The CV of the eastern Swiss
Alps compares well to the CV categories of the dichotomous key in that geographic region of
0.5 to 0.7, which was based on topographic variability, air temperature and wind speed (Liston,10

2004). However, for the area in the eastern Spanish Pyrenees the CV of the dichotomous key
of Liston (2004) is about 0.06, thus completely different to our 1.04.

Given that we use snow depth data sets from two distinct climate regions, we can focus on
the development of a subgrid parameterization of the standard deviation of snow depth σHS

which is not constrained to one specific geographic area but is more widely applicable. For this,15

we employ the mean snow depth HS as a climate indicator variable for each domain size L.
However, mean HS is generally not easily measured. We therefore investigate if mean snow
depth HS can be approximated by averaged flat field measurements HSflat. A flat field was
defined as a 22x22 m2 (for Wannengrat and Dischma) or a 11x11 m2 (for Val de Núria) area
where each slope angle was lower or equal to 10◦. We computed the average flat field snow20

depth from all snow depth values within a flat field. To obtain an average flat field snow depth
HSflat for each domain size L, we averaged all mean snow depths of flat fields within each L.
Note that in the following we will use the superscript ’m’ for measured, mean quantities when
opposed to parameterized quantities.

11
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4 Results

4.1 Snow depth distribution

We found mostly unimodal distributions of snow depths in all domain sizes L ranging from 50
m to 3 km in all three areas (Fig. 3). We tested three, previously published theoretical pdf’s on
our ensembles of gridded snow depth data: normal, log-normal and gamma density functions.5

While for small domain sizes a gamma distribution best described the measured snow depth
distributions, for larger domain sizes (L≥ 500 m) a normal distribution worked as well or
better (Fig. 4). The mean RMSE between theoretical pdf’s and measured snow depths decreased
with increasing domain size L for all three areas. A comparison of computed quantiles for the
theoretical and measured snow depth distribution also resulted in decreasing mean RMSE with10

increasing L. Note that our domain sizes do include subgrid snow-free values.

4.2 Scaling of snow depth data grids

We analyzed our ensemble of snow depth data grids to relate mean and standard deviation
of each snow depth distribution, HS and σHS, to terrain parameters. An interesting result is
that the mean of σHS increased with increasing L. For domain sizes of L≥1 km the over-15

all changes in the mean of σHS became small (Fig. 5). Similar to Grünewald et al. (2013)
and Melvold and Skaugen (2013) we found that overall, with larger domain size L, the scat-
ter in standard deviation of snow depth σHS decreased (Fig. 5). However, in comparison to
Grünewald et al. (2013) and to Melvold and Skaugen (2013), we also included L > 1 km and
found that for L ≥1 km the scatter in σHS still somewhat decreased. Note that we obtained20

similar trends and magnitudes of σHS as function of domain size L for both climates, which
allowed us to pool the data of all three areas. Furthermore, similar trends in σHS were found
with terrain parameters in all three areas, suggesting that a parameterization can be developed
which can be applied under a broad range of topographic characteristics. For example, Fig. 6
shows the standard deviation of snow depth σHS of the three areas as function of the standard25

deviation of the summer DSM, σz. In all areas σHS increased similarly with increasing σz and

12
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with increasing domain size L. Furthermore, the scatter or the standard deviation of σHS among
the same domain sizes L decreased with increasing L and σH. A correlation analysis between
terrain characteristics and standard deviation of snow depth σHS revealed significant pearson
correlation values ranging from 0.22 to 0.65 for pooled snow depth data from all catchments
(Table 1). The overall larger scatter in snow depths for all L in the Dischma catchment (cf. Fig.5

5 and 6) resulted in lower correlation values r when looking at the correlations coefficients of
each area separately (cf. Table 1).

We found weaker correlations between mean snow depth HS and terrain parameters, than
between σHS and terrain parameters (Table 1). For the correlation between terrain parameters
and pooled snow depth data from all catchments, the significance was marginally lower than10

for σHS. However, the correlation analyses between HS and terrain parameters conducted for
each catchment separately often showed statistically insignificant correlations, i.e. p-values ≥
0.05 (Table 1). Yet, we observed an approximately linear relationship between HS and mean
flat field snow depths HSflat when we pooled snow depth data of all areas, especially for domain
sizes larger 1500 m (Fig. 7). The overall deviations between HS and HSflat decreased with15

increasing domain size L. For the overall relationship of HS and HSflat we obtained a pearson
correlation coefficient r of 0.86, a squared correlation coefficient R2 of 0.65, a RMSE of 36.7
cm, a normalized root-mean-square-error NRMSE of 5.4 % and a mean-squared-error MSE of
13.4 cm.

4.3 Parameterization for the standard deviation of snow depth20

In order to develop a parameterization for σHS, we pooled the snow depth data of all three areas.
We derived the following subgrid parameterization for the standard deviation of snow depth σHS

over mountainous terrain from snow depth data aggregated in domain sizes ranging from L=
50 m to 3 km:

σHS(µ,L/ξ,HS) = HSaµb exp
[
−(ξ/L)2

]
, (2)25

with a= 0.549 and b= 0.309 and HS, ξ and L in m. When fitting for each area separately, the
parameters changed slightly. The standard deviation of snow depth σHS in Eq. (2) has three scal-

13
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ing parameters: a terrain parameter µ (Eq. (1)), related to the mean squared slope in each domain
size L, the mean snow depth HS and the L/ξ-ratio, roughly describing how many subgrid topo-
graphic features are in a domain size L. The functional form of our subgrid parameterization was
motivated by the result that we consistently obtained the largest correlation coefficients for σHS

with the terrain parameter µ (cf. Table (1)). The third scaling parameter, the L/ξ-ratio, accounts5

for the uncertainty that in fixed, finite domain sizes L with varying correlation lengths of topo-
graphic features ξ the condition L/ξ ≫ 1 is not always fulfilled and corrections are required.
Naturally, the correction factor decreases with increasing L/ξ-ratio. We chose a Gaussian fac-
tor e−(ξ/L)2 based on our result that in large-scale grid sizes the snow depth distribution can be
described by a Gaussian distribution. Assuming that topography is the major driver for the snow10

distribution, the Gaussian factor is also a consequence of previously found Gaussian slope statis-
tics for real topographies (Helbig and Löwe, 2012). Mean snow depth HS has to be included in
a parameterization of σHS to account for varying surface climates. We performed the nonlinear
regression analysis to optimize the parameters in Eq. (2) by robust M-estimators using iterated
reweighted least squares (see R v2.15.2 statistical programming language (R Core Team, 2012)15

and its robustbase v0.9-7 package (Rousseeuw et al., 2012)). Our subgrid parameterization, as
in Eq. (2), predicts the observed σHS well (cf. Fig. 8a). The performance of the parameteriza-
tion improves with increasing domain sizes L. Our subgrid parameterization for the standard
deviation of snow depth σHS is statistically significant (pearson r = 0.70, p-value< 0.001, R2

of 0.45, RMSE of 22.9 cm, NRMSE of 7.6 % and MSE of 5.2 cm). The performance of pa-20

rameterized σHS (Eq. (2)) also improved compared to previously published parameterizations
of σHS, which did not explicitely account for subgrid topography (Fig. 8b and c). Note, that the
subgrid parameterization for σHS was developed for peak of winter snow depth data.

4.4 Parameterization of fractional snow-covered area

Snow-covered area is an important parameter in the energy balance of large-scale models, e.g. to25

weight energy flux components and surface albedos for snow-covered and snow-free fractions.
Fractional snow-covered area f in a large-scale grid cell is however reduced due to subgrid
topographic effects on the snow depth distribution. Here, we showed that the standard deviation
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of snow depth σHS at peak of winter over complex topography scales with the underlying terrain
characteristics combining previously published observations. We therefore suggest to include
σHS, as in Eq. (2), in a closed form parameterization of the SCA f . When deriving a functional
form for f , Essery and Pomeroy (2004) concentrated on homogeneous surface units where the
peak of winter snow depth distribution could be described by a log-normal distribution. We are5

focussing on large-scale grid cell sizes over complex topography where we employ our result
that the simpler normal distribution describes the snow depth distribution equally well or better
(cf. Fig. 4). We start the derivation from a normal distribution at peak of winter over alpine
terrain (including snow-free sub pixels):

p(HS) =
1√

2πσHS0

exp

[
−1

2

(
HS−HS0

σHS0

)2
]
, (3)

10

with σHS0 as the standard deviation of snow depth and HS0 as the mean snow depth at peak of
winter, both indicated here with the subscript ’0’. The SCA f is obtained by assuming a ho-
mogeneous melt amount M and by integrating over the peak of winter snow depth distribution
from M to ∞:

f =
1

2

[
1− erf

(
M −HS0√

2σHS0

)]
. (4)

15

The mean snow depth HS is obtained from

HS =

∞∫
M

(HS−M)p(HS)dHS =

∞∫
M

HSp(HS)dHS− fM , (5)

leading to

HS
HS0

=
CV√
2π

exp

[
1

2

(
M

σHS0

− 1

CV

)2
]
+ f − M

2HS0
f . (6)
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We followed the procedure of Essery and Pomeroy (2004) to derive a more practical closed form
of f than Eq. (4). For this we also assumed homogeneous melt for our peak of winter normal
snow depth distribution (Eq. (3)). Note that Egli and Jonas (2009) showed that the concept
of spatially uniform melt can even be applied over mountainous terrain when starting from a
measured snow distribution. In contrast to Essery and Pomeroy (2004) we included a larger5

range for coefficients of variations CV to derive a closed form of f . We chose the CV values
of Liston (2004) defining snow distribution categories on the world but added a maximum CV
value of one: 0.06, 0.09, 0.12, 0.17, 0.4, 0.5, 0.6, 0.7, 0.85, 1. Dashed lines in Fig. 9 show the
fitted f(HS) by means of

f(HS) = tanh

(
1.30

HS
σHS0

)
(7)

10

using σHS0 , the standard deviation of snow depth at peak of winter. We obtain the closest fit with
the same functional form as Essery and Pomeroy (2004) who started with a log-normal snow
depth distribution (Fig. 9). Our pre-factor in Eq. (7) varies slightly from the one presented by
Essery and Pomeroy (2004). For our data and the fit parameter we computed a 95 % confidence
interval ranging from 1.27 to 1.35. For the fit in Eq. (7) we obtain a mean RMSE of 0.02, and a15

mean NRMSE of 2.5 % for all CV . Similar to the fit of Essery and Pomeroy (2004) our RMSE’s
increase with increasing CV with the largest RMSE of 0.04 for a CV = 1.

We extend the snow-covered area f(HS) of Eq. (7) to complex topography by employing
standard deviation of snow depth at peak of winter parameterized for complex subgrid topog-
raphy (cf. Eq. (2)). Figure 10a shows that the mean errors between parameterized and observed20

SCA f for all our areas decrease with increasing domain size L. Also, the scatter per L de-
creases with increasing L (cf. errorbars in Fig. 10a). Note that the largest mean errors are still
below 10 %. When using previously derived parameterizations for σHS in parameterized f(HS)
(Eq. (7)) both mean errors and scatter also decrease with increasing L, however, the overall
errors are larger and mean errors do not approach zero for the largest domain sizes L≥ 1750 m25

(Fig. 10b and c).
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5 Discussion and Conclusion

Scaling snow depth distribution parameters is a relevant issue for various applications in large-
scale hydrological, meteorological and regional climate models. In this study, we derived a pa-
rameterization for the fractional snow-covered area (SCA) over complex, treeless topography
for large-scale models with grid cell sizes of a few kilometers. This required developing a sub-5

grid parameterization for the standard deviation of snow depth over mountainous terrain. For the
parameterization we chose easy to derive subgrid terrain parameters and the mean snow depth
as a climate indicator variable. We derived the subgrid parameterization from highly-resolved
snow depth data sets in large areas gathered at peak of winter.

Investigating a spatial distribution entails studying the distribution parameters, mean and10

standard deviation. Furthermore, measured mean and standard deviation of snow depths require
to be analyzed as a function of scale in order to reveal the scale at which the dominant shaping
processes can be reliably parameterized, i.e. when small-scale snow depth variations are not
resolved for anymore. We performed a scale dependent analysis by creating data sets from ran-
domly selecting differently sized squared domain sizes L (equivalent to a coarse grid cell size15

of a large-scale model) ranging from 50 m to 3 km within our three large areas with measured
snow depths. To ensure that local anomalies are eliminated we chose 50 realizations for each
domain size. Evaluating the resultant snow depth distributions, we found more unimodal dis-
tributions, including snow-free values, the larger the domain size (Fig. 3). While for small L a
gamma distribution best described the measured snow depth distributions, for L≥ 500 m, a nor-20

mal distribution showed similar or even better performance (Fig. 4). We therefore conclude that
over alpine terrain, in large-scale grid cells, the snow depth distribution can be approximated by
a simple normal distribution. We also found a strong dependency of the distribution parameter,
the standard deviation of snow depth σHS, as function of coarse grid cell size L for domain sizes
L ≤ 1 km in each of the three data sets separately (Fig. 5). This indicated that there should25

be a lower limit for large-scale grid cell sizes to minimize scatter, which we suggest to be ≥ 1
km, similiar to Melvold and Skaugen (2013). A scale analysis of domain-averaged snow depth
values with domain-averaged terrain parameters revealed similar trends and magnitudes with
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terrain characteristics for each of the three catchments (Fig. 6 and Table 1). Scattering within a
domain size L consequently decreased with increasing L. We therefore concluded that a param-
eterization using terrain parameters can possibly predict the standard deviation of snow depth
at peak of winter. Furthermore, this allowed us to create a pooled data set in order to derive
a subgrid parameterization independently of one geographic region. Note that, despite similar5

trends between the three catchments, the scatter in the standard deviation of snow depth σHS

varied, for which we assume two reasons. First, there was increased overlap of the randomly
picked domains in the smaller catchments of Wannengrat area and Val de Núria (cf. Fig. 1).
Second, an overall larger scatter in the Dischma area data set might stem from a larger flight
height resulting in higher measurement uncertainties but was necessary due to local topographic10

features.
We developed a subgrid parameterization of snow depth distributions based on spatial snow

depth data sets acquired by aerial imagery and photogrammetric image correlation techniques.
Even though measurement errors can reach up to 33 cm (cf. Bühler et al., 2014) compared
to small-scale modelings of spatial snow depths, which require detailed input data and which15

sometimes even rely on parameterizations, errors are clearly defined. Three snow depth data
sets from large, alpine areas were analyzed to develop the subgrid parameterization of snow
depth distributions. Two areas were located in eastern Switzerland and one catchment in the
eastern part of the Spanish Pyrenees showing a somewhat dryer snow climate than the other
areas (Fig. 1). We focussed on developing a subgrid parameterization for the standard deviation20

of snow depth σHS independent of one specific geographic area or winter season. For this, we
introduced the mean snow depth as a climate indicator variable. By analyzing flat field snow
depth measurements, gathered at peak of winter, we found that the mean of all average flat field
snow depth measurements in a domain size L was approximately linearly correlated with the
mean snow depth in the same L (Fig. 7). This was especially true for domain sizes L larger25

than about 1.5 km. It also has the interesting practical advantage that deriving the mean snow
depth for a large domain at peak of winter can be conducted by measuring snow depths on
several flat field sites which are representative for a specific geographic region. Since for large-
scale models covering a wide area, measuring snow depths on a few flat fields within each
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domain size is generally not feasible we suggest that those can be replaced by an automated
flat field measurement, showing good climate representativeness for the corresponding large-
scale domain size L. Though the linear relationship might have to be further verified in other
geographic catchment areas and during other seasons, using measured flat field snow depths
as an easy accessible climate descriptor allows to develop a parameterization for the standard5

deviation of snow depth independently of its geographical region. The three snow depth data
sets were gathered in two different winters, each time at approximate peak of winter (Fig. 2).
Until now we do not have measurements during other seasons and a reevaluation of the subgrid
parameterization for the standard deviation of snow depth σHS (Eq. 2) during other seasons
might be necessary. However, in principle, using the mean snow depth as a climate indicator10

variable, Equation (2) should also capture seasonal differences.
To relate snow depth distributions, measured at peak of winter, to terrain characteristics we

chose Gaussian statistics to approximate slope characteristics of real summer topographies. As-
suming that real topographies can be described by a Gaussian covariance (cf. Helbig and Löwe,
2012) topography is reduced to two underlying characteristic length scales, namely a typical15

height of topographic features σ (standard deviation of the summer DSM σz) and a typical
width of topographic features ξ. From these we computed the L/ξ-ratio indicating how many
topographic features are included in a domain size L as well as a terrain parameter µ, which is
related to the mean squared slope (Eq. 1). Before deriving the terrain parameters we linearly de-
trended the summer DSM to reveal the correct characteristic terrain length associated with the20

shaping process of the snow depth distribution at the corresponding scale. Detrending all sum-
mer DSM’s then resulted in reasonably large L/ξ-ratios ranging from 2.7 to 15 for all domain
sizes L. Without detrending overall smaller L/ξ-ratios prevailed, with the smallest L/ξ-ratio of
1.7 for L= 50 m. However, in grid cells with small ratios relevant shaping processes might not
be accurately resolved for, and a subgrid parameterization could be flawed. Domain-averages25

were built by spatially averaging the data in a domain size.
Overall, our subgrid parameterization for the standard deviation of snow depth σHS (Eq. 2)

describes measured snow distributions in the three different alpine areas very well (Fig. 8a).
As expected, the accuracy of parameterized σHS increased with increasing domain size L (Fig.
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8a). This is partly because at small scales the shaping processes are more diverse (or random)
which are however not smoothed out at larger scales, here for L ≥ 1 km. The parameteriza-
tion in Equation (2) describes the processes dominating at larger scales. On the other hand, the
accuracy of the subgrid parameterization of σHS also increases with increasing L/ξ-ratios, i.e.
the subgrid topographic features and their impact on snow depth distributions are represented5

more accurately. In the following we discuss the three scaling parameters in the subgrid param-
eterization of σHS. First, it includes a terrain parameter, related to the mean squared slope µ
(Eq. 1), describing the influence of topography due to varying incident shortwave radiation and
precipitation. This terrain parameter was motivated by the result that we consistently obtained
the largest correlation coefficients for σHS with µ (cf. Table 1). For now, we assume that pa-10

rameterized σHS approaches zero for mean squared slopes µ of zero. Even though, mean slope
angles of all domains range from 2◦ to 58◦, the lowest domain-averaged slope angles only co-
incide with the smallest domain sizes. Equation (2) can be extended for large-scale grid cells
showing slopes of zero, once the necessary snow depth data become available. As for the sec-
ond scaling parameter, the parameterization includes the L/ξ-ratio, a correction term for finite15

grid sizes which can show a range of correlation lengths of subgrid topographic features ξ (cf.
Helbig and Löwe, 2014) that might or might not be captured by the domain size L. As a con-
sequence of the overall good agreement of the pdf of snow depths with a normal distribution
at larger scales we used a Gaussian factor e−(ξ/L)2 . The Gaussian factor also follows from the
assumption that topography has a large impact on the snow distribution in large-scale grid cell20

sizes and from the previously found Gaussian slope characteristics for slope characteristics of
real topographies (cf. Helbig and Löwe, 2012). The third parameter in the σHS parameterization
includes the mean snow depth which accounts for climate or seasonal differences.

Since the snow depth data sets were only acquired at approximate peak of winter slight hys-
teresis phenomena of the alpine, seasonal snow depth distribution (Egli and Jonas, 2009) were25

introduced (cf. Fig. 8a). With snow depth data gathered at exact peak of winter, constant param-
eters a and b in Eq. (2) might change but overall errors are expected to decrease. Note that we
optimized a and b in Equation (2) with a nonlinear regression analysis. Our parameterization
performed better than previously published parameterizations for σHS, which did not account
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for subgrid topography (Fig. 8b and c). Since the averaged coefficient of variation for snow
depth CV of all domain sizes in our catchments of 0.63 resembles the one for alpine tundra of
0.43 which Pomeroy et al. (2004) used in a linear relationship, this parameterization shows an
overall better performance among the tested parameterizations (Fig. 8).

By employing the new subgrid parameterization for the standard deviation of snow depth5

σHS we developed a parameterization for the fractional snow-covered area (SCA) over complex
mountainous terrain (Eq. 7). For this large-scale model application we re-evaluated a previously
presented functional closed form for homogeneous landscapes (Essery and Pomeroy, 2004).
To obtain a parametric SCA f (Eq. 4) we similarly integrated the snow distribution assuming
uniform melt but started from a normal snow depth distribution (Fig. 4). Fitting the resultant10

parametric f (Eq. 4) we obtained the same functional closed form fit as Essery and Pomeroy
(2004) which is proportional to tanh (Eq. 7). We assume that the slightly differing pre-factor
stems from our broader range for CV stretching from 0.06 to 1 compared to the one used by
Essery and Pomeroy (2004) with CV values from 0.1 to 0.5. We stress that the parameterization
for σHS (Eq. 2) as a function of terrain characteristics coincides well with previously presented15

dependencies of f on terrain parameters such as the roughness length of the surface (Yang et al.,
1997) or the standard deviation of the summer DSM (Roesch et al., 2001). Overall, we found
decreasing errors between parameterized and measured f , for our three areas at peak of winter,
with increasing domain size L with the largest errors being below 10 % (Fig. 10a). When ap-
plying previously derived parameterizations for σHS we also found decreasing errors between20

parameterized and measured f with increasing L. However, we obtained overall larger errors
and errors did not approach zero for the largest domain sizes L≥ 1750 m (Fig. 10b and c).
We emphasize that applying Eq. (7) with parameterized σHS leads to a normalized root-mean-
square-error NRMSE of only 4 % more than when applying measured σm

HS in Eq. (7). Note that
in line with replacing exhausting snow depth measurements in large domain sizes L by parame-25

terized σHS via Eq. (2), we investigated the increase of error in the parameterization for f when
applying averaged flat field snow depths instead of mean snow depth HS. Due to the relatively
good correlation of HS and HSflat (cf. Fig. 7) we argued that in large-scale grid cells, for now,
one can also use HSflat to approximate HS in the f parameterization (Eq. (7)). Applying mea-
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sured HSflat instead of mean snow depth HS, but using measured snow depth distribution σm
HS,

in the snow-covered area parameterization increased the NRMSE only by about 7 %.
We summarize that the dependency of our new subgrid parameterization for σHS on both,

underlying terrain lengths and on the grid cell mean of snow depths, allows to develop a pa-
rameterization for the SCA f over complex topography independent of a specific geographic5

region. We believe that the parameterization for f is also applicable during the accumulation
or melt season, during other winters and in a different geographic region. Once highly-resolved
spatial snow depth data become available at other times than at peak of winter and preferably
also in different snow climates and also maybe from less topographical influenced regions, our
assumption needs to be verified. We note that domain sizes comparable to the lowest grid cell10

sizes of regional climate models (typically 5 km) could not be tested but we assume that the
presented parameterizations are also applicable for larger grid cell sizes (or domain sizes). Our
assumption is based on the functional form of the parameterization for σHS (Eq. 2) including
the underlying characteristic terrain lengths in a domain size L and also on the result that with
larger domain sizes large-scale topographic influences on precipitation and the shortwave radi-15

ation balance are more pronounced and less scatter is observed when correlating snow depth
with terrain parameters. Regarding seasonal data in the same area, persistent snow depth dis-
tributions at peak of winter were previously found (Luce et al., 1999; Schirmer et al., 2011),
confirming our parameterization for σHS and motivating to look at evolving spatial distributions
of snow depth throughout the (melting) season.20
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Figure 1. Maps of (a) measured snow depths at Wannengrat and in the Dischma area in the eastern Swiss
Alps and (b) hillshade at Val de Núria in the eastern part of the Spanish Pyrenees. The black squares
illustrate examples of our randomly selected domain sizes of varying size. The underlying pixelmap
(1:200’0000) in (a) stems from swisstopo ©2008. The picture in (b) is taken from Grünewald et al.
(2013).
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Figure 2. Probability density functions (pdf) of measured snow depths are shown for the three areas.
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Figure 3. One example probability density function (pdf) of measured snow depths HS for each domain
size L (in color) in each area.
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Figure 4. Mean root-mean-square-errors (RMSE) between theoretical probability density functions (pdf)
and measured pdfs as function of domain size L. Errorbars indicate standard deviation of RMSE’s.
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Figure 5. Standard deviation of snow depth σHS as function of domain size L for all three areas. The
squares represent mean σHS.
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Figure 6. Standard deviation of snow depth σHS as a function of detrended valley-to-peak elevation
difference σ (indicated by σz) of the underlying topographic features. Colors indicate corresponding
domain size L.
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Figure 7. Measured mean snow depth HS as function of mean measured flat field HSflat for all three
areas. Colors indicate corresponding domain size L.
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Figure 8. Measured standard deviation of snow depth σm
HS as function of parameterized standard de-

viation of snow depth σHS for all three areas. (a) Parameterized via Eq. (2), (b) parameterized via
Egli and Jonas (2009) and (c) parameterized via Pomeroy et al. (2004). Colors indicate corresponding
domain size L. NRMSE’s are given for each parameterization.
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Figure 9. Snow cover depletion curves derived assuming normally distributed snow depth and homoge-
neous melt via Eq. (4) as function of mean HS normalized with the peak of winter mean snow depth HS0

(indicated by the subscript ’0’) (solid lines). Dashed lines represent parameterized SCA f via Eq. (7).
Coefficient of variations CV vary between 0.06 (first one up left) and 1 (lowest one).
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Figure 10. Error in SCA f between measured fm and parameterized f (Eq. (7)) as function of the
domain size L for all three areas. (a) Parameterized using σHS from Eq. (2), (b) parameterized using σHS

from Egli and Jonas (2009) and (c) parameterized using σHS from Pomeroy et al. (2004). Mean values
are indicated by squares. Errorbars show the standard deviation of the error per L. NRMSE’s are given
for each parameterization.
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Table 1. Pearson correlation coefficients r for mean snow depth HS and standard deviation of snow
depth σHS with terrain parameters for pooled data of all three catchments as well as for each catchment
separately. Gaussian covariance parameters σ (σz) and ξ are obtained as described in Sect. 3.2. For mean
slope µ, see Eq. (1). Values in bold indicate statistically significant correlations (p-values < 0.05).

all regions Wannengrat Dischma Val de Núria

terrain parameter HS σHS HS σHS HS σHS HS σHS

µ 0.20 0.65 0.01 0.72 0.16 0.62 0.09 0.63
σz 0.14 0.38 -0.01 0.59 0.03 0.25 -0.16 0.37
ξ 0.08 0.32 0.01 0.52 -0.03 0.15 -0.17 0.35
L/ξ 0.17 0.22 -0.09 0.37 0.11 0.23 -0.06 -0.19
L 0.17 0.38 -0.01 0.49 0.05 0.25 -0.17 0.35
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