
Dear Editor Hannah Cloke, 1 

 Thanks for your and all reviewers’ recommendations. We improved the 2 

manuscript following the suggestions. The main changes are: 3 

1. The introduction has been revised to improve the review of soil moisture and 4 

surface temperature assimilation, the background of this study, etc. 5 

2. The order of figures has been changed, the Fig. 6, Fig. 7 and Fig. 8 have been 6 

combined and Table 3 has been deleted. 7 

3. The discussion on bias estimation, observation error, definition of the state vector, 8 

COSMIC model and COSMOS has been extended,  9 

 10 

Editor comments: 11 

Thank you for your author responses. As you are aware, the reviewers have raised a 12 

number of concerns. I invite you to submit a revised manuscript which incorporates 13 

your suggested comments to address these reviewer concerns. Please take special care 14 

with the clarity of your manuscript so it is always entirely clear what you are 15 

undertaking. Where necessary this could involve a further sentence or two explaining 16 

background work/references of importance. 17 

Response: the corresponding changes have been made following the reviewer 18 

comments. 19 

 20 

Reviewer 1: 21 

General comment: The major contribution of this work is to improve CLM 22 

performances by assimilating cosmic-ray data and LST data over irrigated site with 23 

Local Ensemble Transform Kalman Filter method. Basically, the idea is good. It is 24 

impressive to update soil moisture and temperature by jointly assimilation of 25 

cosmic-ray data and LST. Moreover, the turbulent heat fluxes are improved 26 

significantly. However, the manuscript is lacking in detail in a few areas and I’d not 27 

recommend the paper for publication unless substantial improvements are made to 28 

address the following concerns. 29 

Response: thanks for the recommendation. We handled your comments, see below. 30 



 31 

Major comments: 32 

1. The introduction section needs to be carefully revised. The aim of this paper is to 33 

correct biases in CLM forcing, and improve model performances (e.g. soil 34 

moisture profile, ET) by assimilating cosmic-ray data and LST. However, the 35 

authors pay less attention on soil moisture and LST assimilation; only two 36 

sentences focus on soil moisture and temperature assimilation progresses were 37 

stated in the introduction part. The progresses should be enhanced in this part. 38 

Moreover, on page 9031, “In CLM, the surface fluxes are calculated based on the 39 

Monin–Obukhov similarity theory. The sensible heat flux is formulated as a 40 

function of temperature and leaf area index, and the latent heat flux is formulated 41 

as a function of the temperature and leaf stomatal resistances. The leaf stomatal 42 

resistance is calculated from the Ball-Berry conductance model (Collatz et al., 43 

1991). The surface fluxes are therefore sensitive to the surface and soil 44 

temperature.” this sentence looks wired, why surface fluxes are sensitive to soil 45 

temperature, the previous sentences cannot lead to this conclusion. Then why 46 

calibrate LAI? It is stated abrupt. Any other persons focus on LAI calibration to 47 

improve ET? I recommend authors rewrite the introduction part to describe more 48 

logically.  49 

Response: We improved the introduction in the revision for the soil moisture and 50 

LST assimilation. (line 116-134) 51 

“The positive impact of soil moisture data assimilation was shown in several 52 

studies. Importantly, surface soil moisture could be used to obtain better 53 

characterization of the root zone soil moisture (Barrett and Renzullo, 2009; Crow 54 

et al., 2008; Das et al., 2008; Draper et al., 2011; Li et al., 2010). It was also 55 

shown that the assimilation of soil moisture observations can be used to correct 56 

rainfall errors (Crow et al., 2011; Yang et al., 2009). Often a systematic bias 57 

between measured and modelled soil moisture content can be found; soil moisture 58 

estimation can be significantly improved using joint state and bias estimation (De 59 

Lannoy et al., 2007; Kumar et al., 2012; Reichle et al., 2008). Also studies on data 60 



assimilation of remotely sensed land surface temperature products show a positive 61 

impact on the estimation of soil moisture, latent heat flux and sensible heat flux 62 

(Ghent et al., 2010; Xu et al., 2011). Also in these studies it was found that bias, in 63 

these cases soil temperature bias, of land surface models can be removed with 64 

land surface temperature assimilation (Bosilovich et al., 2007; Reichle et al., 65 

2010). Other studies updated both land surface model states and parameters with 66 

soil moisture and land surface temperature data (Bateni and Entekhabi, 2012; Han 67 

et al., 2014a; Montzka et al., 2013; Pauwels et al., 2009). The assimilation of 68 

measured cosmic-ray neutron counts in a land surface model was successfully 69 

tested, but these studies focused on state updating alone (Rosolem et al., 2014; 70 

Shuttleworth et al., 2013).” 71 

 72 

The update of soil temperature is defined as: 73 

∆𝑇𝑠𝑜𝑖𝑙 = 𝑓(ℎ)/−𝜆 74 

where 𝜆 is the thermal conductivity. 75 

The heat flux ℎ into the soil surface from the overlying atmosphere is defined 76 

as: 77 

ℎ = 𝑆𝑠𝑜𝑖𝑙 + �⃗⃗�𝑠𝑜𝑖𝑙 − 𝐻𝑠𝑜𝑖𝑙 − 𝜆𝐸𝑠𝑜𝑖𝑙 78 

𝑆𝑠𝑜𝑖𝑙  is the solar radiation absorbed by top soil, �⃗⃗�𝑠𝑜𝑖𝑙  is the longwave 79 

radiation absorbed by soil, 𝐻𝑠𝑜𝑖𝑙 is the sensible heat flux from soil, 𝜆𝐸𝑠𝑜𝑖𝑙 is the 80 

latent heat flux from soil. 81 

The update of vegetation temperature is defined as: 82 

∆𝑇𝑣 =
𝑆𝑣 − �⃗⃗�𝑣 − 𝐻𝑣 − 𝜆𝑣𝑎𝑝𝐸𝑣
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 83 

𝑆𝑣 is the solar radiation absorbed by the vegetation, �⃗⃗�𝑣 is the net longwave 84 

radiation absorbed by vegetation, 𝐻𝑣 and 𝜆𝑣𝑎𝑝𝐸𝑣 are the sensible and latent 85 

heat fluxes from vegetation. 86 

The above equations show the sensitivity of vegetation temperature to the 87 



surface heat fluxes. Measured land surface temperature is composed of the land 88 

surface temperature and vegetation temperature. Therefore, a mismatch of land 89 

surface temperature is statistically linked to a mismatch of land surface fluxes. On 90 

the other hand, land surface fluxes are also sensitive to soil moisture content. 91 

Therefore, land surface temperature shows a statistical correlation with soil 92 

moisture content and allows to update soil moisture content. In various papers, 93 

land surface temperature assimilation served to improve the estimation of surface 94 

fluxes (Ghent et al., 2010; Meng et al., 2009; Reichle et al., 2010; Xu et al., 2011). 95 

The relation between the soil temperature / vegetation temperature and surface 96 

fluxes has been explained in the revision. (line 162-174) 97 

“In CLM, land surface fluxes are calculated based on the Monin-Obukhov 98 

similarity theory. The sensible heat flux is formulated as a function of 99 

temperature and LAI, and the latent heat flux is formulated as a function of the 100 

temperature and leaf stomatal resistances. The leaf stomatal resistance is 101 

calculated from the Ball-Berry conductance model (Collatz et al., 1991). The 102 

updates of soil temperature and vegetation temperature are derived based on the 103 

solar radiation absorbed by top soil (or vegetation), longwave radiation absorbed 104 

by soil (or vegetation), sensible heat flux from soil (or vegetation) and latent heat 105 

flux from soil (or vegetation). Measured land surface temperature is composed of 106 

the ground temperature and vegetation temperature. Therefore a difference 107 

between measured and calculated land surface temperature can be adjusted by 108 

changing land surface fluxes. As land surface fluxes are sensitive to soil moisture 109 

content, land surface temperature is sensitive to soil moisture content.” 110 

1) Ghent, D., Kaduk, J., Remedios, J., Ardo, J., and Balzter, H.: Assimilation of 111 

land surface temperature into the land surface model JULES with an 112 

ensemble Kalman filter, J Geophys Res-Atmos, 115, 2010. 113 

2) Meng, C. L., Li, Z. L., Zhan, X., Shi, J. C., and Liu, C. Y.: Land surface 114 

temperature data assimilation and its impact on evapotranspiration estimates 115 

from the Common Land Model, Water Resour Res, 45, 2009. 116 

3) Reichle, R. H., Kumar, S. V., Mahanama, S. P. P., Koster, R. D., and Liu, Q.: 117 



Assimilation of Satellite-Derived Skin Temperature Observations into Land 118 

Surface Models, J Hydrometeorol, 11, 1103-1122, 2010. 119 

4) Xu, T. R., Liu, S. M., Liang, S. L., and Qin, J.: Improving Predictions of 120 

Water and Heat Fluxes by Assimilating MODIS Land Surface Temperature 121 

Products into the Common Land Model, J Hydrometeorol, 12, 227-244, 122 

2011. 123 

Our study was also based on the conclusions of Schwinger, J., et al., 2010: 124 

“results confirm that soil texture and LAI are key parameters that have a 125 

dominant influence on modeled LE under specific environmental conditions in 126 

CLM4.” More works have studied the sensitivity of land surface models to the 127 

leaf area index (Ghilain et al., 2012; Jarlan et al., 2008; Schwinger et al., 2010; 128 

van den Hurk et al., 2003; Yang et al., 1999). Moreover, we used the MODIS 129 

LAI in CLM, whereas the MODIS products usually underestimate the LAI 130 

compared with field measurements, as was found in validation studies by the 131 

NASA (http://landval.gsfc.nasa.gov): the underestimation by the MODIS LAI 132 

product is 0.66 * LAI (MODIS) for all biomes and 0.5 * LAI (MODIS) except for 133 

broadleaf forests. We improved the introduction in the revision. (line 180-188) 134 

“Soil moisture, land surface temperature and LAI influence the estimation of 135 

latent and sensible heat fluxes (e.g., Ghilain et al., 2012; Jarlan et al., 2008; 136 

Schwinger et al., 2010; van den Hurk et al., 2003; Yang et al., 1999), and 137 

therefore this study focuses in addition on the calibration of LAI with help of the 138 

assimilation of land surface temperature. However, there are large discrepancies 139 

between the remotely retrieved LAI and measured values, and the MODIS LAI 140 

product underestimates in situ measured LAI by 44% on average 141 

(http://landval.gsfc.nasa.gov/), and therefore the LAI is also calibrated by data 142 

assimilation.” 143 

1) Schwinger, J., et al. "Sensitivity of Latent Heat Fluxes to Initial Values and 144 

Parameters of a Land-Surface Model." Vadose Zone Journal 9(4): 984-1001, 145 

2010. 146 

2) Ghilain, N., Arboleda, A., Sepulcre-Canto, G., Batelaan, O., Ardo, J., and 147 

http://landval.gsfc.nasa.gov/


Gellens-Meulenberghs, F.: Improving evapotranspiration in a land surface 148 

model using biophysical variables derived from MSG/SEVIRI satellite, 149 

Hydrology and Earth System Sciences, 16, 2567-2583, 2012. 150 

3) Jarlan, L., Balsamo, G., Lafont, S., Beljaars, A., Calvet, J. C., and Mougin, E.: 151 

Analysis of leaf area index in the ECMWF land surface model and impact on 152 

latent heat and carbon fluxes: Application to West Africa, J Geophys 153 

Res-Atmos, 113, 2008. 154 

4) Schwinger, J., Kollet, S. J., Hoppe, C. M., and Elbern, H.: Sensitivity of 155 

Latent Heat Fluxes to Initial Values and Parameters of a Land-Surface Model, 156 

Vadose Zone J, 9, 984-1001, 2010. 157 

5) van den Hurk, B. J. J. M., Viterbo, P., and Los, S. O.: Impact of leaf area 158 

index seasonality on the annual land surface evaporation in a global 159 

circulation model, J Geophys Res-Atmos, 108, 2003. 160 

6) Yang, Z. L., Dai, Y., Dickinson, R. E., and Shuttleworth, W. J.: Sensitivity of 161 

ground heat flux to vegetation cover fraction and leaf area index, J Geophys 162 

Res-Atmos, 104, 19505-19514, 1999. 163 

 164 

2. In section 3, LAI was updated by assimilating LST and soil moisture, I’m not 165 

certain if it is correct to do this. Does LST and soil moisture are strong correlated 166 

to LAI? Please state their relationship clearly. 167 

Response: the LST was used to update the LAI, not soil moisture or Cosmic-ray. 168 

This has been clarified in the revision (line 183-184). Details can be found in our 169 

response to question 1. The introduction in the revision has been improved. 170 

 171 

3. In this study, the soil moisture related instrument, the cosmic-ray, is a ground 172 

measurement instrument. It can be used to measure soil moisture at plot scale 173 

about 600 m. it is hard and expensive to be applied at the continent scales. 174 

However, MODIS LST can be easily obtained globally. Thus, the limitation of 175 

assimilating cosmic-ray data should be discussed. 176 

Response: the Cosmic-ray Soil Moisture Observing System (COSMOS) has been 177 



designed as a continental scale network by installing 500 COSMOS probes across 178 

the USA (Zreda et al., 2012). Nevertheless, it is true that there are still some 179 

disadvantages of COSMOS compared with remote sensing. COSMOS is also 180 

expensive for extensive deployment to measure the continental/regional scale soil 181 

moisture. This discussion has been added in the revision. (line 642-647) 182 

“Although the Cosmic-ray Soil Moisture Observing System (COSMOS) has been 183 

designed as a continental scale network by installing 500 COSMOS probes across 184 

the USA (Zreda et al., 2012), there are still some disadvantages of COSMOS 185 

compared with remote sensing. COSMOS is also expensive for extensive 186 

deployment to measure the continental/regional scale soil moisture.” 187 

1) Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T. 188 

E., and Rosolem, R.: COSMOS: the COsmic-ray Soil Moisture Observing 189 

System, Hydrology and Earth System Sciences, 16, 4079-4099, 2012. 190 

 191 

Minor comments 192 

1. On page 9040, the augmentation method was used to update surface temperature, 193 

ground temperature, vegetation temperature and 10 layers of soil temperature by 194 

assimilating LST. However, surface temperature and vegetation temperature are 195 

diagnostic variables in CLM. To change them at the current time step may not 196 

influence model estimates in next time step. It is wasting time to add them as the 197 

updated variables. Remove them in the vectors. 198 

Response: Thanks for the suggestion. CLM needs the initial state of the ground 199 

temperature, vegetation temperature and 15 layers of soil temperature. For 200 

example, the calculation of vegetation temperature in CLM is: T𝑣
𝑛+1 = T𝑣

𝑛 + ∆𝑇𝑣. 201 

Only the surface temperature is the diagnostic variable. Because we calculated 202 

the surface temperature with help of an observation operator for assimilation 203 

purpose only, it is the right state to be assimilated. In order to calculate the 204 

Kalman gain, we need the surface temperature to compare with the MODIS LST. 205 

For reasons of technical simplicity, we calculated the surface temperature out of 206 

Kalman filter and transferred the calculated surface temperature into Kalman 207 



filter through the state vector. It means the identity matrix was used as the 208 

observation operator H in the Kalman filter. 209 

 210 

2. In section 2.2, please state what meteorology parameters are used as the forcing 211 

data in CLM, and how long is the time step of CLM run?  212 

Response: The incident longwave radiation, incident solar radiation, precipitation, 213 

air pressure, specific humidity, air temperature and wind speed were used in 214 

CLM. The time step of CLM was hourly. (line 238-240) 215 

 216 

3. The forcing data were perturbed by set of noises, what are the observation errors 217 

of cosmic-ray data and MODIS LST? How to perturb them? 218 

Response: The observation data were not perturbed in LETKF because it is a 219 

square root Kalman filter. Only the classical ensemble Kalman filter (EnKF) 220 

needs to perturb the observations. The variance of Cosmic-ray was the measured 221 

neutron count value (Zreda, M., et al., 2012) and the variance of MODIS LST 222 

was assumed to be 1 K (Wan, Z. and Z. L. Li, 2008), and the error of MODIS 223 

LST has been verified (http://landval.gsfc.nasa.gov) by many studies. (line 224 

460-464) 225 

“The variance of the instantaneous measured neutron intensity is equal to the 226 

measured neutron count intensity (Zreda et al., 2012) and smaller for temporal 227 

averaging for daily or sub-daily applications. The instantaneous neutron intensity 228 

was assimilated in this study. The variance of MODIS LST was assumed to be 1 229 

K (Wan and Li, 2008)” 230 

 231 

1) Zreda, M., et al. (2012). "COSMOS: the COsmic-ray Soil Moisture 232 

Observing System." Hydrology and Earth System Sciences 16(11): 233 

4079-4099. 234 

2) Wan, Z. and Z. L. Li (2008). "Radiance‐based validation of the V5 MODIS 235 

land‐surface temperature product." International Journal of Remote Sensing 236 

29(17-18): 5373-5395. 237 

http://landval.gsfc.nasa.gov/


 238 

4. The captain of figure 4 can be change as ”Same as figure 3 but for 50 cm and 80 239 

cm” 240 

Response: thanks, changed. 241 

 242 

5. The figures 6, 7, and 8 can be combined into one figure, as they are all turbulent 243 

heat fluxes.  244 

Response: thanks, changed. 245 

 246 

6. The ignorance of energy imbalance problem for eddy covariance system may 247 

cause some error in producing ET observation. This should be discussed. 248 

Response: the discussion has been added in the revision. (line 526-528) 249 

“The true evapotranspiration is therefore likely larger, but not much larger as the 250 

energy balance gap was limited (3.7%).” 251 

 252 

 253 

Reviewer 2: 254 

General comments 255 

The paper provides an important contribution to the research on data assimilation in 256 

land surface modelling. The paper considers assimilation of cosmic-ray soil moisture 257 

data and land surface temperature in the Community Land Model (CLM). 258 

Assimilation of the data sources individually and jointly as well as in combination 259 

with estimation of leaf area index are evaluated with respect to soil moisture, 260 

evapotranspiration, and latent and sensible heat flux. The paper is, in general, well 261 

written and technically sound. However, some elaborations are needed; especially on 262 

the Kalman filter setup and evaluation (see detailed comments below). 263 

Response: Thanks for your recommendation. We have improved the manuscript 264 

according to the responses below. 265 

 266 

Detailed comments 267 



1. Page 9031, line 10-13. Not clear. Inclusion of bias in the Kalman filter is usually 268 

defined either as a bias in the system equation or a bias in the observation 269 

equation. The specific source of error need not be known. 270 

Response: Before we estimate the bias, we should determine whether the bias 271 

comes from the model, observation, or both. If the source of bias is not attributed 272 

to the right source, model predictions cannot be improved. In the Kalman filter 273 

equation, the model bias and the observation bias are handled differently: the 274 

model bias is removed in the model forecast  𝑥𝑏 = 𝑥𝑏 − 𝑏𝑖𝑎𝑠𝑚𝑜𝑑𝑒𝑙 ; the 275 

observation bias is removed from the innovation part K × (y𝑜𝑏𝑠 − 𝑏𝑖𝑎𝑠𝑜𝑏𝑠 − 𝑥𝑏). 276 

In summary, the source of the bias should be defined before estimation. A 277 

comprehensive overview of bias estimation is given by Dee (2005). According to 278 

the description, “By design, bias-aware assimilation requires assumptions about 279 

the nature of the biases: first, the attribution of a bias to a particular source, and 280 

second, a characterization of the bias in terms of some well-defined set of 281 

parameters”. In this paper, no explicit model for observation bias or model bias 282 

was assumed, and no explicit bias estimation was done for simplicity. 283 

Nevertheless, the model states were corrected by the observations. We have 284 

clarified this part in the revision. (line 154-160) 285 

“The bias can be attributed to the model structure, model parameters, atmospheric 286 

forcing or observation data, and the bias-aware assimilation requires the 287 

assumption that the bias comes from a particular source. If the source of bias is 288 

not attributed to the right source, model predictions cannot be improved (Dee, 289 

2005). Therefore bias-blind assimilation in which the bias estimation was not 290 

handled explicitly was used for safety. Instead, it was investigated whether 291 

neutron counts measured by cosmic-ray probe were able to correct for the bias.” 292 

 293 

1) Dee, D. P. (2005). "Bias and data assimilation." Quarterly Journal of the 294 

Royal Meteorological Society 131(613): 3323-3343. 295 

 296 

2. Page 9031, line 13. Not clear what is meant by ‘bias blind assimilation’ and why 297 



this is applied for ‘safety’. 298 

Response: The bias blind assimilation is the traditional data assimilation without 299 

bias estimation. Dee et al. (2005) wrote: “If the source of a known bias is 300 

uncertain, bias-blind assimilation may be the safest option. The main scientific 301 

challenge is to correctly attribute a detected bias to its source, and then to develop 302 

a useful model for the bias. When different sources produce similar biases, the 303 

assimilation may correct the wrong source.” Because the study area is a very 304 

heterogeneous irrigated farmland, both the observation and model could be biased. 305 

In CLM, the main bias came from the atmospheric forcing input due to the lack of 306 

irrigated water amount, but the bias could also came from wrong soil properties 307 

(e.g. sand fraction, clay fraction and organic matter density) and other vegetation 308 

parameters (e.g. leaf area index, Vcmax). For example, three papers studied the 309 

sensitivity of the latent heat flux and sensible heat flux to the hydraulic parameters 310 

(Hou, et al., 2012) and vegetation parameters Vcmax (Bonan, et al., 2011) in 311 

CLM4, and soil moisture and leaf area index (Schwinger, et al., 2010) in CLM4. 312 

In each of these studies, the assumption was made that the other sensitive 313 

parameters were defined properly. In this study, we focused on the model bias 314 

introduced by the forcing data and the leaf area index, and neglected the other 315 

sources of bias. We have clarified the discussion in the revision. (see response to 316 

earlier reviewer question) 317 

 318 

1) Hou, Z. S., et al. (2012). "Sensitivity of surface flux simulations to hydrologic 319 

parameters based on an uncertainty quantification framework applied to the 320 

Community Land Model." Journal of Geophysical Research-Atmospheres 321 

117. 322 

2) Bonan, G. B., et al. (2011). "Improving canopy processes in the Community 323 

Land Model version 4 (CLM4) using global flux fields empirically inferred 324 

from FLUXNET data." Journal of Geophysical Research-Biogeosciences 116. 325 

3) Schwinger, J., et al. (2010). "Sensitivity of Latent Heat Fluxes to Initial 326 

Values and Parameters of a Land-Surface Model." Vadose Zone Journal 9(4): 327 



984-1001. 328 

 329 

3. Page 9031, line 17. Define ‘CLM’. 330 

Response: CLM is Community Land Model, was included in the revision. 331 

  332 

4. Page 9036, line 8-10. Are the measured data at the station in Switzerland 333 

representative for the Chinese case study? 334 

Response: The data are used to remove temporal (secular or diurnal) variations 335 

caused by the sunspot cycle. We follow the standard approach applied by the 336 

COSMOS network globally, discussed in detail by Zreda et al. (2012). This 337 

reference is appropriately mentioned in the revision. (line 302-303) 338 

“The temporal (secular or diurnal) variations caused by the sunspot cycle could be 339 

removed after this correction (Zreda et al., 2012).” 340 

 341 

1) Zreda, M., et al. (2012). "COSMOS: the COsmic-ray Soil Moisture 342 

Observing System." Hydrology and Earth System Sciences 16(11): 343 

4079-4099. 344 

 345 

5. Page 9036, line 24-26. Soil moisture from 10 soil layers (does this correspond to 346 

the top 10 cm of the soil?) in CLM is used as input to COSMIC. The effective 347 

measurement depth of the cosmic-ray probe depends on soil moisture, so why is a 348 

fixed depth used here? I expect this will introduce a bias in the simulated soil 349 

moisture for comparison with the measurements. 350 

Response: The thickness of top 10 soil layers in CLM is about 3.8 m. Because the 351 

effective measurement depth of cosmic-ray probe is between 12 and 76 cm, it is 352 

unlikely that anything beyond 1 m deep will substantially impact the results. The 353 

COSMIC model assumes a more detailed soil profile. In COSMIC, the soil 354 

moisture information from the 10 layers from CLM was interpolated to 355 

information for 300 layers based on the soil layer depth for stable numerical 356 

solution. The contribution of each soil layer to the measured neutron flux changes 357 



temporally depending on the soil moisture condition. Therefore the effective 358 

measurement depth of the cosmic ray probe also changes temporally. The 359 

explanation in the manuscript was improved. (line 317-328) 360 

“The simulated soil moisture content for 10 CLM soil layers (3.8 m depth) was 361 

used as input to COSMIC in order to simulate the corresponding neutron count 362 

intensity and compare it with the measured neutron count intensity. It should be 363 

mentioned that it is unlikely that anything beyond 1 m deep will substantially 364 

impact the results because the effective measurement depth of the cosmic-ray 365 

probe is between 12 and 76 cm. The COSMIC model assumes a more detailed soil 366 

profile. COSMIC interpolates the soil moisture information from the ten CLM soil 367 

layers to information for 300 soil layers of depth 1cm. The contribution of each 368 

soil layer to the measured neutron flux will change temporally depending on the 369 

soil moisture condition. Therefore the effective measurement depth of the cosmic 370 

ray probe will also change temporally. COSMIC calculates the vertically weighted 371 

soil moisture content based on the vertical distribution of soil moisture content.” 372 

 373 

6. Page 9039, line 1. Definition of state vector not clear. Why soil moisture from 10 374 

layers (see previous comment) and soil temperature for 15 layers? 375 

Response: These are the standard CLM layout for soil moisture and soil 376 

temperature. The hydrology calculations are done over the top 10 layers, and the 377 

bottom 5 layers are specified as bedrock. The lower 5 layers are hydrologically 378 

inactive layers. Temperature calculations are done over all layers. The manuscript 379 

has been revised to include this explanation. (line 422-426) 380 

“The 10 layers of soil moisture and 15 layers of soil temperature are the standard 381 

CLM layout for both soil moisture and soil temperature. The hydrology 382 

calculations are done over the top 10 layers, and the bottom 5 layers are specified 383 

as bedrock. The lower 5 layers are hydrologically inactive layers. Temperature 384 

calculations are done over all layers (Oleson et al., 2013)” 385 

 386 

7. Page 9040, line 17-20. How is the leaf area index represented in the augmented 387 



system equation? As a persistence model? 388 

Response: the leaf area index was treated as a parameter and updated with help of 389 

the augmented state vector approach, but only changed after each update. For the 390 

calibration of the LAI, the state vector was augmented with surface temperature, 391 

ground temperature, vegetation temperature, soil temperature for 15 layers and 392 

LAI if only the land surface temperature observations were assimilated without 393 

soil moisture update. This resulted then in a state dimension of 19. (line 380-384) 394 

“For the calibration of the LAI, the state vector was augmented with surface 395 

temperature, ground temperature, vegetation temperature, soil temperature for 15 396 

CLM-layers and LAI if only the land surface temperature observations were 397 

assimilated without soil moisture update. This resulted then in a state dimension 398 

of 19.” 399 

 400 

8. Page 9041, line 1-15. The Kalman filter settings are not sufficiently discussed. 401 

They seem rather arbitrarily chosen. It is not clear how the standard deviations, 402 

spatial and temporal correlations, and cross correlations given in Table 1 are 403 

determined. Has sensitivity analysis been applied to analyse the sensitivity of 404 

ensemble size and model error statistics on the assimilation results? You can 405 

analyse the prediction uncertainty provided by the Kalman filter to evaluate the 406 

Kalman filter settings by comparing measurements with predicted confidence 407 

bands or analyse the statistical properties of the model innovations. Definition of 408 

measurement uncertainty is not described. 409 

Response: the values of standard deviations and temporal correlations in Table I 410 

were chosen based on commonly used values in previous catchment scale and 411 

regional scale data assimilation studies (Kumar et al., 2009; Reichle et al., 2010; 412 

De Lannoy et al., 2012). In the 3D-EnKF, the imposed spatial correlation on 413 

forcing data is very important for the assimilation (Reichle and Koster, 2003; De 414 

Lannoy et al., 2009). In 1D-EnKF and LETKF (which we used), no horizontal 415 

correlation among model grid cells is calculated, so the imposed spatial 416 

correlation of forcing data will not influence the assimilation. The impacts of 417 



horizontal spatial correlation on the assimilation can be included through the 418 

localization technique (Reichle and Koster, 2003; De Lannoy, et al., 2009). The 419 

selection of the ensemble size was based on the results of Han et al., 2014, who 420 

reported that for more than 30~40 ensemble members, the assimilation results 421 

could not be improved too much. Therefore 50 ensemble members were used in 422 

this study. (line 443-446) 423 

“The values of standard deviations and temporal correlations in Table 1 were 424 

chosen based on previous catchment scale and regional scale data assimilation 425 

studies (De Lannoy et al., 2012; Kumar et al., 2012; Reichle et al., 2010).” 426 

The observation standard deviation of cosmic-ray probes is equal to the square 427 

root of the measured neutron counts (Zreda, et al., 2012) and the observation 428 

standard deviation of MODIS land surface temperature was here equal to 1 K 429 

(Wan and Li, 2008). We added this information in the revised version of the 430 

manuscript. (line 460-464) 431 

“The variance of the instantaneous measured neutron intensity is equal to the 432 

measured neutron count intensity (Zreda et al., 2012) and smaller for temporal 433 

averaging for daily or sub-daily applications. The instantaneous neutron intensity 434 

was assimilated in this study. The variance of MODIS LST was assumed to be 1 435 

K (Wan and Li, 2008)” 436 
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 463 

9. Page 9043, line 4. How is measured soil moisture estimated? 464 

Response: the soil moisture for the CRS footprint scale was calculated from the 465 

arithmetic mean of the 23 SoilNet soil moisture observations. This information 466 

has been included in the manuscript. (line 304-305) 467 

“In this study, the soil moisture for the CRS footprint scale was calculated from 468 

the arithmetic mean of the 23 SoilNet soil moisture observations.” 469 

 470 

10. Page 9045, line 4. Same information shown in Figs. 6-8 and Table 3. All results 471 

can be included in the table and figures omitted. 472 

Response: thanks for the suggestion. Table 3 was removed in the revision. 473 

 474 

11. Page 9045, line 3-25. It is stated that the results for latent and sensible heat flux 475 

correspond to the results obtained for soil moisture. However, there are some 476 

notable differences that should be elaborated. The effect of inclusion of parameter 477 



estimation of LAI on latent and sensible heat flux depends on the type of data 478 

being assimilated. For LST assimilation an increase in RMSE is obtained when 479 

LAI estimation is included. With assimilation of both LST and CRS lower RMSE 480 

is obtained with LAI estimation. In addition, assimilation of LST provides better 481 

results than assimilation of both LST and CRS. 482 

Response: thanks, in the scenario of only LST assimilation without LAI update, 483 

the latent heat flux could not be improved. The univariate assimilation of LST did 484 

not give any improvement for this case. The joint soil moisture and LAI update 485 

scenario of LST_Feedback_Par_LAI was worse than the single soil moisture 486 

update scenario of LST_Feedback in this case. This part has been improved in the 487 

discussion section of the revision. (line 509-514) 488 

“Without assimilation of cosmic-ray probe neutron counts, the soil moisture 489 

simulation cannot be improved (scenario Only_LST). However, the scenarios of 490 

LST_Feedback and LST_Feedback_Par_LAI improve the soil moisture profile 491 

characterization, which shows that explicitly using LST to update soil moisture 492 

content in the data assimilation routine gives better results than using LST only to 493 

update soil moisture by the model equations.” 494 

“The scenario where soil moisture and LAI are jointly updated 495 

(LST_Feedback_Par_LAI) gave worse results than the scenario of 496 

LST_Feedback.” 497 

 498 

12. Figure 5. Explain numbers in lower-right corner in figure caption. 499 

Response: these are the accumulated ET amounts during the study period; this has 500 

been corrected in this revision. (line 523-524) 501 

 502 
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Abstract 546 

The recent development of the non-invasive cosmic-ray soil moisture sensing 547 

technique fills the gap between point scale soil moisture measurements and regional 548 

scale soil moisture measurements by remote sensing. A cosmic-ray probe measures 549 

soil moisture for a footprint with a diameter of ~600 m (at sea level) and with an 550 

effective measurement depth between 12 cm to 76 cm, depending on the soil humidity. 551 

In this study, it was tested whether neutron counts also allow to correct for a 552 

systematic error in the model forcings. Lack of water management data often cause 553 

systematic input errors to land surface models. Here, the assimilation procedure was 554 

tested for an irrigated corn field (Heihe Watershed Allied Telemetry Experimental 555 

Research - HiWATER, 2012) where no irrigation data were available as model input 556 

although for the area a significant amount of water was irrigated. In the study, the 557 

Mmeasured cosmic-ray neutron counts and Moderate Resolution Imaging 558 

Spectroradiometer (MODIS) land surface temperature (LST) products were jointly 559 

assimilated into the Community Land Model (CLM) with the Local Ensemble 560 

Transform Kalman Filter. Different data assimilation scenarios were evaluated, with 561 

assimilation of LST and/or cosmic-ray neutron counts, and possibly parameter 562 

estimation of leaf area index (LAI). The results show that the direct assimilation of 563 

cosmic-ray neutron counts can improve the soil moisture and evapotranspiration (ET) 564 

estimation significantly, correcting for lack of information on irrigation amounts. The 565 

joint assimilation of neutron counts and LST could improve further the ET estimation, 566 

but the information content of neutron counts exceeded the one of LST. Additional 567 



improvement was achieved by calibrating LAI, which after calibration was also closer 568 

to independent field measurements. It was concluded that assimilation of neutron 569 

counts was useful for ET and soil moisture estimation even if the model has a 570 

systematic bias like neglecting irrigation. However, also the assimilation of LST 571 

helped to correct the systematic model bias introduced by neglecting irrigation and 572 

LST could be used to update soil moisture with state augmentation. 573 

Keywords: Cosmic-ray neutron counts, Land surface temperature, Evapotranspiration, 574 

Land data assimilation, Parameter estimation  575 



1. Introduction 576 

Soil moisture plays a key role for crop and plant growth, water resources 577 

management and land surface-atmosphere interaction. Therefore accurate soil 578 

moisture retrieval is important. Point scale measurements can be obtained by methods 579 

like time domain reflectometry (TDR) (Robinson et al., 2003) and larger scale, coarse 580 

soil moisture information from remote sensing sensors (Entekhabi et al., 2010; Kerr et 581 

al., 2010). Wireless Sensor Networks (WSN) allow characterization of soil moisture at 582 

the catchment scale with many local connected sensors at separated locations (Bogena 583 

et al., 2010). TDR only measures the point scale soil moisture and the maintenance of 584 

WSN is expensive. Recently, neutron count intensity measured by above-ground 585 

cosmic-ray probes was proposed as alternative information source on soil moisture. 586 

Neutron count intensity is measured non-invasively at an intermediate scale between 587 

the point scale and the coarse remote sensing scale (Zreda et al., 2008). A network of 588 

cosmic-ray sensors (CRS) has been set-up over N-America (Zreda et al., 2012).  589 

Cosmic rays are composed of primary protons mainly. The fast neutrons 590 

generated by high-energy neutrons colliding with nuclei lead to “evaporation” of fast 591 

neutrons and the generated and moderated neutrons in the ground can diffuse back 592 

into the air where their intensity can be measured by the cosmic-ray soil moisture 593 

probe. Soil moisture affects the rate of moderation of fast neutrons, and controls the 594 

neutron concentration and the emission of neutrons into the air. Dry soils have low 595 

moderating power and are highly emissive; wet soils have high moderating power and 596 

are less emissive. The neutrons are mainly moderated by the hydrogen atoms 597 



contained in the soil water and emitted to the atmosphere where the neutrons mix 598 

instantaneously at a scale of hundreds of meters. The measurement area of a 599 

cosmic-ray soil moisture probe represents a circle with a diameter of ~600 m at sea 600 

level (Desilets and Zreda, 2013) and the measurement depth decreases non-linearly 601 

from ~76 cm (dry soils) to ~12 cm (saturated soils) (Zreda et al., 2008). The measured 602 

cosmic-ray neutron counts show an inverse correlation with soil moisture content. The 603 

cosmic-ray neutron intensity could be reduced to 60% of surface cosmic-ray neutron 604 

intensity if the soil moisture was increased from zero to 40% (Zreda et al., 2008). The 605 

soil moisture estimation on the basis of cosmic-ray probe based neutron counts over a 606 

horizontal footprint of hectometers received considerable attention in scientific 607 

literature during the last years (Desilets et al., 2010; Zreda et al., 2008; Zreda et al., 608 

2012).  609 

Hydrogen atoms are present as water in the soil, lattice soil water, below ground 610 

biomass, atmospheric water vapor, snow water, above ground biomass, intercepted 611 

water by vegetation and water on the ground. These additional hydrogen sources 612 

contribute to the measured neutron intensity. The role of these additional hydrogen 613 

sources should be included in the analysis of the cosmic-ray measurements in order to 614 

isolate the main contribution from soil moisture. Formulations for handling water 615 

vapor (Rosolem et al., 2013), for lattice water and organic carbon (Franz et al., 2013) 616 

and for a litter layer present on the soil surface (Bogena et al., 2013) have been 617 

developed.  618 

It was shown that the assimilation of soil moisture observations could be used to 619 



correct the rainfall errors ; the soil moisture estimation can be significantly improved 620 

using the joint state and bias estimation The positive impact of soil moisture data 621 

assimilation was shown in several studies. Importantly, surface soil moisture could be 622 

used to obtain better characterization of the root zone soil moisture (Barrett and 623 

Renzullo, 2009; Crow et al., 2008;(Barrett and Renzullo, 2009; Crow et al., 2008; Das 624 

et al., 2008; Draper et al., 2011; Li et al., 2010) Das et al., 2008; Draper et al., 2011; 625 

Li et al., 2010). It was also shown that the assimilation of soil moisture observations 626 

can be used to correct rainfall errors (Crow et al., 2011; Yang et al., 2009)(Crow et al., 627 

2011; Yang et al., 2009). Often a systematic bias between measured and modelled soil 628 

moisture content can be found; soil moisture estimation can be significantly improved 629 

using joint state and bias estimation (De Lannoy et al., 2007; Kumar et al., 2012; 630 

Reichle, 2008)(De Lannoy et al., 2007; Kumar et al., 2012; Reichle et al., 2008). Also 631 

studies on data assimilation of remotely sensed land surface temperature products 632 

show a positive impact on the estimation of soil moisture, latent heat flux and sensible 633 

heat flux (Ghent et al., 2010; Xu et al., 2011)(Ghent et al., 2010; Xu et al., 2011). 634 

Also in these studies it was found that bias, in these cases soil temperature bias, of 635 

land surface models can be removed with land surface temperature assimilation 636 

(Bosilovich et al., 2007; Reichle et al., 2010)(Bosilovich et al., 2007; Reichle et al., 637 

2010). Other studies updated both land surface model states and parameters with soil 638 

moisture and land surface temperature data (Bateni and Entekhabi, 2012; Han et al., 639 

2014a; Montzka et al., 2013; Pauwels et al., 2009)(Bateni and Entekhabi, 2012; Han 640 

et al., 2014a; Montzka et al., 2013; Pauwels et al., 2009). The assimilation of 641 



measured cosmic-ray neutron counts in a land surface model was successfully tested, 642 

but these studies focused on state updating alone (Rosolem et al., 2014b; Shuttleworth 643 

et al., 2013)(Han et al., 2014b; Rosolem et al., 2014; Shuttleworth et al., 2013).; the 644 

surface soil moisture could be used to obtain better characterization of the root zone 645 

soil moisture . The studies of data soil moisture measurements are useful for 646 

improving the soil moisture profile estimation in land surface models or hydrologic 647 

models. Aassimilation of remotely sensed land surface temperature products also 648 

improves the estimation of evapotranspirationshow the positive impacts on land 649 

surface states estimation: the soil moisture, latent heat flux and sensible heat flux 650 

could be improved by assimilating the remote sensed land surface temperature ; the 651 

soil temperature bias of land surface model could be removed using the land surface 652 

temperature assimilation .. The joint state and parameter estimation in land surface 653 

model with soil moisture and land surface temperature also shows the success . The 654 

assimilation of measured cosmic-ray neutron counts in a land surface model has been 655 

tested . In this paper we focus on the assimilation of measured cosmic-ray neutron 656 

counts for improving soil moisture content characterization at the field scale. The 657 

assimilation of measured cosmic-ray neutron counts in a land surface model has been 658 

tested (Han et al., 2014b; Rosolem et al., 2014a; Shuttleworth et al., 2013). This paper 659 

focuses on the case that model input is biased. Land surface models still are affected 660 

by limited knowledge on water resources management and for regions in China (and 661 

elsewhere) typically no information on irrigation amounts is available as irrigation is 662 

mainly by the flooding system. We analyse whether measured neutron counts are able 663 



to correct for such biases. This case is not only relevant for neglecting irrigation in 664 

China, but also for other water resources management issues (e.g., groundwater 665 

pumping) which are neglected in the simulations. Neglecting irrigation in land surface 666 

models results in a large bias in the simulated soil moisture content because of a lack 667 

of water input. The bias in soil moisture content also results in a too small latent heat 668 

flux and too high sensible heat flux. We hypothesize that data assimilation also can 669 

play an important role for removing such biases in data deficient areas. One possible 670 

strategy in data assimilation studies for handling this type of bias, which is not 671 

followed in this paper, is to calibrate the simulation model (e.g., land surface model) 672 

prior to data assimilation to remove biases (Kumar et al., 2012) and use the corrected 673 

simulation model in the context of sequential data assimilation. A different strategy is 674 

was followed in this paper and no a priori bias correction is was carried out because 675 

this type of problem (neglecting water resources management) does not allow for such 676 

an a priori bias correctiondoes not allow for such an a priori bias correction. The bias 677 

can be contributed to the model structure, model parameter, atmospheric forcing or 678 

observation data, and the bias-aware assimilation requires the assumption that the bias 679 

comes from a particular source. If the source of bias is not attributed to the right 680 

source, model predictions cannot be improvedBecause tThe bias could can be 681 

contributed to the model structure, model parameter, atmospheric forcing or 682 

observation data, and the bias-aware assimilation requires the assumption that the bias 683 

comes from a particular source  (Dee, 2005). Therefore bias-blind assimilation in 684 

which the bias estimation was not handled explicitly was used for safety. Instead, it 685 



was investigated whether neutron counts measured by cosmic-ray probe were able to 686 

correct for the bias.So Therefore the bias-blind assimilation was used for safety. 687 

Instead, it is investigated whether neutron counts measured by cosmic-ray probe are 688 

able to correct for the bias. Aim is to improve the soil moisture profile estimation in a 689 

crop land with seed corn as main crop type. 690 

In CLM, the land surface fluxes are calculated based on the Monin-Obukhov 691 

similarity theory. The sensible heat flux is formulated as a function of temperature and 692 

leaf area indexLAI, and the latent heat flux is formulated as a function of the 693 

temperature and leaf stomatal resistances. The leaf stomatal resistance is calculated 694 

from the Ball-Berry conductance model (Collatz et al., 1991). The updates of soil 695 

temperature and vegetation temperature are derived based on the solar radiation 696 

absorbed by top soil (or vegetation), longwave radiation absorbed by soil (or 697 

vegetation), sensible heat flux from soil (or vegetation) and latent heat flux from soil 698 

(or vegetation). And the mMeasured land surface temperature is composed of the 699 

ground temperature and vegetation temperature. Therefore a difference between 700 

measured and calculated land surface temperature can be adjusted by changing land 701 

surface fluxes. As land surface fluxes are sensitive to soil moisture content, land 702 

surface temperature is sensitive to soil moisture content.Therefore Tthe surface fluxes 703 

are therefore sensitive to the surface and soilland surface temperature.  704 

Beside of the cosmic-ray neutron counts observation, Therefore, Tthe land 705 

surface temperature (LST) products measured by the Moderate Resolution Imaging 706 

Spectroradiometer (MODIS) Terra (MOD11A1) and Aqua (MYD11A1) are also 707 



assimilated jointly to improve the soil temperature profile estimation because the 708 

evapotranspiration is sensitive to the soil temperature. Two Terra LST products can be 709 

obtained per day at 10:30 am/pm and two Aqua LST products can be obtained per day 710 

at 1:30 am/pm. Soil moisture, land surface temperature and LAI influence the 711 

estimation of latent and sensible heat fluxes (Ghilain et al., 2012; Jarlan et al., 2008; 712 

Schwinger et al., 2010; van den Hurk, 2003; Yang et al., 1999) (e.g., Ghilain et al., 713 

2012; Jarlan et al., 2008; Schwinger et al., 2010; van den Hurk et al., 2003; Yang et 714 

al., 1999), and therefore this study focuses in addition on the calibration of LAI with 715 

help of the assimilation of land surface temperature. However, there are large 716 

discrepancies between the remotely retrieved LAI and measured values, and the 717 

MODIS LAI product underestimates in situ measured LAI by 44% on average 718 

(http://landval.gsfc.nasa.gov/), and therefore the LAI is also calibrated by data 719 

assimilation.Soil moisture, land surface temperature and leaf area indexLAI 720 

contribute to the estimation of latent and sensible heat fluxes (Ghilain et al., 2012; 721 

Jarlan et al., 2008; Schwinger et al., 2010; van den Hurk, 2003; Yang et al., 1999), and 722 

therefore this study focuses in addition on the calibration of leaf area indexLAI using 723 

the land surface temperature assimilation. However, there are large discrepancies 724 

between the remotely retrieved LAI and measured values, and the MODIS LAI 725 

product underestimates 44% of field measurement on average 726 

(http://landval.gsfc.nasa.gov/), and therefore the leaf area indexLAI is also calibrated 727 

by data assimilation. In summary, the novel aspects of this work are: 1) investigating 728 

whether data assimilation is able to correct for missing water resources management 729 



data without a priori bias correction; 2) joint assimilation of cosmic-ray neutron 730 

counts, LST and updating of LAI; 3) application of this framework to real-world data 731 

in an irrigated area with the availability of detailed verification data; .  732 

 733 

2. Materials and Methods 734 

2.1 Study Area and Measurement 735 

The Heihe River Basin is the second largest inland river basin of China, and it is 736 

located between 97.1° E-102.0° E and 37.7° N-42.7° N and covers an area of 737 

approximately 143,000 km2 (Li et al., 2013). In 2012, a multi-scale observation 738 

experiment of evapotranspiration with a well-equipped superstation (Daman 739 

superstation) to measure the atmospheric forcings and soil moisture at 2 cm, 4 cm, 10 740 

cm, 20 cm, 40 cm, 80 cm, 120 cm and 160 cm depth (Xu et al., 2013), was carried out 741 

from June to September in the framework of the Heihe Watershed Allied Telemetry 742 

Experimental Research (HiWATER) (Li et al., 2013). SoilNet wireless network nodes 743 

(Bogena et al., 2010) were deployed to measure soil moisture content and soil 744 

temperature at four layers (4 cm, 10 cm, 20 cm and 40 cm). One cosmic-ray soil 745 

moisture probe (CRS-1000B) was installed (Han et al., 2014c) with 23 SoilNet nodes 746 

(Jin et al., 2014; Jin et al., 2013) in the footprint (Fig. 1). The main crop type within 747 

the footprint of the cosmic-ray probe is seed corn. The irrigation is applied through 748 

channels using the flooding irrigation method. Exact amounts of applied irrigation are 749 

therefore not available.  750 

The measured cosmic-ray neutron count data were processed to remove the 751 



outliers according to the sensor voltage (≤ 11.8 Volt) and relative humidity (≥ 80%). 752 

The surface fluxes were measured using the eddy covariance technique, and data were 753 

processed using EdiRe (http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe) 754 

software, in which the anemometer coordinate rotation, signal lag removal, frequency 755 

response correction, density corrections and signal de-spiking were done for the raw 756 

data. The energy balance closure was not considered in this study. The leaf area 757 

indexLAI was measured by the LAI-2000 scanner during the field experiment, there 758 

are 17 samples collected in 14 days of 3 months. 759 

[Insert Figure 1 here] 760 

 761 

2.2 Land Surface Model and Data 762 

The Community Land Model (CLM) was used to simulate the spatio-temporal 763 

distribution of soil moisture, soil temperature, land surface temperature, vegetation 764 

temperature, sensible heat flux, latent heat flux and soil heat flux of the study area. 765 

The coupled water and energy balance are modeled in CLM, and the land surface 766 

heterogeneity is represented by patched plant functional types and soil texture (Oleson 767 

et al., 2013). 768 

The soil properties used in CLM were from the soil database of China with 1 km 769 

spatial resolution (Shangguan et al., 2013). The MODIS 500 m resolution plant 770 

functional type product (MCD12Q1) (Sun et al., 2008) which was resampled by 771 

nearest neighbor interpolation to 1 km resolution and MODIS leaf area indexLAI 772 

product (MCD15A3) with 1 km spatial resolution (Han et al., 2012) were used as 773 



input. Due to a lack of measurement data, two atmospheric forcing data sets were 774 

used: the Global Land Data Assimilation System reanalysis data (Rodell et al., 2004) 775 

was interpolated using the National Centers for Environmental Prediction (NCEP) 776 

bilinear interpolation library iplib in spatial and temporal dimensions and used in the 777 

CLM for the spin-up period 778 

(http://www.nco.ncep.noaa.gov/pmb/docs/libs/iplib/ncep_iplib.sht- ml). For the three 779 

months data assimilation period, hourly forcing data (incident longwave radiation, 780 

incident solar radiation, precipitation, air pressure, specific humidity, air temperature 781 

and wind speed) from the Daman superstation of HiWATER were available and used. 782 

 783 

2.3 Cosmic-Ray Forward Model 784 

In this study, the new developed COsmic-ray Soil Moisture Interaction Code 785 

(COSMIC) model (Shuttleworth et al., 2013) was used as the cosmic-ray forward 786 

model to simulate the cosmic-ray neutron count rate using the soil moisture profile as 787 

input. The effective measurement depth of the cosmic-ray soil moisture probe ranges 788 

from 12 cm (wet soils) to 76 cm (dry soils) (Zreda et al., 2008), within which 86% of 789 

the above-ground measured neutrons originate. COSMIC also calculates the effective 790 

sensor depth based on the cosmic-ray neutron intensity and the soil moisture profile 791 

values (Franz et al., 2012; Shuttleworth et al., 2013).  792 

COSMIC makes several assumptions to calculate the number of fast neutrons 793 

reaching the cosmic-ray soil moisture probe ( COSMOSN ) at a near-surface measurement 794 

location, and the soil layer with a depth of 3 meters for the complete soil profile, was 795 

http://www.nco.ncep.noaa.gov/pmb/docs/libs/iplib/ncep_iplib.sht-%20ml


discretized into 300 layers for the integration of Eq. 2 in COSMIC. The number of 796 

fast neutrons reaching the cosmic-ray probe COSMOSN  is formulated as (Shuttleworth 797 

et al., 2013): 798 
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where N is the high energy neutron intensity (counts/hour), z  denotes the soil 803 

layer depth (m), s  denotes the dry soil bulk density (g/cm3), w  denotes the total 804 

water density, including the lattice water (g/cm3) and   denotes the ratio of fast 805 

neutron creation factor. 1L  is the high energy soil attenuation length with value of 806 

162.0 g/cm2,  and 2L  denotes the high energy water attenuation length of 129.1 807 

g/cm2. In equation (2)   is the angle between the vertical below the detector and the 808 

line between the detector and each point in the plane , )(zms  and )(zmw  are the 809 

integrated mass per unit area of dry soil and water (g/cm2), respectively. 3L  denotes 810 

the fast neutron soil attenuation length (g/cm2) and 4L  stands for the fast neutron 811 

water attenuation length with value of 3.16 g/cm2. 812 

The cosmic-ray neutron intensity reaching the land surface is influenced by air 813 

pressure, atmospheric water vapor content and incoming neutron flux. In order to 814 

isolate the contribution of soil moisture content to the measured neutron density, it is 815 

important to take these effects into account and the calibrated neutron count intensity 816 



can be derived as follows: 817 

iwvPObsCorr fffNN            (5) 818 

where CorrN  represents corrected neutron counts and ObsN  the measured 819 

neutron counts. Pf  is the correction factor for air pressure, wvf  the correction 820 

factor for atmospheric water vapor and if  the correction factor for incoming neutron 821 

flux. 822 

The correction factor for air pressure Pf  can be calculated asThe correction 823 

factor for air pressure Pf  can be calculated as (Zreda et al., 2012): 824 

)exp( 0

L

PP
fP


             (6) 825 

where P  (mbar) is the local air pressure, 0P  (mbar) the average air pressure 826 

during the measurement period and L (g/cm2) is the mass attenuation length for 827 

high-energy neutrons; the default value of 128 g/cm2 was used for in this study (Zreda 828 

et al., 2012). 829 

The correction factor wvf  for atmospheric water vapor is calculated as (Rosolem 830 

et al., 2013): 831 

)(0054.01 00

ref

vvwvf             (7) 832 

where 0v (k/gm3) is the absolute humidity at the measurement time and ref

v0833 

(kg/m3) is the average absolute humidity during the measurement period. 834 

Fluctuations in the incoming neutron flux should be removed because the 835 

cosmic-ray probe is designed to measure the neutron flux based on the incoming 836 

background neutron flux. The correcting factor if  for the incoming neutron flux is 837 

calculated as: 838 



avg

m
i

N

N
f                (8) 839 

where mN  is the measured incoming neutron flux and avgN  is the average 840 

incoming neutron flux during the measurement period. The measured data at the 841 

Jungfraujoch station in Switzerland at 3560 m (http://cosray.unibe.ch/) was used to 842 

calculate mN  and avgN . The temporal (secular or diurnal) variations caused by the 843 

sunspot cycle could be removed after this correction (Zreda et al., 2012). 844 

In this study, the soil moisture for the CRS footprint scale was calculated from the 845 

arithmetic mean of the 23 SoilNet soil moisture observations.In this study, the soil 846 

moisture at for the CRS footprint scale was calculated from the arithmetic mean of the 847 

23 SoilNet soil moisture observations. The calibration of the high energy neutron 848 

intensity parameter N in equation (1) was done using the measured cosmic-ray 849 

neutron counts rate and averaged soil moisture content at the CRS footprint scale. 850 

Because lattice water was unknown for this site, a value of 3% was assumed in this 851 

study (Franz et al., 2012). Hourly soil moisture measurements for a period of 2.5 852 

months were used for COSMIC calibration. Inside the cosmic-ray probe footprint, the 853 

amount of applied irrigation was spatially variable due to the different management 854 

practice of each farmer. The gradient search algorithm L-BFGS-B (Zhu et al., 1997) 855 

was used to minimize the root mean square error of the differences between simulated 856 

cosmic-ray neutron counts (using measured soil moisture by SoilNet as input to 857 

COSMIC) and the measured neutron counts CorrN . The optimized parameter value of 858 

N was 615.96 counts/hour in this case. 859 

The simulated soil moisture content for 10 CLM soil layers (3.8 m depth) was 860 



used as input to COSMIC in order to simulate the corresponding neutron count 861 

intensity and compare it with the measured neutron count intensity. It should be 862 

mentioned that it is unlikely that anything beyond 1 m deep will substantially impact 863 

the results because the effective measurement depth of the cosmic-ray probe is 864 

between 12 and 76 cm. The COSMIC model assumes a more detailed soil profile. 865 

COSMIC interpolates the soil moisture information from the ten CLMCOSMIC, 866 

interpolates the soil moisture information from the ten CLM soil layers to information 867 

for 300 soil layers of depth 1cm. The contribution of each soil layer to the measured 868 

neutron flux will change temporally depending on the soil moisture condition. 869 

Therefore the effective measurement depth of the cosmic ray probe will also change 870 

temporally. COSMIC calculates the vertically weighted soil moisture content based 871 

on the vertical distribution of soil moisture content.For the data assimilation, the 872 

simulated soil moisture content for 10 soil layers (3.8 m depth) in CLM was used as 873 

the input to COSMIC in order to simulate the corresponding cosmic-ray neutron 874 

counts and compare it with the measured neutron counts. It should be mentioned that 875 

it is unlikely that anything beyond 1 m deep will substantially impact the results 876 

because the effective measurement depth of cosmic-ray probe is between 12 and 76 877 

cm. The COSMIC model assumes a more detailed soil profile. In COSMIC, the soil 878 

moisture information from the 10 layers from CLM was interpolated to information 879 

for 300 layers based on the soil layer depth for stable numerical solution. The 880 

contribution of each soil layer to the measured neutron flux will change temporally 881 

depending on the soil moisture condition. So the effective measurement depth of the 882 



cosmic ray probe will also change temporally. COSMIC calculates as output also the 883 

neutron count rate and the vertically weighted soil moisture content, which is 884 

calculated with help of the effective sensor depth obtained from COSMIC based on 885 

the vertical distribution of soil moisture contents at different depth. 886 

 887 

2.4 Two Source Formulation - TSF 888 

The land surface temperature products of MODIS are composed of a ground 889 

temperature and vegetation temperature component, which are however unknown. 890 

CLM models the ground temperature and vegetation temperature separately, but does 891 

not model the composed land surface temperature as seen by MODIS. The 892 

corresponding land surface temperature of CLM should therefore be modelled for 893 

data assimilation purposes. The two source formulation (Kustas and Anderson, 2009) 894 

was used in this study to calculate the land surface temperature from the MODIS view 895 

angle using ground temperature and vegetation temperature simulated by CLM: 896 

4144 )])(1()([ /

gcccs TΦFTΦFT          (9) 897 

where sT (K) is the composed surface temperature as seen by the MODIS sensor, 898 

)(ΦFc  is the fraction vegetation cover observed from the sensor view angle Φ  899 

(radians), cT  (K) is the vegetation temperature and gT (K) is the ground temperature. 900 

(Kustas and Anderson, 2009): 901 
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where LAI is the leaf area index, )(Φ  is a clumping index to represent the 903 

nonrandom leaf area distributions of farmland or other heterogeneous land surfaces 904 



(Anderson et al., 2005), and is defined as: 905 
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 909 

2.5 Assimilation Approach 910 

 The Local Ensemble Transform Kalman Filter (LETKF) was used as the 911 

assimilation algorithm, which is one of the square root variants of the ensemble 912 

Kalman filter (Evensen, 2003; Hunt et al., 2007; Miyoshi and Yamane, 2007). The 913 

model uncertainties are represented using the ensemble simulation of model states and 914 

LETKF derives the background error covariance using the model state ensemble 915 

members. LETKF uses the non-perturbed observations to update all the ensemble 916 

members of model states at each assimilation step. 917 

In this study, 𝑥1
𝑏 , … 𝑥𝑁

𝑏  denote the model state ensemble members; �̅�𝑏 is the 918 

ensemble mean of 𝑥1
𝑏 , … 𝑥𝑁

𝑏 ; 𝑁 is the ensemble size; 𝑦1
𝑏 , … 𝑦𝑁

𝑏  denote the mapped 919 

model state ensemble members;  �̅�𝑏 is the ensemble mean of 𝑦1
𝑏 , … 𝑦𝑁

𝑏 ; 𝐻 is the 920 

observation operator (COSMIC for soil moisture or the two source function for land 921 

surface temperature). The analysis step of LETKF can be summarized as follows:  922 

Prepare the model state vector X𝑏: 923 

X𝑏 = [𝑥1
𝑏 − �̅�𝑏 , … , 𝑥𝑁

𝑏 − �̅�𝑏]           (14) 924 

 where �̅�𝑏 is composed of one vertically weighted soil moisture content and soil 925 

moisture content for 10 CLM-layers, resulting in a state dimension equal to 11 if only 926 



the neutron count observation was assimilatedthe neutron counts observations were 927 

assimilated; and �̅�𝑏  is composed of surface temperature, ground temperature, 928 

vegetation temperature and soil temperature for 15 CLM-layers if only the land 929 

surface temperature observations were assimilated without soil moisture update, 930 

giving a state dimension of 18. The water and energy balance are coupled, and in 931 

CLM the energy balance is firstly solved, then the derived surface fluxes are used in 932 

for updating the soil moisture content. So tThe cross correlation between the soil 933 

temperature and soil moisture could can be calculated using the ensemble prediction 934 

in LETKF, and this makes the updating of soil moisture by assimilating land surface 935 

temperature possible. We also used the land surface temperature to update the soil 936 

moisture profile, in this case the soil moisture vector was augmented to the LETKF 937 

state vector of land surface temperature assimilation, and resulting in a state 938 

dimension of 28. For the calibration of the LAI, the state vector was augmented with 939 

surface temperature, ground temperature, vegetation temperature, soil temperature for 940 

15 CLM-layers and LAI if only the land surface temperature observations were 941 

assimilated without soil moisture update. This resulted then in a state dimension of 942 

19.For the calibration of the LAI, the state vector was augmented as surface 943 

temperature, ground temperature, vegetation temperature, soil temperature for 15 944 

CLM-layer and LAI if only the land surface temperature observations were 945 

assimilated without soil moisture update, giving a state dimension of 19. 946 

Construct the mapped model state vector 𝑌𝑏 after transformation of observation 947 

operator: 948 



y𝑖
𝑏 = 𝐻(x𝑖

𝑏)               (15) 949 

𝑌𝑏 = [𝑦1
𝑏 − �̅�𝑏 , … , 𝑦𝑁

𝑏 − �̅�𝑏]           (16) 950 

The following analysis is looped for each model grid cell to calculate the update 951 

of model state ensemble members: 952 

Calculate analysis error covariance matrix 𝑃𝑎: 953 

𝑃𝑎 = [(𝑁 − 1)𝐼 + 𝑌𝑏𝑇𝑅−1𝑌𝑏]          (17) 954 

The perturbations in ensemble space are calculated as: 955 

𝑊𝑎 = [(𝑁 − 1)𝑃𝑎]1/2            (18) 956 

Calculate the analysis mean w̅𝑎 in ensemble space and add to each column of 957 

W𝑎 to get the analysis ensemble in ensemble space: 958 

w̅𝑎 = 𝑃𝑎𝑌𝑏𝑇𝑅−1(𝑦𝑜 − �̅�𝑏)           (19) 959 

Calculate the new analysis: 960 

𝑋𝑎 = 𝑋𝑏[w̅𝑎 + W𝑎] + �̅�𝑏           (20) 961 

where 𝑅 is the observation error covariance matrix, 𝑦𝑜 is the observation vector 962 

and 𝑋𝑎 contains the updated model ensemble members. 963 

 The LETKF method can also be extended to do parameter estimation using a state 964 

augmentation approach (Bateni and Entekhabi, 2012; Li and Ren, 2011; Moradkhani 965 

et al., 2005; Nie et al., 2011). Alternative strategies for parameter estimation are a dual 966 

approach (Moradkhani et al., 2005) with separate updating of states and parameters. 967 

Vrugt et al. (2005) also proposed a dual approach with parameter updating in an outer 968 

optimization loop using a Markov Chain Monte Carlo methods, and state updating in 969 

an inner loop. The a priori calibration of model parameters is also an option (Kumar et 970 



al., 2012). With the augmentation approach, the state vector of LETKF can be 971 

augmented by the parameter vector including soil properties (sand fraction, clay 972 

fraction and organic matter density) and vegetation parameters (leaf area indexLAI, 973 

etc.). In a preliminary sensitivity study it was found that for this site simulation results 974 

were more sensitive to the leaf area indexLAI than to soil properties. Soil texture is 975 

also quite well known for this site from measurements. Therefore in this study, only 976 

the leaf area indexLAI was in some of the simulation scenarios calibrated. In the 977 

different scenarios of land surface temperature assimilation, the LETKF state vector 978 

was also augmented to include leaf area indexLAI as calibration target. As a 979 

consequence, the augmented state vector contains surface temperature, ground 980 

temperature, and vegetation temperature, 15 layers of soil temperature and leaf area 981 

indexLAI, making up a state dimension equal to 19 for the scenarios of land surface 982 

temperature assimilation without soil moisture update; for the scenarios of land 983 

surface temperature with soil moisture update, the state dimension is 29for the 984 

scenarios of land surface temperature with soil moisture update, the state dimension 985 

will be changed to 29. The 10 layers of soil moisture and 15 layers of soil temperature 986 

are the standard CLM layout for both soil moisture and soil temperature. The 987 

hydrology calculations are done over the top 10 layers, and the bottom 5 layers are 988 

specified as bedrock. The lower 5 layers are hydrologically inactive layers. 989 

Temperature calculations are done over all layers (Oleson et al., 2013). 990 

 991 

3. Experiment Setup 992 



Firstly the 50 ensemble members of CLM with perturbed soil properties and 993 

atmospheric forcing data were driven from the 1st of Jan. 2012 to the 31st of May 2012 994 

to do the CLM spin-up; secondly an additional assimilation period of cosmic-ray 995 

neutron counts was done from the 1st of Jun. 2012 to the 30th Aug. 2012 to reduce the 996 

spin-up error. Then the final CLM states on 30th Aug. 2012 were used as the initial 997 

states for the following data assimilation scenarios. Perturbed soil properties were 998 

generated by adding a spatially uniform perturbation sampled from a uniform 999 

distribution between -10% and 10% to the values extracted from the Soil Database of 1000 

China for Land Surface Modeling (1 km spatial resolution). The LAI was perturbed 1001 

with multiplicative uniform distributed random noise in the range of [0.8~1.2]. The 1002 

perturbations added to the model forcings show correlations in space and timeThe leaf 1003 

area index was perturbed with multiplicative uniform distributed random noise in the 1004 

range of [0.8~1.2]. The model forcings were perturbed by adding a perturbation, 1005 

showing correlations in space and time. The spatial correlation was induced by a Fast 1006 

Fourier Transform and the temporal correlation by a first-order auto-regressive model 1007 

(Han et al., 2013; Kumar et al., 2009; Reichle et al., 2010). The statistics on the 1008 

perturbation of the forcing data are summarized in Table 1. The values of standard 1009 

deviations and temporal correlations in Table 1 were chosen based on previous 1010 

catchment scale and regional scale data assimilation studiesdata assimilation  (De 1011 

Lannoy et al., 2012; Kumar et al., 2012; Reichle et al., 2010). 1012 

[Insert Table 1 here] 1013 

The cosmic-ray neutron intensity was assimilated every 3 days at 12Z from the 1st 1014 



of June 2012 onwards, because we found that the difference between daily 1015 

assimilation and 3 days assimilation was small (Entekhabi et al., 2010; Kerr et al., 1016 

2010). The measured neutron count intensity showed large temporal fluctuations in 1017 

time and these fluctuations were not corresponding to the temporal variations of soil 1018 

moisture. Therefore the measured neutron count intensity was smoothed with the 1019 

Savitzky–Golay filter using a moving average window of size 31 hours and a 1020 

polynomial of order 4 (Savitzky and Golay, 1964). The originally measured neutron 1021 

counts and smoothed neutron counts are plotted in Fig. 2. The assimilation frequency 1022 

of MODIS LST products of MOD11A1 and MYD11A1 was up to 4 times (maximum) 1023 

per day depending on the data availability. There are 230 observation data (including 1024 

cosmic-ray probe neutron counts, MODIS LST, MOD11A1 and MYD11A1 LST) in 1025 

the whole assimilation window. The variance of the instantaneous measured neutron 1026 

intensity wasis equal to the measured neutron count intensity (Zreda et al., 2012) and 1027 

smaller for temporal averaging for daily or sub-daily applications.(Zreda et al., 2012) 1028 

The instantaneous neutron intensity was assimilated in this study. and tThe variance 1029 

of MODIS LST was assumed to be 1 K  (Wan and Li, 2008)(Wan and Li, 2008).The 1030 

variance of Cosmic-ray was the measured neutron counts value (Zreda et al., 2012) 1031 

and the variance of MODIS LST was assumed to be 1 K . 1032 

The 4 days MODIS leaf area indexLAI product was aggregated and used as the 1033 

CLM leaf area indexLAI parameter. Because the leaf area indexLAI from MODIS is 1034 

usually lower than the true value (compared with the field measured leaf area 1035 

indexLAI in the HiWATER experiment) and because the surface flux and surface 1036 



temperature are sensitive to the leaf area indexLAI, two additional scenarios were 1037 

investigated where leaf area indexLAI was calibrated to study the impact of leaf area 1038 

indexLAI estimation on surface flux estimation within the data assimilation 1039 

framework.  1040 

The following assimilation scenarios were compared: (1) CLM: open loop 1041 

simulation without assimilation; (2) Only_CRS: only the measured neutron counts 1042 

were assimilated; (3) Only_LST: only the MODIS LST products were assimilated. 1043 

The quality control flags of LST products were used to select the data with good 1044 

quality for assimilation; (4) CRS_LST: the measured neutron counts and MODIS LST 1045 

products were assimilated jointly. In the above scenarios, the neutron count data was 1046 

used to update the soil moisture and the LST data were used to update the ground 1047 

temperature, vegetation temperature and soil temperature. (5) LST_Feedback: We also 1048 

evaluated the scenario of assimilating the LST measurements to update the soil 1049 

moisture profile. (6) CRS_LST_Par_LAI: the leaf area indexLAI was included as 1050 

variable to be calibrated, otherwise the scenario was the same as CRS_LST. (7) 1051 

LST_Feedback_Par_LAI: the leaf area indexLAI was included as variable to be 1052 

calibrated, otherwise the scenario was the same as LST_Feedback. (8) 1053 

CRS_LST_True_LAI: the in situ measured leaf area indexLAI during the HiWATER 1054 

experiment was used in the model simulation. 1055 

[Insert Figure 2 here] 1056 

 1057 

4. Results and Discussion 1058 



In order to evaluate the assimilation results for the different scenarios outlined in 1059 

section 3, the Root Mean Square Error (RMSE) was used: 1060 

RMSE =  √∑ (𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑−𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑)2𝑁
𝑛=𝑖

𝑁
        (21) 1061 

where “Estimated” is the ensemble mean without assimilation or the ensemble 1062 

mean after assimilation, “Measured” is measured soil moisture content evaluated at 1063 

the SoilNet nodes (or latent heat flux, sensible heat flux or soil heat flux). N is the 1064 

number of time steps. For the soil moisture analysis in this study, N is equal to 2184. 1065 

The smaller the RMSE value is, the closer assimilation results are to measured values, 1066 

which is in general considered to be desirable. 1067 

The temporal evolution of soil moisture content at 10, 20, 50 and 80 cm depth for 1068 

different scanarios scenarios is plotted in Fig. 3 and Fig. 4. The RMSE values for 1069 

different scenarios are summarized in Table 2. Assimilating the land surface 1070 

temperature could improve the soil moisture profile estimation in the scenario of 1071 

LST_Feedback_Par_LAI; the soil moisture results are better than the open loop run at 1072 

all depths. With the assimilation of CRS neutron counts, the soil moisture RMSE 1073 

values (scenarios CRS_LST_Par_LAI and CRS_LST_True_LAI) decreased 1074 

significantly. The RMSE values for the scenarios Only_CRS and CRS_LST (not 1075 

shown) are similar to CRS_LST_Par_LAI, which indicates that the main 1076 

improvement for the soil moisture profile characterization is achieved by neutron 1077 

count assimilation; and land surface temperature assimilation and leaf area indexLAI 1078 

estimation play a minor role. Without assimilation of cosmic-ray probe neutron counts, 1079 

the soil moisture simulation cannot be improved (scenario Only_LST). However, the 1080 



scenarios of LST_Feedback and LST_Feedback_Par_LAI improve the soil moisture 1081 

profile characterization, which shows that explicitly using LST to update soil moisture 1082 

content in the data assimilation routine gives better results than using LST only to 1083 

update soil moisture by the model equations.Without assimilation of cosmic-ray probe 1084 

neutron counts, the soil moisture simulation cannot be improved in the scenario 1085 

Only_LST. However, the scenarios of LST_Feedback and LST_Feedback_Par_LAI 1086 

improve the soil moisture profile characterization, which shows that explicitly using 1087 

LST to update soil moisture content in the data assimilation routine gives better 1088 

results than using LST only to update soil moisture over the model equations. Results 1089 

of LST_Feedback and LST_Feedback_Par_LAI are similar; therefore only results for 1090 

LST_Feedback_Par_LAI are shown in Fig. 3 and Fig. 4. This implies that the 1091 

improved soil moisture characterization due to LAI calibration is low. The results for 1092 

the cosmic-ray probe neutron count assimilation proved that the cosmic-ray probe 1093 

sensor can be used to improve the soil moisture profile estimation at the footprint 1094 

scaleThe results for the cosmic-ray probe neutron count assimilation proved the 1095 

cosmic-ray probe sensor can be used to improve the soil moisture profile estimation at 1096 

the footprint scale. 1097 

[Insert Figure 3 here] 1098 

[Insert Figure 4 here] 1099 

[Insert Table 2 here] 1100 

Fig. 5 depicts the scatter plots of measured ET versus modelled ET for different 1101 

scenarios, and the accumulated ET for all scenarios are summarized in the lower-right 1102 



corner of Fig. 5.. The EC measured evapotranspiration (ET) is 384.7 mm for the 1103 

assimilation period, without energy balance closure correction. The true 1104 

evapotranspiration is therefore likely larger, but not much larger as the energy balance 1105 

gap was limited (3.7%). The CLM estimated ET, without data assimilation, using only 1106 

precipitation as input is 223.7 mm and is much smaller than the measured value as 1107 

applied irrigation is not considered in the model. This open loop simulated value 1108 

would imply water stress and a limitation of canopy transpiration and soil evaporation 1109 

due to low soil moisture content. Assimilation of land surface temperature only 1110 

(Only_LST) hardly affected the estimated ET and was not able to correct for the 1111 

artificial water stress condition. However, if land surface temperature was used to 1112 

update soil moisture directly, taking into account correlations between the two states 1113 

in the data assimilation routine, the ET estimates improved to 336.8 mm and 354.8 1114 

mm for the scenarios of LST_Feedback and LST_Feedback_Par_LAI respectively. 1115 

The assimilation of land surface temperature of MODIS with soil moisture update 1116 

results in significant improvements of ET. 1117 

The different neutron count assimilation scenarios also resulted in significantly 1118 

improved estimates of ET. Univariate assimilation of cosmic-ray neutron data 1119 

(Only_CRS) resulted in 301.9 mm ET. This shows that the impact of neutron count 1120 

assimilation to correct evapotranspiration estimates is little smaller than the impact of 1121 

land surface temperature with soil moisture update. Joint assimilation of land surface 1122 

temperature data and cosmic-ray neutron data (CRS_LST) gave a slightly larger ET of 1123 

310.6 mm than Only_CRS. Scenarios of CRS_LST_Par_LAI and 1124 



CRS_LST_True_LAI gave the best ET estimates (360.5 mm and 349.3 mm). This 1125 

shows that correcting the biased LAI-estimates from MODIS by in situ data or 1126 

calibration helped to improve model estimates. 1127 

[Insert Figure 5 here] 1128 

The RMSE values of latent heat flux, sensible heat flux and soil heat flux for all 1129 

scenarios are summarized in Fig. 6, Fig. 7, Fig. 8 and Table 3. It is obvious that the 1130 

RMSE values are very large for both the latent heat flux (123.9 W/m2) (Fig. 6) and 1131 

sensible heat flux (80.5 W/m2) (Fig. 7) for the open loop run and all other scenarios 1132 

where the soil moisture was not updated. If the land surface temperature was 1133 

assimilated to update the soil moisture, the latent heat flux RMSE decreased to 60.5 1134 

W/m2 (LST_Feedback) and 62.5 W/m2 (LST_Feedback_Par_LAI). The scenario 1135 

where soil moisture and LAI are jointly updated (LST_Feedback_Par_LAI) gave 1136 

worse results than the scenario of LST_Feedback.The joint soil moisture and LAI 1137 

update scenario of LST_Feedback_Par_LAI was worse than the single soil moisture 1138 

update scenario of LST_Feedback in this case. Again, the assimilation of neutron 1139 

counts also resulted in a strong RMSE reduction for the latent heat flux (76.5 W/m2 1140 

for Only_CRS). If in addition land surface temperature was assimilated and leaf area 1141 

indexLAI optimized, the RMSE value of latent heat flux further decreased to 56.1 1142 

W/m2 (70.7 W/m2 without LAI optimization). If the field measured LAI was used 1143 

instead in the assimilation (CRS_LST_True_LAI), the RMSE was 61.0 W/m2. These 1144 

results are in correspondence with the ones discussed before for soil moisture 1145 

characterization. Evidently, the combined assimilation of cosmic-ray probe neutron 1146 



counts and land surface temperature, and calibration of leaf area indexLAI (or use of 1147 

field measured leaf area indexLAI as model input) shows the strongest improvement 1148 

for the estimation of land surface fluxes. The soil heat flux did not show a clear 1149 

improvement related to assimilation and showed only some improvement in case LAI 1150 

was calibrated (Fig. 8). For the scenario of land surface temperature assimilation 1151 

without soil moisture update (Only_LST), estimates of latent and sensible heat flux 1152 

are not improved. It means that under water stress condition, the improved 1153 

characterization of land surface temperature (and soil temperature) does not contribute 1154 

to a better estimation of land surface fluxes. 1155 

 [Insert Table 3 here] 1156 

[Insert Figure 6 here] 1157 

[Insert Figure 7 here] 1158 

[Insert Figure 8 here] 1159 

The updated leaf area indexLAI for scenarios of LST_Feedback_Par_LAI and 1160 

CRS_LST_Par_LAI is shown in Fig. 97. The MODIS leaf area indexLAI product was 1161 

used as input for CLM and time series are plotted as blue line in Fig. 9 7 1162 

(Background). The leaf area indexLAI was also measured in the HiWATER 1163 

experiment, and the measured values are shown as green star (Observation). 1164 

Ens_Mean represents the mean leaf area indexLAI of all ensemble members 1165 

(Ensembles). It is obvious that MODIS underestimates the leaf area indexLAI 1166 

compared with the observations. With the assimilation of land surface temperature, 1167 

the leaf area indexLAI could be updated and be closer to the observations, but there is 1168 



still a significant discrepancy between the measured leaf area indexLAI and the 1169 

updated one. The leaf area indexLAI values for the scenario with leaf area indexLAI 1170 

calibration (CRS_LST_Par_LAI) are close to the measured leaf area indexLAI values 1171 

(CRS_LST_True_LAI), which is an encouraging result. The calibrated leaf area 1172 

indexLAI shows some unrealistic increases and decreases during the assimilation 1173 

period, which is inherent to the data assimilation approach. A smoothed representation 1174 

of the leaf area indexLAI might provide a more realistic picture. 1175 

[Insert Figure 7 here] 1176 

This study illustrates that for an irrigated farmland, the measured cosmic-ray 1177 

probe neutron counts can be used to improve the soil moisture profile estimation 1178 

significantly. Without irrigation data, CLM underestimated soil moisture content. The 1179 

cosmic-ray neutron count data assimilation can be used as an alternative way to 1180 

retrieve the soil moisture content profile in CLM. The improved soil moisture 1181 

simulation was helpful for the characterization of the land surface fluxes 1182 

characterization. The univariate assimilation of land surface temperature without soil 1183 

moisture update is not helpful for the estimation of land surface fluxes and even 1184 

worsened the sensible heat flux characterization (Fig. 76). However, in a multivariate 1185 

data assimilation framework where land surface temperature was assimilated together 1186 

with measured cosmic-ray probe neutron counts, the land surface temperature 1187 

assimilation contributed significantly to an improved ET estimation. The simulated 1188 

canopy transpiration in CLM was in general too low, even when the water stress 1189 

condition was corrected by assimilating neutron counts, which was related to small 1190 



values of the leaf area indexLAI. The additional estimation of leaf area indexLAI 1191 

through the land surface temperature assimilation resulted in an increase of the leaf 1192 

area indexLAI yielding an increase of estimated ET. 1193 

In general, land surface models need to be calibrated before use in land data 1194 

assimilation, especially if there is an apparent large bias in the model simulation (Dee, 1195 

2005). The simulation of soil moisture and surface fluxes was biased in our study, 1196 

mainly due to the lack of irrigation water as input. This bias cannot be corrected a 1197 

priori without exact irrigation data, which are not available in the field. The data 1198 

assimilation was proven to be an efficient way to remove the model bias in this case. 1199 

We also calculated the equivalent water thickness to analyze the equivalent irrigated 1200 

water after each step of soil moisture update. For the scenarios of CRS_LST_Par_LAI 1201 

and CRS_LST_True_LAI, the equivalent irrigation in three months was 693.6 mm 1202 

and 607.6 mm, respectively. Because the irrigation method is flood irrigation, it is not 1203 

easy to evaluate the true irrigation applied in the field. From the results we see 1204 

however that the applied irrigation (in the model) is much larger than actual ET 1205 

(600-700mm vs 400mm)(700mm vs 400mm). This could indicate that the 1206 

amount of applied irrigation in the model is too large, but irrigation by flooding is also 1207 

inefficient and results in excess runoff and infiltration to the groundwater, because it 1208 

cannot be controlled so well as sprinkler irrigation or drip irrigation. Therefore, the 1209 

calculated amount of irrigation could be realistic, but might also be too large if soil 1210 

properties are erroneous in the model. 1211 

The soil moisture content measured by the cosmic-ray probe represents the depth 1212 



between 12 cm (very humid) and 76 cm (extremely dry case) depending on the 1213 

amount of soil water (soil moisture content and lattice water). Therefore the effective 1214 

sensor depth of the cosmic-ray probe will change over time. In order to model the 1215 

variable sensor depth and the relationship between the soil moisture content and 1216 

neutron counts, the new developed COSMIC model was used as the observation 1217 

operator in this study. Additionally the influences of air pressure, atmospheric vapor 1218 

pressure and incoming neutron counts were removed from the original measured 1219 

neutron counts. Because there is still some water in the crop which also affects the 1220 

cosmic-ray probe sensor, the COSMIC observation operator could be improved to 1221 

include vegetation effects. Several default parameters proposed by (Shuttleworth et al., 1222 

2013) were used in the COSMIC model, these parameters probably need further 1223 

calibration following the development of the COSMIC model. 1224 

The spatial distribution of soil moisture for the study area was very 1225 

heterogeneous due to the small farmland patches and different irrigation periods for 1226 

the different farmlands. Therefore the soil moisture content inferred by SoilNet may 1227 

not represent the true soil moisture content of the cosmic-ray probe footprint, which is 1228 

a further limitation of this study. Although the Cosmic-ray Soil Moisture Observing 1229 

System (COSMOS) has been designed as a continental scale network by installing 1230 

500 COSMOS probes across the USA (Zreda et al., 2012), there are still some 1231 

disadvantages of COSMOS compared with remote sensing. COSMOS is also 1232 

expensive for extensive deployment to measure the continental/regional scale soil 1233 

moisture.there are still some disadvantages of COSMOS compared with remote 1234 



sensing. The land surface is heterogeneous and COSMOS only samples part of this 1235 

heterogeneity. COSMOS is also expensive for extensive deployment.Although the 1236 

Cosmic-ray Soil Moisture Observing System (COSMOS) has been designed as a 1237 

continental scale network by installing 500 COSMOS probes across the USA (Zreda 1238 

et al., 2012). But there are still some disadvantages of COSMOS compared with the 1239 

remote sensing. Because the land surface is heterogeneous and COSMOS only catch 1240 

the heterogeneity of local footprint scale, and COSMOS is expensive for extensive 1241 

deployment. 1242 

5. Summary and Conclusions 1243 

In this paper, we studied the univariate assimilation of MODIS land surface 1244 

temperature products, the univariate assimilation of measured neutron counts by the 1245 

cosmic-ray probe, the bivariate assimilation of land surface temperature and neutron 1246 

count data, and the additional calibration of leaf area indexLAI for an irrigated 1247 

farmland at the Heihe catchment in China, where data on the amount of applied 1248 

irrigation were lacking. The most important objective of this study was to test whether 1249 

data assimilation is able to correct for the absence of information on water resources 1250 

management as model input, a situation commonly encountered in large scale land 1251 

surface modelling. For the specific case of lacking irrigation data, no a priori bias 1252 

correction is possible. The bias blind assimilation without explicit bias estimation was 1253 

used. We focused on the model bias introduced by the forcing data and the LAI, and 1254 

neglected the other sources of bias. In case leaf area indexLAI was calibrated, this 1255 

was done at each data assimilation step of land surface temperature. The data 1256 



assimilation experiments were carried out with the Community Land Model (CLM) 1257 

and the data assimilation algorithm used was the Local Ensemble Tranform Kalman 1258 

Filter (LETKF). A likely further model bias, besides missing information on irrigation, 1259 

is the underestimation of LAI by MODIS, which was used to force the model.  1260 

The results show that the direct assimilation of measured comic-ray neutron 1261 

counts improves the estimation of soil moisture significantly, whereas univariate 1262 

assimilation of land surface temperature without soil moisture update does not 1263 

improve soil moisture estimation. However, if the land surface temperature was 1264 

assimilated to update the soil moisture profile directly with help of the state 1265 

augmentation method, the evapotranspiration and soil moisture could be improved 1266 

significantly. This result suggests that the land surface temperature remote sensing 1267 

products are needed to correct the characterization of the soil moisture profile and the 1268 

evapotranspiration. The improved soil moisture estimation after the assimilation of 1269 

neutron counts resulted in a better ET estimation during the irrigation season, 1270 

correcting the too low ET of the open loop simulation. The joint assimilation of 1271 

neutron counts and MODIS land surface temperature improved the ET estimation 1272 

further compared to neutron count assimilation only. The best ET estimation was 1273 

obtained for the joint assimilation of cosmic-ray neutron counts, MODIS land surface 1274 

temperature including calibration of the leaf area indexLAI (or if field measured leaf 1275 

area indexLAI was used as input). This shows that bias due to neglected information 1276 

on water resources management can be corrected by data assimilation if a 1277 

combination of soil moisture and land surface temperature data is available. 1278 



We can conclude that data assimilation of neutron counts and land surface 1279 

temperature is useful for ET and soil moisture estimation of an irrigated farmland, 1280 

even if irrigation data are not available and excluded from model input. The land 1281 

surface temperature measurements are an alternative data source to improve the soil 1282 

moisture and land surface fluxes estimation under water stress conditions. This shows 1283 

the potential of data assimilation to correct also a systematic model bias. Leaf area 1284 

indexLAI optimization further improves simulation results, which is also likely 1285 

related to a systematic underestimation of LAI by the MODIS remote sensing product. 1286 

The results of using the calibrated leaf area indexLAI are comparable to the results of 1287 

using field measured leaf area indexLAI as model input. 1288 
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