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Abstract

Global seasonal forecasts of meteorological drought using the standardized precipita-
tion index (SPI) are produced using two datasets as initial conditions: the Global Pre-
cipitation Climatology Center (GPCC) and the ECMWF ERA-Interim reanalysis (ERAI);
and two seasonal forecasts of precipitation: the most current ECMWF seasonal fore-
cast system and climatologically based ensemble forecasts. The forecast skill is con-
centrated on verification months where precipitation deficits are likely to have higher
drought impacts and grouped over different regions in the world. Verification of the
forecasts as a function of lead time revealed a reduced impact on skill for: (i) long lead
times using different initial conditions, and (ii) short lead times using different precipita-
tion forecasts. The memory effect of initial conditions was found to be 1 month lead time
for the SPI-3, 3 to 4 months for the SPI-6 and 5 months for the SPI-12. Results show
that dynamical forecasts of precipitation provide added value, a skill similar or better
than climatological forecasts. In some cases, particularly for long SPI time scales, it is
very difficult to improve on the use of climatological forecasts. Our results also support
recent questions whether seasonal forecasting of global drought onset was essentially
a stochastic forecasting problem. Results are presented regionally and globally, and
our results point to several regions in the world where drought onset forecasting is
feasible and skilful.

1 Introduction

Seasonal forecasting is an essential component of an early drought forecasting system
that can provide advance warning and alleviate drought impacts (Pozzi et al., 2013).
The use of seasonal forecasts in such a system is mainly dependent on the actual
predictability of drought conditions, that are dependent on the predictability of precipi-
tation (Gianotti et al., 2013). Dynamical seasonal forecasting has evolved significantly
in the last 20yr, from early studies using simplified models (e.g. Cane et al., 1986)
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to the modern multi-model systems (e.g. Palmer et al., 2004; Kirtman et al., 2013)
which rely on coupled atmosphere-ocean models. With the increased skill of these dy-
namical forecasts, their use has increased, in particular in sectorial applications (e.g.
Pappenberger et al., 2013),such as meteorological droughts (Yuan and Wood, 20183;
Yoon et al., 2012; Mo et al., 2012; Dutra et al., 2013). Seasonal forecasting is not limited
to dynamical models; several statistical techniques have been also developed (Barros
and Bowden, 2008; Mishra and Desai, 2005). In this study, the European Centre for
Medium-Range Weather Forecasts (ECMWF) latest dynamical seasonal forecast sys-
tem is used. Different monitoring datasets are combined to the forecasted fields to
generate global probabilistic meteorological drought seasonal forecasts.

Monitoring of the actual conditions is an essential part of the system, providing ini-
tial condition information (Shukla et al., 2013), and this forecasting system is initialised
with the drought monitoring products which have been widely explained in the com-
panion Part 1 paper. By extending to the global scale what was initially done in Dutra
et al. (2013) in four African basins, this work tries to answer three general questions: (i)
what is the importance of the monitoring in the forecast skill? (ii) what is the added value
of using dynamical seasonal forecasts as compared with climatological forecasts? and
(iii) what is the skill of these forecasts to predict drought onset (in aggregate, global
terms)? The datasets used in this study and the skill metrics are presented in the fol-
lowing sections followed by the results. In the last section, the main conclusions are
presented.
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2 Methods
2.1 Seasonal forecasts
2.1.1 Precipitation datasets

In this study we use the ECMWF current seasonal forecasts system (System 4, here-
after S4, Molteni et al.,, 2011). This is a dynamical forecast system based on an
atmospheric—ocean coupled model, which has been operational at ECMWF since
2011. The horizontal resolution of the atmospheric model is TL255 (about 0.7°) with
91 vertical levels in the atmosphere. S4 generates 51 ensemble members in real-time,
with 30yr (1981-2010) of back integrations (hindcasts) with 15 ensemble members
with 6 months lead time. Molteni et al. (2011) provides a detailed overview of S4 perfor-
mance. In addition to the dynamical seasonal forecasts, climatological forecasts (CLM)
were also generated by randomly sampling past years from the observational dataset.

The reference precipitation dataset is the Global Precipitation Climatology Centre
(GPCC, http://gpcc.dwd.de) full reanalysis version 6 (Schneider et al., 2011), that is
available since 1901 to 2010 globally on a 1° x 1° regular grid. In this study GPCC is
used for verification. Also, the test for drought-like conditions is made by merging and
blending the GPCC precipitation observations with forecast precipitation, so that GPCC
also serves as an initial condition. Additionally, the ECMWF ERA-Interim reanalsysis
(ERAI, Dee et al., 2011) that is available since 1979 to present expired month with the
same resolution as S4 was also tested as initial conditions for the drought indicator.
A detailed comparison of GPCC and ERAI for drought monitoring is presented in the
companion Part 1 paper.

2.1.2 Drought indicator

As in Part 1, we selected the Standardized Precipitation Index (SPI, Mckee et al., 1993)
as a meteorological drought index. The SPI is a transformation of the accumulated
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precipitation in a specific time period (typically the previous 3, 6 and 12 months, de-
noted as SPI-3, SPI-6 and SPI-12 respectively) into a normal distribution of mean zero
and standard deviation 1. The extension of the SPI from the monitoring period, i.e.
past (can be also interpreted as initial conditions) to the seasonal forecasts range
is performed by merging the seasonal forecasts of precipitation with the monitoring
product. This study follows the same methodology that Dutra et al. (2013) applied to
several basins in Africa, but in this case the SPI calculations are performed globally
for each 1° x 1° grid cell. Similar methodologies have been also used recently by Yoon
et al. (2012) and Yuan and Wood (2013) using different monitoring and seasonal fore-
casts datasets. The SPI is a measure of incoming precipitation deficiency, and many
additional factors determine the severity of drought that ensue, if any (Lloyd-Hughes,
2013).

Having two seasonal forecasts datasets (S4 and CLM) and two monitoring dataset
(GPCC and ERAI), we generated seasonal re-forecasts of the SPI-3, 6 and 12 using
four configurations:

— GPCC monitoring and S4 forecasts (GPCC S4);

— GPCC monitoring and climatological forecasts (GPCC CLM);
— ERAI monitoring and S4 forecasts (ERAI S4);

— ERAI monitoring and climatological forecast (ERAI CLM).

All four configuration provide a 30yr hindcast period (1981-2010) with 15 ensemble
members including forecasts issued every month with 6 months lead time. The GPCC
CLM and ERAI CLM configurations constitute counterparts to the Ensemble Stream-
flow Prediction (ESP) method used by Yuan and Wood (2013). In these configurations,
all the forecast skill comes from the monitoring period (or initial conditions) and they
are used as reference forecasts.
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2.2 \Verification
2.2.1 Regions and seasons

Considering the large dataset of hindcasts (4 configurations, 3 SPI time scales, 12
initial forecast dates and 30yr length dataset), the verification needed to be targeted
to the specific drought application. Therefore, the evaluation of the forecasts is mainly
focused on large regions adapted from Giorgi and Francisco (2000) (see Table 1, and
Fig. S1 in the Supplement), and also used in part 1. Setting up these regions pools
the grid cells together, increasing sample size, improving the quality of the verification
statistics. A second point is that the seasonal forecasts relevance and skill is dependent
on the different seasons for each location. Rainfall in many regions can be limited to
particular seasons, so drought forecasts must be targeted to those seasons. In a global
analysis, the wide variety of precipitation regimes makes it difficult to present the re-
sults synthetically for all the different initial forecasts calendar months. Since this paper
is focused on drought events, the verification of the forecasts is performed for a specific
calendar month where precipitation anomalies (in that month and previous months) are
likely to have a higher impact. Using the mean annual cycle of GPCC precipitation in
each region, we calculated the calendar month (for each region) with maximum ac-
cumulated precipitation in the previous 3 and 6 months, including the selected month
(see Table 1). The calendar month with 3 months maximum accumulated precipitation
is used to verify the SPI-3, while the calendar month with 6 months maximum accu-
mulated precipitation is used to verify the SPI-6 and SPI-12. Therefore, in the results
section the spatial maps displaying scores for different lead times refer to different ver-
ification calendar months. While this stratification on verification date might be more
difficult to follow, it allows focusing on the season of interests and gives more emphasis
on the forecast lead time.
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2.2.2 Metrics

There is a large number of possible verification metrics that can be applied to prob-
abilistic forecasts. In this paper, we focus on the root mean square (RMS) error and
anomaly correlation of the ensemble mean and the relative operating characteristics
(ROC) of the SPI below —0.8. The —0.8 threshold was selected as suggested by Yuan
and Wood (2013) and Svoboda et al. (2002).

The RMS error of the ensemble mean for a specific region, initial forecast calendar
month and lead time is calculated as:

m My 03

RMS = % > nl D (X, k)= Y (i, k) (1)

t i=1 P k=1

where n, is the number of years (30), n,, is the number of points in the particular re-

gions, Y (i, k) the observations for a specific year (/) and grid-point (k) and X (/, k) is
the forecast ensemble mean. The RMS error confidence intervals are calculated for
the temporal mean assuming a normal distribution. The time-mean of the RMS error
of the ensemble mean should equal the time-mean of the ensemble spread about the
ensemble-mean forecasts in a perfect forecasts (Palmer et al., 2006). The time-mean
ensemble spread about the ensemble mean forecast is calculated as:

05
(AT R B R —
RMS (spread) = ™ Z ”_pg n—eg (X(j,i,k) - X(i, k)) (2

where n, is the number of ensemble members (15) and X (/,/, k) is the forecast ensem-
ble member () in year (/) and grid-point (k). As in (1) X (/, k) represents the forecast
ensemble mean of all n, ensemble members.
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For the anomaly correlation coefficient (ACC), we first calculate the grid-point
Pearson correlation (r,) in the form:

21 (Y (i, kY XU, KY)
e = o = 05  p, 0.5 ®)
3] |2 R

where ' denotes the temporal anomaly (after removing the temporal mean). The grid-
point r, is then averaged over the particular region with the fisher and inverse-fisher
transformation:

T
ACC =tanh 1 z arctanh(ry) | . (4)
Mo i=1

The confidence intervals of the anomaly correlation are calculated by a 1000 bootstrap
temporal re-sampling — re-calculating Eq. (3) with random temporal sampling replace-
ment. The ACC varies between -1 to 1 with 1 being a perfect forecast, and below 0
there is no skill to —1 were the forecasts are in anti-phase with the observations.
There are four possible cases for successful drought detection (prediction) and un-
successful drought prediction. In one case, called the “hit rate” a forecast of drought is
made and drought is, indeed observed (the number of cases for which this holds true:
case a). In a second case (case b), a drought onset is predicted, but the drought is not
in fact observed. In a third case (case c), no drought is forecasted, but, in fact, a drought
is actually observed. In the fourth case (case d), no drought is forecast (predicted), and
none is observed. A “false alarm rate” is the number of cases for which is drought is
forecast, but not observed (case b) divided by the sum of case b and the rate of no
drought being forecast and no drought being observed (case d). The false alarm ratio,
on the other hand, is the number of cases where a drought is predicted, but a drought
926
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fails to appear (case b) divided by the sum of hit rate (case a) added to the false alarm
rate (b). Since the number of cases of drought observed globally is relatively small
(while their impacts are nonetheless severe), this means that case d, no drought and
no forecast, most usually occurring weather events, is very much larger than either
case a or case b (or case c, for that matter). Since the false alarm rate contains case
d in the denominator, having such a large number in the denominator makes the false
alarm rate very small. For this reason, false alarm ratio is used preferentially over false
alarm rate. Using these definitions, the probability of detection is the hit rate divided
by the sum of the hit rate (case a) added to the number of cases where no drought is
predicted but one is in fact observed (case c). The probability of a false alarm, in turn,
is the number of events in which a false alarm rate (a drought being forecast but not
observed) (case b) occurs divided by the sum of the hit rate added to number of cases
in which a drought forecast but not observed (case b).

The relative operating characteristics (ROC) measures the skill of probabilistic cat-
egorical forecasts, while the previous metrics only evaluate the ensemble mean. The
ROC diagram displays the false alarm rate (F) as a function of hit rate (HR) for different
thresholds (i.e. fraction of ensemble members detecting an event) identifying whether
the forecast has the attribute to discriminate between an event or not. The area under
the ROC curve is a summary statistics representing the skill of the forecast system.
The area is standardized against the total area of the figure, such that a perfect fore-
cast has an area of 1 and a curve lying along the diagonal (no information, HR = F)
has an area of 0.5. The results presented in the paper refer to each region. This was
achieved by using all the grid-points in a region when calculating the contingency ta-
bles for the F and HR estimates. The forecasts and verification were transformed into
an event (or no event) based on the underlying grid-point distributions. This spatial inte-
gration has the advantage of increasing the sample size used to build the contingency
table while no spatial information is retained. To estimate the uncertainty of the ROC
scores and curves in the ROC diagram a 1000 bootstrap re-sampling with replacement
procedure was applied. The contingency tables and the ROC scores were calculated
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1000 times: in each calculation the original forecast and verification grid-point time se-
ries are randomly replaced (allowing repetition) and a new set of scores is calculated.
The re-sampling was performed only on the time series, keeping all the grid-points,
since the temporal sampling size (in our case 30 vales) is the largest source of uncer-
tainty in the scores estimation. The 95 % confidence intervals are estimated from the
percentiles 2.5 and 97.5 of the 1000 bootstrap values.

The skill scores measure the difference between the score of the forecast and the
score of a benchmark forecast, normalized by the potential improvement and are cal-

culated as:

ROC skill score = (s - 53)/(51 = So) (5)
where s is the actual score, s, is the reference (or benchmark) score and s; is the
score of a perfect forecast. The ROC skill score, in respect to a forecast with no skill

can be calculated by setting s; = 0.5 and s; = 1, or setting s, to the ROC score of
another benchmark forecast. The skill score varies between —oo to 1 with values below
0 indicating that the forecast is worse than the reference forecast, and 1 a perfect
forecast.

2.2.3 Drought onset

To permit the comparison of the ECMWF model results with the US National Multi-
model Ensemble results, presented by Yuan and Wood (2013), we have used their
definition of drought onset: a drought event is defined when the SPI-6 is below -0.8
for at least 3 months, and the drought onset month is the first month that the SPI-6
falls below the threshold. In the last section of the results, we present an evaluation of
the drought onset forecast skill of the different configurations with a global perspective
(not following the regions definitions). Some of our verification metrics also overlap with
Yuan and Wood (2013).
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3 Results
3.1 Regional evaluation

For each one of the regions in Table 1 a summary figure was produced displaying the
evolution of the RMS, ACC and the area under the ROC curve with lead time for the
specific verification date (also in Table 1) and for the SPI-3, 6 and 12 (Fig. 1 for South
Africa, and Fig. S2 to S19 in the Supplement for the remaining regions). This study will
not exhaustively examine forecast skill within each individual region, although results
are available within the auxiliary material for scrutiny.

In all regions there is a clear difference of the RMS error of the ensemble mean at
lead times 0 and 1 between the forecasts using GPCC, as opposed to using ERAI
for the monitoring. ERAI has higher RMS errors. From lead time 2 onwards in the
case of the SPI-3, and lead time 5 in the case of SPI-6, the forecasts using GPCC or
ERAI as monitoring have the same RMS error since for these lead times only forecast
precipitation is used. In East (Fig. S9, Supplement) and West East Africa (Fig. S9,
Supplement) and West Africa (Fig. S20, Supplement) RMS error for ERAI merged with
S4 decreases with forecast lead time, which might be contra intuitive. These results are
the first indication of the importance of the monitoring quality, i.e. which precipitation
dataset is chosen to merge with the forecast information, whether GPCC or ERAI, and
the first indication of the importance of initial conditions on the SPI forecast skill. On
the other hand, in other regions like South Africa (Fig. 1) ERAlI S4 RMS errors increase
with lead time, which is in line with previous findings of the quality of ERAI precipitation
over South Africa when compared with East of West Africa (Dutra et al., 2013).

The comparison of the RMS error of the ensemble mean with the ensemble spread
(dashed lines in Fig. 1) suggests that in general the forecasts are slightly under-
dispersive. However, we do not consider the observations uncertainty (in this case
the GPCC precipitation) that should be added to the ensemble spread when compar-
ing with the RMS error of the ensemble mean. This might be also associated with
the deterministic nature of the initial conditions, and the extension of the probabilistic
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monitoring presented in the companion Part 1 paper could be of potential benefit to
increase the spread of the forecasts. The anomaly correlation coefficient of the SPI
forecasts, using GPCC or ERAI monitoring also highlight the importance of having
a reliable source of precipitation for monitoring (illustrated by comparing GPCC and
ERAI). The same conclusion will be shown in the analysis of the ROC scores.

When looking at the ROC score figures, the higher the value, the greater the skill;
with increasing lead time, this skill decays. There is a clear difference in the decay
of the ROC scores with lead time, particularly for GPCC S4, as shown in panels g—
i of Fig. 1: the decay rate is much more rapid for SPI-3 than for SPI-12. SPI-3 only
contains 3 months of information, whether this is forecast precipitation or GPCC (or
ERAI) “observed” precipitation. SPI-12, on the other hand, may contain many more
months of monitored precipitation in the merged monitored-forecast product which is
then tested against the monitored precipitation. This is intrinsic to the SPI forecasting
method that uses more information from the monitoring dataset for longer SPI lead
time. An additional finding is that, the ROC scores of GPCC using the S4 forecasts
(GPCC S4) are higher than the same S4 forecasts used with ERAI (ERAI S4) during
the first few months of lead times, after which the GPCC’s higher rate decays to a rate
of decay with lead time nearly identical with ERAI.

A test of the importance of the choice of monitoring dataset upon forecast skill (FS) is
provided by identifying the last forecast lead time where the ROC skill score of GPCC
S4 (using ERAI S4 as reference forecast) is higher than 0.05 with 95 % confidence
(Fig. 2). Skill scores above 0 indicate that GPCC merged with S4 has a higher skill
than ERAI S4. However, due to the sampling associated with the bootstrapping and
the confidence intervals estimation, we decided to use a higher threshold of 0.05. This
approach is useful for highlighting and revealing which regions the selection of ERAI
for monitoring, as opposed to GPCC has a stronger detrimental effect on skill (relative
to GPCC) of the seasonal forecasts. It also displays the lead time memory of the initial
conditions. Referring to Fig. 2 for the SPI-3 case all regions present a lead time of
1 month, while for the SPI-12 most of the regions present a lead time of 5 months.
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For the SPI-6 the memory of the initial conditions varies between 3 and 4 months, the
latter mainly in the tropical regions. This SPI-6 case illustrates, once again, as shown
in Part 1, that the precipitation assembled within the tropics within GPCC has higher
uncertainty (and that higher disagreement is found among precipitation datasets within
the tropics due to the low density of the number of gages and observations).

As opposed to testing the importance of monitored precipitation data quality on fore-
cast skill (FS), a test of the importance of forecast information (predicted precipitation)
upon forecast skill (FS) is provided by identifying the first lead time where the ROC
skill score of GPCC S4 (using GPCC CLM as a reference forecast) is higher than 0.05
with 95 % confidence (Fig. 3), i.e. comparing the quality of the precipitation forecast
(S4 or CLM) in the SPI forecast skill. These lead times identify the added value of us-
ing the seasonal forecasts of precipitation from S4 above the practice of simply using
a climatological forecast, i.e. does the seasonal forecast add value above that of pure
climatology. For the case of SPI-3 the added value of using the S4 forecast informa-
tion varies between 1 to 2 months with North Eurasia regions and Australia having
the lower values. For the use of SPI-12, on the other hand, the added value of using
S4 can reach 5 months lead time in the Mediterranean, South Africa and Southern
South America, while there is no significant improvement in Northern Europe and the
Northern America — regions were the skill of the original S4 precipitation forecasts is
very much reduced. For the case of SPI-3, Southern South America (SSA) and East
Africa have high value (4 months), like they do for the SPI-12 case, but the values for
the Mediterranean (MED), East Asia, Australia, Amazonia, and Western North Amer-
ica (WNA) are low (1 month). Furthermore, as Northern Europe and all three North
America regions were not statistically significant for SPI12, so this is true for Central
and Eastern North America for SPI-6. Even in regions where there is little more added
value GPCC S4 skill is always equal or higher than climatology, i.e. GPCC CLM. In
some cases, particularly for long SPI time scales (SPI1-12), the proportion of monitored
precipitation merged with the forecast that is tested against the monitored precipitation
is very high, and the monitored precipitation is being tested against itself.
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3.2 Drought onset

In order to permit the results of the ECMWF forecasting model seasonal drought fore-
casts to be compared to the forecast models of US National Multi-Model Ensemble
drought forecast tests (Yuan and Wood, 2013) (denoted YW13), the tests made upon
each one degree grid cell are combined into a global samples with global means of the
probability of detection (POD), and global means of false alarm ratio (FAR) and equi-
table threat score (ETS) for drought onset forecasts (Table 2): the climatology case of
GPCC CLM is very similar to YW13’s findings, obtained using Ensemble Streamflow
Prediction. This study and YW13 deployed different precipitation datasets, as well as
time interval of collected hindcasts; yet, despite these differences, the results are com-
parable, suggesting that the results, in general, are likely robust and that the expected
skill of the SPI drought onset forecasts provided only by the initial conditions, as shown
in their study, as well. The climatology cases of the two studies are not only similar:
the forecast of GPCC S4 matches that of some of the other models analysed within
YW13’s Multi-model ensemble (MME). This study also overlaps with their multi-model
skill estimates (North American Multimodel Ensemble with post-processing NMMEZ2).
ERAIl-based forecasts have lower skill than the GPCC CLM using the equitable threat
score metric. Again, the precipitation dataset chosen, and the quality of the precip-
itation dataset, has a major role in the skill of SPI forecasts. As has been noted in
Sect. 2.2.2, false alarm rates are very small (in the order of 10'2), since the denomina-
tor term of meteorological states of no drought condition and no forecasts of drought is
so high, due to the relative low incidence of drought globally.

Each ensemble member conserves the SPI characteristics, that of mean zero and
standard deviation of one (which arises due to the definition of SPI), but the ensemble
mean (of all the ensembles) conserves the mean of zero only, whereas, to the contrary,
the standard deviation (unlike the initial calculation of SPI that makes the standard de-
viation of 1 within each ensemble) falls below one, contrary to the definition of SPI.
The standard deviation decline below one is pronounced for long lead times as the

932

Jaded uoissnosiq | Jadedq uoissnosiq | Jaded uoissnosiq | Jaded uoissnosiq

HESSD
11, 919-944, 2014

Global
meteorological
drought — Part 2:
Seasonal forecasts

E. Dutra et al.

' I““ II“


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/919/2014/hessd-11-919-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/919/2014/hessd-11-919-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

ensemble spread increases. Despite the change in standard deviation, the drought
onset forecasts skill is based on ensemble mean, in the case of the POD, FAR, and
ETS (Table 2, and YW13) statistics, with these drought onset skill metrics (POD, FAR,
and ETS) depending only the SPI falling below a certain threshold. One can rescale
the forecast ensemble mean to retain the unit standard deviation and arrest its decline
below 1, conforming to the definition of SPI. Such ensemble mean rescaling case is
presented between the brackets in Table 2. This rescaling increases the probability of
drought detection (POD) (as it should), but, in exchanging for increasing the number
of false alarms, the false alarm ratio, with the overall result of conferring only a slight
increase of the Equitable Threat Score (ETS). To retain the SPI definition, i.e. to ensure
that the criterion for drought onset condition is maintained, (alternatively stated, for skill
metrics that depend on the ensemble mean and on SPI thresholds), we recommend
the scaling of the ensemble mean standard deviation. This rescaling can be also in-
terpreted as the SPI calculated directly from the ensemble mean of the precipitation
forecasts. Another potential use of this rescaling is the graphical display of the ensem-
ble mean forecasts, that was explored by Mwangi et al. (2013), and provides the users
with SPI forecast maps with units/range as the SPI during the monitoring phase.

To finalize the drought onset evaluation, the brier skill score is used, based upon the
climatological frequency of drought events as reference, for the different experiments
over each grid-cell of the globe (Fig. 4). The global spatial maps of the brier skill scores,
for both the seasonal forecast case, GPCC S4, and the climatology case, GPCC CLM,
exhibit similar spatial patterns to those observed in YW13’s NMME results for the sea-
sonal forecast POD equivalent case and the ESP climatology equivalent case. Our
study and theirs with the NMME both reveal the clear benefit of a seasonal forecast
over climatology, this being valid for our case of GPCC S4 when compared with GPCC
CLM. The demonstration of seasonal forecast being better than climatology is found for
the regions of Australia, East Africa, Northwest South America (Brazil), as well as other
regions of the globe. Such a result was also found in YW13. Looking at the global brier
score decomposition (Fig. S20, Supplement) shows that climatology, i.e. GPCC CLM,
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has better reliability than GPCC S4 (per definition), while GPCC S4 has better resolu-
tion. The increased resolution in GPCC S4 with a small reduction of reliability (when
compared with GPCC CLM) lead to better brier scores in GPCC S4. Figure 4 highlights
how noisy are the individual grid cell scores globally. Assembling the grid cells into re-
gions, on the other hand, increase the sample sizes within those regions, and permit
us to investigate whether one region, as opposed to another, has consistently high skill
scores (e.g. East Africa vs. West Africa).

Up until now, we have been looking at global and regional statistics of combined
drought onset skill among all the hindcast samples. Here we test drought forecast
skill for individual drought cases. Continuing with our example begun in companion
paper Part 1, we provide SPI forecasts for the 2010/2011 drought in the Horn of
Africa (Figs. S21 and S22, Supplement) and the 2012 drought in the US Great Plains
(Figs. S23 and S24, Supplement). These examples also illustrate how the results of
a probabilistic drought forecast would be “packaged” for skilled users (the counterpart
to the probabilistic flood forecast case). The time series (Figs. S21 and S23, Supple-
ment) show the GPCC S4 and GPCC CLM SPI forecasts issue in different initial dates
and averaged over a region and overplayed with the verification. The spatial maps
(Figs. S22 and S24, Supplement) comparing the actual verification SPI with four dif-
ferent examples of displaying a specific forecast: (i) ensemble mean, (ii) the ensemble
mean rescaled, (iii) probability of the SPI > 0.8 (wet conditions); (iv) probability of the
SPI < -0.8 (dry conditions).

4 Conclusions

This paper presents a general evaluation of meteorological drought seasonal forecasts
using the standardized precipitation index constructed by merging different initial con-
ditions and seasonal forecasts of precipitation. The forecast skill is targeted to veri-
fication months where precipitation deficits are likely to have higher drought impacts
and grouped in 18 regions. Detailed analysis of drought forecasting skill within each
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region is outside the scope of this paper, though results are made available in auxiliary
material.

At the onset of this paper, three fundamental questions were posed. The first con-
cerned the importance of the monitoring in the forecast skill.

The memory effect of initial conditions in the SPI forecasts was identified, comparing
the S4 seasonal forecasts initialized with GPCC, when compared to the same S4 sea-
sonal forecasts initialized and merged with ERA-Interim precipitation. This was found
to be 1 month lead time in the case of SPI-3, 3-to-4 months for SPI-6, and 5 months for
SPI-12. For earlier forecast lead times, the initial conditions of precipitation dominate
the forecast skill, proving that good quality and reliable monitoring of precipitation is
paramount.

The second question was centered on the added value of using ECMWF seasonal
forecasts of precipitation when compared to climatological past samples of precipita-
tion. Our results show the skill obtained in dynamical forecasts is always equal or above
climatological forecasts, even for regions where the added value in terms of forecast
lead time is reduced. In some cases, particularly for long SPI time scales, the improve-
ment upon climatological forecasts is negligible. For long SPI time scales (such as
SP1+12), the proportion of monitored precipitation when added to the forecast can be
very high and almost the same as the monitored precipitation against which it is being
tested.

Finally we questioned the skill of dynamical forecast in terms of drought onset. We
have defined drought onset, based on the definition used by Yuan and Wood (2013), so
that the results from the ECMWF forecasting model seasonal forecast system S4 could
be compared against the drought forecasts from other forecasting ensemble models
within the US National Multi-model Ensemble presented in the Yuan and Wood (2013)
study. Although different datasets and different periods were used, the estimates of
drought onset skill for climatological forecasts are coincident. Therefore, we suggest
that they are reasonable independent from data and intrinsic to the SPI seasonal fore-
casting methodology. We also propose that in order to evaluate forecasts ensemble
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mean in terms of SPI thresholds, the ensemble mean should be rescaled to guarantee
a standard deviation of one. This is further beneficial when presenting the forecasts
graphically. Yuan and Wood (2013) questioned whether seasonal forecasting of global
drought onset was largely or solely a stochastic forecasting problem only. However, our
results show that this is not a global result: within several regions in the world drought
onset forecasting is feasible and skilful.

Supplementary material related to this article is available online at
http://www.hydrol-earth-syst-sci-discuss.net/11/919/2014/
hessd-11-919-2014-supplement.pdf.

Acknowledgements. This work was funded by the FP7 EU project DEWFORA (http://www.
dewfora.net).

References

Barros, A. P. and Bowden, G. J.: Toward long-lead operational forecasts of drought:
an experimental study in the Murray—Darling River Basin, J. Hydrol., 357, 349-367,
doi:10.1016/j.jhydrol.2008.05.026, 2008.

Cane, M. A., Zebiak, S. E., and Dolan, S. C.: Experimental forecasts of El Nino, Nature, 321,
827-832, 1986.

Dee, D. P, Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P, Kobayashi, S., Andrae, U.,
Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P, Beljaars, A. C. M., van de Berg, L.,
Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L.,
Healy, S. B., Hersbach, H., H6lm, E. V., Isaksen, L., Kallberg, P., Kéhler, M., Matricardi, M.,
McNally, A. P, Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P,
Tavolato, C., Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis: configuration and
performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553-597,
doi:10.1002/q}.828, 2011.

Dutra, E., Di Giuseppe, F., Wetterhall, F., and Pappenberger, F.: Seasonal forecasts of droughts
in African basins using the Standardized Precipitation Index, Hydrol. Earth Syst. Sci., 17,
2359-2373, doi:10.5194/hess-17-2359-2013, 2013.

936

Jaded uoissnosiq | Jadedq uoissnosiq | Jaded uoissnosiq | Jaded uoissnosiq

HESSD
11, 919-944, 2014

Global
meteorological
drought — Part 2:
Seasonal forecasts

E. Dutra et al.

' I““ II“


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/919/2014/hessd-11-919-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/919/2014/hessd-11-919-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.hydrol-earth-syst-sci-discuss.net/11/919/2014/hessd-11-919-2014-supplement.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/919/2014/hessd-11-919-2014-supplement.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/919/2014/hessd-11-919-2014-supplement.pdf
http://www.dewfora.net
http://www.dewfora.net
http://www.dewfora.net
http://dx.doi.org/10.1016/j.jhydrol.2008.05.026
http://dx.doi.org/10.1002/qj.828
http://dx.doi.org/10.5194/hess-17-2359-2013

10

15

20

25

Gianotti, D., Anderson, B. T., and Salvucci, G. D.: What do rain gauges tell us about the limits of
precipitation predictability?, J. Climate, 26, 5682-5688, doi:10.1175/jcli-d-12-00718.1, 2013.

Giorgi, F. and Francisco, R.: Uncertainties in regional climate change prediction: a regional
analysis of ensemble simulations with the HADCM2 coupled AOGCM, Clim. Dynam., 16,
169-182, doi:10.1007/pl00013733, 2000.

Kirtman, B. P, Min, D., Infanti, J. M., Kinter, J. L., Paolino, D. A., Zhang, Q., van den Dool, H.,
Saha, S., Mendez, M. P., Becker, E., Peng, P, Tripp, P., Huang, J., DeWitt, D. G., Tippett,
M. K., Barnston, A. G., Li, S., Rosati, A., Schubert, S. D., Rienecker, M., Suarez, M., Li, Z.
E., Marshak, J., Lim, Y.-K., Tribbia, J., Pegion, K., Merryfield, W. J., Denis, B., and Wood, E.
F.: The North American Multi-Model Ensemble (NMME): Phase-1 Seasonal to Interannual
Prediction, Phase-2 Toward Developing Intra-Seasonal Prediction, B. Am. Meteorol. Soc.,
doi:10.1175/bams-d-12-00050.1, in press, 2013.

Lloyd-Hughes, B.: The impracticality of a universal drought definition, Theor. Appl. Climatol.,
doi:10.1007/s00704-013-1025-7, in press, 2013.

Mckee, T. B., Doesken, N. J., and Kleist, J.: The relationship of drought frequency and dura-
tion to time scales, Eight Conference on Applied Climatology, Anahaim, California, 179—184,
1993.

Mishra, A. K. and Desai, V.: Drought forecasting using stochastic models, Stoch. Env. Res.
Risk A., 19, 326-339, doi:10.1007/s00477-005-0238-4, 2005.

Mo, K. C., Shukla, S., Lettenmaier, D. P, and Chen, L.-C.: Do Climate Forecast System (CFSv2)
forecasts improve seasonal soil moisture prediction?, Geophys. Res. Lett.,, 39, L23703,
doi:10.1029/2012gl053598, 2012.

Molteni, F., Stockdale, T., Balmaseda, M., Balsamo, G., Buizza, R., Ferranti, L., Magnunson, L.,
Mogensen, K., Palmer, T., and Vitart, F.: The new ECMWF seasonal forecast system (Sys-
tem 4), ECMWF Tech. Memo. 656, ECMWF, Reading, UK, 49 pp., 2011.

Mwangi, E., Wetterhall, F, Dutra, E., Di Giuseppe, F., and Pappenberger, F.: Fore-
casting droughts in East Africa, Hydrol. Earth Syst. Sci. Discuss., 10, 10209-10230,
doi:10.5194/hessd-10-10209-2013, 2013.

Palmer, T. N., Buizza, R., Hagedorn, R., Lawrence, A., Leutbecher, M., and Smith, L.: Ensemble
prediction: a pedagogical prespective, ECMWF Newslett., 106, 10-17, 2006.

937

Jaded uoissnosiq | Jadedq uoissnosiq | Jaded uoissnosiq | Jaded uoissnosiq

HESSD
11, 919-944, 2014

Global
meteorological
drought — Part 2:
Seasonal forecasts

E. Dutra et al.

' I““ II“


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/919/2014/hessd-11-919-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/919/2014/hessd-11-919-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1175/jcli-d-12-00718.1
http://dx.doi.org/10.1007/pl00013733
http://dx.doi.org/10.1175/bams-d-12-00050.1
http://dx.doi.org/10.1007/s00704-013-1025-7
http://dx.doi.org/10.1007/s00477-005-0238-4
http://dx.doi.org/10.1029/2012gl053598
http://dx.doi.org/10.5194/hessd-10-10209-2013

10

15

20

25

30

Palmer, T. N., Doblas-Reyes, F. J., Hagedorn, R., Alessandri, A., Gualdi, S., Andersen, U.,
Feddersen, H., Cantelaube, P, Terres, J. M., Davey, M., Graham, R., Délécluse, P, Lazar,
A., Déqué, M., Guérémy, J. F.,, Diez, E., Orfila, B., Hoshen, M., Morse, A. P, Keenlyside, N.,
Latif, M., Maisonnave, E., Rogel, P., Marletto, V., and Thomson, M. C.: Development of a
european multimodel ensemble system for seasonal-to-interannual prediction (demeter), B.
Am. Meteorol. Soc., 85, 853—-872, doi:10.1175/bams-85-6-853, 2004.

Pappenberger, F., Wetterhall, F, Dutra, E., Di Giuseppe, F., Bogner, K., Alfieri, L., and
Cloke, H. L.: Seamless forecasting of extreme events on a global scale, in: Climate and
Land Surface Changes in Hydrology, edited by: Boegh, E., Blyth, E., Hannah, D. M., His-
dal, H., Kunstmann, H., Su, B., and Yilmaz, K. K., IAHS Publication, Gothenburg, Sweden,
3-10, 2013.

Pozzi, W., Sheffield, J., Stefanski, R., Cripe, D., Pulwarty, R., Vogt, J. V., Heim, R. R,
Brewer, M. J., Svoboda, M., Westerhoff, R., van Dijk, A. I. J. M., Lloyd-Hughes, B., Pap-
penberger, F., Werner, M., Dutra, E., Wetterhall, F., Wagner, W., Schubert, S., Mo, K., Nichol-
son, M., Bettio, L., Nunez, L., van Beek, R., Bierkens, M., de Goncalves, L. G. G., de Mat-
tos, J. G. Z., and Lawford, R.: Toward global drought early warning capability: expanding
international cooperation for the development of a framework for monitoring and forecasting,
B. Am. Meteorol. Soc., 94, 776-785, doi:10.1175/bams-d-11-00176.1, 2013.

Schneider, U., Becker, A., Finger, P, Meyer-Christoffer, A., Rudolf, B., and Ziese, M.:
GPCC Full Data Reanalysis Version 6.0 at 1.0°: Monthly Land-Surface Precipitation
from Rain-Gauges built on GTS-based and Historic Data, [Data set], DWD, Germany,
doi:10.5676/DWD_GPCC/FD_M_V6_100, 2011.

Shukla, S., Sheffield, J., Wood, E. F, and Lettenmaier, D. P.: On the sources of global land
surface hydrologic predictability, Hydrol. Earth Syst. Sci., 17, 2781-2796, doi:10.5194/hess-
17-2781-2013, 2013.

Svoboda, M., LeComte, D., Hayes, M., Heim, R., Gleason, K., Angel, J., Rippey, B., Tinker, R.,
Palecki, M., Stooksbury, D., Miskus, D., and Stephens, S.: The Drought Monitor, B. Am.
Meteorol. Soc., 83, 1181-1190, 2002.

Yoon, J.-H., Mo, K., and Wood, E. F.: Dynamic-model-based seasonal prediction of mete-
orological drought over the contiguous United States, J. Hydrometeorol., 13, 463482,
doi:10.1175/jhm-d-11-038.1, 2012.

Yuan, X., and Wood, E. F.: Multimodel seasonal forecasting of global drought onset, Geophys.
Res. Lett., 40, 4900—4905, doi:10.1002/grl.50949, 2013.

938

Jaded uoissnosiq | Jadedq uoissnosiq | Jaded uoissnosiq | Jaded uoissnosiq

HESSD
11, 919-944, 2014

Global
meteorological
drought — Part 2:
Seasonal forecasts

E. Dutra et al.

' I““ II“


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/919/2014/hessd-11-919-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/919/2014/hessd-11-919-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1175/bams-85-6-853
http://dx.doi.org/10.1175/bams-d-11-00176.1
http://dx.doi.org/10.5676/DWD_GPCC/FD_M_V6_100
http://dx.doi.org/10.5194/hess-17-2781-2013
http://dx.doi.org/10.5194/hess-17-2781-2013
http://dx.doi.org/10.5194/hess-17-2781-2013
http://dx.doi.org/10.1175/jhm-d-11-038.1
http://dx.doi.org/10.1002/grl.50949

Table 1. List of regions used in this study. Adapted from Giorgi and Francisco (2000) (Fig. S1
in the Supplement and also Part 1). For each region, the calendar month with maximum accu-
mulated precipitation in the previous 3 and 6 months (inclusie) is presented and was calculated

from the mean annual cycles of GPCC.

Name Acronym Max 3 month Max 6 month
Australia AUS Mar Apr
Amazon Basin AMZ Mar May
Southern South America SSA Aug Oct
Central America CAM Sep Oct
Western North America ~ WNA Jan Mar
Central North America CNA Jul Sep
Eastern North America ENA Aug Oct
Mediterranean Basin MED Jan Mar
Northern Europe NEU Sep Nov
Western Africa WAF Sep Oct
East Africa EAF May Aug
Southern Africa SAF Feb Apr
Southeast Asia SEA Dec Dec
East Asia EAS Aug Sep
South Asia SAS Aug Oct
Central Asia CAS Apr May
Tibet TIB Aug Sep
North Asia NAS Aug Oct
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Table 2. Global mean values of probability of detection (POD), false alarm ratio (FAR) and
equitable threat score (ETS) for drought onset forecasts. The scores between brakets were
calculated after scalling the ensemble mean (see Sect. 3.1 for details). The 95 % confidence
intervals, estimated from 1000 samples bootrapping with replacement, returned similar values
for all scores and models of approximatly +0.01. The ESP and NMME2 models scores are
included in this table for comparison purposes only and were retrived from Yuan and Wood
(2013, see Table 1).

Model POD FAR ETS

GPCCCLM 0.17 (0.27) 0.40 (0.57) 0.15(0.21)
GPCCS4  0.30(0.42) 0.47 (0.57) 0.25 (0.29)
ERAICLM  0.14 (0.25) 0.85(0.87) 0.09 (0.12)
ERAI S4 0.22 (0.31) 0.82(0.84) 0.13(0.14)

ESP 0.16 0.36 0.14
NMME2 0.32 0.42 0.24
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Fig. 1. Seasonal forecasts evaluation summary for the South Africa region (SAF) for the SPI-3
(a, d, g), SPI-6 (b, e, h) and SPI-12 (c, f, i). For each SPI time-scale the evaluation consist
of threee panels displaying a specific score as a function of lead time (horizontal axis) for
a specific verification date (in the title) for the GPCC S4 forecasts (red), GPCC CLM (black),
ERAI S4 (blue) and ERAI CLM (grey). (a)—(c) RMS error of the ensemble mean and ensemble
spread about the ensemble-mean in dashed; (d)—(f) Anomaly correlation coeficient; (g)—(i) area
under the ROC curve for SPI forecasts below —0.8. The error bar in all panels denote the 95 %
confidence intervals computed from 1000 samples bootstraping with re-sampling.
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Last Lead time (Months): ROC skill score GPCC S4 vs ERAI S4 > 0.05 (99%)

Fig. 2. Last forecast lead time (months) where the ROC skill score of GPCC S4 (using ERAI
S4 as reference forecasts) is higher than 0.05 with 95 % confidence and the ROC of GPCC
S4 is higher than 0 with 95 % confidence. Seasonal forecasts of the (a) SPI-3, (b) SPI-6 and
(c) SPI-12. The forecast are verified in each region for the calendar month presented in Table 1.
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First Lead time (Months): ROC skill score GPCC S4 vs GPCC CLM > 0.05 (99%)

Fig. 3. First forecast lead time (months) where the ROC skill score of GPCC S4 (using GPCC
CLM as reference forecasts) is higher than 0.05 with 95 % confidence and the ROC of GPCC
S4 is higher than 0 with 95 % confidence. Seasonal forecasts of the (a) SPI-3, (b) SPI-6 and
(c) SPI-12. The forecast are verified in each region for the calendar month presented in Table 1.
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Fig. 4. Brier skill score for the drough onset forecasts of (a) GPCC S4 and (b) GPCC CLM.
The reference forecasts for the skill score was the climatological frequency of the verification
dataset. The original maps at 1° x 1° were smoothed with a 3 x 3 window.
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