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Abstract

Deriving flood hazard maps for ungauged basins typically requires simulating a long
record of annual maximum discharges. To improve this approach, precipitation from
global reanalysis systems must be downscaled to a spatial and temporal resolution
applicable for flood modeling. This study evaluates such downscaling and error correc-5

tion approaches for improving hydrologic applications using a combination of NASA’s
Global Land Data Assimilation System (GLDAS) precipitation dataset and a higher res-
olution multi-satellite precipitation product (TRMM). The study focuses on 437 flood-
inducing storm events that occurred over a period of ten years (2002–2011) in the
Susquehanna River basin located in the northeast US. A validation strategy was de-10

vised for assessing error metrics in rainfall and simulated runoff as function of basin
area, storm severity and season. The WSR-88D gauge-adjusted radar-rainfall (stage
IV) product was used as the reference rainfall dataset, while runoff simulations forced
with the stage IV precipitation dataset were considered as the runoff reference. Re-
sults show that the generated rainfall ensembles from the downscaled reanalysis prod-15

ucts encapsulate the reference rainfall. The statistical analysis, including frequency and
quantile plots plus mean relative error and root mean square error statistics, demon-
strated improvements in the precipitation and runoff simulation error statistics of the
satellite-driven downscaled reanalysis dataset compared to the original reanalysis pre-
cipitation product. Results vary by season and less by basin scale. In the fall season20

specifically, the downscaled product has three times lower mean relative error than the
original product; this ratio increases to four times for the simulated runoff values. The
proposed downscaling scheme is modular in design and can be applied on gridded
satellite and reanalysis dataset.
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1 Introduction

Flooding is one of the costliest natural hazards, occurring repeatedly around the globe
(Sampson et al., 2014; Hagen and Lu, 2011 among the others). Flood vulnerability
analysis provides essential information to support decisions for policy and prepared-
ness against catastrophic flood consequences and for quantifying risk for coping with5

this hazard (Sampson et al., 2014). However, flood frequency maps are not available
for most regions around the world (Hagen and Lu, 2011) due to limited economic re-
sources to support long-term observations; this results in lack of knowledge and data
(e.g., ground based rain gauge measurements). Developing global scale flood maps
(Porter and Demeritt, 2012) is of increasing interest in the scientific community with10

great applicability in the (re)insurance industry. Global gridded precipitation datasets
from satellites and reanalysis datasets derived from data assimilation systems are two
main sources for deriving global flood hazard maps (Cloke et al., 2013; Kappes et al.,
2012).

Global reanalysis products can provide long-term precipitation datasets for fre-15

quency analyses of hydrologic extremes (e.g., floods, droughts). Widely used reanal-
ysis products include the JRA-25 (Onogi et al., 2005), ERA-40 (Bosilovich et al.,
2008; Uppala et al., 2005), ERA-Interim (Dee et al., 2011), GLDAS (Rodell et al.,
2004), and GDAS (Kalnay et al., 1996). These reanalysis products are available at
coarse spatial resolution (100 to 250 km2) and suffer from model biases (Gottschalck20

et al., 2005; Peña-Arancibia et al., 2013). On the other hand, satellite-based rainfall
products are associated with relatively higher spatial resolutions (10–25 km2) and im-
proved accuracy, but significantly shorter temporal coverage. The most widely used
high resolution, near-global, multi-sensor precipitation products include the 8 km/half-
hourly National Oceanic and Atmospheric Administration CMORPH dataset (Joyce25

et al., 2004), the 25 km/3 hourly US Naval Research Laboratory NRLBLD (Turk and
Miller, 2005), the 4 km 15 min−1 National Environmental Satellite, Data, and Informa-
tion Service Hydro-estimator (Scofield and Kuligowski, 2003), the 10 km 1 h−1 Japan
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Aerospace Exploration Agency GSMaP (Ushio and Kachi, 2009; Kubota et al., 2007),
the 25 km 3 h−1 Center for Hydrometeorology and Remote Sensing, University of
California-Irvine PERSIANN (Sorooshian et al., 2000), and the 25 km 3 h−1 NASA
TRMM3B42 (Huffman et al., 2007). Depending on the algorithm and the purpose of
the product, each dataset utilizes various combinations of information from microwave5

(MW) and geostationary infrared (IR) sensors.
Characterizing the uncertainty in existing global gridded precipitation products is vi-

tal for the purpose of hydrological applications. Syed et al. (2004) have shown that
rainfall is responsible for nearly 70–80 % of the variability in the land surface hydrol-
ogy. Therefore, precipitation uncertainty would critically affect the predicted variability10

in hydrologic simulations. Several validation studies have investigated uncertainties re-
lated to satellite rainfall remote sensing over diverse geographic and hydro-climatic
regimes (Adler et al., 2001; AghaKouchak et al., 2009; Brown, 2006; Dinku et al.,
2007; Ebert et al., 2007; Krajewski et al., 2000; McCollum et al., 2002; Seyyedi et al.,
2014; Stampoulis et al., 2013; Su et al., 2008; Tang et al., 2010). These studies have15

shown that the precision of satellite rainfall products depends on precipitation type (e.g.,
deep convection vs. shallow convection), as well as terrain and climatological factors
(AghaKouchak et al., 2011; Demaria et al., 2011; Turk and Miller, 2005; Seyyedi et al.,
2014). Gottschalck et al. (2005) evaluated precipitation products from global models,
satellite and radar data against ground based gauge measurements over CONUS for20

a period of 14 months. They demonstrated that some of the reanalysis precipitation
products (ECMWF, GEOS and GDAS) can generally perform better than satellite pre-
cipitation datasets (TRMM3B42RT and PERSIANN). Peña-Arancibia et al. (2013) as-
sessed daily detection and accuracy metrics for reanalysis and satellite precipitation
datasets against gauge data. They argued that no product could demonstrate supe-25

rior performance relative to the other, e.g., the ERA-Interim is better at Southern and
Northern Australia, JRA-25 performs better in South and East Asia, while TRMM3B42
and CMORPH are better during monsoon periods. Therefore, combined use of different
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datasets (including satellite and reanalysis) is expected to perform better than any sin-
gle product, especially for hydrological applications.

Substantial efforts have been devoted to assessing the feasibility of utilizing global-
scale precipitation datasets derived from satellite or models on land surface hydrolog-
ical modeling (Behrangi et al., 2011; Beighley et al., 2011; Hong et al., 2007, 2006;5

Hossain and Anagnostou, 2004, 2005; Nijssen and Lettenmaier, 2004; Su et al., 2008;
Bitew and Gebremichael, 2011). Some of these studies have highlighted the effect of
product resolution (Gourley et al., 2011) and catchment size (Vergara et al., 2013) on
the precipitation error propagation in hydrological simulations. Seyyedi et al. (2014)
have recently utilized gridded precipitation datasets from TRMM3B42V7 (25 km, 3 h)10

and GLDAS reanalysis (100 km, 3 h) to conduct a more in depth assessment of the
effect of resolution and data type (satellite vs. reanalysis product) on streamflow sim-
ulations at sub-daily scale. The study was based on a multi-year (2002–2011) and
multi-scale approach considering 1006 sub-basins (36–71 000 km2) of the Susque-
hanna River basin in the northeast US. They demonstrated that statistical scores in15

both rainfall and runoff simulations improve with increasing basin size. However, the
satellite dataset (TRMM3B42V7) was shown to perform significantly better than the re-
analysis (GLDAS) in the simulated runoff values. The mean relative error in runoff sim-
ulations based on GLDAS was up to seven times higher than that of TRMM3B42V7,
which was attributed to the product resolution and associated underestimation of heavy20

precipitation. Results from that study suggest the use of downscaling and error correc-
tion for the GLDAS reanalysis precipitation dataset before implementing it for runoff
simulations. Bastola and Misra (2014) have also evaluated two reanalysis precipitation
datasets (ERA-40 and NCEP-R2) for hydrologic simulations over 28 small to midsize
basins in southeastern US. Their results demonstrated that ER-40 tends to underes-25

timate while NCEP-R2 tends to overestimate relative to the reference data. They also
concluded that downscaling the reanalysis precipitation products would significantly
increase their performance in terms of runoff simulations.
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The critical role of high resolution gridded rainfall datasets for hydrological simula-
tions has led to the development of several rainfall disaggregation algorithms (Brussolo
et al., 2008; Ferraris et al., 2003; Fowler et al., 2007; Frei et al., 2006; Maraun et al.,
2010; Ning et al., 2011; Park, 2013; Rahman et al., 2009; Ramírez et al., 2006; Tao
and Barros, 2010, among others). The main assumption for some recently developed5

downscaling methods for satellite based products is the relationship between spatial
variability of rainfall and environmental factors such as topography and land surface
conditions. Immerzeel et al. (2009) improved average annual TRMM3B43 from 25 km
to 1 km grid resolution by establishing an exponential relationship between TRMM3B43
and Normalized Difference Vegetation Index (NDVI). Jia et al. (2011) developed a sta-10

tistical downscaling scheme based on the relationship between rainfall, terrain eleva-
tion and NDVI. They disaggregated TRMM3B43 from 25 km to 1 km grid resolution
by forming a multiple linear regression model between parameters. The final prod-
ucts of both aforementioned methods are mean annual rainfall values. Duethmann
et al. (2013) downscaled ERA-40 with a horizontal resolution of 100 km to 12 km grid15

size using RCM Weather Research and Forecasting Model (WRF) over central Asia for
hydrological modeling. The downscaled data exhibited significant modeling improve-
ment. Haas and Born (2011) introduced a two-step probabilistic downscaling method
for disaggregating ERA-Interim using ground based gauge data over a complex ter-
rain in Southeastern Morocco. The technique is a combination of CDF transformation20

based on probability mapping and a multi linear regression model to extrapolate obser-
vation data to a high resolution grid using DEM data. The resulting downscaled high
resolution precipitation data substantially outperformed the original ERA-Interim data.
Although downscaling is a widely studied topic, no studies have implemented satel-
lite precipitation datasets for downscaling reanalysis precipitation datasets. Moreover,25

most downscaling schemes for reanalysis datasets are in the context of regional cli-
mate focusing on producing consistent statistics for downscaled precipitation values
and corresponding generated runoff. This work examines the value of satellite data for
improving the applicability of reanalysis precipitation datasets in flood simulations and
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flood frequency analysis. The reason for using satellite datasets is that a great deal of
effort has been devoted to improving the accuracy and resolution of satellite retrievals,
which is paired with the recent advent of satellite missions on precipitation (Hou et al.,
2013). Moreover, satellite products are globally available, which leads to a globally con-
sistent downscaling scheme for reanalysis products that can be particularly useful over5

areas lacking long-term ground based observations.
This study is motivated by the challenges of precipitation applications due to the non-

linear error propagation from rainfall to hydrological simulations and the vital need for
high resolution and long-term gridded rainfall data for deriving flood frequency statistics
and corresponding flood hazards maps. Specifically, we examine the hydrologic impact10

of using the higher resolution and accuracy quasi-global satellite precipitation product
from TRMM3B42V7 to derive finer scale and error-corrected precipitation maps from
the GLDAS reanalysis product. The methodology developed for the satellite-driven er-
ror correction and downscaling of GLDAS rainfall data is based on a stochastic error
model, which was originally developed for modeling the satellite retrieval uncertainty15

and its error propagation in hydrological applications (Hossain and Anagnostou, 2004;
Maggioni et al., 2012, 2013). The methodology is independent of ground based mea-
surements, which makes it applicable over data poor areas of the globe. Since GLDAS
and other reanalysis datasets are available over a relatively long period of time (35–
50 years), developing a proper methodology for downscaling and improving the accu-20

racy of these products could lead to a global gridded precipitation data source suitable
for global-scale water resources assessment and flood frequency studies.

This paper is organized into six sections. After the introduction, the study area and
datasets are described, including the model used for hydrological simulations. The third
section introduces the downscaling and error correction scheme, including the exper-25

iment setup and parameter calibration. The fourth section presents the error analysis
methodology. The fifth section describes the results of the error analysis in rainfall and
simulated runoff values. The conclusions section discusses the main findings of this
research and provides recommendations for future studies.
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2 Study area, datasets and models

The study area is the Susquehanna River Basin (39 to 43◦ N and 75 to 79◦ W, Fig. 1)
which is the largest basin in the eastern US. The highest peak (949 m a.s.l.) is in
the northwestern corner and the lowest point (22 m b.s.l. – below sea level) is in the
southeastern corner with a general elevation gradient from north to southeast. The5

total area of the Susquehanna River Basin is 71 000 km2 of which 76 % is in Penn-
sylvania, 23 % in New York, and 1 % in Maryland. The Susquehanna River Basin is
subject to major floods occurring once every 14 years with an average annual flood
damage on the order of USD 150 million dollars (Susquehanna River Basin Commis-
sion, http://www.srbc.net/). Cumulating the drainage areas along the river network at10

the outlet of each individual catchment provides 373 unique watersheds with drainage
areas ranging from 315 to 71 000 km2. The identified sub-basins were divided into five
basin size categories (see Table 1) to study the effect of basin scale on the precipitation
and runoff simulation error.

The study focuses on 437 flood-inducing rainfall events that occurred between 200215

and 2011. To investigate the effect of seasonality, the events were grouped by season.
The number of events per season is reported in Table 2. Sixty percent of the events in
each season were used for the downscaling model calibration, and the remaining 40 %
were kept for determining error statistics (results presented in this study). Figure 2
shows the cumulative probabilities (CDF) of the events randomly selected for inclu-20

sion in the calibration and validation datasets per season. The figure indicates that the
probability distributions of calibration and validation rainfall rates are very close to each
other, which indicates that the calibration and validation periods have similar statistical
properties in terms of rainfall rates. It is noted that the study is based on time-series of
catchment average precipitation values from each dataset. Catchment average stands25

for the weighted average of all the dataset’s pixel values contained within a catchment’s
boundary, where the weights are based on the fraction of the catchment covered by
each pixel.
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2.1 Stage IV radar data

The radar based NCEP stage IV precipitation data (Lopez, 2011) are utilized as
high accuracy, reference observation data in this study. The data are originally on
a 4km×4 km grid and in polar-stereographic projection. Stage IV combines estimates
of precipitation from a network of 150 Doppler NEXRAD (Next Generation Weather5

Radar) with approximately 5500 hourly rain gauge measurements over the CONUS
(Continental US). NEXRAD is technically similar to the Weather Surveillance Radar-
1988 Doppler (WSR-88D). The data benefit from the 12 CONUS RFCs (River Forecast
Centers) manual quality-control (QC).

2.2 TRMM3B42V710

TRMM3B42V7 is a combined microwave-infrared precipitation product (Huffman et al.,
2007) with 25 km spatial resolution and 3 h temporal resolution representing the latest
version at the time of this study. The TRMM3B42V7 blending algorithm uses passive
microwave (PMW) from TRMMs’ Microwave Imager (TMI) as well as low earth orbit
(LEO) measurements from the Special Sensor Microwave/Imager (SSM/I) on the De-15

fense Meteorological Satellite Program (DMSP) satellites, Advanced Microwave Scan-
ning Radiometer-Earth Observing System (AMSR) on Aqua, the Advanced Microwave
Sounding Unit-B (AMSU-B) on the National Oceanic and Atmospheric Administration
(NOAA) satellite series, Microwave Humidity Sounders (MHS) on later NOAA-series
satellites, and the European Operational Meteorological (MetOp) satellite (Kidd et al.,20

2011). The TRMM3B42V7 combination scheme is based on the Goddard profiling
(GPROF) algorithm (Kidd et al., 2011; Kummerow et al., 2001, 1996; Olson et al., 1999;
Wang et al., 2009; Gopalan et al., 2010) for rainfall estimation from PMW imagers (TMI,
SSM/I, and AMSR). The PMW calibrated infrared (IR) precipitation products (Janowiak
et al., 2001) from Geosynchronous Earth Orbit (GEO) satellites are used to fill in the25

PMW gaps. Specifically, the algorithm takes the value of the PMW-calibrated IR precip-
itation products when the PMW is not available in a 3 hourly time step. The algorithm
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uses monthly ground precipitation gauge data extending between 50◦ N to 50◦ S for
bias removal and calibration.

2.3 GLDAS

The reanalysis precipitation dataset is from GLDAS and has 100 km spatial and
3 hourly temporal resolution. The reasons for selecting GLDAS are its global coverage,5

relatively high temporal resolution and long data record (since 1979). The data are
“observation based”, coming from a combination of reanalysis data from the Global
Data Assimilation System (GDAS) from the National Center for Environmental Predic-
tion (NCEP), NOAA Climate Prediction Center’s CMAP (CPC Merged Analysis of Pre-
cipitation) precipitation (Xie and Arkin, 1997), and radiation datasets from Air Force’s10

AGRicultural METeorological modeling system (AGRMET) (Rodell et al., 2004). GDAS
assimilates global meteorological observations. CMAP is merged satellite based IR
and MW observations with rain gauge analysis. AGRMET radiation fields are satel-
lite observation based. GLDAS therefore represents merged, spatially and temporally
interpolated fields of GDAS, CMAP, and AGREMET fields.15

2.4 Hydrologic model simulations

The Hillslope River Routing (HRR) (Beighley et al., 2009, 2011) is the modeling frame-
work used in this study. HRR integrates a water balance model for the vertical fluxes
and a routing model for the horizontal fluxes of the surface and subsurface runoff and
streamflow. For each model unit, the landscape is approximated as an open book with20

two planes draining laterally to a main channel. Water and energy balance is used to
simulate the vertical fluxes and storages of water in and through the soil layers on each
plane. Flow routing is then performed using variants of the kinematic wave method for
both the surface and subsurface runoff from hillslopes, and diffusion wave methodolo-
gies (i.e., Muskingum Cunge) for channels.25
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Seyyedi et al. (2014) provided details about the model implementation in the Susque-
hanna River Basin and reported model specifications, parameter calibration and perfor-
mance results. In addition to the base model parameters (e.g., vertical hydraulic con-
ductivity, suction head, and soil depth), three parameters were calibrated in Seyyedi
et al. (2014) based on soil and land cover data: horizontal conductivity, Kh, for the5

subsurface routing, overland flow roughness, N, for surface routing, and Manning’s
roughness, n, for channel routing. These parameters are scale dependent in that they
capture both the hydraulic features (river reach and hillslope lengths) defined for a given
model unit as well as all sub-model unit features not represented at the defined model
scale (e.g., all tributaries not explicitly represented in the defined river network). The10

calibration was performed by systematically adjusting the three parameters (Kh, N, n)
to achieve zero mean error (ME, m3 s−1) for the annual maximum peak discharges at
nine streamflow gauging stations shown in Fig. 1. As reported in Seyyedi et al. (2014),
model performance after calibration includes zero mean error for the entire basin, while
mean relative errors for individual gauges ranged between −16 to 23 %, and errors for15

individual events ranged between −62 to 224 %. The largest error is from the gauge
draining one of the smallest basin areas (1155 km2) during 2011 Tropical Storm Lee,
which caused significant flooding especially in the northern Susquehanna River Basin.
Overall, 86 % of the errors are within ±50 %, and approximately half are within ±25 %.

3 Error correction and downscaling scheme20

The stochastic space–time error model of Hossain and Anagnostou (2006), originally
developed for satellite rainfall error modeling (hereafter named SREM2D), was de-
vised in this study to disaggregate and error correct GLDAS precipitation datasets
using reference data from the TRMM3B42V7 satellite precipitation product. Specifi-
cally, SREM2D was applied on the coarse (100 km) grid resolution GLDAS precipita-25

tion fields to generate 20 member ensembles of error-adjusted precipitation fields at
25 km grid resolution. Figure 3 illustrates the framework for the stochastic downscaling
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and error correction. First SREM2D parameters are determined for each season using
TRMM3B42V7 and GLDAS data from the calibration datasets of each season. Then
SREM2D was applied to the GLDAS data during the validation period and evaluated
against the reference Stage IV gauge adjusted radar-rainfall fields. Details about the
SREM2D model are provided in Hossain and Anagnostou (2006), while below we de-5

scribe the model calibration results for the different seasons.
SREM2D parameters calibrated in this study are: (1) probability of rain detection

(POD) (see Fig. 4e), (2) mean of the log-transformed multiplicative error, where error
is the multiplicative factor “e =Rsensor/Rreference”, this parameter is represented in
2-D spatial fields for each season on Fig. 4a–d, (3) mean value of missed rain rate,10

(4) probability of no-rain detection (POD no rain), (5) correlation length for the retrieval
error (CLret), (6) correlation length for the successful delineation of rain (CLrain det),
and (7) correlation length for the successful delineation of no rain (CLno rain det).
The calculated values for parameters 3 to 7 are presented in Table 3 for the selected
calibration events in each season.15

In terms of spatial patterns, the correlation lengths of rain detection, no-rain detection
and downscaled rain for all seasons are less than 83 km. The lower correlation length
indicates lower dependence between variables in space. Regarding the random error,
the range of standard deviation of logarithmic multiplicative errors is between 1.2 (fall)
and 1.65 (winter). The values represent higher magnitude of variability of error between20

reference and sensor data in winter relative to the other seasons. The PODno-rain takes
its maximum value during the summer season (0.98) while it drops to 0.85 for the winter
season. The maximum mean rain rate of non-detected values is 0.82 for the summer;
the corresponding value is 0.39 for the winter. Summer events are associated with
higher rain rates, which results in higher non-detected rain rates from GLDAS.25

The mean of the log-transformed multiplicative error for each season is presented
in 2-D spatial fields (Fig. 4a–d). The negative mean logarithmic error indicates that
the GLDAS is underestimating relative to the TRMM3B42V7. As we see in Fig. 4a–d,
the GLDAS is underestimating almost everywhere and for all seasons. The magnitude
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of underestimation in the summer is relatively higher than in the other seasons. The
probability of rain detection is presented as a function of GLDAS rain rate (Fig. 4e).
The summer events exhibit the lowest values whereas fall and spring have higher POD
values.

Figure 5 presents the accumulated values based on all validation events for the dif-5

ferent precipitation products and the 20 member SREM2D-generated ensembles of
GLDAS downscaled precipitation, depicted by the shadow area on the plot. GLDAS
rainfall significantly underestimates the other two precipitation datasets, especially in
spring, fall and winter seasons, while the SREM2D-generated ensemble envelops en-
capsulate well the TRMM3B42V7 and, in most cases, the ground based reference10

accumulated rainfall. This indicates that the disaggregated GLDAS precipitation data
are in agreement with the TRMM3B42V7 and the corresponding ground based radar
rainfall data.

4 Error analysis methodology

The error analysis devised in this study, aimed to demonstrate the degree of improve-15

ment due to downscaling, consists of three main hydrologic components (Fig. 6): ref-
erence simulation, observation simulation and downscaled and error corrected simula-
tion. Reference simulation is based on generating runoff values through forcing HRR
with the reference radar rainfall data. Observation simulation stands for forcing HRR
with GLDAS or TRMM3B42V7 at the product resolution. Downscaled and error cor-20

rected simulation refers to forcing HRR with the ensemble mean of the SREM2D-
downscaled GLDAS precipitation fields. There are two error analysis steps associ-
ated with the three main components: the rainfall error analysis and simulated surface
runoff error analysis. Each error analysis component consists of three statistical met-
rics: quantile-quantile (Q-Q) plots, mean scale quantile relative error (QRE), and the25

quantile root mean square of error relative to the mean of reference (QRMSE).
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The Q-Q plots are used to compare basin-average quantile rainfall and runoff values
from the various data sources (GLDAS at 100 km, TRMM3B42 at 25 km, mean GLDAS
downscaling ensemble at 25 km) against the reference data source (radar at 4 km). The
QRE is defined as the ratio of the sum of differences between reference and sensor
values (precipitation or runoff) to the sum of reference values determined over the sub-5

basins for each quantile range:

QRE =

∑n
i=1

((
P s

Sensor | tj ≤ P s
ref < tj+1

)
−
(
P s

ref | tj ≤ P s
ref < tj+1

))
∑n

i=1

(
P s

ref
| tj ≤ P s

ref
< tj+1

) (1)

where P s
Sensor is the sensor “basin averaged” precipitation/runoff value, P s

ref is the refer-
ence “basin averaged” precipitation/runoff value over the sub-basin, t is the threshold10

value which is based on the reference data quantiles, j is the quantile index, and n
is total number of value in a particular scale and quantile range. The perfect value for
this metric is zero, which means there is no difference between reference and the sen-
sor values. Negative QRE value means the sensor is underestimating and the positive
value means overestimating.15

QRMSE is the root mean square of the differences between reference and sensor; it
is normalized to the mean of reference values.

QRMSE =

2

√
1
n

n∑
i=1

((
P s

Sensor
| tj ≤ P s

ref
< tj+1

)
−
(
P s

ref
| tj ≤ P s

ref
< tj+1

))2

mean
(
P s

ref
| tj ≤ P s

ref
< tj+1

) (2)

where P s
Sensor is the sensor “basin averaged” precipitation/runoff value, P s

ref is the refer-20

ence “basin averaged” precipitation/runoff value over the sub-basin, t is the threshold
value which is based on the reference data quantiles, j is the quantile index, and n is
total number of value in a particular scale and quantile range. QRMSE quantifies the
spread between sensor and reference data points.
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To determine dependence of the error metrics on storm severity, QRE and QRMSE
statistics are categorized in two groups according to the quantile values of rainfall and
runoff, namely, values between 75th and 90th percentile and greater than the 90th
percentile that represent moderate and extreme events, respectively. To investigate the
effect of seasonality and basin scale statistics, Q-Q plots are presented for the four5

seasons and different basin scales.

5 Results

5.1 Rainfall error analysis

As mentioned above, the rainfall error analysis is divided into two categories: frequency
distribution and quantitative statistics. The frequency distribution uses the quantile-10

quantile (Q-Q) plots, and the quantitative statistics include the QRE, and QRMSE error
metrics. These are discussed next.

5.1.1 Frequency distribution

To assess the correspondence between sensor and reference rainfall data, we plot-
ted the quantile values from TRMM3B42V7, GLDAS and downscaled ensemble-mean15

GLDAS (sensor) against the corresponding quantile values of the reference radar rain-
fall (Fig. 7). In each Q-Q plot the x-axis represents sensor values and the y-axis rep-
resents radar values in mm h−1. We show significant changes in the Q-Q plots for the
different basin scales (small to large) and seasons.

GLDAS show a systematic underestimation at all seasons and basin scales. The un-20

derestimation is most severe at the smallest basin scales (top panels). During the sum-
mer convective rainfall season, the underestimation reduces significantly for medium
to large basin scales, and it turns to slight overestimation for the small quantile val-
ues (< 1 mm h−1). On the other hand, the GLDAS downscaled ensemble-mean data
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exhibit much better agreement with the reference radar rainfall data. The best agree-
ment is observed during the fall and summer seasons, while good agreement is also
depicted during the spring season. The winter season exhibits a strong underestima-
tion (overestimation) of the low (high) quantile values. Overall, the downscaled GLDAS
precipitation dataset exhibits similar performance to the TRMM3B42V7 product in the5

fall, summer and spring seasons, while in the winter, the downscaled GLDAS shows
stronger underestimation than TRMM3B42V7 for the low quantile values.

5.1.2 Quantitative statistics

The seasonal variation of the mean relative error and relative root mean square error
statistics vs. basin scale for GLDAS, TRMM3B42V7, and the downscaled ensemble-10

mean GLDAS are presented in Figs. 8 and 9, respectively. These statistics are based
on precipitation values that exceed the 90th percentile. The main point to note is that
no datasets show significant changes with basin scale. In spring the GLDAS is sig-
nificantly underestimating while TRMM3B42V7 is almost unbiased, while the down-
scaled GLDAS is slightly overestimating for all basin size categories. In summer all15

datasets are underestimating. The magnitude of underestimation in GLDAS is signifi-
cantly higher than that of TRMM3B42V7 or the downscaled ensemble-mean GLDAS.
In fall, GLDAS is significantly underestimating while the downscaled ensemble-mean
GLDAS is almost unbiased, in contrast to the TRMM3B42V7, which is slightly over-
estimating. In winter, GLDAS is underestimating while TRMM3B42V7 and downscaled20

ensemble-mean GLDAS are overestimating. The magnitude of overestimation in the
downscaled ensemble-mean GLDAS is lower than the underestimation in GLDAS. For
the random component of precipitation error (relative RMSE), the three precipitation
datasets are performing similarly, with scores very close in the summer and fall sea-
sons (scores ranging between 0.9 and 1.05). Overall, GLDAS exhibits lower relative25

RMSE values than the other two precipitation datasets, with this difference becoming
more significant (range between 0.8 and 1.4) during winter and spring seasons.
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5.2 Simulated runoff error analysis

Time series of the simulated runoff for the entire basin derived from forcing the
HRR model with GLDAS (observation simulation), TRMM3B42V7 (product simulation),
downscaled ensemble-mean GLDAS (downscaled and error corrected simulation), and
radar-rainfall data (reference simulation) for the validation data sample of each season5

are presented in Fig. 10. As shown in the time series plot, GLDAS is systematically
underestimating runoff relative to the other datasets, and particularly during the major
hurricane events in the fall. The downscaled ensemble-mean GLDAS performs signifi-
cantly better and is shown to be able to capture the events and the overall flow patterns.
In the case of the high flow fall events (associated with two hurricanes), the downscaled10

ensemble-mean GLDAS simulated runoff seems to be between TRMM3B42V7 and ref-
erence data. Below we discuss quantile-quantile (Q-Q) plots and QRE, and QRMSE
error metrics for the runoff simulations.

5.2.1 Frequency distribution

The quantile-quantile (Q-Q) plots of the simulated runoff values from the three datasets15

(i.e., TRMM3B42V7, GLDAS, and downscaled ensemble-mean GLDAS) against the
reference simulations are presented in Fig. 11. Similar to Fig. 7, GLDAS exhibits
a strong underestimation of runoff at all seasons and basin scales. The underesti-
mation is shown to the more significant in the fall, spring and winter seasons, while
it reduces significantly during the summer events. The ensemble-mean downscaled20

GLDAS on the other hand exhibits very good agreement with the reference values,
particularly during fall and spring seasons. This agreement is very similar to the one
exhibited for the TRMM3B42V7 dataset, indicating that downscaling makes GLDAS
perform similarly as the corresponding TRMM3B42V7 dataset, which was used in the
calibration of the stochastic model parameters.25
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5.2.2 Quantitative statistics

Figures 12 and 13 show the two error metrics (QRE and QRMSE) determined for
the validation sample reference runoff simulation values exceeding the 90th percentile
value for the different seasons. As shown in the QRE plots of Fig. 12, GLDAS un-
derestimates significantly in all seasons (Fig. 12). The magnitude of underestimation5

is the strongest in summer and fall seasons and the lowest in spring season. Win-
ter season underestimation reduces with increasing basin scale. The ensemble-mean
downscaled GLDAS QRE values exhibit significant bias reduction in runoff simulations,
particularly in the fall and winter seasons. In spring, the downscaled GLDAS exhibits
overestimation, which is still lower in absolute magnitude than the underestimation of10

the original GLDAS runoff simulations. The QRE values of the TRMM3B42V7 product
are consistently low, showing a positive bias of < 10 %.

For the random error component, downscaling consistently improves the QRMSE
statistic at all basin scales and for all seasons. The greatest reduction on QRMSE is
in the summer and winter seasons, while spring exhibits the least effect. The satellite15

product (TRMM3B42V7) shows consistently lower QRMSE values than both GLDAS
and downscaled GLDAS products for all basin scales and seasons. The greatest dif-
ference is in the summer and fall seasons that are associated with a more organized
convective system and a less snow/mixed phase precipitation. Spring season also ex-
hibits a slight basin scale dependence on QRMSE for the downscaled GLDAS and20

TRMM3B42V7 product driven runoff simulations; no significant basin scale depen-
dence is presented for the other seasons or products.

The above findings are in contrast with the increased random error component
shown in the downscaled GLDAS precipitation product (Fig. 9). To understand this as-
pect, we present in Table 4 the QRMSE ratios between runoff and precipitation (error25

propagation) for the two products, seasons and basin scales. The downscaled GLDAS
exhibits dampening of the random error component from precipitation to runoff simu-
lations; this dampening seems to be less dependent on basin scale and more related
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to season. For example, winter and spring seasons exhibit the strongest dampening
of random error (ratios around 0.5), while in the summer the ratio is around one (i.e.,
no change), and in the fall the ratio is around 0.8 with a slight basin scale depen-
dence (i.e., ranging from 0.86 for basins below 1000 km2 to 0.79 for basins greater than
10 000 km2). On the other hand, the original GLDAS product shows either an increase5

in the random error component from precipitation to runoff simulations during summer
and fall seasons, or a weaker (about half) dampening, compared to the downscaled
product, in winter and spring seasons. These differences in precipitation to runoff er-
ror propagation convert the slightly increased random error of the downscaled GLDAS
product in precipitation to a significantly lower random error in runoff simulations, which10

is consistent with our aim of improving the hydrologic use of GLDAS products in flood
modeling.

6 Conclusions

The aim of the study was to evaluate a stochastic downscaling and error correction
approach for improving the use of a global reanalysis precipitation dataset (GLDAS) in15

flood simulations. GLDAS is available over a relatively long time period (since 1979),
which provides a good source of precipitation data for hydrological analyses and global
flood hazard mapping. However, it has been shown in Seyyedi et al. (2014) that the res-
olution and biases of this product introduce significant runoff simulation errors, which
limit its applicability for flood modeling. In this study we present a two dimensional20

stochastic error model (SREM2D) to downscale and adjust GLDAS precipitation data
using as reference the higher resolution and accuracy TRMM3B42V7 satellite pre-
cipitation product. The study focused on a large basin (Susquehanna River Basin) in
the northeast US subjected to 437 rainfall events over a 10 year period (2002–2011),
which were grouped in four seasons. The hydrologic simulations were performed with25

the HRR model, which was calibrated using radar-rainfall and observations from nine
USGS streamflow gauges.
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The improvements from downscaling and adjusting the GLDAS precipitation were
evaluated in terms of both rainfall and runoff simulations using frequency distributions
and quantitative error metrics. The effect of basin scale and seasonality were consid-
ered in this analysis. For the precipitation error analysis, the quantile-quantile plots
indicated that GLDAS is meaningfully underestimating for all seasons and all basin5

scales, while the satellite-driven downscaled GLDAS ensembles reduced significantly
that bias, reaching a performance similar to the TRMM3B42V7 precipitation product.
This was confirmed by the mean relative error statistic, where downscaled GLDAS
shows substantial reduction of the strong underestimation exhibited in the original
GLDAS product. The error analysis in simulated runoff values gave similar bias pat-10

terns as those in the precipitation products. The downscaled ensemble-mean GLDAS
product has considerably reduced bias compared to the original GLDAS product. There
is a slight basin scale effect on the evaluated statistics, with slightly better runoff re-
sults for larger basin sizes. The random error in the simulated runoff values reduces
meaningfully for the downscaled ensemble-mean GLDAS product relative to the orig-15

inal GLDAS. This was explained by the properties of the random error propagation
from precipitation to runoff simulations, where for the original GLDAS the random er-
ror is either increasing (summer and fall seasons) or slightly decreasing (winter and
spring). On the other hand, the downscaled GLDAS product showed a remarkable
dampening (0.5–0.8) of the random error from precipitation to runoff simulations. This20

can be attributed to hydrologic processes (infiltration and runoff generation) that can
average out the random precipitation error component of the high-resolution products
(e.g., downscaled GLDAS), but make discharge errors worse for the strongly underes-
timated GLDAS rainfall rates within the basin.

Overall, results presented in this study indicate that the proposed satellite precipita-25

tion based downscaling and error correction method has the potential to improve the
hydrological use of GLDAS precipitation reanalysis datasets. The main advantage of
this approach is that it uses high-resolution global precipitation products from multi-
sensor satellite observations, which makes it flexible to implement over areas with
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limited ground based measurements. Furthermore, the downscaling scheme is modu-
lar in design and can be applied to any gridded dataset.

The proposed scheme was demonstrated over northeast US, which is a data rich
area. As stated in the study area section, TRMM3B42V7 technique uses regional
ground based precipitation measurements from rain gauges to adjust the precipita-5

tion retrieval. Although this approach is consistently applied globally, many areas of the
world do not have a gauge density as large as the US network. As argued in studies
reported in this paper, rain gauge adjustments in data poor areas may worsen the accu-
racy of TRMM3B42V7 product. Therefore, future research should evaluate this scheme
on the basis of other satellite products that do not use rain gauge based adjustments to10

represent more accurately the conditions of data poor areas. Another extension of this
research is to apply the SREM2D downscaling scheme on the entire (35 year) record of
GLDAS precipitation data to derive multi-year downscaled GLDAS reanalysis ensem-
bles, and use them through the hydrologic model of this study to derive flood return
periods for the Susquehanna River Basin. Finally, extending the downscaling methodol-15

ogy to GLDAS as well as other reanalysis products, such as ERA-40 and ERA-interim,
at the global scale in conjunction with multi-year (1998–2014) high-resolution precipita-
tion products from satellite-only techniques (e.g., CMORPH, PERSIANN) would allow
derivation of a high accuracy global satellite-driven water resources reanalysis inde-
pendent from ground measurements. Such products could be used in many engineer-20

ing and scientific applications, such as flood and drought frequency analyses, design
of hydraulic structures, or reservoir design and operation optimization.
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Table 1. Number of basins for each basin scale category.

Basin scales (km2) # of basins

315–1000 154
1000–3150 77
3150–10 000 51
10 000–31 500 53
31 500–100 000 38
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Table 2. Number of flood events selected for each season.

Events Number of events Percentage out of the total number of events (%)

Spring 94 21
Summer 74 17
Fall 157 36
Winter 112 26

Total 437 100

9097

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/9067/2014/hessd-11-9067-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/9067/2014/hessd-11-9067-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 9067–9112, 2014

Satellite-driven
downscaling of

global reanalysis
precipitation

products

H. Seyyedi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 3. SREM2D parameters determined for GLDAS downscaling for the four seasons using
the calibration events.

SREM2D Parameter Spring Summer Fall Winter

Mean (mu-Gaussian of log-error) Fig. 4a–d Fig. 4a–d Fig. 4a–d Fig. 4a–d
PODrain Fig. 4e Fig. 4e Fig. 4e Fig. 4e
Sigma (std.dev Gaussian of log-error) 1.48 1.35 1.20 1.65
Missed mean rain rate (mm h−1) 0.58 0.82 0.48 0.39
POD no-rain 0.88 0.98 0.93 0.85
CLrain-downscale (km) 22 20 18 21
CLrain det (km) 43 40 48 40
CLno rain det (km) 49 15 67 83
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Table 4. The ratio of QRMSE in runoff to QRMSE in precipitation for GLDAS and ensemble-
mean downscaled GLDAS data.

Scale < 1000 km2 3150 to 10 000 km2 > 10000 km2

GLDAS downscaled GLDAS GLDAS downscaled GLDAS GLDAS downscaled GLDAS
Spring 0.83 0.55 0.80 0.57 0.80 0.53
Summer 1.36 0.96 1.39 1.06 1.29 0.95
Fall 1.19 0.86 1.13 0.81 1.12 0.79
Winter 0.78 0.46 0.81 0.47 0.81 0.46
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Figure 1: Study area (left panel) and precipitation product grids over the Susquehanna River 841 
Basin. Red gird is indicating GLDAS (100km), yellow is indicating TRMM3B42V7 (25km) and 842 
black is indicating the stage IV radar rainfall product (4km).  843 
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Figure 1. Study area (left panel) and precipitation product grids (right panel) over the Susque-
hanna River Basin. Red gird is indicating GLDAS (100 km), yellow is indicating TRMM3B42V7
(25 km) and black is indicating the stage IV radar rainfall product (4 km).
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Figure2: Cumulative probability of radar rainfall rain rates in the calibration and validation events 865 
selected for each season. 866 
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Figure 2. Cumulative probability of radar rainfall rain rates in the calibration and validation
events selected for each season.
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Figure 3. Stochastic downscaling framework. It consists of two main parts; the left side is
indicating required SREM2D parameters and the right side shows GLDAS ensemble generating
and quality assessment with the absolute reference data (Stage IV radar data).
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 901 

Figure 4: SREM2D parameters: map of the mean of log-transformed multiplicative error ‘e’ for 902 
each season, a) Spring, b) Summer, c) Fall, d) Winter; (e) Probability of rain detection vs. 903 
GLDAS rain rate.  904 
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Figure 4. SREM2D parameters, 2-D spatial mean of logarithmic error “e” for each season,
(a) spring, (b) summer, (c) fall, (d) winter; probability of rain detection as function of GLDAS
rain rate (e).

9103

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/9067/2014/hessd-11-9067-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/9067/2014/hessd-11-9067-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 9067–9112, 2014

Satellite-driven
downscaling of

global reanalysis
precipitation

products

H. Seyyedi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

 906 

 907 

 908 

 909 

 910 

 911 

 912 

 913 

 914 

 915 

 916 

 917 

 918 

 919 

 920 

 921 

 922 

 923 

 924 

 925 

Figure 5: Cumulative precipitation values of the validation events in the three seasons; the 926 
shaded area indicates the 20 ensemble members of downscaled and error corrected GLDAS data. 927 
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Figure 5. Cumulative precipitation values of the validation events in the three seasons; the
shaded area indicates the 20 ensemble members of downscaled and error corrected GLDAS
data.
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Figure 6. Flow diagram for the error analysis methodology.
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Figure 7: Quantile-Quantile plots between sensor (TRMM3B42V7, GLDAS and downscaled 965 
GLDAS) and radar precipitation values. Rows are indicating different basin scale categories. 966 
Columns are representing the different seasons.  967 
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Figure 7. Quantile-Quantile plots between sensor (TRMM3B42V7, GLDAS and downscaled
GLDAS) and radar precipitation values. Rows are indicating different basin scale categories.
Columns are representing the different seasons.
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Figure 8: QRE error metric determined conditional to reference precipitation values exceeding 989 
their 90th percentile. The horizontal axis indicates basin scale categories presented in Table 2.  990 
Results are presented for spring (upper left panel), summer (upper right), fall (lower left) and 991 
winter (lower right) seasons. 992 
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Figure 8. QRE error metric determined conditional to reference precipitation values exceeding
their 90th percentile. The horizontal axis indicates basin scale categories presented in Table 2.
Results are presented for spring (upper left panel), summer (upper right panel), fall (lower left
panel) and winter (lower right panel) seasons.
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Figure 9: QRMSE error metric determined conditional to reference precipitation values 1008 
exceeding their 90th percentile. The horizontal axis indicates basin scale categories presented in 1009 
Table 2.  Results are presented for spring (upper left panel), summer (upper right), fall (lower 1010 
left) and winter (lower right) seasons. 1011 
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Figure 9. QRMSE error metric determined conditional to reference precipitation values ex-
ceeding their 90th percentile. The horizontal axis indicates basin scale categories presented
in Table 2. Results are presented for spring (upper left panel), summer (upper right panel), fall
(lower left panel) and winter (lower right panel) seasons.
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Figure 10: Discharge time series driven by the different precipitation product over the basin 1035 
indicated in Figure 1 and consisting of the selected validation events of each season. 1036 
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Figure 10. Runoff time series driven by the different precipitation product over the basin indi-
cated in Fig. 1 and consisting of the selected validation events of each season.
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Figure 11: Quantile-Quantile plots between sensor (TRMM3B42V7, GLDAS and downscaled 1056 
GLDAS) and radar rainfall-driven runoff simulations. Rows are indicating different basin scale 1057 
categories. Columns are representing the different seasons.  1058 
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Figure 11. Quantile-Quantile plots between sensor (TRMM3B42V7, GLDAS and downscaled
GLDAS) and radar rainfall-driven runoff simulations. Rows are indicating different basin scale
categories. Columns are representing the different seasons.
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Figure 12. QRE error metric determined conditional to reference runoff values exceeding their
90th percentile. The horizontal axis indicates basin scale categories presented in Table 2. Re-
sults are presented for spring (upper left panel), summer (upper right panel), fall (lower left
panel) and winter (lower right panel) seasons.
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Figure 13: QRMSE error metric determined conditional to reference runoff values exceeding 1101 
their 90th percentile. The horizontal axis indicates basin scale categories presented in Table 2.  1102 
Results are presented for spring (upper left panel), summer (upper right), fall (lower left) and 1103 
winter (lower right) seasons. 1104 

 1105 

 1106 

 1107 

 1108 

 1109 

 1110 

0
0.2
0.4
0.6
0.8

1
1.2
1.4

R
M

SE
 R

el
at

iv
e 

to
 M

ea
n 

R
ad

ar
 

Basin Scale (km^2) 

GLDAS
GLDAS Ensemble (mean)
TRMM3B42V7

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Q
R

M
SE

 –
 r

un
of

f s
im

ul
at

io
ns

  

Basin Scale (km^2) 

0
0.2
0.4
0.6
0.8

1
1.2
1.4

315-1000 1000-3150 3150-10000 10000-31500 31500-100000

R
M

SE
 R

el
at

iv
e 

to
 M

ea
n 

R
ad

ar
 

Basin Scale (km2) 

0
0.2
0.4
0.6
0.8

1
1.2
1.4

315-1000 1000-3150 3150-10000 10000-31500 31500-100000

Q
R

M
SE

 –
 r

un
of

f s
im

ul
at

io
ns

 

Basin Scale (km2) 

50 
 

Figure 13. QRMSE error metric determined conditional to reference runoff values exceeding
their 90th percentile. The horizontal axis indicates basin scale categories presented in Table 2.
Results are presented for spring (upper left panel), summer (upper right panel), fall (lower left
panel) and winter (lower right panel) seasons.
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