

1 A Final Author Comment.

2
3 **The manuscript HESSD-11-183-2014 “Quantifying groundwater dependence of a sub-polar lake cluster in**
4 **Finland using isotope mass balance approach” by E. Isokangas et al.**

5
6 We very much appreciate thorough reviews by two anonymous referees. Their insightful and comprehensive
7 comments helped us to make numerous changes in the way how our data are interpreted, presented and
8 discussed. Isotope mass balance calculations have been refined through including isotopic composition of
9 local atmospheric moisture derived from isotope signal of local precipitation and through assessing the
10 isotopic composition of total inflow individually for each of the studied lakes. Moreover, isotope mass
11 balance calculations were run also deuterium data. The manuscript is in much better shape now. We followed
12 large majority of the reviewer's comments and suggestions when preparing the revised version of the
13 manuscript. In some points, however, we do maintain our views and opinions. Detailed comments addressing
14 all questions/comments of the reviewer #1 are listed below.

15

16 **Anonymous Referee #1**

17

18 **General comment:**

19

20 1. C3857, line 1-9: *I have several fairly substantial reservations to publishing the manuscript as it is currently*
21 *written. The most serious of these are the simplified assumptions embedded in the calculation of the total*
22 *inflow to evaporation ratio (Itot / E). The assumptions are logical and necessary in this study, but they should*
23 *be investigated more fully before the manuscript can be published. They include 1) assumptions of steady-*
24 *state isotopic signature in the lakes; 2) implicit assumptions that all of the lakes are completely mixed; 3)*
25 *assumptions that all inflowing water has the same isotopic signature. All of these assumptions should be*
26 *discussed in more detail and in the case of number 2 & 3, the sensitivity of the outcomes should be tested*
27 *against these assumptions. Beyond that, the paper is well-written and well-presented. A minor point where*
28 *the manuscript could be improved is that the motivation for the study is described very clearly at the end of*
29 *the Introduction, but it is never revisited later in the paper. The authors have some important results which*
30 *could help inform management of these lakes and a few sentences placing the results in that context would*
31 *improve the overall manuscript.*

32 We appreciate very much this comment. Our original idea was to present a simplified, operational approach
33 to derive the parameters characterizing the dependence of Rokua lakes on groundwater, based on the results
34 of isotope survey made between July 29 and August 27, 2013. We have now modified the text and discussed
35 especially the assumptions made in more detail.

36

37 1. Assumption: Isotope steady-state of the studied lakes

38 This assumption was behind all our calculations, although it was not discussed in the text. In the revised
39 manuscript we address this problem. We think that this assumption is in fact well-justified. The reason is
40 that natural systems such as Rokua lakes had a lot of time in the past to come up to an isotopic steady-state,

41 reflecting their mean hydrological status and local climate. What we have observed in our study were
42 seasonal fluctuations around these steady-state values induced mostly by seasonal ice cover. Three months
43 following disappearance of ice cover in mid of May 2013 apparently represent sufficiently long time period
44 to bring the lakes close enough to the steady-state values, to justify the steady-state assumption used in the
45 calculations.

46 2. Assumption: Completely mixed lakes

47 We were aware of the problem related to the isotopic homogeneity of lakes. Therefore, for larger and/or
48 deeper lakes several water samples were collected for isotope analyses (cf. section 3.1., lines 13-18 of the
49 original manuscript). Deeper lakes showed expected enrichment of the shallow layer with respect to the
50 bottom waters (0.7‰ on the average for $\delta^{18}\text{O}$). For balance calculations presented in the manuscript we used
51 average δ values obtained on the basis of all water samples collected in the given lake including depth
52 profiles. We consider this simplified approach justified in the light of methodology presented in the
53 manuscript, tailored to single sampling campaign of a large number of lakes. See also comment 5. p. 9191,
54 lines 8-11 about completely mixed lakes.

55 3. Assumption: Isotopic composition of the total inflow to the studied lakes

56 We admit that our assumption setting identical isotopic composition of the total inflow for all studied lakes
57 was perhaps a too-simplistic approach. This was corrected in the revised version. Iterative procedure of
58 calculating I_{TOT}/E ratios was adopted. In the first step groundwater fluxes to the lakes without visible surface
59 inflow were calculated assuming that the isotopic composition of the total inflow equals the coordinates of
60 the intercept of LMWL and LEL (−14.1‰, −100.0‰). In the second step, the calculations of I_{TOT}/E ratios were
61 repeated, this time with δ_T calculated individually for each lake as a flux-weighted average of local
62 precipitation ($\delta^{18}\text{O}_P = -14.1\text{‰}$ and $\delta^2\text{H}_P = -100\text{‰}$) and groundwater input ($\delta^{18}\text{O}_{\text{GW}} = -13.1\text{‰}$ and $\delta^2\text{H}_{\text{GW}} = -$
63 95‰) calculated in the preceding step. The procedure was repeated until the change of δ_T was smaller than
64 the adopted uncertainty of isotope measurements.

65 For lakes with visible surface inflow a slightly different approach was adopted to calculate δ_T . The first step
66 was identical as in the case of lakes without visible surface inflow. In the second step, the total outflow
67 (groundwater plus surface water) from the upstream lake was determined as a difference $I_{\text{TOT}} - E$. Then, the
68 isotopic composition of the total inflow to the downstream lake was determined as a weighted average of
69 three components: (i) local precipitation, (ii) surface inflow from the upstream lake, and (iii) groundwater
70 inflow of constant isotopic composition (−13.1‰). Since discharges of surface inflows were not measured,
71 it was assumed arbitrarily that they constitute 25 % of total outflows from upstream lakes. Surface inflows
72 determined in the previous step were assumed to have the isotopic composition of upstream lakes. The
73 calculations were repeated until the change of δ_T was smaller than the adopted uncertainty of isotope
74 measurements.

76

77 2. C3857, lines 11-13: *A minor point where the manuscript could be improved is that the motivation for the*
78 *study is described very clearly at the end of the Introduction, but it is never revisited later in the paper.*

79 Accepted. Appropriate corrections/additions were made in the revised version.

80 **Detailed comments:**

81 3. p. 9186, line 11: “*a... one-off survey*” – *unscientific language*.

82 Has been corrected.

83 4. p. 9816, line 15: “*more trophic*” – *change to “more productive”*.

84 Done.

85 5. p. 9191, lines 8-11: *This approach assumes that all of the lakes mix completely. How does changing this assumption change the outcome of the study? (see Stets et al. 2010)*.

86

87 Stets et al. (2010) used Priestley-Taylor method to calculate evaporation flux. In the framework of this approach the average temperature of the lake is needed. In our calculations of E we adopted mass transfer method which exploits the vapor-pressure gradients above the evaporating surface. Therefore, the surface water temperature is of importance here. However, we were concerned with the mixing of the studied lakes from the isotope perspective. This is the reason why we haven't even considered the mixing of the lake in this context.

88

89

90

91

92

93 6. p. 9192, line 3: *dLS assumes that the lakes are in isotopic steady state, but this is almost certainly not the case (see figure 6). How does this assumption affect the study?*

94

95 See assumption 1 above.

96 7. p. 9192, line 11: “*If... the isotopic composition of atmospheric water vapour is in isotopic equilibrium with the total inflow*” – *This seems like a poor assumption because most of the groundwater wells in figure 4 are close to the average recharge, not the current atmospheric conditions. Why not set the isotopic composition of atmospheric water vapor equivalent to precipitation at or near the time of the survey? (see Gibson et al. 2002)*

97

98

99

100

101 Correct. In the revised manuscript we refrain from this simplifying assumption and calculate δ_A assuming isotopic equilibrium between local precipitation and atmospheric water vapor at ground level temperature for the period in question (June-August 2013).

102

103

104 8. p. 9192: *It is worth pointing out that isotopic enrichment (delta d) was calculated using measured dLS and assumed dTI.*

105

106 Done.

107 9. p. 9192: *I didn't see anywhere in the manuscript where lake water budgets were calculated using 2H. It may offer some insight. If the authors decide not to use 2H for that purpose, the references to 2H in the methods section should be removed.*

108

109

110 In the revised version we present the results of isotope balance calculations also for deuterium. The total inflow-to-evaporation ratios derived from ^2H -based balance turned out to be ca. 5 % higher on the average than those derived from ^{18}O -based balance. For the G index this difference is approximately 0.8 %. The MTT values were ca. 4.3 % higher for ^{18}O -based balance.

111

112

113

114 10. p. 9194, lines 13-16: *The most direct evidence for evaporation in the groundwater flowpath is the fact*
115 *that a number of wells lie along the LEL.*

116 Yes, this is true. The revised text has been modified to reflect that.

117 11. p. 9196, line 4: *“Steady-state isotope enrichment is primarily controlled by water balance....” Again, I*
118 *don’t see any evidence that the lakes are in steady state. The ones most likely to meet this condition are the*
119 *very low I_{tot}/E lakes. It would be worth comparing the results of lakes with very low I_{tot}/E to those with high*
120 *I_{tot}/E .*

121 See point 1 above and the revised text.

122 12. p. 9196, line 23-24: *“Introducing the assumption that the total inflow to each lake also contains a*
123 *groundwater component” – I think the authors have good evidence that these lakes do have groundwater*
124 *inputs. In which case, the governing assumptions used to calculate h_N are not correct. The authors rightly*
125 *include a sensitivity analysis of this assumption, but it should be a more fundamental part of the overall*
126 *modeling effort.*

127 Not relevant anymore. See point 1 above and the revised text.

128 13. p. 9196, line 26-27: *“ $d_{18}O$ value of the total inflow -14.1 per mil”. The authors show that the isotopic*
129 *composition of groundwater can evolve in this landscape. Why not incorporate some of the spatial*
130 *heterogeneity into assumptions about the $d_{18}O$ of groundwater? Or at least provide sensitivity analysis of*
131 *how this assumption affects the results.*

132 Corrected. In the revised version we provide also the sensitivity analysis with respect to possible changes of
133 $\delta^{18}O$ of groundwater.

134 14. p. 9196, line 26-27: *A quick sensitivity analysis using equation 5 and five random lakes from Table 2 shows*
135 *that assuming that the $d_{18}O$ of groundwater is -13.1 per mil instead of -14.1 per mil introduces changes*
136 *ranging from 60 to 143 % in estimated I_{tot}/E . Maybe a 1 per mil error on $d_{18}O$ is too high, but the authors*
137 *should address this assumption more thoroughly. A slight reformulation of the LMWL & LEL lines (Figure 4)*
138 *could allow the error on average recharge to be approached statistically (i.e. as std err on the intercept).*
139 *Although, just looking at figures 4 and 5, I suspect that the groundwater flow system is fairly heterogeneous*
140 *in its isotopic composition.*

141 In the revised version δ_T is calculated individually for each lake (cf. point 1 above). Still, δ_{GW} was maintained
142 constant (-13.1 ‰, -95 ‰), simply because we do not have sufficiently detailed knowledge of this parameter
143 with respect to each studied lake. Sensitivity analysis included in the revised version highlights potential
144 impact of changes of this parameter on the G index.

145 15. p. 9197, line 13: – *“The link between MTT and the I_{tot}/E ratio is much weaker” – I wonder if E/I_{tot} vs. MTT*
146 *would provide more insight?*

147 Not really.

148

149 **References**

150 Stets, E. G., Winter, T. C., Rosenberry, D. O. and Striegl, R. G.: Quantification of surface water and
151 groundwater flows to open- and closed-basin lakes in a headwaters watershed using a descriptive oxygen
152 stable isotope model, *Water Resour. Res.*, 46(3), n/a–n/a, doi:10.1029/2009WR007793, 2010.

153

154

155 A Final Author Comment.

156
157 **The manuscript HESSD-11-183-2014 “Quantifying groundwater dependence of a sub-polar lake cluster in**
158 **Finland using isotope mass balance approach” by E. Isokangas et al.**

159
160 We very much appreciate thorough reviews by two anonymous referees. Their insightful and comprehensive
161 comments helped us to make numerous changes in the way how our data are interpreted, presented and
162 discussed. Isotope mass balance calculations have been refined through including isotopic composition of
163 local atmospheric moisture derived from isotope signal of local precipitation and through assessing the
164 isotopic composition of total inflow individually for each of the studied lakes. Moreover, isotope mass
165 balance calculations were run also deuterium data. The manuscript is in much better shape now. We followed
166 large majority of the reviewer's comments and suggestions when preparing the revised version of the
167 manuscript. In some points, however, we do maintain our views and opinions. Detailed comments addressing
168 all questions/comments of the reviewer #2 are listed below.

169

170 **Anonymous Referee #2**

171 **Specific comments**

172 **Section 3.3. Evaporation estimation**

173 *1. The authors should indicate the time step used in the evaporation estimation using the mass transfer*
174 *approach (hourly? daily? monthly?) and as to why this approach is chosen (eg availability of hourly data?).*
175 *Normally, mass transfer approach works very well for instantaneous evaporation estimation where the*
176 *dependence of vapor pressure gradient (es-ea) and wind speed in equation 1 is assumed to be nonexistent or*
177 *at least low. Over long time integrated data the two parameters are interdependent and may not give good*
178 *evaporation result (as in Dingman, 1994).*

179 This is a good point. The averaging period used in the evaporation calculations was one day. This was chosen
180 because averaging over this period does not introduce large error to the calculations (Dingman, 2008).
181 Averaging over one month period would likely induce significant bias. As the Referee pointed out, vapour
182 pressure differences and wind speed may correlate significantly in this case. This comment will be added to
183 the revised manuscript.

184 *2. What is the relation between the empirical constant n in equation 2 (which follows a power law) and the*
185 *turbulent parameter 'n' implied in the Ck estimation-equation 3. Ck in the Isotope equation in this work is*
186 *based on n = 0.5. For this reason the equation used in estimation of Ck needs to be elaborated (incorporating*
187 *the turbulent parameter n) later in section 4.4- line 18 in addition to referring to Gonfiantini, 1986. The Ck*
188 *(for d18O) values used in this work would be convincing if d2H has been used for the water budget*
189 *computations using the Ck 2H proposed by Gonfiantini, 1986 and get comparable water budget estimation.*

190 This is not the same "n". The term "n" (also "α" is used in the literature) used in eq. (2) is the friction
191 coefficient linked to the vertical profile of wind speed within the boundary layer between the surface and
192 the free atmosphere. In our case we calculated wind speed at 2 m height using the meteo data from 10
193 meters above the surface. We used in our calculations 0.15 which is the friction coefficient for grassland

194 (Bañuelos-Ruedas et al., 2010). Friction coefficient for lakes and oceans is 0.10, but we estimated that 0.15
195 is more suitable for our situation since the lakes have relatively small surface areas and they are surrounded
196 by forests which lowers the wind speed. If 0.10 is used instead, the calculated E values are ca. 8 % higher.

197 In the framework of the Craig-Gordon model describing isotope effects during evaporation of water the term
198 "n" is introduced to quantify the impact of dynamic conditions at the interface on transport of different
199 isotopic molecules of water through the layer of air above the water-air interface (see e.g. Craig and Gordon,
200 1965; Gat, 2010; Horita et al., 2008). It can be shown that kinetic fractionation associated with this transport
201 can be expressed by the following formula:

202
$$\Delta\epsilon \equiv n \cdot \left(1 - \frac{D_i}{D}\right) (1 - h_N) = C_k \cdot (1 - h_N)$$

203 Where D and D_i stand for molecular diffusivities of normal and heavy water molecules, respectively, in air,
204 and h_N is relative humidity of the atmosphere normalized to the temperature of the evaporating water. The
205 term "n" changes from 0.5 (rough evaporating surfaces, turbulent conditions) to 1 (maximum kinetic
206 fractionation - transport accomplished only through molecular diffusion). The ratio D_i/D was measured in the
207 laboratory (Merlivat, 1978). Wind tunnel experiments (Vogt, 1976) have shown that C_k is equal 14.2 ‰ for
208 ^{18}O and 12.5 ‰ for ^2H . This corresponds to $n = 0.5$ i.e. rough evaporating surface and dominance of turbulent
209 transport. Numerous field studies using isotopes to quantify lake balance have shown that these values are
210 well suited for describing kinetic fractionation during evaporation of surface water bodies in continental
211 settings.

212 Budget of Rokua lakes based on ^2H data is presented in the revised version of the manuscript and yields the
213 results similar to the ^{18}O -based budget (cf. point 9 in the reply to Reviewer #1).

214 To avoid confusion, in the revised manuscript the term "n" in eq. (1) is labeled as " θ ".

215

216 **Section 4.2. Local isotopic composition**

217 1. Please replace 'intersect' by 'intercept' in section 4.2 line 11

218 Done.

219 2. Line 16 What is the source of 'evaporation signal' and how is linked to the enrichment discussed in line 21.
220 One major issue here is what is the role of these enriched groundwaters in feeding next downstream lakes? If
221 this enriched groundwater enters into the next downstream lake it has a bearing on the interpretation of the
222 I/E ratio of the next lake as this affects the $\Delta\epsilon$ of the next lake downstream. To avoid this confusion the
223 authors need to briefly provide groundwater table map (if available) or at least the geographic occupation of
224 the different lakes and discuss if such lake interconnection exists via groundwater.

225 The expression "evaporation signal" and "isotope enrichment" have the same meaning.

226 We admit that the question of groundwater input to a given lake which seeps from upstream lake and thus
227 is enriched isotopically, is an important issue. However we do not have sufficiently detailed observations to

228 consider this explicitly for each individual lake. We took this into account only for lakes which have visible
229 surface inflow originating from an upstream lake (cf. point 1 in the reply to comments of Referee #1). For the
230 rest of the studied lakes we assumed constant isotopic composition of groundwater inflow equal the average
231 isotope signature of groundwater measured in piezometers in the study area. The question of potential
232 interconnections between lakes via groundwater is discussed in the revised version of the manuscript. In the
233 revised version of the manuscript we also show the results of sensitivity study with respect to the assumed
234 isotopic composition of groundwater inflow.

235

236 **Section 4.4. Quantifying groundwater dependence of the studied lakes**

237 *1. A brief discussion about hydrology of the terminal lake Kissalampi (pond/lake) is needed so as to convince*
238 *readers this lake can be used as an index terminal lake. The lake has been chosen as a terminal lake based on*
239 *the assumption that it shows the highest enrichment. To substantiate this the authors need to give*
240 *information about a) if the geology underneath the lake bottom allows this assumption –eg presence of clay*
241 *deposits, b) if the lake occupy the lowest place in the region where all waters converge but little chance for*
242 *leakage and c) compare the isotopic composition of the lake with respect to the hypothetical 'limiting isotopic*
243 *composition-_* (Gonfiantini, 1986)' for the region and d) this is not a changing volume/shrinking lake during*
244 *that time of the year.*

245 We appreciate this comment. Closer examination of the location of Kissalampi pond and calculation of the
246 expected steady-state isotope enrichment of this lake for the case when it would indeed operate as terminal
247 lake, revealed that the lake is in fact less enriched isotopically than expected (measured $\delta^{18}\text{O}$: -5.6 ‰,
248 expected $\delta^{18}\text{O}$: -2.9 ‰). Therefore, we had to abandon this tempting idea of using Kissalampi lake data to
249 derive h_N . Instead, we rely on meteorological information and measured temperature of the lakes in deriving
250 this important parameter.

251 *2. In section 4.4 line 26 reads "The lowest G value (27.8%) was obtained for Kissalampi pond, which is*
252 *comparable to a terminal lake." This argument appears incorrect. The G reflect the inflow index not the*
253 *outflow which governs whether a lake is terminal or not. This needs correction.*

254 Correct, but not relevant anymore (see the previous comment).

255 *3. Figure 8 and 9 add little value in the manuscript. If the authors claim this could add more value, elaboration*
256 *is needed.*

257 We agree. The figures were removed. The relations shown are described in the text.

258 **Section 5. Conclusion**

259 *One or two lines of argument stating the presence or absence of any pattern in groundwater dependence by*
260 *geographic position (upland, midland, center etc) may be interesting.*

261 The groundwater dependence of the studied lakes does not follow any clear spatial pattern, since the
262 existence of surface water outflow complicates the situation.

263 **Other comments**

264 *Figure 3. In the line marks please use multiple of 5 in the vertical axis*

265 Figure 3 has been modified.

266 *Abstract- Line 3: please add 'and quantity' after 'role'*

267 "and extent" was added.

268 *In evaporation estimation, section 3.3, the authors used temperature of the surface part of the lake water*
269 *body to estimate the saturated vapor pressure es (normalization has been applied to temperature of surface*
270 *part of lake water body). In isotope section the humidity has been normalized to temperature of evaporating*
271 *surface. The two (mass transfer and evaporative isotope fractionation) are based on similar theory and one*
272 *temperature value should be used in both cases, in principle.*

273 In fact the same temperature (temperature of the surface layer of the lakes) was used in both types of
274 calculations.

275 **References**

276 Bañuelos-Ruedas, F., Angeles-Camacho, C. and Rios-Marcuello, S.: Analysis and validation of the
277 methodology used in the extrapolation of wind speed data at different heights, Renew. Sustain. Energy
278 Rev., 14(8), 2383–2391, doi:10.1016/j.rser.2010.05.001, 2010.

279 Craig, H. and Gordon, L. I. : Deuterium and Oxygen-18 Variations in the Ocean and the Marine Atmosphere,
280 in Stable Isotopes in Oceanographic Studies and Paleotemperatures, edited by E. Tongiorgi, pp. 9–130,
281 Laboratorio di geologia nucleare, Pisa., 1965.

282 Dingman, S. L.: Physical Hydrology, 2. ed., Waveland press, Long Grove, IL., 2008.

283 Gat, J. R.: Isotope hydrology: A study of the water cycle, Imperial College Press, London., 2010.

284 Horita, J., Rozanski, K. and Cohen, S.: Isotope effects in the evaporation of water: a status report of the
285 Craig-Gordon model., Isotopes Environ. Health Stud., 44(1), 23–49, doi:10.1080/10256010801887174,
286 2008.

287 Merlivat, L.: The dependence of bulk evaporation coefficients on air-water interfacial conditions as
288 determined by the isotopic method, J. Geophys. Res. Ocean., 83(C6), 2977–2980,
289 doi:10.1029/JC083iC06p02977, 1978.

290 Vogt, H. J.: Isotopentrennung bei der Verdunstung von Wasser, Staatsexamensarbeit, Institut für
291 Umwelphysik, Heidelberg., 1976.

292

293

294

295 **Quantifying groundwater dependence of a sub-polar lake**
296 **cluster in Finland using an isotope mass balance approach**

297

298 **Elina Isokangas¹, Kazimierz Rozanski², Pekka M. Rossi¹, Anna-Kaisa Ronkanen¹,**
299 **Bjørn Kløve¹**

300 [1] {Water Resources and Environmental Engineering Research Group, University of Oulu, P.O.
301 Box 4300, 90014 Oulun yliopisto, Finland}

302 [2] {Faculty of Physics and Applied Computer Science, AGH University of Science and
303 Technology, 30 Mickiewicza Av., 30-059 Krakow, Poland}

304 Corresponding author: Elina Isokangas, Email: elina.isokangas@oulu.fi Tel: +358414365252

305

306

307 **Abstract**

308 A stable isotope study of 67 kettle lakes and ponds situated on an esker aquifer (90 km^2) in northern
309 Finland was carried out to determine the role **and extent** of groundwater inflow in groundwater-
310 dependent lakes. Distinct seasonal fluctuations in the $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values of lakes are the result of
311 seasonal ice cover prohibiting evaporation during the winter. **An iterative** isotope mass balance
312 approach was used to calculate the inflow-to-evaporation ratios (I_{TOT}/E) of all 67 lakes during the
313 summer of 2013 when the isotopic compositions of the lakes were approaching a steady-state. **The**
314 **balance calculations were carried out independently for ^2H and ^{18}O data.** Since evaporation rates were
315 derived independently of any mass balance considerations, it was possible to determine the total
316 inflow (I_{TOT}) and mean turnover time (MTT) of the lakes. Furthermore, the groundwater seepage rates
317 **to all studied lakes** were calculated. A quantitative measure was introduced for the dependence of a
318 lake on groundwater (G index) that is defined as the percentage contribution of groundwater inflow
319 to the total inflow of water to the given lake. The G index values of the lakes studied ranged from ca.
320 **39 % to 98 %, revealing generally large groundwater dependency among the studied lakes.** This study
321 shows the effectiveness of applying an isotope mass balance approach to quantify the groundwater
322 reliance of lakes situated in a relatively small area with similar climatic conditions.
323

324 **Key words**

325 Stable isotopes of water, groundwater-surface water interaction, lake hydrology, mean turnover time
326 (MTT), inflow-to-evaporation ratio (I_{TOT}/E), thermal imaging

327 **1. Introduction**

328 The characterisation of groundwater dependent ecosystems (GDEs) is a requirement of the
329 Groundwater Directive (EC, 2006). These systems are often complex and their hydrology and contact
330 with aquifers are not well established. Lakes can be dependent on groundwater directly or indirectly,
331 and this dependence can vary over time (Kløve et al., 2011). Understanding groundwater and lake
332 water interaction is important not only for water resource management (Showstack, 2004), but also
333 for understanding the ecology and eutrophication of lakes, since groundwater may be a key element
334 in the lake nutrient balance (Ala-aho et al., 2013; Belanger et al., 1985; Brock et al., 1982; Kidmose
335 et al., 2013). Furthermore, the vulnerability of lakes to pollution can be controlled by their
336 dependency on groundwater (Kløve et al., 2011). Methods such as seepage meters (Ala-aho et al.,
337 2013; Rosenberry et al., 2008, 2013), environmental tracers (e.g. Dinçer, 1968; Shaw et al., 2013;
338 Stets et al., 2010; Yehdegho et al., 1997; Zuber, 1983) and numerical modelling (e.g. Krabbenhoft et
339 al., 1990; Stichler et al., 2008; Winter and Carr, 1980) can be used to determine the groundwater
340 reliance of lakes.

341 Heavy stable isotopes of water (^{18}O , ^2H) can be considered as ideal tracers for studying the
342 hydrological cycle (e.g. Clark and Fritz, 1997). Fractionation of isotopes of water is the very factor
343 enabling their use in hydrological studies, as it governs the changes in isotopic abundances within the
344 water cycle (Gat, 2010). At a global scale, the ^2H and ^{18}O isotope composition of meteoric waters
345 cluster along the line called the global meteoric water line (GMWL), first determined by Craig (1961):
346 $\delta^2\text{H} = 8 \cdot \delta^{18}\text{O} + 10$. Locally, this linear relationship may have a slightly different form (local
347 meteoric water line - LMWL). Evaporation from an open water body fractionates isotopes so that the
348 remaining liquid phase is enriched in both ^2H and ^{18}O in proportion with their effective fractionation
349 factors accompanying this process. Consequently, the isotopic composition of the evaporating water
350 body evolves in the δ -space along the line known as the local evaporation line (LEL), whose slope is
351 significantly smaller than that characterising the local or global meteoric water lines. The position of
352 the isotopic composition of lake water along this line is strongly related to the water balance of the
353 lake (e.g. Gat, 1996; Gibson and Edwards, 2002; Rozanski et al., 2001).

354 The methodology of isotope-aided studies of the water balance of lakes has been thoroughly discussed
355 in a number of review papers and textbooks (e.g. Darling et al., 2005; Froehlich et al., 2005; Gat and
356 Bowser, 1991; Gat, 1995; Gonfiantini, 1986; Rozanski et al., 2001). Although several authors have
357 applied isotope techniques in studying lakes in cold climates (Gibson and Edwards, 2002; Gibson,

358 2002; Gibson et al., 1993; Jonsson et al., 2009; Turner et al., 2010; Yi et al., 2008), mostly in Canada
359 and northern Sweden, these studies were generally focused on lakes spread over large areas.

360 The central aim of this study was to quantify the groundwater dependence of 67 kettle lakes and ponds
361 situated across a relatively small area (90 km^2) of the Rokua esker aquifer occupying a large
362 glaciofluvial deposit in northern Finland. To quantify the extent of the interaction between the aquifer
363 and the lakes, a dedicated isotope study was launched in 2013. This was part of comprehensive
364 investigations (2010-2012) aimed at understanding the hydrology of an esker aquifer area where some
365 of the kettle lakes and ponds have suffered from water level decline or eutrophication. Since the
366 seasonal isotopic behaviour of the selected lakes in the study area was already fairly well understood
367 based on the data collected from 2010 to 2012, it was decided to conduct a large-scale one-time survey
368 of the isotopic composition of all 67 lakes on the Rokua esker in order to quantify their dependence
369 on groundwater. Ala-aho et al. (2013), who studied 11 lakes on the esker, showed that the water levels
370 in closed-basin seepage lakes have more fluctuations than the drainage lakes, which have more stable
371 water levels. On the other hand, the drainage lakes are more productive. Their study also showed that
372 subsurface flow can transport phosphate to lakes. Therefore, it was important to quantify the
373 groundwater dependence of all lakes on the esker and propose an appropriate index reflecting this
374 dependence. The large-scale field campaign conducted in July and August 2013 comprised the
375 sampling of water in all 67 lakes for isotope analyses, combined with continuous temperature
376 measurements and aerial thermal imaging of the lakes.

377

378 **2. The study area**

379 The Rokua esker aquifer area, situated in Northern Finland, was formed during the transition period
380 from Late Glacial to Holocene, between approximately 12,000 and 9,000 years ago (Tikkanen, 2002).
381 As ice retreated, a long ridge formation, consisting mainly of fine and medium sand (Pajunen, 1995),
382 was shaped. Ancient sea banks surrounding the esker show that the esker was originally an island that
383 gradually rose from the sea (Aartolahti, 1973). Today, the highest elevation of the esker is 100 m
384 above the surrounding low-lying peatlands and the layer thickness of sand ranges from 30 m to more
385 than 100 m above the bedrock. Sea banks, dunes and kettle holes form a rolling and geologically
386 unique terrain (Aartolahti, 1973). Kettle holes were formed when ice blocks were buried in the ground
387 and, as they melted, left depressions in the landscape. The ground surface of the esker is mainly
388 lichen-covered pine forests. Hydrologically, the Rokua esker is an unconfined aquifer, one of the

389 largest in Finland, and it has two regional groundwater mounds (Rossi et al., 2014). The recharge area
390 of the aquifer is 90 km² and the discharge zones are situated in the surrounding peatlands, which
391 partially confine the aquifer (Rossi et al., 2012).

392 Kettle holes – long and narrow depressions – give Rokua esker its distinct character. The sizes of
393 these kettle holes vary. They can be 1 to 80 m deep, between 10 m and 1.5 km long, and 0.4 km wide
394 (Aartolahti, 1973). Most of the kettle holes are now dry, but due to the influence of groundwater in
395 the past, peat has accumulated at the bottom of them, creating kettle hole mires (Pajunen, 1995).
396 However, the alternating topography of the area is reflected in the existence of approximately 90
397 lakes or ponds, referred to as kettle lakes or ponds. Peat started to accumulate in the border regions
398 of the lakes more than 8,000 years ago, so most of the kettle lakes and ponds are partly paludified
399 (Pajunen, 1995). Nevertheless, the majority of the lakes and ponds are characterised by their crystal
400 clear water, which attract people; number of holiday homes and hotels are located on the lakeshores.
401 The lakes are nowadays widely used for different recreational activities, such as swimming, fishing
402 and scuba diving (Anttila and Heikkinen, 2007). The uniqueness of the glaciofluvial formation of
403 Rokua, in which the actions of ice, water and wind can be seen, has been recognised in many ways.
404 Some of the Rokua esker is protected by Natura 2000 and by the Finnish nature reserve network.
405 Rokua was recently chosen to be part of the UNESCO GeoPark Network and is currently the
406 northernmost region in this network.

407

408 3. Materials and methods

409 3.1. Hydrological measurements and thermal imaging

410 During 2010-2012, 11 lakes, 13 piezometers and 11 streams were sampled in the study area four times
411 per year to analyse the stable isotopic composition of water, nutrients, water quality parameters (T,
412 pH, E.C., O₂) and geochemical parameters (silica, major cations and anions) (Fig. 1). During the field
413 campaign conducted in July and August 2013, a total of 67 lakes and ponds were surveyed for the
414 same parameters and thermal images of lakes taken from the air in a helicopter using a FLIR thermal
415 camera. In addition, composite (monthly) precipitation samples were collected during the open water
416 season at the station on the esker during 2010-2013. Precipitation samples for winter were collected
417 once a year before snowmelt by taking a uniform sample of the whole snowpack depth.

418 Water quality parameters were analysed in the field using WTW Multi 3430 or Multi 350i meters for
419 temperature, oxygen, EC and pH. Samples of lake water were collected with a Limnos sampler,

420 approximately 1 m below the water surface and 1 m above the bottom of the lake. If the depth of the
421 lake was less than 2 m, only one sample from the depth of 1 m was taken and if it was more than 20
422 m, samples were taken from the middle of the water profile as well. Depending on their shape and
423 size, the lakes had between 1 and 4 sampling locations. Stream samples were collected by submerging
424 a bottle in water, facing upstream. Piezometers were pumped for at least 10 minutes prior to taking
425 groundwater samples or until the colour of the water was clear. The samples were collected one metre
426 below the water table. All sampling bottles (HDPE) were rinsed with the sampled water prior to
427 filling. Samples for isotope analyses were stored in the dark at a reduced temperature ($4\text{ }^{\circ}\text{C} \pm 2\text{ }^{\circ}\text{C}$).

428 The isotopic composition of water samples was analysed using CRDS technology with a Picarro
429 L2120-i analyser. Samples with visible colour or suspended matter were filtered (pore size 25 μm)
430 prior to analysis. The measured $^2\text{H}/^1\text{H}$ and $^{18}\text{O}/^{16}\text{O}$ isotope ratios are reported as relative deviations
431 from the VSMOW standard. Typical uncertainty of the reported $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values are $\pm 0.1\text{ }{\text{\textperthousand}}$ and
432 $\pm 1.0\text{ }{\text{\textperthousand}}$ respectively.

433 Lake water temperature was measured continuously during the ice-free period in 2013 for two lakes
434 on the Rokua esker: Ahveroinen (3.3 ha) and Saarinen (15.3 ha). Hobo loggers (pendant temperature
435 data logger UA-001-08 and conductivity logger U24-001, accuracy 0.1 $^{\circ}\text{C}$) were installed 50 cm
436 below the lake surface. In addition, the surface water temperature for lake Oulujärvi (92800 ha) was
437 obtained from the database of the Finnish Environmental Institute (2013). Lake Oulujärvi is located
438 east, next to the study site, 1 km from the easternmost lake studied. Thermal imaging of the lakes was
439 conducted on 5 August 2013 using a Flir Thermacam P-60 thermal camera. This camera had 320 x
440 240 pixel sensor resolution and an opening of 24 $^{\circ}$. It covered the electromagnetic spectrum from 7.5
441 to 13 μm . The imaging was taken by helicopter 150 meters above the lakes. The image data were
442 correlated to the predominant weather conditions (temperature and relative humidity) with data from
443 the FMI Pelso weather station measured every 10 minutes.

444 Depth profiling was undertaken in the lakes for which no depth contour lines are available (National
445 Land Survey of Finland, 2010a). It was carried out with a portable depth-sounding radar (resolution
446 0.1 m) or with a measuring cable and GPS system. Typically, two profiles from the shore to the
447 deepest point were defined. The number of measurement points differed between the lakes depending
448 on their size. In total, 52 lakes were surveyed.

449

450

451 **3.2. Lake volumes**

452 The volumes of the lakes were determined in an ArcGIS environment using depth profiling
453 measurements, contour lines and border lines. The water surface levels of the lakes were estimated
454 using elevation levels presented in the basic map (National Land Survey of Finland, 2010a). Lake
455 morphology was mostly interpolated using spline that results in a smooth surface passing by all the
456 input points (ESRI, 2014). The Tension method with 0.1 weight and 3 input points was used to
457 calculate the values for the interpolated cells. Interpolation rasters were extracted by surface water
458 areas. The mean depths of these new rasters were multiplied by the water surface areas in order to
459 calculate the volumes of the lakes.

460

461 **3.3. Evaporation from lakes**

462 Evaporation (E) was calculated individually for all the lakes surveyed using a mass transfer approach
463 (Rosenberry et al., 2007; Dingman, 2008). This method was chosen because it yields instantaneous
464 rates of evaporation and takes into account lake sizes (Harbeck, 1962). Our data enabled the
465 calculations of daily mean values of evaporation flux for all the lakes studied. Averaging the
466 parameters for periods of time longer than one day can lead to significant biases in the calculated E
467 values since on these time scales the vapour pressure differences and wind speed may correlate
468 (Jobson, 1972). The following expression was used to calculate the evaporation flux (Dingman,
469 2008):

470
$$E = K_E \cdot v_a \cdot (e_s - e_a), \quad (1)$$

471 where:

472 E is evaporation rate (mm s^{-1})

473 K_E is the mass-transfer coefficient in $\text{m km}^{-1} \text{kPa}^{-1}$ describing the impact of turbulent eddies of the
474 wind on vertical transport of water vapour from the lake with area $A_L (\text{km}^2)$, $K_E = 1.69 \cdot 10^{-5} \cdot$
475 $A_L^{-0.05}$ (Harbeck, 1962)

476 v_a is wind speed (m s^{-1}) at 2 m height

477 e_s is the saturation vapour pressure in kPa at surface water temperature $T_s (\text{ }^\circ\text{C})$, $e_s = 0.611 \cdot$
478 $\exp\left(\frac{17.3 \cdot T_s}{T_s + 237.3}\right)$

479 e_a is the vapour pressure in the air in kPa, $e_a = h \cdot 0.611 \cdot \exp\left(\frac{17.3 \cdot T_a}{T_a + 237.3}\right)$, where h is relative humidity
480 and T_a is air temperature ($\text{ }^\circ\text{C}$).

481 Wind speed measured at 10 m height was adjusted to the corresponding speed at 2 m height using the
482 power law profile (Justus and Mikhail, 1976):

483 $v_z = v_r \left(\frac{z}{z_r}\right)^\beta$, (2)

484 where v_r is the measured wind speed at the reference height z_r (10 m), z is the height for which speed
485 is adjusted (2 m) and β is the friction coefficient. The value of 0.15 for β , characteristic for grassland,
486 was employed in our study (0.1 characterizes oceans and lakes) (Bañuelos-Ruedas et al., 2010) since
487 the lakes are surrounded by forests lowering the wind speed.

488 The meteorological parameters necessary for the calculations (relative humidity, wind speed and air
489 temperature) were obtained from the meteorological station 5502 (Vaala-Pelso) of the Finnish
490 Meteorological Institute (2014), located approximately 10 km from the site. A probable range for the
491 lakes' surface water temperature was evaluated using continuous temperature measurements at 50 cm
492 depth from one of the studied lakes, Ahveroinen (see section 4.1), and a standard deviation of this
493 temperature determined from thermal images. Using the derived temperature range, a probable range
494 for evaporation rates from all the lakes was calculated. The adopted method relies only on temperature
495 difference measured on one day, but since all the lakes are in a relatively small area with almost
496 identical weather conditions, it is highly probable that the seasonal behaviour of the surface water
497 temperature of the studied lakes is similar.

498

499 **3.4. Isotope mass balance**

500 Instantaneous water and isotope balances for an evaporating surface water body can be formulated as
501 follows:

502 $\frac{dV}{dt} = T_{TOT} - E - O_{TOT}$ (3)

503 $\delta_L \frac{dV}{dt} + V \frac{d\delta_L}{dt} = \delta_{IT} \cdot I_{TOT} - \delta_E \cdot E - \delta_{OT} \cdot O_{TOT}$ (4)

504 where V stands for the volume of the surface water body, δ_L signifies its isotopic composition and
505 I_{TOT} , E and O_{TOT} represent the total inflow, evaporation and total outflow of water from the system,
506 respectively, whereas δ_{IT} , δ_E and δ_{OT} stand for their respective isotopic compositions, expressed in
507 ‰. As the total inflow may consist of several components (precipitation, underground and surface
508 inflows), each with its specific isotopic composition, δ_{IT} should be calculated as a flux-weighted mean
509 of the respective isotopic compositions of individual components. The total outflow may also consist

510 of surface and underground components. For well-mixed systems it is typically assumed that $\delta_{OT} =$
511 δ_L .

512 The isotopic composition of the evaporation flux, δ_E , cannot be measured directly. However, it can
513 be calculated using the expression derived from the linear resistance model describing isotope effects
514 accompanying evaporation process (Craig and Gordon, 1965; Horita et al., 2008):

515
$$\delta_E = \frac{(\delta_L/\alpha_{LV}) - h_N \cdot \delta_A - \varepsilon}{(1-h_N) + \Delta\varepsilon \cdot 10^{-3}} \quad (5)$$

516 where ε is the total effective isotope fractionation, $\varepsilon = \varepsilon^* + \Delta\varepsilon$, where ε^* stands for equilibrium isotope
517 enrichment ($\varepsilon^* = (1-1/\alpha_{LV}) \cdot 10^3$) expressed in ‰ and α_{LV} represents the equilibrium isotope
518 fractionation factor between liquid and gaseous phases. The kinetic isotope enrichment $\Delta\varepsilon$, is defined
519 as $\Delta\varepsilon = C_k(1 - h_N)$ where C_k stands for the kinetic enrichment parameter. δ_A represents the isotopic
520 composition of atmospheric water vapour over the evaporating water body (‰) and h_N is the relative
521 humidity of the local atmosphere, normalized to the temperature of evaporating water.

522 When the evaporating water body is in hydrologic and isotopic steady-state ($dV/dt=0$ and $d\delta_L/dt=0$,
523 respectively), the following approximate expression describing the isotope enrichment of the
524 evaporating water body can be derived from eqs. 3-5 (see e.g. Gat and Bowser, 1991):

525
$$\Delta\delta = \delta_{LS} - \delta_{IT} \cong \frac{\delta_A - \delta_{IT} + \varepsilon/h_N}{1 + \frac{I_{TOT}}{E} \frac{1-h_N}{h_N}} \quad (6)$$

526 where $\Delta\delta$ stands for the evaporative enrichment and δ_{LS} is the steady-state isotopic composition of
527 the studied system. The following expression describing the ratio of the total inflow to the evaporation
528 rate can be derived from eq. (6):

529
$$\frac{I_{TOT}}{E} = \frac{\delta_A - \delta_{LS} + \varepsilon/h_N}{(\delta_{LS} - \delta_{IT}) \frac{1-h_N}{h_N}} \quad (7)$$

530 If the evaporation flux E can be assessed independently, as is the case of this study, the total inflow
531 of water to the given lake can be calculated from eq. (7). From this, the groundwater component of
532 this inflow can be further inferred, provided that the other components of this inflow are known or
533 can be independently assessed.

534 To quantify the water balance of a lake with the aid of eq. (7) the knowledge of the isotopic
535 composition of atmospheric moisture interacting with the lake, δ_A , is required. Field measurements
536 of this parameter become feasible only recently thanks to advancements of CRDS technology.

537 However, the combined studies of the isotopic composition of atmospheric water vapour and
538 precipitation performed in moderate climates (Jacob and Sonntag, 1991; Schoch-Fischer et al., 1984)
539 have shown that, on monthly basis, the isotopic composition of precipitation is generally in isotopic
540 equilibrium with the local atmospheric moisture at ground-level temperature. This is particularly true
541 for summer season. Therefore, the value of δ_A can be derived from the isotopic composition of local
542 precipitation, δ_P , which is also required to quantify the isotopic composition of the total inflow to the
543 studied lake, δ_T , appearing in eq. (7). The following relation can be used to calculate δ_A (in ‰):

544
$$\delta_A = \frac{1}{\alpha_{LV}} (\delta_P + 10^3) - 10^3 \quad (8)$$

545 Equation (7) is valid under two basic assumptions: (i) the evaporating water body is in hydrologic
546 and isotopic steady-state, and (ii) the water body is isotopically homogeneous. Natural surface water
547 systems, such as lakes, typically operate close to their hydrologic and isotopic steady-states attained
548 in the course of their long history. Their steady-state characteristics are defined by local climate,
549 morphological setting and prevailing hydrological regime. Such systems usually exhibit seasonal
550 fluctuations of varying amplitude, caused by seasonal fluctuations of local climate (surface air
551 temperature, relative humidity, precipitation amount), superimposed on long-term trends. Seasonal
552 ice-cover, typical for mid and high latitudes, may also contribute to the seasonal fluctuations of the
553 steady-state characteristics of such systems. The gradual attainment of the isotopic steady-state,
554 which is characterized by an exponential function describing the temporal evolution of δ_L , can be
555 observed only for surface water systems which are artificially created, such as dredging lakes
556 resulting from exploitation of gravel deposits (Zimmerman, 1979). The time constant characterizing
557 the dynamics of this process is mainly controlled by the mean turnover time of water in this system,
558 defined as the ratio of its volume to the total inflow, its hydrological balance (I_{TOT}/E ratio) and the
559 normalized relative humidity (e.g. Gonfiantini, 1986; Zimmerman, 1979).

560

561 **4. Results and discussion**

562 **4.1. Climate and lake water temperature data**

563 The climate is strongly seasonal in the Rokua esker study area. The long-term monthly mean values
564 of surface air temperature vary from -10.9°C (January) to 13.2°C (June) for the period between 1959
565 and 2013 (Fig. 2). The amount of monthly precipitation varies from 29 mm (February and April) to
566 79 mm (August) for the same period. The warmest months of the year are June, July and August. The

567 long-term (1970-2013) monthly mean relative humidity of air varies from 61 % (May) to 91 %
568 (November).

569 The seasonal temperature patterns of the monitored lakes were very similar, despite significant
570 differences in lake size (Fig. 3). Thus the surface water temperature of lake Ahveroinen 1 (mean value
571 of 19.1 °C) during the period from 1 June 2013 to 31 August 2013 was used as a basis for estimating
572 the water temperature of other lakes. Thermal images collected on 5 August 2013 yielded comparable
573 surface water temperatures that ranged from 19.5 °C to 24.6 °C, with a mean of 21.3 °C and a standard
574 deviation of 0.87 °C. Combining the results of continuous temperature measurements and thermal
575 images, an estimate of the mean surface water temperature of all lakes for the period from 1 June to
576 31 August 2013 was derived to be $19.10 \text{ }^{\circ}\text{C} \pm 0.87 \text{ }^{\circ}\text{C}$. This temperature was used in the isotope mass
577 balance calculations.

578

579 **4.2. Local isotopic compositions**

580 An overview of the isotopic composition of different types of water in the study area is presented on
581 the $\delta^2\text{H}$ - $\delta^{18}\text{O}$ space in Fig. 4. It comprises precipitation data collected during the period from 18
582 March 2010 till 29 October 2013 at the station located on the esker, the mean isotopic compositions
583 of the selected lakes, streams and groundwater monitored during the period 2010-2013 (Table 1), as
584 well as the isotopic compositions of 67 lakes surveyed in July and August 2013 (Table 2).

585 The local meteoric water line (LMWL) of Rokua ($\delta^2\text{H} = 7.77 \cdot \delta^{18}\text{O} + 9.55$) was defined using the δ
586 values of precipitation samples collected during the years 2010-2013 (Fig. 4). The local evaporation
587 line (LEL), $\delta^2\text{H} = 5.09 \cdot \delta^{18}\text{O} - 28.19$, is the best fit line of the δ values representing lake water data
588 for the year 2013. The intercept of the LMWL and LEL lines yields the estimate of the weighted
589 annual mean $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values of precipitation ($-14.1 \text{ } \text{\textperthousand}$ and $-100 \text{ } \text{\textperthousand}$ respectively). Slightly
590 elevated mean $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values of local groundwater ($-13.1 \text{ } \text{\textperthousand}$ and $-95 \text{ } \text{\textperthousand}$), combined with
591 reduced deuterium excess ($d = \delta^2\text{H} - 8 \cdot \delta^{18}\text{O} = 4.8 \text{ } \text{\textperthousand}$) when compared to deuterium excess of
592 precipitation ($12.8 \text{ } \text{\textperthousand}$), indicate the presence of an evaporation signal in the local groundwater.
593 Furthermore, some of the winter precipitation is most probably returned to the atmosphere via
594 sublimation and does not contribute to groundwater recharge.

595 Although majority of groundwater samples cluster near the LMWL-LEL intersect, there are some
596 data points **lying along the LEL** in the $\delta^{18}\text{O}$ - $\delta^2\text{H}$ plot indicating the contribution of (evaporated) lake
597 water to groundwater. **However, the interconnection between the lakes via groundwater is likely to**

598 be minor since lakes probably have groundwater table maxima between them as they are situated in
599 deep holes in the landscape. Nevertheless, the existence of deeper flow paths from the upper elevation
600 lakes to the lower ones cannot be excluded. Based on the estimation of elevation differences and
601 distances between the lakes, we identified the lakes which do not have surface inflows but which
602 might receive some groundwater input originating from upper elevation lakes. These are lakes No. 6,
603 14, 20, 34, 38, 41, 47, 50 and 59. The sensitivity study presented in section 4.5 considers probable
604 changes of the isotopic composition of the total inflow to each lake caused by the presence of
605 evaporated lake water component.

606 The influence of evaporated lake water seeping to groundwater is illustrated in Fig. 5, showing the
607 isotopic composition of lake Ahveroinen 1 and adjacent groundwater. The mean $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values
608 of piezometers MEA 2010 and MEA 1907 situated on the south-eastern and north-western sides of
609 the lake were -13.4 ‰ and -97 ‰ and -10.7 ‰ and -83 ‰ respectively, clearly indicating a
610 substantial (ca. 55 %) contribution of lake water to groundwater at the north-western side of the lake.
611 A smaller contribution (ca. 10 %) of lake water to groundwater can be seen on the eastern and western
612 sides of the lake where the mean $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values of groundwater were -12.9 ‰ and -93 ‰
613 respectively. The main direction of groundwater flow is therefore from south-east to north-west,
614 which coincides with the results from seepage measurements conducted by Ala-aho et al. (2013). The
615 direction of groundwater flow can also be noted from the difference in the mean isotopic composition
616 of the lake water between points 2 and 3 of -8.7 ‰ and -73 ‰ and -8.5 ‰ and -72 ‰ respectively.
617 The difference in isotopic compositions between points 2 and 3 was greatest during the winter: in
618 March 2011 the difference in $\delta^{18}\text{O}$ and $\delta^2\text{H}$ between these points was -1.1 ‰ and -4 ‰ respectively.

619

620 **4.3. Temporal variations in the isotopic composition of lake water**

621 The seasonal variability in the isotopic composition of the lakes studied is illustrated in Fig. 6,
622 showing changes of $\delta^{18}\text{O}$ in lake Ahveroinen 1 at two depths (1 and 4 meters). $\delta^{18}\text{O}$ of lake
623 Ahveroinen 1 reveals distinct seasonal fluctuations with peak-to-peak amplitude in the order of 1 ‰.
624 This lake does not have any surface inflows or outflows. After the disappearance of ice cover during
625 the spring (April-May), the lake starts to evaporate, which results in its gradual enrichment in heavy
626 isotopes, approaching the steady-state value sometime in September-October. Freezing of the lake in
627 late autumn stops the evaporation flux. Systematic decline of $\delta^{18}\text{O}$ during ice-cover period seen in

628 Fig. 6 stems from gradual dilution of lake water with groundwater seeping into the lake. Figure 6
629 shows that the lake is well mixed throughout the year.

630 The declining parts of the $\delta^{18}\text{O}$ curve in Fig. 6 can be used to assess the intensity of groundwater
631 inflow during ice-cover period, if the volume of the studied lake is known and the isotopic
632 composition of groundwater is constant. The isotope balance of such lake system (eq. 4) can be then
633 expressed as follows:

634
$$V \frac{d\delta_L}{dt} = \delta_{IT} \cdot I_{TOT} - \delta_{OT} \cdot O_{TOT} \quad (9)$$

635 Since $I_{TOT} = I_{GW}$, $\delta_{IT} = \delta_{GW}$, $O_{TOT} = O_{GW} = I_{GW}$ and $\delta_{OT} = \delta_L$, eq. (9) becomes:

636
$$\frac{d\delta_L}{dt} = \frac{I_{GW}}{V} (\delta_{GW} - \delta_L) \quad (10)$$

637 The solution of this differential equation reads as follows:

638
$$\delta_L = (\delta_{Lo} - \delta_{GW}) \cdot e^{-k \cdot t} + \delta_{GW} \quad (11)$$

639 where $k = I_{GW}/V$ and δ_{Lo} is the isotopic composition of the lake at the beginning of ice-cover period
640 ($\delta^{18}\text{O}_{Lo} = -8.5 \text{ ‰}$ for lake Ahveroinen 1). First derivative of eq. (11) at $t = 0$ is:

641
$$\left(\frac{d\delta_L}{dt} \right)_{t=0} = \frac{I_{GW}}{V} (\delta_{GW} - \delta_{Lo}) \quad (12)$$

642 Equation (12) allows to calculate the mean flux of groundwater to the lake during ice-cover period.
643 The observed reduction of $\delta^{18}\text{O}$ of lake Ahveroinen 1 by ca. 1.2 ‰ over the six-month period (cf.
644 Fig. 6, Table 1) results from the continuous inflow of groundwater with specific isotopic signature
645 ($\delta^{18}\text{O}_{GW} = -13.4 \text{ ‰}$). The groundwater seepage rate obtained from eq. (12) is ca. $160 \text{ m}^3 \text{ day}^{-1}$.
646 Identical value was obtained using corresponding ^2H data. It is worth noting that groundwater inflow
647 to lake Ahveroinen 1, derived for the summer period of 2013 from isotope mass balance calculations
648 (ca. $300 \text{ m}^3 \text{ day}^{-1}$) is almost two times higher, which suggests significant seasonal variations of
649 groundwater inflow to Rokua lakes, with high groundwater fluxes during summer and low fluxes
650 during winter.

651

652 **4.4. Quantifying groundwater dependence of the studied lakes**

653 Out of 67 Rokua lakes sampled during July-August 2013 field campaign, 50 lakes do not reveal any
654 surface water inflow in the form of a stream or a creek. For the remaining 17 lakes surface inflows
655 were identified. For all but one lake those surface inflows could be linked to specific upstream lakes
656 which were sampled during the July-August 2013 campaign.

657 The isotopic composition of the lakes sampled covers a wide range of δ values: from -5.6 ‰ to -12.7 ‰
658 and from -57 ‰ to -93 ‰ for $\delta^{18}\text{O}$ and $\delta^2\text{H}$ respectively. This large variability reflects a wide
659 spectrum of the heavy isotope enrichment of the lakes studied. Since Rokua lakes are situated in a
660 unique climatic region, their observed isotopic composition is primarily controlled by their water
661 balance, which in turn can be characterised by the total inflow-to-evaporation ratio.

662 Equation (7) was used to calculate the total inflow-to-evaporation ratios (I_{TOT}/E) for all studied lakes.
663 The isotope mass balance calculations were run for the period of June-August 2013 **separately for**
664 ^{18}O and ^2H . Since the evaporation rates from the studied lakes were derived from eq. (1),
665 independently of any mass balance considerations, the total inflow to each lake could also be
666 calculated from the assessed I_{TOT}/E ratios.

667 The values of the parameters occurring in eq. (7) were derived as follows:

668 (i) The mean isotopic composition of atmospheric moisture (δ_A) was calculated with the eq. (8)
669 using the available isotope data for local precipitation. The following mean δ_A values were used in
670 isotope mass balance calculations: $\delta^{18}\text{O}_A = -20.4\text{ ‰}$ and $\delta^2\text{H}_A = -149\text{ ‰}$.

671 (ii) The mean relative humidity, normalized to lake water temperature (h_N) was calculated using the
672 mean surface air temperature ($+14.9\text{ }^\circ\text{C}$), the mean surface water temperature of the lakes ($+19.1\text{ }^\circ\text{C}$)
673 and the mean relative air-based humidity calculated on the basis of daily mean values available from
674 meteorological station in the area (79.2 %). The resulting mean h_N value was 60.7 %.

675 (iii) The total effective isotope fractionation (ε) was derived as the sum of the equilibrium and kinetic
676 isotope enrichments ($\varepsilon = \varepsilon^* + \Delta\varepsilon$). The equilibrium isotope enrichment (ε^*) values for ^{18}O and ^2H ,
677 were calculated for the mean surface water temperature of $+19.1\text{ }^\circ\text{C}$ using the known temperature
678 dependence of the empirical equilibrium fractionation factors, α_{LV} (Horita and Wesolowski, 1994).
679 The values of kinetic enrichment parameters (C_k) used to calculate $\Delta\varepsilon$, 14.2 ‰ for ^{18}O and 12.5 ‰
680 for ^2H , were adopted after Gonfiantini (1986). Those values were obtained in wind-tunnel
681 experiments (Vogt, 1976) and are widely used in lake studies.

682 (iv) Isotopic homogeneity of the studied lakes was addressed through multiple samplings of large
683 lakes (in both horizontal and vertical direction - cf. section 3.1). The range of the measured $\delta^{18}\text{O}$

684 values for the given lake was generally lower than one per mil. It was assumed that the average values
685 calculated on the basis of individual measurements performed in each lake represent sufficiently well
686 the studied systems.

687 (v) The isotopic composition of lake water obtained during the sampling campaign in July and
688 August 2013 for each studied lake was used in the isotope mass balance calculations. As discussed
689 in section 3.4 above, the isotopic compositions of the studied lakes fluctuate seasonally reaching their
690 steady-state values toward the end of ice-free period (September-October). Therefore, the isotopic
691 compositions of lake water samples collected during the late summer (July-August) may still deviate
692 slightly from the respective steady-state values, thus creating uncertainty in the assessed components
693 of the water (see section 4.5).

694 (vi) As the isotopic compositions of the surface and underground components of water inflow to each
695 studied lake were not measured directly, an iterative approach was adopted to calculate δ_{IT}
696 individually for each lake. In the first step it was assumed that δ_{IT} is defined by the intercept of the
697 LMWL and LEL lines (Fig. 4) which represents the weighted annual mean $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values of
698 local precipitation (−14.1 ‰ and −100 ‰ respectively). With these δ_{IT} values the underground
699 component of I_{TOT} for each lake was derived from eq. (7). The second step differed for the lakes
700 without surface inflow and with identified surface inflow from an upstream lake. For the lakes without
701 surface inflow the δ_{IT} values were calculated individually as flux-weighted averages of the
702 underground inflow obtained in the first/previous step of the procedure and precipitation input to the
703 given lake, each with their respective mean isotopic compositions representing the period of June-
704 August 2013 (cf. section 4.2 above). For the lakes with identified surface inflow from an upstream
705 lake, in the first instance the total outflow of water from the upstream lake was calculated using
706 appropriate mass balance equation. Then, it was assumed that 25 % of the total outflow from the
707 upstream lake flows to the downstream lake as surface inflow carrying the isotopic composition
708 characteristic for the upstream lake. The δ_{IT} values were calculated individually for each lake
709 belonging to this group of lakes as flux-weighted averages of three components: precipitation, surface
710 inflow and groundwater inflow. For both lake groups the calculations were repeated until the change
711 of δ_{IT} in subsequent iteration step was in the order of the analytical uncertainty of isotope
712 measurements (0.1 ‰ for $\delta^{18}\text{O}$ and 1 ‰ for $\delta^2\text{H}$).

713 The calculated inflow-to-evaporation ratios of the studied lakes based on ^{18}O isotope mass balance
714 are shown in Fig. 7 as a function of isotope enrichment of lake water with respect to the isotopic
715 composition of the total inflow to the given lake. They vary in a wide range, from I_{TOT}/E values

716 between 2 and 3 and large ^{18}O isotope enrichments between approximately 6.5 and 8.0 ‰, indicating
717 evaporation dominated systems, to typical through-flow lakes characterized by I_{TOT}/E ratios higher
718 than 10 and moderate ^{18}O isotope enrichments of less than 2 ‰ (Table 2). Knowing the volume and
719 the total inflow, the mean turnover time of water (MTT) in each lake could be quantified as the ratio
720 of lake volume to the total inflow. The calculated MTT values range from approximately one week
721 for the Pasko pond ($V = 2 \times 10^3 \text{ m}^3$, mean depth 0.2 m, maximum depth 0.7 m) to approximately five
722 years for lake Saarijärvi 2 ($V = 2.47 \times 10^6 \text{ m}^3$, mean depth 11.8 m, maximum depth 26 m), with the
723 mean in the order of ten months (Table 2). Lake Saarijärvi 2 is the deepest of all the lakes surveyed.
724 As expected, the calculated MTT values correlate well with the mean depth of the studied lakes,
725 expressed as the volume-to-surface area ratio. However, the link between MTT and the I_{TOT}/E ratio
726 is much weaker; lakes with higher I_{TOT}/E ratios tend to have shorter mean turnover times.

727 The dependence of the studied lakes on groundwater can be quantified through an index (G index)
728 defined as the percentage contribution of groundwater inflow to the total inflow of water to the given
729 lake. Groundwater inflow was derived by subtracting the precipitation and surface water inflow (if
730 exists) from the total inflow. Such an evaluation was undertaken for all the lakes listed in Table 2.
731 Note that for the group of lakes with identified surface inflow from an upstream lake it was assumed
732 arbitrarily that this surface inflow is 25 % of the total outflow from the upstream lake (discharges of
733 surface inflows were not measured). The resulting groundwater seepage rates vary from less than $20 \text{ m}^3 \text{ day}^{-1}$
734 for Kissalampi pond to around $14 \times 10^3 \text{ m}^3 \text{ day}^{-1}$ for lake Nimisjärvi, the lake with the largest
735 surface area (167.5 ha) among all studied lakes.

736 Figure 8 summarises the values of G index obtained for the lakes surveyed during the July-August
737 2013 sampling campaign. The mean values of G index obtained from ^2H and ^{18}O balance are shown.
738 They vary from ca. 40 % to more than 95 %. The lowest value (39.4 %) was obtained for lake Etu-
739 Salminen. The highest G values were derived for lakes Kiiskeroinen (97.1 %) and Levä-Soppinen
740 (97.5 %). Interestingly, these lakes are characterised by a high degree of eutrophication induced by
741 high loads of phosphorus brought to the lakes with groundwater (Ala-aho et al. 2013). Although the
742 G index describes groundwater dependency of the studied lakes rather unambiguously, also lakes
743 with moderate G index values can suffer if groundwater table in the esker aquifer would decline as a
744 result of climate and/or land-use changes.

745 The isotope mass balance calculations for Rokua lakes were run independently for ^{18}O and ^2H data.
746 Consistent results were obtained with respect to three evaluated elements of lake water balance

747 (I_{TOT}/E ratios, MTT values and the G index) reported in Table 2. These quantities, derived
748 independently from ^2H -based and ^{18}O -based isotope mass balances are highly correlated ($R^2 = 0.9681$,
749 0.9972 and 0.9745 for I_{TOT}/E ratios, MTT values and the G index, respectively). The total inflow-to-
750 evaporation ratios derived from ^{18}O -based balance turned out to be ca. 10.8 % higher on the average
751 than those derived from ^2H -based balance. For the G index this difference is approximately 2.3 %.
752 The MTT values were ca. 12.5 % higher for ^2H -based balance.

753 Small but significant differences in the values of the evaluated quantities (I_{TOT}/E ratios, MTT, G
754 index), derived independently from ^{18}O - and ^2H -based isotope mass balance calculations, stem most
755 probably from their different sensitivity to small changes of the measurable parameters (air and lake
756 water temperature, relative humidity, isotopic composition of local precipitation, isotopic
757 composition of lake water) rooted in different role of equilibrium and kinetic fractionation during the
758 evaporation process. While for ^{18}O the ratio of equilibrium to kinetic isotope fractionation is in the
759 order of one, for ^2H it is ten times higher. Since isotope mass balance method relies on isotope
760 enrichment of lake water along the local evaporation line, controlled mostly by kinetic fractionation,
761 the ^{18}O -based balance calculations are generally considered more reliable (e.g. Rozanski et al., 2001).

762

763 **4.5. Uncertainty assessment**

764 The above methodology for quantifying elements of water balance in the lakes studied introduces
765 some uncertainties linked to the assumptions made and the uncertainties associated with the
766 parameters used in the evaluation process. Sensitivity tests were performed to derive the range of
767 uncertainties associated with the quantities being evaluated, such as mean turnover time, total inflow-
768 to-evaporation ratio and the G index. The sensitivity analysis was focussing on eq. (7). All variables
769 present in this equation were considered in this process. The results for ^{18}O -based calculations are
770 summarized in Table 3.

771 The uncertainty with regard to lake water temperature was probed assuming the temperature change
772 of ± 0.87 °C (cf. section 4.1). The uncertainty of lake water temperature leads to uncertainty as regards
773 the evaporation flux, which in turn influences the I_{TOT}/E , MTT and G values derived for each lake.
774 Also equilibrium isotope enrichment is a function of temperature. The mean turnover time increases
775 by ca. 15 % when the temperature of the lake is reduced by 0.87 °C, and decreases by approximately
776 12 % when the temperature increases by the same amount. The G index reveals lower sensitivity (2.9

777 and 3.6 %, respectively). The smallest changes were obtained for I_{TOT}/E ratios (0.9 and 0.7 %,
778 respectively).

779 The changes of relative humidity of the atmosphere normalised to the temperature of the lake surface
780 have an impact on the evaporation flux, control the I_{TOT}/E ratios through eq. (7) and determine the
781 actual value of kinetic isotope enrichment $\Delta\epsilon$. It was assumed in the calculations that normalized
782 relative humidity changes by $\pm 2\%$. As seen in Table 3, the resulting changes of the derived quantities
783 are moderate, the mean turnover time being the most sensitive parameter.

784 It is apparent from Table 3 that among isotope parameters occurring in eq. (7), the isotopic
785 composition of lake water (δ_{LS}) and the isotopic composition of the total inflow (δ_{IT}), are the two
786 most important variables in the isotope mass balance calculations. An increase of $\delta^{18}O_{LS}$ by 0.5 ‰,
787 which may account for possible departures from the isotopic steady-state of the investigated lakes
788 (cf. section 4.4), leads to decrease of calculated I_{TOT}/E ratios on the average by 15.8 %, increase of
789 MTT values by 19.6 % and decrease of G index values by 3.3 %. An increase of $\delta^{18}O_{IT}$ by 0.5 ‰,
790 which may result from the contribution of an evaporated lake water originating from an upstream
791 lake to groundwater input, leads to substantial increase of I_{TOT}/E ratios (20.2 % on the average),
792 comparable decrease of MTT values (14.8 % on the average) and moderate increase of the G index
793 (4.4 % on the average). Variation of the ^{18}O isotopic composition of atmospheric water vapour by \pm
794 1.0 ‰ introduces changes in the calculated elements of the water balance of the studied lakes in the
795 order of several per cent (Table 3).

796 Figure 9 shows the percentage changes of I_{TOT}/E ratios calculated for all studied lakes using eq. (7),
797 in response to the increase of δ_{LS} or δ_{IT} by 0.5 ‰. The sensitivity of the calculated I_{TOT}/E ratios to the
798 given increase of δ_{LS} or δ_{IT} raises sharply with increasing value of this parameter. This is particularly
799 true for through-flow systems characterized by high I_{TOT}/E ratios. Therefore, when isotope studies
800 aimed at quantifying water balance of such systems are planned, it is important to characterize these
801 two isotope quantities as good as reasonably possible.

802

803 5. Conclusions

804 The Rokua esker, with its numerous lakes located across a relatively small area, provided a unique
805 opportunity to explore the possibilities offered by environmental isotope techniques in quantifying
806 the water balances of lakes and their dependency on groundwater in a sub-polar climatic setting. The

807 quantification of groundwater seepages to lakes using conventional methods is notoriously difficult
808 and associated with considerable uncertainty. The presented study demonstrates the power of isotope
809 mass balance approach for resolving this issue. It appears that a stable isotope analysis of lake water
810 samples, collected at right time and supplemented by appropriate field observations, may lead to
811 quantitative assessment of the water balance of a large number of lakes located in a similar climatic
812 settings.

813 The presented study has demonstrated that consistent results are obtained when the isotope mass
814 balance calculations are run independently for oxygen-18 and deuterium. This strengthens the
815 position of heavy stable isotopes of water as a unique tool for quantifying elements of water balance
816 of lakes, particularly for groundwater-dominated systems. Solving three equations simultaneously
817 (one water balance equation plus two isotope balance equations) may help to quantify key balance-
818 related parameters such as evaporation and groundwater inflow and outflow rates for the studied lake
819 system, which are difficult to quantify using conventional methods.

820 The specific behaviour of lakes located in sub-polar regions, with their seasonal ice cover extending
821 over several months, offers another opportunity for quantifying groundwater seepage during ice-
822 cover periods. As shown in this study, observations of seasonal changes in the stable isotopic
823 composition of lake water, in particular during the ice-cover period, combined with the survey of
824 isotopic composition of groundwater in the vicinity of the lakes studied, allows the quantification of
825 groundwater fluxes to this lake during winter. If such an approach is combined with the isotope mass
826 balance calculations performed for ice-free summer season, important information about the seasonal
827 variability of groundwater seepage to lakes located in sub-polar and polar regions can be obtained.

828 The G index characterizing groundwater dependency of a lake proposed in this study, and defined as
829 a percentage contribution of groundwater inflow to the total inflow of water to the given lake, appears
830 to be a straightforward, quantitative measure of this dependency. The studied Rokua lakes appear to
831 be strongly dependent on groundwater; more than 40 % of water received by these lakes comes as
832 groundwater inflow. The quantitative evaluation of groundwater dependency of lakes via the G index
833 proposed in this study may assist lake restoration policies in areas where groundwater is a source of
834 nutrients to the studied lakes.

835 **Acknowledgements**

836 This work is funded by the 7th framework project GENESIS (226536), Renlund Foundation, Maa- ja
837 vesitekniikan tuki r.y, and the Academy of Finland, AKVA-programme. KR's contribution was partly
838 supported through the statutory funds of the AGH university of Science and Technology (project no.
839 11.11.220.01). We would like to thank Kirsti Korkka-Niemi and Anne Rautio from University of
840 Helsinki for their assistance with the thermal imaging.

841

842 **References**

843 Aartolahti, T.: Morphology, vegetation and development of Rokuanvaara, an esker and dune
844 complex in Finland, *Soc. Geogr. Fenn.*, 127, 1–53, 1973.

845 Ala-aho, P., Rossi, P. M. and Kløve, B.: Interaction of esker groundwater with headwater lakes and
846 streams, *J. Hydrol.*, 500, 144–156, doi:10.1016/j.jhydrol.2013.07.014, 2013.

847 Anttila, E.-L. and Heikkinen, M.-L.: Rokuan pinta- ja pohjavesien vedenkorkeudet ja niissä
848 tapahtuneet muutokset, in Rokuan alueen järvet ja lammet. North Ostrobothnia Regional
849 Environment Centre Reports 5 | 2007, edited by M.-L. Heikkinen and T. Väisänen, pp. 12–25,
850 North Ostrobothnia Regional Environment Centre, Oulu., 2007.

851 Bañuelos-Ruedas, F., Angeles-Camacho, C. and Rios-Marcuello, S.: Analysis and validation of the
852 methodology used in the extrapolation of wind speed data at different heights, *Renew. Sustain.*
853 *Energy Rev.*, 14(8), 2383–2391, doi:10.1016/j.rser.2010.05.001, 2010.

854 Belanger, T. V., Mikutel, D. F. and Churchill, P. A.: Groundwater seepage nutrient loading in a
855 Florida Lake, *Water Res.*, 19(6), 773–781, 1985.

856 Brock, T. D., Lee, D. R., Janes, D. and Winek, D.: Groundwater seepage as a nutrient source to a
857 drainage lake; Lake Mendota, Wisconsin, *Water Res.*, 16(7), 1255–1263, 1982.

858 Clark, I. D. and Fritz, P.: Environmental isotopes in hydrogeology, Lewis Publishers, New York.,
859 1997.

860 Craig, H.: Isotopic variations in meteoric waters, *Science*, 133(3465), 1702–3,
861 doi:10.1126/science.133.3465.1702, 1961.

862 Craig, H. and Gordon, L. I. : Deuterium and Oxygen-18 Variations in the Ocean and the Marine
863 Atmosphere, in *Stable Isotopes in Oceanographic Studies and Paleotemperatures*, edited by E.
864 Tongiorgi, pp. 9–130, Laboratorio di geologia nucleare, Pisa., 1965.

865 Darling, W. G., Bath, A. H., Gibson, J. J. and Rozanski, K.: Isotopes in water, in *Isotopes in*
866 *palaeoenvironmental research*, edited by M. J. Leng, pp. 1–66, Springer, Dordrecht., 2005.

867 Dinçer, T.: The use of oxygen 18 and deuterium concentrations in the water balance of lakes, *Water*
868 *Resour. Res.*, 4(6), 1289–1306, doi:10.1029/WR004i006p01289, 1968.

869 Dingman, S. L.: *Physical Hydrology*, 2. ed., Waveland press, Long Grove, IL., 2008.

870 EC: Directive 2006/118/EC of the European Parliament and of the Council on the protection of
871 groundwater against pollution and deterioration, *Official Journal of the European Union*, Brussels.,
872 2006.

873 ESRI: Applying a spline interpolation, [online] Available from:
874 http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Applying_a_spline_interpolation
875 (Accessed 28 February 2014), 2014.

876 Finnish Environmental Institute: Environmental information system (Hertta), Data downloaded 11
877 Novemb. 2013, Data downloaded 11 November 2013, 2013.

878 Finnish Meteorological Institute: Climate data from Vaala-Pelso meteorological station, , Data
879 received 28 January 2014, 2014.

880 Froehlich, K., Gonfiantini, R. and Rozanski, K.: Isotopes in lake studies: A historical perspective, in
881 Isotopes in the Water Cycle. Past, Present and Future of a Developing Science, edited by P. K.
882 Aggarwal, J. R. Gat, and K. F. O. Froehlich, pp. 139–151, Springer, 3300AA Dordrecht, The
883 Netherlands., 2005.

884 Gat, J. R.: Stable isotopes of fresh and saline lakes, in Physics and Chemistry of Lakes, edited by A.
885 Lerman, D. M. Imboden, and J. R. Gat, pp. 139–165, Springer-Verlag, Berlin., 1995.

886 Gat, J. R.: Oxygen and hydrogen isotopes in the hydrologic cycle, *Annu. Rev. Earth Planet. Sci.*,
887 24(1), 225–262, doi:10.1146/annurev.earth.24.1.225, 1996.

888 Gat, J. R.: Isotope hydrology: A study of the water cycle, Imperial College Press, London., 2010.

889 Gat, J. R. and Bowser, C.: The heavy isotope enrichment of water in coupled evaporative systems,
890 in Stable Isotope Geochemistry: A Tribute to Samuel Epstein, Special Publication No. 3, edited by
891 A. A. Levinson, pp. 159–169, The Geochemical Society, Calgary., 1991.

892 Gibson, J. J.: Short-term evaporation and water budget comparisons in shallow Arctic lakes using
893 non-steady isotope mass balance, *J. Hydrol.*, 264(1-4), 242–261, doi:10.1016/S0022-
894 1694(02)00091-4, 2002.

895 Gibson, J. J. and Edwards, T. W. D.: Regional water balance trends and evaporation-transpiration
896 partitioning from a stable isotope survey of lakes in northern Canada, *Global Biogeochem. Cycles*,
897 16(2), 10–1–10–14, doi:10.1029/2001GB001839, 2002.

898 Gibson, J. J., Edwards, T. W. D., Bursey, G. G. and Prowse, T. D.: Estimating Evaporation Using
899 Stable Isotopes : Quantitative Results and Sensitivity Analysis for Two Catchments in Northern
900 Canada, *Nord. Hydrol.*, 24, 79–94, 1993.

901 Gonfiantini, R.: Environmental isotopes in lake studies, in *Handbook of Environmental Isotope
902 Geochemistry*, Vol. 2. The Terrestrial Environment, edited by B. P. Fritz and J. C. Fontes, pp. 113–
903 168, Elsevier, Amsterdam., 1986.

904 Harbeck, G. E. J.: A practical field technique for measuring reservoir evaporation utilizing mass-
905 transfer theory, *U.S. Geol. Surv. Prof. Pap.*, 272-E, p. 101–105, 1962.

906 Horita, J., Rozanski, K. and Cohen, S.: Isotope effects in the evaporation of water: a status report of
907 the Craig-Gordon model., *Isotopes Environ. Health Stud.*, 44(1), 23–49,
908 doi:10.1080/10256010801887174, 2008.

909 Horita, J. and Wesolowski, D.: Liquid-vapour fractionation of oxygen and hydrogen isotopes of
910 water from the freezing to the critical temperature, *Geochim. Cosmochim. Acta*, 58(16), 3425–
911 3437, doi:10.1016/0016-7037(94)90096-5, 1994.

912 Jacob, H. and Sonntag, C.: An 8-year record of the seasonal variation of 2H and 18O in atmospheric
913 water vapour and precipitation in Heidelberg, Germany, *Tellus*, 43B, 291–300, doi:10.1034/j.1600-
914 0889.1991.t01-2-00003.x, 1991.

915 Jobson, H. E.: Effect of using averaged data on the computed evaporation, *Water Resour. Res.*,
916 8(2), 513–518, 1972.

917 Jonsson, C. E., Leng, M. J., Rosqvist, G. C., Seibert, J. and Arrowsmith, C.: Stable oxygen and
918 hydrogen isotopes in sub-Arctic lake waters from northern Sweden, *J. Hydrol.*, 376(1-2), 143–151,
919 doi:10.1016/j.jhydrol.2009.07.021, 2009.

920 Justus, C. G. and Mikhail, A.: Height variation of wind speed and distribution statistics, *Geophys.*
921 *Res. Lett.*, 3(5), 261–264, doi:10.1029/GL003i005p00261, 1976.

922 Kidmose, J., Nilsson, B., Engesgaard, P., Frandsen, M., Karan, S., Landkildehus, F., Søndergaard,
923 M. and Jeppesen, E.: Focused groundwater discharge of phosphorus to a eutrophic seepage lake
924 (Lake Væng, Denmark): implications for lake ecological state and restoration, *Hydrogeol. J.*, 21(8),
925 1787–1802, doi:10.1007/s10040-013-1043-7, 2013.

926 Kløve, B., Ala-aho, P., Bertrand, G., Boukalova, Z., Ertürk, A., Goldscheider, N., Ilmonen, J.,
927 Karakaya, N., Kupfersberger, H., Kværner, J., Lundberg, A., Mileusnić, M., Moszczynska, A.,
928 Muotka, T., Preda, E., Rossi, P., Siergieiev, D., Šimek, J., Wachniew, P., Angheluta, V. and
929 Widerlund, A.: Groundwater dependent ecosystems. Part I: Hydroecological status and trends,
930 *Environ. Sci. Policy*, 14(7), 770–781, doi:10.1016/j.envsci.2011.04.002, 2011.

931 Krabbenhoft, D. P., Bowser, C. J., Anderson, M. P. and Valley, J. W.: Estimating Groundwater
932 Exchange With Lakes 1 . The Stable Isotope Mass Balance Method, *Water Resour. Res.*, 26(10),
933 2445–2453, 1990.

934 National Land Survey of Finland: Basic map,, 2010a.

935 National Land Survey of Finland: Digital elevation model,, 2010b.

936 Pajunen, H.: Holocene accumulation of peat in the area of an esker and dune complex,
937 Rokuanvaara, central Finland, *Geol. Surv. Finland, Spec. Pap.*, 20, 125–133, 1995.

938 Rosenberry, D. O., LaBaugh, J. W. and Hunt, R. J.: Use of monitoring wells , portable piezometers ,
939 and seepage meters to quantify flow between surface water and ground water, in *Field Techniques*
940 for *Estimating Water Fluxes Between Surface Water and Ground Water*, edited by D. O.
941 Rosenberry and J. W. LaBaugh, pp. 43–70, US Geological Survey, Unites States., 2008.

942 Rosenberry, D. O., Sheibley, R. W., Cox, S. E., Simonds, F. W. and Naftz, D. L.: Temporal
943 variability of exchange between groundwater and surface water based on high-frequency direct

944 measurements of seepage at the sediment-water interface, *Water Resour. Res.*, 49(5), 2975–2986,
945 doi:10.1002/wrcr.20198, 2013.

946 Rossi, P. M., Ala-aho, P., Doherty, J. and Kløve, B.: Impact of peatland drainage and restoration on
947 esker groundwater resources: modeling future scenarios for management, *Hydrogeol. J.*, 22, 1131–
948 1145, doi:10.1007/s10040-014-1127-z, 2014.

949 Rossi, P. M., Ala-aho, P., Ronkanen, a K. and Kløve, B.: Groundwater-surface water interaction
950 between an esker aquifer and a drained fen, *J. Hydrol.*, 432-433, 52–60,
951 doi:10.1016/j.jhydrol.2012.02.026, 2012.

952 Rozanski, K., Froehlich, K. and Mook, W. : Surface water, in *Environmental isotopes in the*
953 *hydrological cycle. Principles and applications. Volume III. IHP-V. Technical Documents in*
954 *Hydrology*, vol. 111, edited by W. G. Mook, pp. 1–117, UNESCO/IAEA, Paris., 2001.

955 **Schoch-Fischer, H., Rozanski, K., Jacob, H., Sonntag, C., Jouzel, J., Östlund, G. and Geyh, M. A.:**
956 **Hydrometeorological factors controlling the time variation of D, ^{18}O and ^{3}H in atmospheric water**
957 **vapour and precipitation in the westwind belt, in Isotope Hydrology**, pp. 3–31, International Atomic
958 **Energy Agency, Vienna., 1984.**

959 Shaw, G. D., White, E. S. and Gammons, C. H.: Characterizing groundwater–lake interactions and
960 its impact on lake water quality, *J. Hydrol.*, 492, 69–78 [online] Available from:
961 <http://www.sciencedirect.com/science/article/pii/S0022169413003016> (Accessed 19 December
962 2013), 2013.

963 Showstack, R.: Discussion of challenges facing water management in the 21st century, *Eos, Trans.*
964 *Am. Geophys. Union*, 85(6), 58, doi:10.1029/2004EO060002, 2004.

965 Stets, E. G., Winter, T. C., Rosenberry, D. O. and Striegl, R. G.: Quantification of surface water and
966 groundwater flows to open- and closed-basin lakes in a headwaters watershed using a descriptive
967 oxygen stable isotope model, *Water Resour. Res.*, 46(3), 1–16, doi:10.1029/2009WR007793, 2010.

968 Stichler, W., Maloszewski, P., Bertleff, B. and Watzel, R.: Use of environmental isotopes to define
969 the capture zone of a drinking water supply situated near a dredge lake, *J. Hydrol.*, 362(3-4), 220–
970 233, doi:10.1016/j.jhydrol.2008.08.024, 2008.

971 Tikkanen, M.: The changing landforms of Finland, *Fennia*, 180(1-2), 21–30, 2002.

972 Turner, K. W., Wolfe, B. B. and Edwards, T. W. D.: Characterizing the role of hydrological
973 processes on lake water balances in the Old Crow Flats, Yukon Territory, Canada, using water
974 isotope tracers, *J. Hydrol.*, 386(1-4), 103–117, doi:10.1016/j.jhydrol.2010.03.012, 2010.

975 Winter, T. C. and Carr, M. R.: Hydrologic setting of wetlands in the Cottonwood lake area ,
976 Stutsman County, North Dakota. USGS Water-resources investigations report 80-99, Denver.,
977 1980.

978 **Vogt, H. J.: Isotopentrennung bei der Verdunstung von Wasser, Staatsexamensarbeit, Institut für**
979 **Umwelophysik, Heidelberg., 1976.**

980 Yehdegho, B., Rozanski, K., Zojer, H. and Stichler, W.: Interaction of dredging lakes with the
981 adjacent groundwater field: and isotope study, *J. Hydrol.*, 192, 247–270, 1997.

982 Yi, Y., Brock, B. E., Falcone, M. D., Wolfe, B. B. and Edwards, T. W. D.: A coupled isotope tracer
983 method to characterize input water to lakes, *J. Hydrol.*, 350(1-2), 1–13,
984 doi:10.1016/j.jhydrol.2007.11.008, 2008.

985 Zimmerman, U.: Determination by stable isotopes of underground inflow and outflow and
986 evaporation of young artificial groundwater lakes, in *Isotopes in lake studies*, pp. 87–95,
987 International Atomic Energy Agency, Vienna., 1979.

988 Zuber, A.: On the environmental isotope method for determining the water balance components of
989 some lakes, *J. Hydrol.*, 61(4), 409–427, 1983.

990

991

992

993

994

995

996

997 Table 1. Mean isotopic composition of selected lakes, streams and groundwater, sampled four times
 998 per year during the period 2010-2012.

	$\delta^2\text{H}$ (‰)	$\delta^{18}\text{O}$ (‰)	d-excess (‰)	Mean amplitude of $\delta^{18}\text{O}$ seasonal signal (‰)
Lakes:				
1. Ahveroinen 1	-72.4	-8.50	-4.42	1.2
2. Rokuanjärvi	-72.1	-8.75	-2.14	1.3
3. Jaakonjärvi	-64.1	-6.72	-10.34	0.8
4. Kolmonen 2	-66.7	-7.07	-10.14	0.9
5. Loukkojärvi	-63.0	-6.64	-9.88	0.9
6. Saarijärvi 2	-62.4	-6.81	-7.92	0.9
7. Saarinen	-72.3	-8.52	-4.14	3.3
8. Salminen	-71.4	-8.45	-3.80	0.5
9. Soppinen	-63.1	-6.84	-8.38	0.9
10. Tulijärvi	-85.6	-11.20	4.00	1.3
11. Vaulujärvi	-67.9	-7.68	-6.46	0.5
Streams:				
1. Heinäjoki	-93.0	-12.74	8.92	0.5
2. Hieto-oja	-88.9	-11.84	5.82	1.2
3. Kangasaja	-93.7	-12.90	9.50	0.7
4. Lianoja	-83.2	-10.67	2.16	2.2
5. Lohioja	-92.9	-12.93	10.54	0.8
6. Matokanava	-94.6	-13.06	9.88	0.9
7. Päiväkanava	-94.0	-13.01	10.08	0.9
8. Rokuanaja	-82.8	-10.95	4.80	3.1
9. Siirasoja	-94.6	-13.08	10.04	0.7
10. Soppisenoja	-89.9	-12.07	6.66	2.2
11. Valkiaisoja	-93.3	-12.80	9.10	1.0
Groundwater:				
1. MEA 106	-96.4	-13.32	10.16	0.6
2. MEA 206	-95.0	-13.12	9.96	0.8
3. MEA506	-93.5	-12.92	9.86	0.5
4. MEA 706	-93.3	-12.89	9.82	0.7
5. MEA 1106	-95.1	-13.05	9.30	0.8
6. MEA 1807	-93.3	-12.92	10.06	1.0
7. MEA 1907	-83.2	-10.65	2.00	1.0
8. MEA 2010	-97.3	-13.42	10.06	0.5
9. ROK 1	-95.5	-13.22	10.26	0.9
10. Siirasoja 1 esker	-94.5	-13.06	9.98	0.8
11. Siirasoja 1 slope	-94.3	-13.08	10.34	1.0
12. Siirasoja 1 sand	-97.0	-13.36	9.88	0.5
13. Siirasoja 1 peat	-93.8	-12.98	10.04	1.2

1000 Table 2. The results of isotope mass balance calculations for 67 lakes of Rokua esker sampled during the July-August 2013 field survey.

Lake No.	Lake name	Volume (10 ³ m ³)	Surface area (ha)	Mean depth (m)	E (mm)	δ ¹⁸ O (‰)	δ ² H (‰)	I _{GW} (m ³ /day) ¹⁸ O ² H	<i>I_{TOT}</i> /E ¹⁸ O ² H	MTT (month) ¹⁸ O ² H	G index (%) ¹⁸ O ² H
1	Heinälampi ^(b)	1764	0.22	0.8	286	-10.97	-84.4	71.5 67.3	14.2 13.3	0.6 0.6	72.4 73.0
2	Holma ^(b)	23778	1.89	1.3	257	-11.12	-84.8	569.3 520.7	15.8 14.2	0.9 1.0	68.4 69.5
3	Koivujärvi 1 ^(b)	39237	2.3	1.7	254	-11.38	-85.7	823.9 681.4	19.0 16.2	1.1 1.2	68.2 66.3
4	Koivujärvi 2 ^(b)	76884	2.93	2.6	251	-11.61	-87.3	1555.1 1393.4	20.6 18.5	1.5 1.7	94.1 93.9
5	Pitkäjärvi 1	36103	1.22	3	262	-6.50	-61.5	61.8 51.7	2.6 2.3	13.3 15.0	69.8 66.0
6	Nurkkajärvi	269134	3.93	6.8	247	-8.76	-73.1	407.7 362.8	4.7 4.2	17.8 19.5	82.5 80.8
7	Luontolampi	19995	0.49	4.1	275	-7.29	-64.9	34.6 28.6	3.1 2.7	14.4 16.6	76.4 72.8
8	Ahveroinen 1	119000	3.32	3.6	249	-8.80	-71.9	351.3 282.7	4.7 3.9	9.1 10.9	82.8 79.5
9	Lianjärvi ^(b)	113678	15.13	0.8	231	-10.31	-80.5	2375.0 2044.1	10.0 8.9	1.0 1.1	62.3 60.3
10	Syväjärvi 1 ^(b)	398463	11.52	3.5	234	-11.17	-85.3	3288.8 3030.3	12.7 11.7	3.5 3.8	88.3 88.1
11	Soppinen	81630	6.04	1.4	242	-7.60	-65.7	396.6 310.2	3.3 2.8	5.0 6.0	74.9 70.0
12	Salminen	681860	25.31	2.7	225	-8.59	-70.7	2177.5 1724.8	4.4 3.7	8.1 9.8	79.7 75.6
13	Saarinen	981506	15.32	6.4	231	-8.22	-69.4	1186.0 974.2	4.0 3.4	21.0 24.4	77.9 74.3
14	Kivi-Ahveroinen	216018	5.57	3.9	243	-9.02	-74.4	623.6 556.9	5.1 4.6	9.4 10.4	83.6 82.0
15	Irvi-Ahveroinen	40867	1.07	3.8	264	-7.47	-65.6	76.2 62.1	3.3 2.8	13.4 15.6	76.5 72.6
16	Loukkajarvi	126450	2.85	4.4	251	-7.10	-65.6	166.8 153.3	2.9 2.8	18.0 19.1	72.7 71.0
17	Ylimmäinen	94313	8.93	1.1	237	-9.66	-77.6	1252.1 1130.9	6.3 5.8	2.1 2.3	86.5 85.2
18	Hietajärvi	223118	7.3	3.1	240	-7.06	-63.7	394.5 318.7	2.9 2.5	13.1 15.2	71.1 66.5
19	Saarijärvi 2	2467169	20.94	11.8	228	-6.72	-62.2	924.6 747.2	2.7 2.3	58.1 66.7	66.8 61.9
20	Syväjärvi 2 ^(b)	1863446	31.95	5.8	223	-10.63	-83.1	7668.9 7328.2	12.0 11.3	6.5 6.9	82.3 83.5
21	Pasko ^(b)	2005	0.82	0.2	268	-10.62	-83.3	189.6 185.8	10.8 10.5	0.3 0.3	73.8 74.4
22	Kuikkalampi	11776	0.61	1.9	271	-7.20	-66.6	41.5 39.7	3.0 2.9	7.0 7.2	75.5 74.7
23	Soppisenlampi	25645	0.59	4.4	272	-7.32	-67.1	41.4 39.4	3.1 3.0	15.4 16.0	76.3 75.4
24	Kirvesjärvi	654618	13.47	4.9	233	-11.45	-87.6	5195.9 5601.3	18.5 19.5	3.4 3.2	82.4 84.1
25	Tulijärvi ^(b)	589617	24.81	2.4	226	-10.40	-81.7	4650.7 4428.9	10.9 10.3	2.9 3.1	69.9 70.8
26	Jaakonjärvi 2	5497	0.46	1.2	275	-7.39	-65.3	34.1 27.9	3.2 2.7	4.1 4.7	77.1 73.3
27	Jaakonjärvi 3	13594	0.66	2.1	271	-7.60	-66.4	50.7 41.8	3.4 2.9	6.8 7.9	77.9 74.3
28	Maitolampi 2	44812	2.04	2.2	256	-7.52	-65.9	142.0 115.8	3.3 2.8	7.8 9.1	76.1 72.2

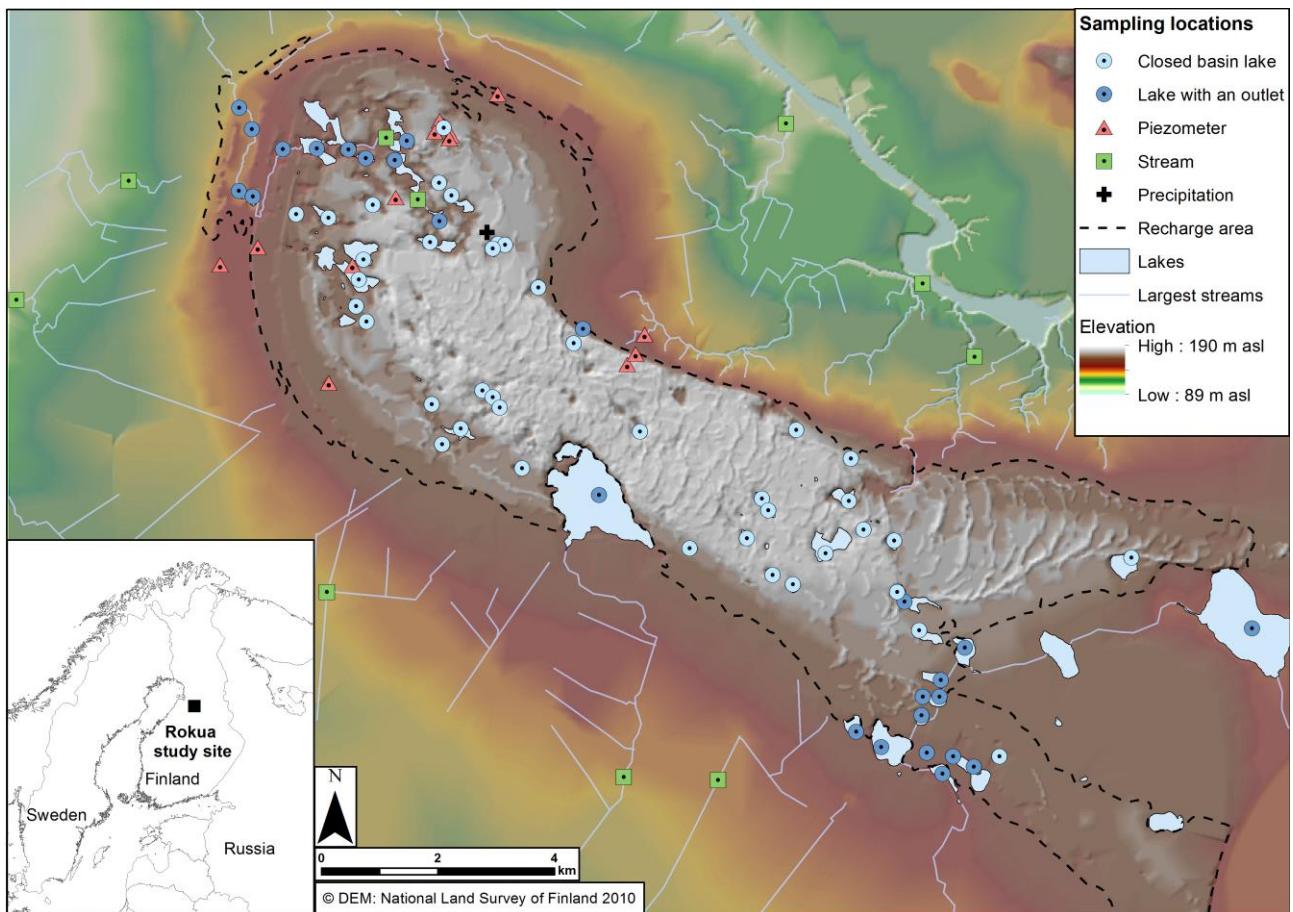
29	Kotalampi	25980	2.6	1	253	-11.23	-86.3	860.9	877.7	12.9	13.1	0.9	0.9	93.8	93.9
30	Rokuanjärvi 1	4364781	164.59	2.7	205	-9.11	-71.8	15206.8	10695.0	5.1	3.9	7.6	9.9	80.8	74.7
31	Tervatienlampi	21970	0.63	3.5	271	-7.92	-69.3	54.3	49.5	3.7	3.4	10.5	11.3	79.8	78.2
32	Valkiaislampi	32073	0.7	4.6	270	-8.81	-72.5	82.5	69.6	4.8	4.1	10.7	12.3	84.3	81.9
33	Ankkalampi	103700	3.86	2.7	248	-8.57	-71.9	373.5	326.9	4.4	4.0	7.4	8.2	81.5	79.4
34	Saarilampi 1	12044	0.45	2.7	276	-10.51	-80.8	110.5	91.2	8.9	7.5	3.3	3.9	91.8	90.2
35	Kiiskeroinen	6517	0.63	1	271	-12.14	-90.2	482.7	447.8	26.6	24.8	0.4	0.5	97.2	97.0
36	Jaakonjärvi 1	93614	3.53	2.7	249	-6.82	-63.5	184.2	159.3	2.7	2.5	11.7	12.9	70.4	67.3
37	Vaulujärvi	432813	8.97	4.8	237	-7.84	-68.6	628.9	553.8	3.6	3.2	17.1	18.8	76.2	73.8
38	Levä-Sopponen	34000	2.31	1.5	254	-12.27	-91.4	1922.5	2060.2	31.0	33.1	0.6	0.5	97.4	97.6
39	Anttilanjärvi	60230	1.06	5.7	264	-7.40	-66.4	73.8	64.9	3.2	2.9	20.3	22.3	76.1	73.7
40	Hautajärvi 1	189222	2.56	7.4	253	-7.71	-68.0	187.0	165.8	3.5	3.2	25.4	27.8	76.9	74.7
41	Lepikonjärvi	191118	2.98	6.4	251	-7.77	-68.3	220.2	195.8	3.5	3.2	21.8	23.9	77.1	75.0
42	Kolmonen 1	35700	0.68	5.3	270	-7.09	-65.2	43.9	39.5	3.0	2.7	19.8	21.4	74.7	72.7
43	Kolmonen 2	21890	0.56	3.9	273	-7.25	-65.8	38.5	34.1	3.1	2.8	14.1	15.4	75.9	73.6
44	Kolmonen 3	21630	0.54	4	273	-7.26	-66.1	37.4	33.9	3.1	2.9	14.3	15.4	76.0	74.2
45	Hätäjärvi	35217	1.73	2	258	-6.50	-61.8	85.4	72.8	2.5	2.3	9.3	10.4	69.2	65.7
46	Kissalampi	800	0.36	0.2	279	-5.60	-57.1	14.5	11.8	2.1	1.8	1.2	1.3	64.9	60.2
47	Valkijärvi	582662	8.36	7	238	-8.49	-71.2	747.9	637.5	4.3	3.8	20.4	23.1	80.3	77.6
48	Hautajärvi 2	445413	14.6	3.1	232	-7.43	-64.5	857.1	646.0	3.2	2.6	12.3	15.0	72.8	66.8
49	Keskimmäinen ^(b)	428515	13.07	3.3	233	-10.76	-82.8	3117.4	2686.0	10.9	9.6	3.9	4.4	86.4	84.8
50	Siirasjärvi 2	23126	0.56	4.1	273	-12.66	-93.5	977.5 ^(d)	1315.5 ^(d)	59.7 ^(d)	80.1 ^(d)	0.8 ^(d)	0.6 ^(d)	98.8 ^(d)	99.1 ^(d)
51	Siirasjärvi 1	9701	0.34	2.9	280	-10.43	-80.4	81.5	66.8	8.6	7.2	3.6	4.3	91.6	90.0
52	Telkkälampi	7284	0.25	2.9	284	-7.30	-66.3	18.7	16.9	3.1	2.9	9.8	10.6	77.2	75.4
53	Maitolampi 1	48892	1.56	3.1	259	-6.36	-61.2	73.8	63.3	2.5	2.2	14.8	16.4	68.4	64.9
54	Taka-Salminen ^(b)	364757	7.31	5	240	-9.63	-76.2	772.6	609.0	7.8	6.4	8.0	9.7	52.3	49.6
55	Etu-Salminen ^(b)	196453	5.83	3.4	243	-8.05	-68.5	311.7	259.3	5.1	4.3	8.2	9.6	39.9	38.9
56	Pikku-Salminen	39856	1.32	3	261	-7.61	-65.8	97.4	76.9	3.4	2.8	10.3	12.3	77.1	72.7
57	Kylmäjärvi	394443	7.89	5	239	-8.47	-70.3	703.3	564.6	4.3	3.6	14.7	17.4	80.2	76.5
58	Kourujärvi 1	68023	1.83	3.7	257	-8.55	-71.7	183.8	159.9	4.4	3.9	9.9	11.1	82.1	80.0
59	Kourujärvi 2	31136	1.91	1.6	256	-7.64	-67.3	139.5	120.6	3.4	3.1	5.6	6.2	76.9	74.2
60	Huttunen	54588	1.49	3.7	260	-7.50	-66.9	105.6	92.7	3.3	3.0	12.9	14.2	76.3	73.9

61	Saarijärvi 1	13590	1.36	1	261	-6.49	-61.4	68.1	56.8	2.5	2.2	4.5	5.1	69.5	65.5
62	Pitkäjärvi 2	451093	7.93	5.7	239	-8.05	-68.7	607.3	505.3	3.8	3.3	18.8	21.6	77.7	74.4
63	Pyöräinen ^(b)	76077	3.76	2	248	-7.91	-67.9	270.8	224.5	4.8	4.1	5.1	6.0	56.0	54.6
64	Likainen ^(b)	33763	8.28	0.4	238	-10.94	-83.4	2110.9	1732.2	13.2	11.2	0.4	0.5	74.8	71.9
65	Nimisjärvi ^{(b), (c)}	1840396	167.53	1.1	205	-8.66	-69.7	15759.0	11551.0	5.2	4.1	3.1	3.9	81.1	75.8
66	Ahveroinen 2 ^(b)	670515	16.3	4.1	230	-7.96	-67.8	1077.3	854.5	4.3	3.6	12.4	14.7	61.2	57.6
67	Tervalampi	29707	0.79	3.7	268	-7.99	-68.7	69.3	58.8	3.7	3.3	11.2	12.7	79.9	77.1

1001 (a) - Calculated for the period June 1 - August 31, 2013.

1002 (b) - Lakes with identified surface inflow from an upstream lake.

1003 (c) - Since the upstream lake for lake Nimisjärvi was not sampled, the mean isotopic composition of total inflows to lakes with identified surface water
1004 inflows was used for isotope mass balance calculations of this particular lake.

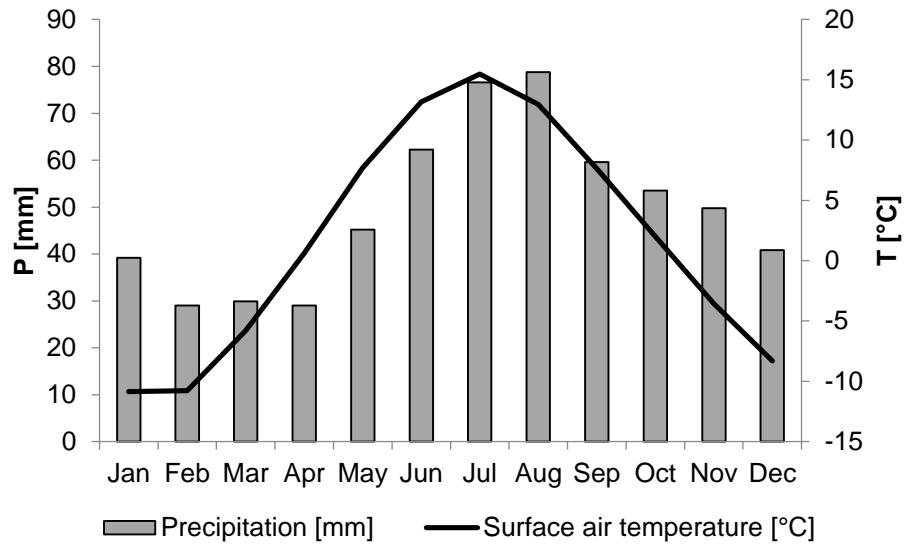

1005 (d) - As the isotopic composition of a lake becomes comparable with the isotopic composition of the total inflow, the isotope mass balance calculations
1006 become very uncertain. Therefore, for lake Siirasjärvi 2 ($\Delta\delta^{18}\text{O} = 0.45\text{\textperthousand}$ and $\Delta\delta^2\text{H} = 1.6\text{\textperthousand}$) the values of I_{TOT}/E , MTT and G index reported in the
1007 table have only an indicative character.

1008 Table 3. Sensitivity of selected elements of ^{18}O -based water balance of the studied lakes to changes
 1009 of the parameters involved.
 1010

Parameter	Parameter change	Mean change of the selected elements of water balance (%) ^(a) :		
		I_{TOT}/E	MTT	G index
1. Lake water temperature ($T_w = 19.1$ °C)	+0.87 °C	-0.9	-11.7	+2.9
	-0.87 °C	+0.7	+15.0	-3.6
2. Normalized relative humidity ($h_N = 60.7$ %)	+2.0 %	-1.5	+7.0	-1.9
	-2.0 %	+1.3	-6.2	+1.6
3. Isotopic composition of atmospheric water vapour ($\delta^{18}\text{O}_A = -20.4$ ‰)	+1.0 ‰	+7.6	-7.1	+1.7
	-1.0 ‰	-7.6	+8.2	-2.0
4. Isotopic composition of lake water ($\delta^{18}\text{O}_{\text{LS}}$)	+0.5 ‰	-15.8	+19.6	-3.3
5. Isotopic composition of the total inflow ($\delta^{18}\text{O}_{\text{IT}}$)	+0.5 ‰	+20.2	-14.8	+4.4

1011 (a) The (+) and (-) signs signify an increase or reduction, respectively, of the derived quantity by the reported
 1012 percentage.
 1013

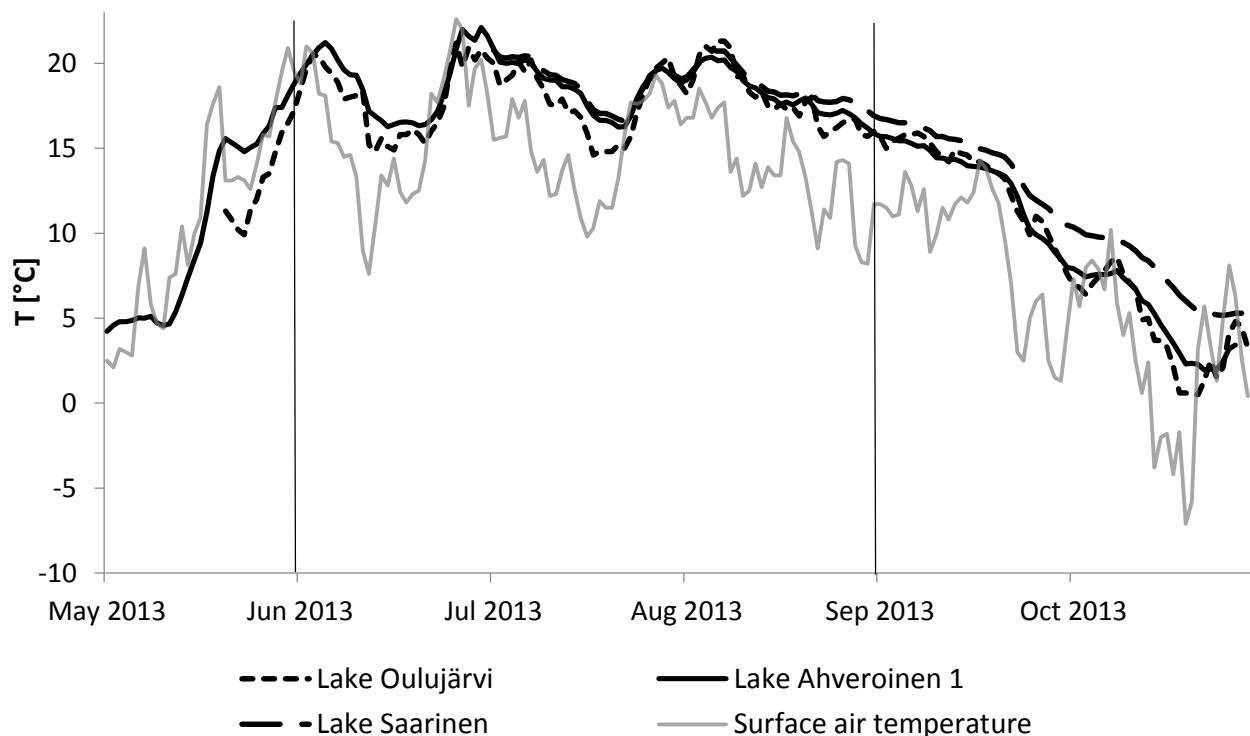
1014 **Figures**


1015

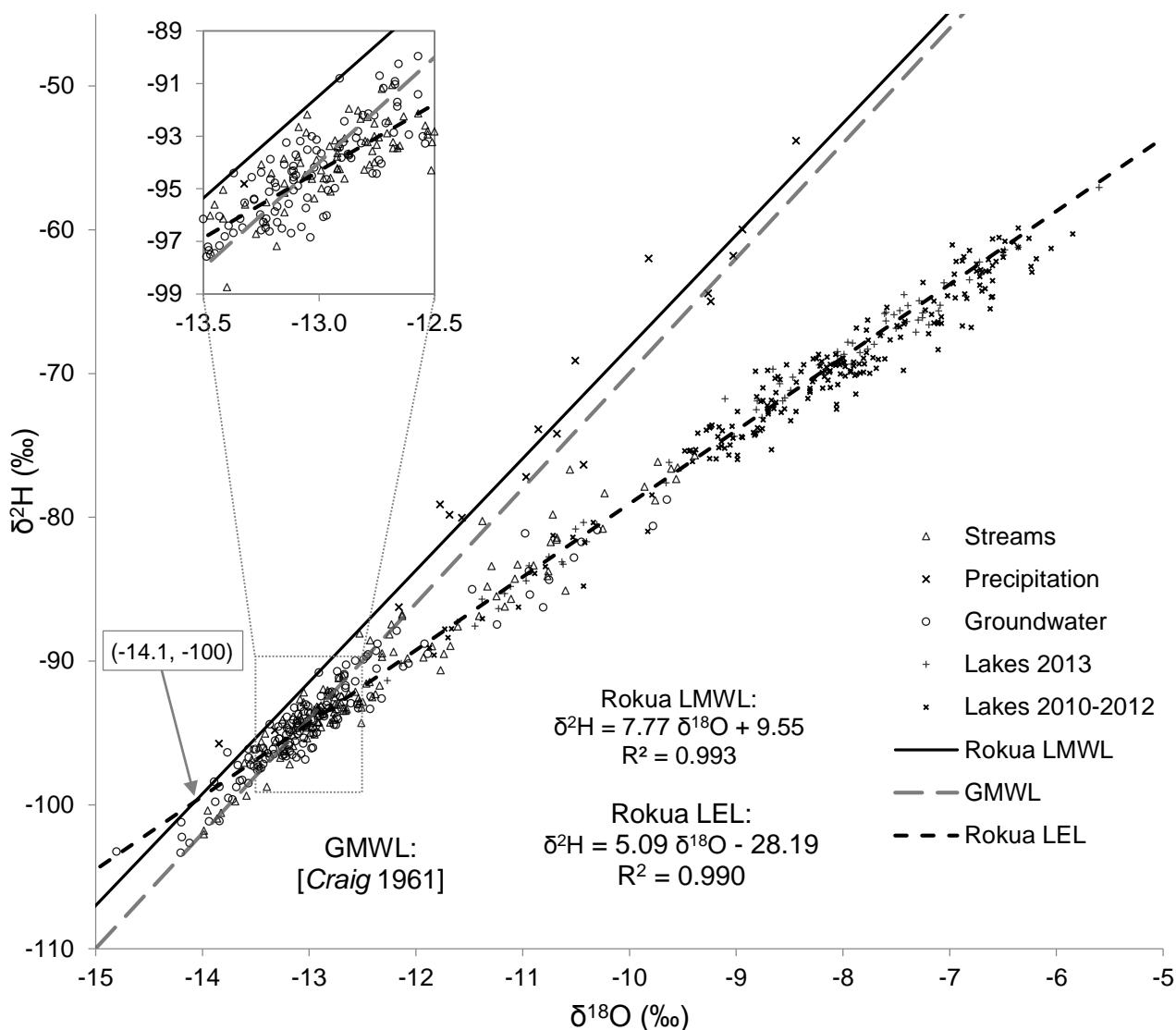
1016 Figure 1. The study site of Rokua esker aquifer area. Digital elevation model by the National Land
1017 Survey of Finland (2010).

1018

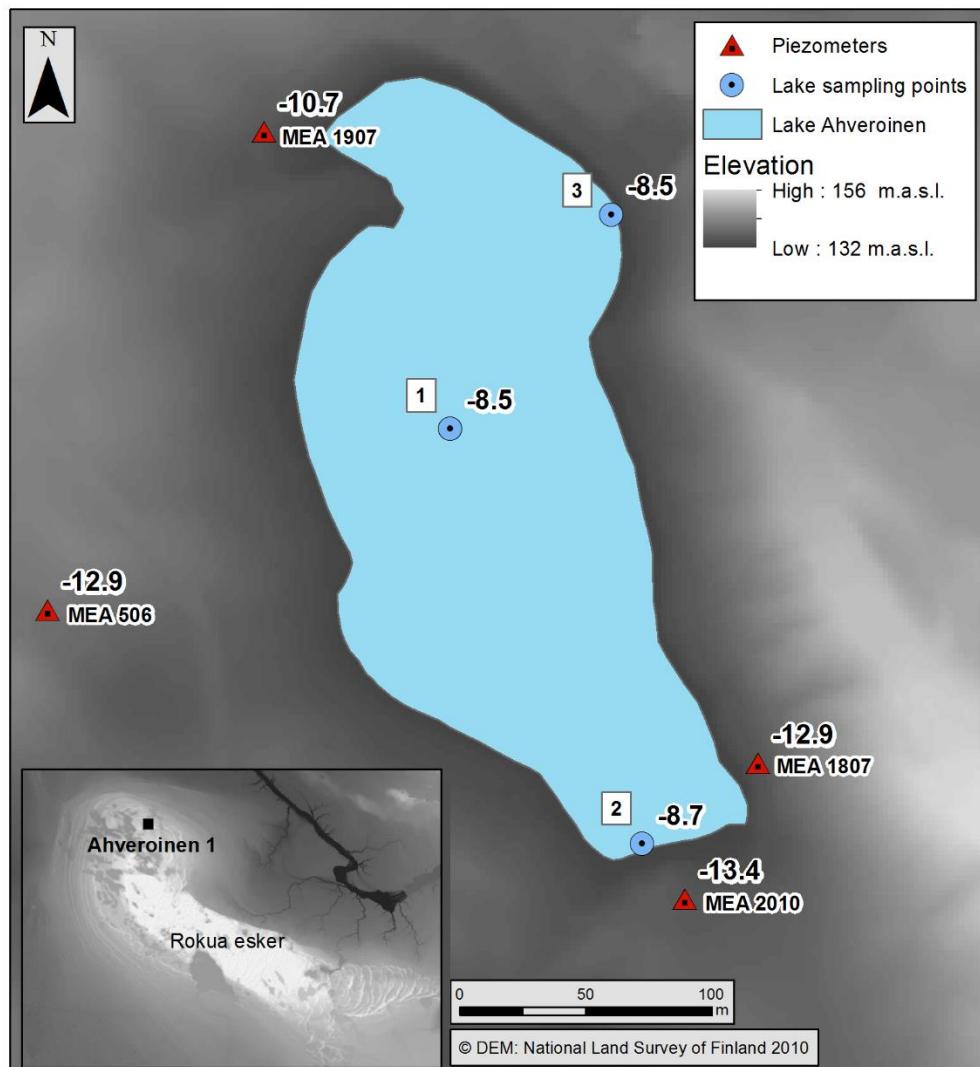
1019


1020

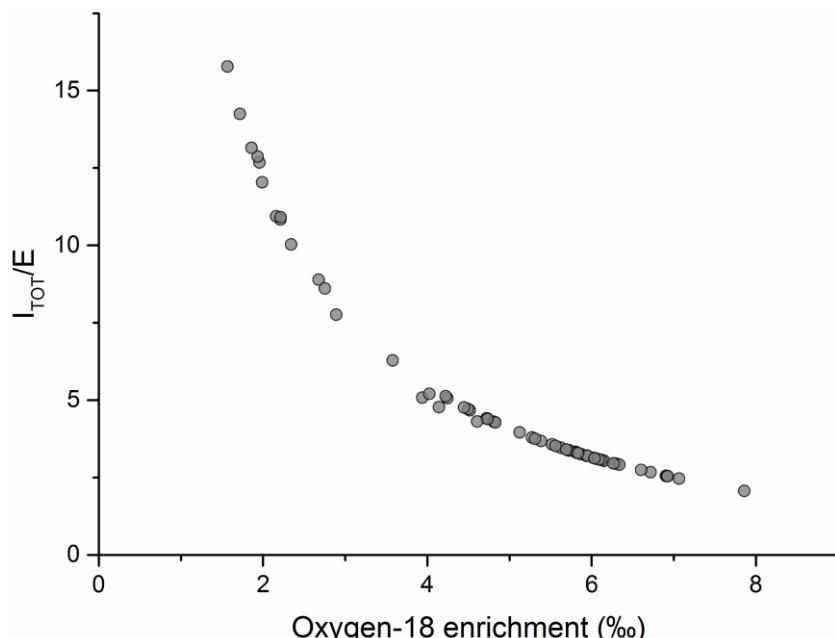
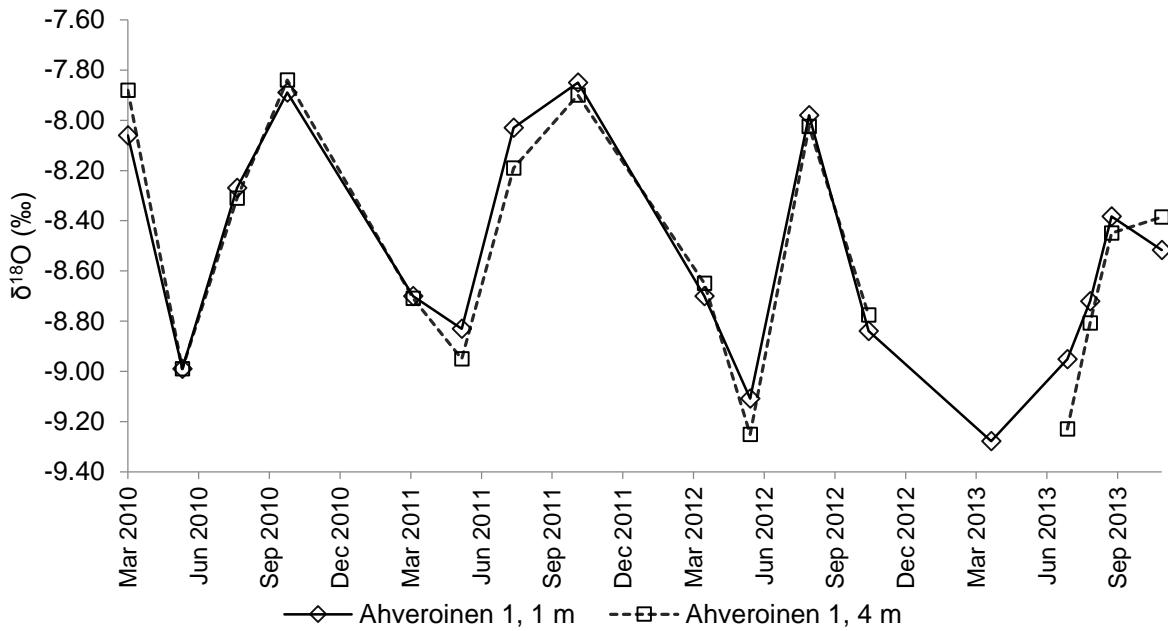
1021

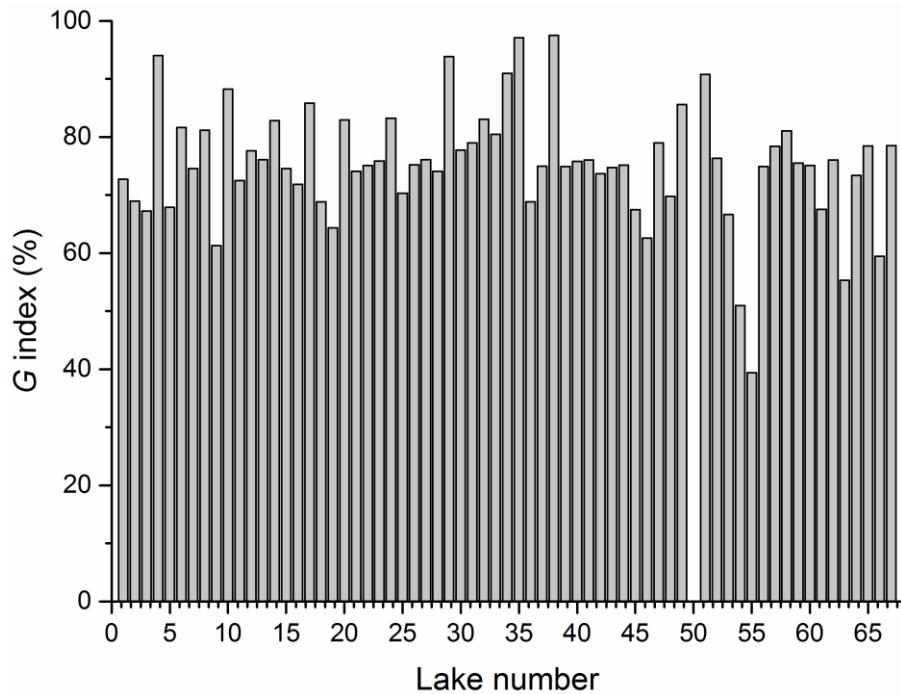

1022 Figure 2. The long-term (1959-2013) monthly mean values of surface air temperature and the amount
 1023 of precipitation recorded at the station located 10 km south-west of the study site (Finnish
 1024 Meteorological Institute, 2014).

1025

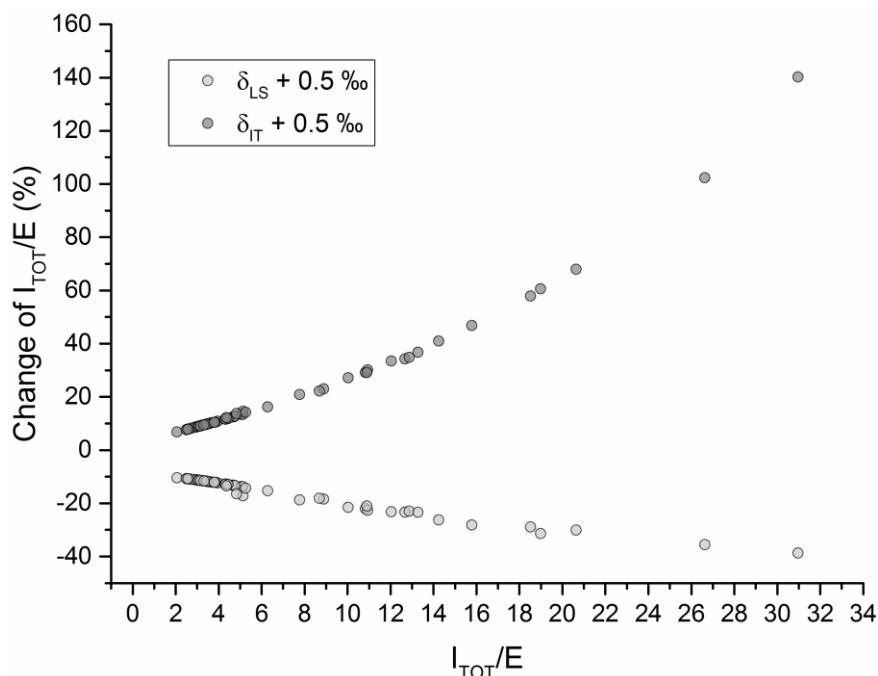

1026

1027 Figure 3. Daily mean surface water temperatures of lakes Oulujärvi (92,800 ha) (Finnish
 1028 Environmental Institute, 2013), Ahveroinen 1 (3.3 ha) and Saarinen (15.3 ha) during the summer of
 1029 2013, compared with the surface air temperature data for the same period. Lake Oulujärvi is located
 1030 in the east, next to the study site, 1 km from the easternmost lake studied. Vertical lines mark the
 1031 period used in the calculations of evaporation and isotope mass balance.



1032
1033
1034
1035
1036
1037


Figure 4. $\delta^2\text{H}$ - $\delta^{18}\text{O}$ relationship for different appearances of surface water (lakes, streams) and groundwater in the study area, investigated within the scope of this study. The Rokua evaporation line (local evaporation line - LEL) was defined as the best fit line of the data points representing lakes sampled during the July-August 2013 campaign.

1038
1039
1040
1041


Figure 5. Mean $\delta^{18}\text{O}$ values (‰) of lake Ahveroinen and adjacent groundwater. The mean $\delta^{18}\text{O}$ value for site 1 is 8.5 ‰ at both sampled depths (1 m and 4 m).

1048

1049 Figure 8. The G index quantifying the groundwater dependency of lakes in the Rokua study area. The
 1050 index is defined as the percentage contribution of groundwater inflow to the total inflow of water to
 1051 the given lake. Shown are the mean G values obtained from independent isotope mass balance
 1052 calculations based on ^2H and ^{18}O data.

1053

1054 Figure 9. Changes of the total inflow-to-evaporation ratio (in %) based on ^{18}O isotope mass balance
 1055 as a function of I_{TOT}/E value, in response to parameter change, calculated for the studied lakes on the
 1056 Rokua esker. Two cases are considered: (a) an increase of the measured $\delta^{18}\text{O}$ of lake water by 0.5 ‰,
 1057 and (b) an increase of $\delta^{18}\text{O}$ of the total inflow to the given lake by 0.5 ‰. See text for details.
 1058