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Abstract 43 

The recent development of the non-invasive cosmic-ray soil moisture sensing 44 

technique fills the gap between point scale soil moisture measurements and regional 45 

scale soil moisture measurements by remote sensing. A cosmic-ray probe measures 46 

soil moisture for a footprint with a diameter of ~600 m (at sea level) and with an 47 

effective measurement depth between 12 cm to 76 cm, depending on the soil humidity. 48 

In this study, it was tested whether neutron counts also allow to correct for a 49 

systematic error in the model forcings. Lack of water management data often cause 50 

systematic input errors to land surface models. Here, the assimilation procedure was 51 

tested for an irrigated corn field (Heihe Watershed Allied Telemetry Experimental 52 

Research - HiWATER, 2012) where no irrigation data were available as model input 53 

although for the area a significant amount of water was irrigated. In the study, the 54 

measured cosmic-ray neutron counts and Moderate Resolution Imaging 55 

Spectroradiometer (MODIS) land surface temperature (LST) products were jointly 56 

assimilated into the Community Land Model (CLM) with the Local Ensemble 57 

Transform Kalman Filter. Different data assimilation scenarios were evaluated, with 58 

assimilation of LST and/or cosmic-ray neutron counts, and possibly parameter 59 

estimation of leaf area index (LAI). The results show that the direct assimilation of 60 

cosmic-ray neutron counts can improve the soil moisture and evapotranspiration (ET) 61 

estimation significantly, correcting for lack of information on irrigation amounts. The 62 

joint assimilation of neutron counts and LST could improve further the ET estimation, 63 

but the information content of neutron counts exceeded the one of LST. Additional 64 



improvement was achieved by calibrating LAI, which after calibration was also closer 65 

to independent field measurements. It was concluded that assimilation of neutron 66 

counts was useful for ET and soil moisture estimation even if the model has a 67 

systematic bias like neglecting irrigation. However, also the assimilation of LST 68 

helped to correct the systematic model bias introduced by neglecting irrigation and 69 

LST could be used to update soil moisture with state augmentation. 70 

Keywords: Cosmic-ray neutron counts, Land surface temperature, Evapotranspiration, 71 

Land data assimilation, Parameter estimation  72 



1. Introduction 73 

Soil moisture plays a key role for crop and plant growth, water resources 74 

management and land surface-atmosphere interaction. Therefore accurate soil 75 

moisture retrieval is important. Point scale measurements can be obtained by methods 76 

like time domain reflectometry (TDR) (Robinson et al., 2003) and larger scale, coarse 77 

soil moisture information from remote sensing sensors (Entekhabi et al., 2010; Kerr et 78 

al., 2010). Wireless Sensor Networks (WSN) allow characterization of soil moisture at 79 

the catchment scale with many local connected sensors at separated locations (Bogena 80 

et al., 2010). TDR only measures the point scale soil moisture and the maintenance of 81 

WSN is expensive. Recently, neutron count intensity measured by above-ground 82 

cosmic-ray probes was proposed as alternative information source on soil moisture. 83 

Neutron count intensity is measured non-invasively at an intermediate scale between 84 

the point scale and the coarse remote sensing scale (Zreda et al., 2008). A network of 85 

cosmic-ray sensors (CRS) has been set-up over N-America (Zreda et al., 2012).  86 

Cosmic rays are composed of primary protons mainly. The fast neutrons 87 

generated by high-energy neutrons colliding with nuclei lead to “evaporation” of fast 88 

neutrons and the generated and moderated neutrons in the ground can diffuse back 89 

into the air where their intensity can be measured by the cosmic-ray soil moisture 90 

probe. Soil moisture affects the rate of moderation of fast neutrons, and controls the 91 

neutron concentration and the emission of neutrons into the air. Dry soils have low 92 

moderating power and are highly emissive; wet soils have high moderating power and 93 

are less emissive. The neutrons are mainly moderated by the hydrogen atoms 94 



contained in the soil water and emitted to the atmosphere where the neutrons mix 95 

instantaneously at a scale of hundreds of meters. The measurement area of a 96 

cosmic-ray soil moisture probe represents a circle with a diameter of ~600 m at sea 97 

level (Desilets and Zreda, 2013) and the measurement depth decreases non-linearly 98 

from ~76 cm (dry soils) to ~12 cm (saturated soils) (Zreda et al., 2008). The measured 99 

cosmic-ray neutron counts show an inverse correlation with soil moisture content. The 100 

cosmic-ray neutron intensity could be reduced to 60% of surface cosmic-ray neutron 101 

intensity if the soil moisture was increased from zero to 40% (Zreda et al., 2008). The 102 

soil moisture estimation on the basis of cosmic-ray probe based neutron counts over a 103 

horizontal footprint of hectometers received considerable attention in scientific 104 

literature during the last years (Desilets et al., 2010; Zreda et al., 2008; Zreda et al., 105 

2012).  106 

Hydrogen atoms are present as water in the soil, lattice soil water, below ground 107 

biomass, atmospheric water vapor, snow water, above ground biomass, intercepted 108 

water by vegetation and water on the ground. These additional hydrogen sources 109 

contribute to the measured neutron intensity. The role of these additional hydrogen 110 

sources should be included in the analysis of the cosmic-ray measurements in order to 111 

isolate the main contribution from soil moisture. Formulations for handling water 112 

vapor (Rosolem et al., 2013), for lattice water and organic carbon (Franz et al., 2013) 113 

and for a litter layer present on the soil surface (Bogena et al., 2013) have been 114 

developed.  115 

The positive impact of soil moisture data assimilation was shown in several 116 



studies. Importantly, surface soil moisture could be used to obtain better 117 

characterization of the root zone soil moisture (Barrett and Renzullo, 2009; Crow et 118 

al., 2008; Das et al., 2008; Draper et al., 2011; Li et al., 2010). It was also shown that 119 

the assimilation of soil moisture observations can be used to correct rainfall errors 120 

(Crow et al., 2011; Yang et al., 2009). Often a systematic bias between measured and 121 

modelled soil moisture content can be found; soil moisture estimation can be 122 

significantly improved using joint state and bias estimation (De Lannoy et al., 2007; 123 

Kumar et al., 2012; Reichle, 2008). Also studies on data assimilation of remotely 124 

sensed land surface temperature products show a positive impact on the estimation of 125 

soil moisture, latent heat flux and sensible heat flux (Ghent et al., 2010; Xu et al., 126 

2011). Also in these studies it was found that bias, in these cases soil temperature bias, 127 

of land surface models can be removed with land surface temperature assimilation 128 

(Bosilovich et al., 2007; Reichle et al., 2010). Other studies updated both land surface 129 

model states and parameters with soil moisture and land surface temperature data 130 

(Bateni and Entekhabi, 2012; Han et al., 2014a; Montzka et al., 2013; Pauwels et al., 131 

2009). The assimilation of measured cosmic-ray neutron counts in a land surface 132 

model was successfully tested, but these studies focused on state updating alone 133 

(Rosolem et al., 2014; Shuttleworth et al., 2013). In this paper we focus on the 134 

assimilation of measured cosmic-ray neutron counts for improving soil moisture 135 

content characterization at the field scale. This paper focuses on the case that model 136 

input is biased. Land surface models still are affected by limited knowledge on water 137 

resources management and for regions in China (and elsewhere) typically no 138 



information on irrigation amounts is available as irrigation is mainly by the flooding 139 

system. We analyse whether measured neutron counts are able to correct for such 140 

biases. This case is not only relevant for neglecting irrigation in China, but also for 141 

other water resources management issues (e.g., groundwater pumping) which are 142 

neglected in the simulations. Neglecting irrigation in land surface models results in a 143 

large bias in the simulated soil moisture content because of a lack of water input. The 144 

bias in soil moisture content also results in a too small latent heat flux and too high 145 

sensible heat flux. We hypothesize that data assimilation also can play an important 146 

role for removing such biases in data deficient areas. One possible strategy in data 147 

assimilation studies for handling this type of bias, which is not followed in this paper, 148 

is to calibrate the simulation model (e.g., land surface model) prior to data 149 

assimilation to remove biases (Kumar et al., 2012) and use the corrected simulation 150 

model in the context of sequential data assimilation. A different strategy was followed 151 

in this paper and no a priori bias correction was carried out because this type of 152 

problem (neglecting water resources management) does not allow for such an a priori 153 

bias correction. The bias can be attributed to the model structure, model parameters, 154 

atmospheric forcing or observation data, and the bias-aware assimilation requires the 155 

assumption that the bias comes from a particular source. If the source of bias is not 156 

attributed to the right source, model predictions cannot be improved (Dee, 2005). 157 

Therefore bias-blind assimilation in which the bias estimation was not handled 158 

explicitly was used for safety. Instead, it was investigated whether neutron counts 159 

measured by cosmic-ray probe were able to correct for the bias. Aim is to improve the 160 



soil moisture profile estimation in a crop land with seed corn as main crop type. 161 

In CLM, land surface fluxes are calculated based on the Monin-Obukhov 162 

similarity theory. The sensible heat flux is formulated as a function of temperature and 163 

LAI, and the latent heat flux is formulated as a function of the temperature and leaf 164 

stomatal resistances. The leaf stomatal resistance is calculated from the Ball-Berry 165 

conductance model (Collatz et al., 1991). The updates of soil temperature and 166 

vegetation temperature are derived based on the solar radiation absorbed by top soil 167 

(or vegetation), longwave radiation absorbed by soil (or vegetation), sensible heat flux 168 

from soil (or vegetation) and latent heat flux from soil (or vegetation). Measured land 169 

surface temperature is composed of the ground temperature and vegetation 170 

temperature. Therefore a difference between measured and calculated land surface 171 

temperature can be adjusted by changing land surface fluxes. As land surface fluxes 172 

are sensitive to soil moisture content, land surface temperature is sensitive to soil 173 

moisture content.  174 

Therefore, the land surface temperature (LST) products measured by the 175 

Moderate Resolution Imaging Spectroradiometer (MODIS) Terra (MOD11A1) and 176 

Aqua (MYD11A1) are also assimilated jointly to improve the soil temperature profile 177 

estimation because the evapotranspiration is sensitive to the soil temperature. Two 178 

Terra LST products can be obtained per day at 10:30 am/pm and two Aqua LST 179 

products can be obtained per day at 1:30 am/pm. Soil moisture, land surface 180 

temperature and LAI influence the estimation of latent and sensible heat fluxes 181 

(Ghilain et al., 2012; Jarlan et al., 2008; Schwinger et al., 2010; van den Hurk, 2003; 182 



Yang et al., 1999), and therefore this study focuses in addition on the calibration of 183 

LAI with help of the assimilation of land surface temperature. However, there are 184 

large discrepancies between the remotely retrieved LAI and measured values, and the 185 

MODIS LAI product underestimates in situ measured LAI by 44% on average 186 

(http://landval.gsfc.nasa.gov/), and therefore the LAI is also calibrated by data 187 

assimilation. In summary, the novel aspects of this work are: 1) investigating whether 188 

data assimilation is able to correct for missing water resources management data 189 

without a priori bias correction; 2) joint assimilation of cosmic-ray neutron counts, 190 

LST and updating of LAI; 3) application of this framework to real-world data in an 191 

irrigated area with the availability of detailed verification data.  192 

 193 

2. Materials and Methods 194 

2.1 Study Area and Measurement 195 

The Heihe River Basin is the second largest inland river basin of China, and it is 196 

located between 97.1° E-102.0° E and 37.7° N-42.7° N and covers an area of 197 

approximately 143,000 km2 (Li et al., 2013). In 2012, a multi-scale observation 198 

experiment of evapotranspiration with a well-equipped superstation (Daman 199 

superstation) to measure the atmospheric forcings and soil moisture at 2 cm, 4 cm, 10 200 

cm, 20 cm, 40 cm, 80 cm, 120 cm and 160 cm depth (Xu et al., 2013), was carried out 201 

from June to September in the framework of the Heihe Watershed Allied Telemetry 202 

Experimental Research (HiWATER) (Li et al., 2013). SoilNet wireless network nodes 203 

(Bogena et al., 2010) were deployed to measure soil moisture content and soil 204 



temperature at four layers (4 cm, 10 cm, 20 cm and 40 cm). One cosmic-ray soil 205 

moisture probe (CRS-1000B) was installed (Han et al., 2014b) with 23 SoilNet nodes 206 

(Jin et al., 2014; Jin et al., 2013) in the footprint (Fig. 1). The main crop type within 207 

the footprint of the cosmic-ray probe is seed corn. The irrigation is applied through 208 

channels using the flooding irrigation method. Exact amounts of applied irrigation are 209 

therefore not available.  210 

The measured cosmic-ray neutron count data were processed to remove the 211 

outliers according to the sensor voltage (≤ 11.8 Volt) and relative humidity (≥ 80%). 212 

The surface fluxes were measured using the eddy covariance technique, and data were 213 

processed using EdiRe (http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe) 214 

software, in which the anemometer coordinate rotation, signal lag removal, frequency 215 

response correction, density corrections and signal de-spiking were done for the raw 216 

data. The energy balance closure was not considered in this study. The LAI was 217 

measured by the LAI-2000 scanner during the field experiment, there are 17 samples 218 

collected in 14 days of 3 months. 219 

[Insert Figure 1 here] 220 

 221 

2.2 Land Surface Model and Data 222 

The CLM was used to simulate the spatio-temporal distribution of soil moisture, 223 

soil temperature, land surface temperature, vegetation temperature, sensible heat flux, 224 

latent heat flux and soil heat flux of the study area. The coupled water and energy 225 

balance are modeled in CLM, and the land surface heterogeneity is represented by 226 



patched plant functional types and soil texture (Oleson et al., 2013). 227 

The soil properties used in CLM were from the soil database of China with 1 km 228 

spatial resolution (Shangguan et al., 2013). The MODIS 500 m resolution plant 229 

functional type product (MCD12Q1) (Sun et al., 2008) which was resampled by 230 

nearest neighbor interpolation to 1 km resolution and MODIS LAI product 231 

(MCD15A3) with 1 km spatial resolution (Han et al., 2012) were used as input. Due 232 

to a lack of measurement data, two atmospheric forcing data sets were used: the 233 

Global Land Data Assimilation System reanalysis data (Rodell et al., 2004) was 234 

interpolated using the National Centers for Environmental Prediction (NCEP) bilinear 235 

interpolation library iplib in spatial and temporal dimensions and used in the CLM for 236 

the spin-up period (http://www.nco.ncep.noaa.gov/pmb/docs/libs/iplib/ncep_iplib.sht- 237 

ml). For the three months data assimilation period, hourly forcing data (incident 238 

longwave radiation, incident solar radiation, precipitation, air pressure, specific 239 

humidity, air temperature and wind speed) from the Daman superstation of HiWATER 240 

were available and used. 241 

 242 

2.3 Cosmic-Ray Forward Model 243 

In this study, the new developed COsmic-ray Soil Moisture Interaction Code 244 

(COSMIC) model (Shuttleworth et al., 2013) was used as the cosmic-ray forward 245 

model to simulate the cosmic-ray neutron count rate using the soil moisture profile as 246 

input. The effective measurement depth of the cosmic-ray soil moisture probe ranges 247 

from 12 cm (wet soils) to 76 cm (dry soils) (Zreda et al., 2008), within which 86% of 248 

http://www.nco.ncep.noaa.gov/pmb/docs/libs/iplib/ncep_iplib.sht-%20ml
http://www.nco.ncep.noaa.gov/pmb/docs/libs/iplib/ncep_iplib.sht-%20ml


the above-ground measured neutrons originate. COSMIC also calculates the effective 249 

sensor depth based on the cosmic-ray neutron intensity and the soil moisture profile 250 

values (Franz et al., 2012; Shuttleworth et al., 2013).  251 

COSMIC makes several assumptions to calculate the number of fast neutrons 252 

reaching the cosmic-ray soil moisture probe ( COSMOSN ) at a near-surface measurement 253 

location, and the soil layer with a depth of 3 meters for the complete soil profile, was 254 

discretized into 300 layers for the integration of Eq. 2 in COSMIC. The number of 255 

fast neutrons reaching the cosmic-ray probe COSMOSN  is formulated as (Shuttleworth 256 

et al., 2013): 257 
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s  102.0405.0            (3) 260 

sL  38.9976.313            (4) 261 

where N is the high energy neutron intensity (counts/hour), z  denotes the soil 262 

layer depth (m), s  the dry soil bulk density (g/cm3), w  the total water density, 263 

including the lattice water (g/cm3) and   denotes the ratio of fast neutron creation 264 

factor. 1L  is the high energy soil attenuation length with value of 162.0 g/cm2 and 265 

2L  the high energy water attenuation length of 129.1 g/cm2. In equation (2)   is the 266 

angle between the vertical below the detector and the line between the detector and 267 

each point in the plane, )(zms  and )(zmw  are the integrated mass per unit area of 268 

dry soil and water (g/cm2), respectively. 3L  denotes the fast neutron soil attenuation 269 



length (g/cm2) and 4L  stands for the fast neutron water attenuation length with value 270 

of 3.16 g/cm2. 271 

The cosmic-ray neutron intensity reaching the land surface is influenced by air 272 

pressure, atmospheric water vapor content and incoming neutron flux. In order to 273 

isolate the contribution of soil moisture content to the measured neutron density, it is 274 

important to take these effects into account and the calibrated neutron count intensity 275 

can be derived as follows: 276 

iwvPObsCorr fffNN            (5) 277 

where CorrN  represents corrected neutron counts and ObsN  the measured 278 

neutron counts. Pf  is the correction factor for air pressure, wvf  the correction 279 

factor for atmospheric water vapor and if  the correction factor for incoming neutron 280 

flux. 281 

The correction factor for air pressure Pf  can be calculated as (Zreda et al., 282 

2012): 283 

)exp( 0

L

PP
fP


             (6) 284 

where P  (mbar) is the local air pressure, 0P  (mbar) the average air pressure 285 

during the measurement period and L (g/cm2) is the mass attenuation length for 286 

high-energy neutrons; the default value of 128 g/cm2 was used in this study (Zreda et 287 

al., 2012). 288 

The correction factor wvf  for atmospheric water vapor is calculated as (Rosolem 289 

et al., 2013): 290 

)(0054.01 00

ref

vvwvf             (7) 291 



where 0v (k/gm3) is the absolute humidity at the measurement time and ref

v0292 

(kg/m3) is the average absolute humidity during the measurement period. 293 

Fluctuations in the incoming neutron flux should be removed because the 294 

cosmic-ray probe is designed to measure the neutron flux based on the incoming 295 

background neutron flux. The correcting factor if  for the incoming neutron flux is 296 

calculated as: 297 

avg

m
i

N

N
f                (8) 298 

where mN  is the measured incoming neutron flux and avgN  is the average 299 

incoming neutron flux during the measurement period. The measured data at the 300 

Jungfraujoch station in Switzerland at 3560 m (http://cosray.unibe.ch/) was used to 301 

calculate mN  and avgN . The temporal (secular or diurnal) variations caused by the 302 

sunspot cycle could be removed after this correction (Zreda et al., 2012). 303 

In this study, the soil moisture for the CRS footprint scale was calculated from the 304 

arithmetic mean of the 23 SoilNet soil moisture observations. The calibration of the 305 

high energy neutron intensity parameter N in equation (1) was done using the 306 

measured cosmic-ray neutron counts rate and averaged soil moisture content at the 307 

CRS footprint scale. Because lattice water was unknown for this site, a value of 3% 308 

was assumed in this study (Franz et al., 2012). Hourly soil moisture measurements for 309 

a period of 2.5 months were used for COSMIC calibration. Inside the cosmic-ray 310 

probe footprint, the amount of applied irrigation was spatially variable due to the 311 

different management practice of each farmer. The gradient search algorithm 312 

L-BFGS-B (Zhu et al., 1997) was used to minimize the root mean square error of the 313 



differences between simulated cosmic-ray neutron counts (using measured soil 314 

moisture by SoilNet as input to COSMIC) and the measured neutron counts CorrN . 315 

The optimized parameter value of N was 615.96 counts/hour in this case. 316 

The simulated soil moisture content for 10 CLM soil layers (3.8 m depth) was 317 

used as input to COSMIC in order to simulate the corresponding neutron count 318 

intensity and compare it with the measured neutron count intensity. It should be 319 

mentioned that it is unlikely that anything beyond 1 m deep will substantially impact 320 

the results because the effective measurement depth of the cosmic-ray probe is 321 

between 12 and 76 cm. The COSMIC model assumes a more detailed soil profile. 322 

COSMIC interpolates the soil moisture information from the ten CLM soil layers to 323 

information for 300 soil layers of depth 1cm. The contribution of each soil layer to the 324 

measured neutron flux will change temporally depending on the soil moisture 325 

condition. Therefore the effective measurement depth of the cosmic ray probe will 326 

also change temporally. COSMIC calculates the vertically weighted soil moisture 327 

content based on the vertical distribution of soil moisture content. 328 

 329 

2.4 Two Source Formulation - TSF 330 

The land surface temperature products of MODIS are composed of a ground 331 

temperature and vegetation temperature component, which are however unknown. 332 

CLM models the ground temperature and vegetation temperature separately, but does 333 

not model the composed land surface temperature as seen by MODIS. The 334 

corresponding land surface temperature of CLM should therefore be modelled for 335 



data assimilation purposes. The two source formulation (Kustas and Anderson, 2009) 336 

was used in this study to calculate the land surface temperature from the MODIS view 337 

angle using ground temperature and vegetation temperature simulated by CLM: 338 

4144 )])(1()([ /

gcccs TΦFTΦFT          (9) 339 

where sT (K) is the composed surface temperature as seen by the MODIS sensor, 340 

)(ΦFc  is the fraction vegetation cover observed from the sensor view angle Φ  341 

(radians), cT  (K) is the vegetation temperature and gT (K) is the ground temperature. 342 

(Kustas and Anderson, 2009): 343 

)
Φ
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)(50
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
        (10) 344 

where LAI is the leaf area index, )(Φ  is a clumping index to represent the 345 

nonrandom leaf area distributions of farmland or other heterogeneous land surfaces 346 

(Anderson et al., 2005), and is defined as: 347 

)exp()49.0(49.0

49.0
)(

34.3

max

max

k
Φ




        (11) 348 

05.0
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 351 

2.5 Assimilation Approach 352 

 The Local Ensemble Transform Kalman Filter (LETKF) was used as the 353 

assimilation algorithm, which is one of the square root variants of the ensemble 354 

Kalman filter (Evensen, 2003; Hunt et al., 2007; Miyoshi and Yamane, 2007). The 355 

model uncertainties are represented using the ensemble simulation of model states and 356 

LETKF derives the background error covariance using the model state ensemble 357 



members. LETKF uses the non-perturbed observations to update all the ensemble 358 

members of model states at each assimilation step. 359 

In this study, 𝑥1
𝑏 , … 𝑥𝑁

𝑏  denote the model state ensemble members; 𝑥̅𝑏 is the 360 

ensemble mean of 𝑥1
𝑏 , … 𝑥𝑁

𝑏 ; 𝑁 is the ensemble size; 𝑦1
𝑏 , … 𝑦𝑁

𝑏  denote the mapped 361 

model state ensemble members;  𝑦̅𝑏 is the ensemble mean of 𝑦1
𝑏 , … 𝑦𝑁

𝑏 ; 𝐻 is the 362 

observation operator (COSMIC for soil moisture or the two source function for land 363 

surface temperature). The analysis step of LETKF can be summarized as follows:  364 

Prepare the model state vector X𝑏: 365 

X𝑏 = [𝑥1
𝑏 − 𝑥̅𝑏 , … , 𝑥𝑁

𝑏 − 𝑥̅𝑏]           (14) 366 

 where 𝑥̅𝑏 is composed of one vertically weighted soil moisture content and soil 367 

moisture content for 10 CLM-layers, resulting in a state dimension equal to 11 if only 368 

the neutron count observation was assimilated; and 𝑥̅𝑏  is composed of surface 369 

temperature, ground temperature, vegetation temperature and soil temperature for 15 370 

CLM-layers if only the land surface temperature observations were assimilated 371 

without soil moisture update, giving a state dimension of 18. The water and energy 372 

balance are coupled, and in CLM the energy balance is firstly solved, then the derived 373 

surface fluxes are used for updating soil moisture content. The cross correlation 374 

between the soil temperature and soil moisture can be calculated using the ensemble 375 

prediction in LETKF, and this makes the updating of soil moisture by assimilating 376 

land surface temperature possible. We also used the land surface temperature to 377 

update the soil moisture profile, in this case the soil moisture vector was augmented to 378 

the LETKF state vector of land surface temperature assimilation, resulting in a state 379 



dimension of 28. For the calibration of the LAI, the state vector was augmented with 380 

surface temperature, ground temperature, vegetation temperature, soil temperature for 381 

15 CLM-layers and LAI if only the land surface temperature observations were 382 

assimilated without soil moisture update. This resulted then in a state dimension of 383 

19. 384 

Construct the mapped model state vector 𝑌𝑏 after transformation of observation 385 

operator: 386 

y𝑖
𝑏 = 𝐻(x𝑖

𝑏)               (15) 387 

𝑌𝑏 = [𝑦1
𝑏 − 𝑦̅𝑏 , … , 𝑦𝑁

𝑏 − 𝑦̅𝑏]           (16) 388 

The following analysis is looped for each model grid cell to calculate the update 389 

of model state ensemble members: 390 

Calculate analysis error covariance matrix 𝑃𝑎: 391 

𝑃𝑎 = [(𝑁 − 1)𝐼 + 𝑌𝑏𝑇𝑅−1𝑌𝑏]          (17) 392 

The perturbations in ensemble space are calculated as: 393 

𝑊𝑎 = [(𝑁 − 1)𝑃𝑎]1/2            (18) 394 

Calculate the analysis mean w̅𝑎 in ensemble space and add to each column of 395 

W𝑎 to get the analysis ensemble in ensemble space: 396 

w̅𝑎 = 𝑃𝑎𝑌𝑏𝑇𝑅−1(𝑦𝑜 − 𝑦̅𝑏)           (19) 397 

Calculate the new analysis: 398 

𝑋𝑎 = 𝑋𝑏[w̅𝑎 + W𝑎] + 𝑥̅𝑏           (20) 399 

where 𝑅 is the observation error covariance matrix, 𝑦𝑜 is the observation vector 400 

and 𝑋𝑎 contains the updated model ensemble members. 401 



 The LETKF method can also be extended to do parameter estimation using a state 402 

augmentation approach (Bateni and Entekhabi, 2012; Li and Ren, 2011; Moradkhani 403 

et al., 2005; Nie et al., 2011). Alternative strategies for parameter estimation are a dual 404 

approach (Moradkhani et al., 2005) with separate updating of states and parameters. 405 

Vrugt et al. (2005) also proposed a dual approach with parameter updating in an outer 406 

optimization loop using a Markov Chain Monte Carlo method, and state updating in 407 

an inner loop. The a priori calibration of model parameters is also an option (Kumar et 408 

al., 2012). With the augmentation approach, the state vector of LETKF can be 409 

augmented by the parameter vector including soil properties (sand fraction, clay 410 

fraction and organic matter density) and vegetation parameters (LAI, etc.). In a 411 

preliminary sensitivity study it was found that for this site simulation results were 412 

more sensitive to the LAI than to soil properties. Soil texture is also quite well known 413 

for this site from measurements. Therefore in this study, only the LAI was in some of 414 

the simulation scenarios calibrated. In the different scenarios of land surface 415 

temperature assimilation, the LETKF state vector was also augmented to include LAI 416 

as calibration target. As a consequence, the augmented state vector contains surface 417 

temperature, ground temperature, and vegetation temperature, 15 layers of soil 418 

temperature and LAI, making up a state dimension equal to 19 for the scenarios of 419 

land surface temperature assimilation without soil moisture update; for the scenarios 420 

of land surface temperature with soil moisture update, the state dimension is 29. The 421 

10 layers of soil moisture and 15 layers of soil temperature are the standard CLM 422 

layout for both soil moisture and soil temperature. The hydrology calculations are 423 



done over the top 10 layers, and the bottom 5 layers are specified as bedrock. The 424 

lower 5 layers are hydrologically inactive layers. Temperature calculations are done 425 

over all layers (Oleson et al., 2013). 426 

 427 

3. Experiment Setup 428 

First the 50 ensemble members of CLM with perturbed soil properties and 429 

atmospheric forcing data were driven from the 1st of Jan. 2012 to the 31st of May 2012 430 

to do the CLM spin-up; second an additional assimilation period of cosmic-ray 431 

neutron counts was done from the 1st of Jun. 2012 to the 30th Aug. 2012 to reduce the 432 

spin-up error. Then the final CLM states on 30th Aug. 2012 were used as the initial 433 

states for the following data assimilation scenarios. Perturbed soil properties were 434 

generated by adding a spatially uniform perturbation sampled from a uniform 435 

distribution between -10% and 10% to the values extracted from the Soil Database of 436 

China for Land Surface Modeling (1 km spatial resolution). The LAI was perturbed 437 

with multiplicative uniform distributed random noise in the range of [0.8~1.2]. The 438 

perturbations added to the model forcings show correlations in space and time. The 439 

spatial correlation was induced by a Fast Fourier Transform and the temporal 440 

correlation by a first-order auto-regressive model (Han et al., 2013; Kumar et al., 441 

2009; Reichle et al., 2010). The statistics on the perturbation of the forcing data are 442 

summarized in Table 1. The values of standard deviations and temporal correlations in 443 

Table 1 were chosen based on previous catchment scale and regional scale data 444 

assimilation studies (De Lannoy et al., 2012; Kumar et al., 2012; Reichle et al., 2010). 445 



[Insert Table 1 here] 446 

The cosmic-ray neutron intensity was assimilated every 3 days at 12Z from the 1st 447 

of June 2012 onwards, because we found that the difference between daily 448 

assimilation and 3 days assimilation was small (Entekhabi et al., 2010; Kerr et al., 449 

2010). The measured neutron count intensity showed large temporal fluctuations in 450 

time and these fluctuations were not corresponding to the temporal variations of soil 451 

moisture. Therefore the measured neutron count intensity was smoothed with the 452 

Savitzky–Golay filter using a moving average window of size 31 hours and a 453 

polynomial of order 4 (Savitzky and Golay, 1964). The originally measured neutron 454 

counts and smoothed neutron counts are plotted in Fig. 2. The assimilation frequency 455 

of MODIS LST products of MOD11A1 and MYD11A1 was up to 4 times (maximum) 456 

per day depending on the data availability. There are 230 observation data (including 457 

cosmic-ray probe neutron counts, MODIS LST, MOD11A1 and MYD11A1 LST) in 458 

the whole assimilation window. The variance of the instantaneous measured neutron 459 

intensity is equal to the measured neutron count intensity (Zreda et al., 2012) and 460 

smaller for temporal averaging for daily or sub-daily applications. The instantaneous 461 

neutron intensity was assimilated in this study. The variance of MODIS LST was 462 

assumed to be 1 K (Wan and Li, 2008). 463 

The 4 days MODIS LAI product was aggregated and used as the CLM LAI 464 

parameter. Because the LAI from MODIS is usually lower than the true value 465 

(compared with the field measured LAI in the HiWATER experiment) and because the 466 

surface flux and surface temperature are sensitive to the LAI, two additional scenarios 467 



were investigated where LAI was calibrated to study the impact of LAI estimation on 468 

surface flux estimation within the data assimilation framework.  469 

The following assimilation scenarios were compared: (1) CLM: open loop 470 

simulation without assimilation; (2) Only_CRS: only the measured neutron counts 471 

were assimilated; (3) Only_LST: only the MODIS LST products were assimilated. 472 

The quality control flags of LST products were used to select the data with good 473 

quality for assimilation; (4) CRS_LST: the measured neutron counts and MODIS LST 474 

products were assimilated jointly. In the above scenarios, the neutron count data was 475 

used to update the soil moisture and the LST data were used to update the ground 476 

temperature, vegetation temperature and soil temperature. (5) LST_Feedback: We also 477 

evaluated the scenario of assimilating the LST measurements to update the soil 478 

moisture profile. (6) CRS_LST_Par_LAI: the LAI was included as variable to be 479 

calibrated, otherwise the scenario was the same as CRS_LST. (7) 480 

LST_Feedback_Par_LAI: the LAI was included as variable to be calibrated, 481 

otherwise the scenario was the same as LST_Feedback. (8) CRS_LST_True_LAI: the 482 

in situ measured LAI during the HiWATER experiment was used in the model 483 

simulation. 484 

[Insert Figure 2 here] 485 

 486 

4. Results and Discussion 487 

In order to evaluate the assimilation results for the different scenarios outlined in 488 

section 3, the Root Mean Square Error (RMSE) was used: 489 



RMSE =  √∑ (𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑−𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑)2𝑁
𝑛=𝑖

𝑁
        (21) 490 

where “Estimated” is the ensemble mean without assimilation or the ensemble 491 

mean after assimilation, “Measured” is measured soil moisture content evaluated at 492 

the SoilNet nodes (or latent heat flux, sensible heat flux or soil heat flux). N is the 493 

number of time steps. For the soil moisture analysis in this study, N is equal to 2184. 494 

The smaller the RMSE value is, the closer assimilation results are to measured values, 495 

which is in general considered to be desirable. 496 

The temporal evolution of soil moisture content at 10, 20, 50 and 80 cm depth for 497 

different scenarios is plotted in Fig. 3 and Fig. 4. The RMSE values for different 498 

scenarios are summarized in Table 2. Assimilating the land surface temperature could 499 

improve the soil moisture profile estimation in the scenario of 500 

LST_Feedback_Par_LAI; the soil moisture results are better than the open loop run at 501 

all depths. With the assimilation of CRS neutron counts, the soil moisture RMSE 502 

values (scenarios CRS_LST_Par_LAI and CRS_LST_True_LAI) decreased 503 

significantly. The RMSE values for the scenarios Only_CRS and CRS_LST (not 504 

shown) are similar to CRS_LST_Par_LAI, which indicates that the main 505 

improvement for the soil moisture profile characterization is achieved by neutron 506 

count assimilation; and land surface temperature assimilation and LAI estimation play 507 

a minor role. Without assimilation of cosmic-ray probe neutron counts, the soil 508 

moisture simulation cannot be improved (scenario Only_LST). However, the 509 

scenarios of LST_Feedback and LST_Feedback_Par_LAI improve the soil moisture 510 

profile characterization, which shows that explicitly using LST to update soil moisture 511 



content in the data assimilation routine gives better results than using LST only to 512 

update soil moisture by the model equations. Results of LST_Feedback and 513 

LST_Feedback_Par_LAI are similar; therefore only results for 514 

LST_Feedback_Par_LAI are shown in Fig. 3 and Fig. 4. This implies that the 515 

improved soil moisture characterization due to LAI calibration is low. The results for 516 

the cosmic-ray probe neutron count assimilation proved that the cosmic-ray probe 517 

sensor can be used to improve the soil moisture profile estimation at the footprint 518 

scale. 519 

[Insert Figure 3 here] 520 

[Insert Figure 4 here] 521 

[Insert Table 2 here] 522 

Fig. 5 depicts the scatter plots of measured ET versus modelled ET for different 523 

scenarios, and the accumulated ET for all scenarios are summarized in the lower-right 524 

corner of Fig. 5. The EC measured evapotranspiration (ET) is 384.7 mm for the 525 

assimilation period, without energy balance closure correction. The true 526 

evapotranspiration is therefore likely larger, but not much larger as the energy balance 527 

gap was limited (3.7%). The CLM estimated ET, without data assimilation, using only 528 

precipitation as input is 223.7 mm and is much smaller than the measured value as 529 

applied irrigation is not considered in the model. This open loop simulated value 530 

would imply water stress and a limitation of canopy transpiration and soil evaporation 531 

due to low soil moisture content. Assimilation of land surface temperature only 532 

(Only_LST) hardly affected the estimated ET and was not able to correct for the 533 



artificial water stress condition. However, if land surface temperature was used to 534 

update soil moisture directly, taking into account correlations between the two states 535 

in the data assimilation routine, the ET estimates improved to 336.8 mm and 354.8 536 

mm for the scenarios of LST_Feedback and LST_Feedback_Par_LAI respectively. 537 

The assimilation of land surface temperature of MODIS with soil moisture update 538 

results in significant improvements of ET. 539 

The different neutron count assimilation scenarios also resulted in significantly 540 

improved estimates of ET. Univariate assimilation of cosmic-ray neutron data 541 

(Only_CRS) resulted in 301.9 mm ET. This shows that the impact of neutron count 542 

assimilation to correct evapotranspiration estimates is little smaller than the impact of 543 

land surface temperature with soil moisture update. Joint assimilation of land surface 544 

temperature data and cosmic-ray neutron data (CRS_LST) gave a slightly larger ET of 545 

310.6 mm than Only_CRS. Scenarios of CRS_LST_Par_LAI and 546 

CRS_LST_True_LAI gave the best ET estimates (360.5 mm and 349.3 mm). This 547 

shows that correcting the biased LAI-estimates from MODIS by in situ data or 548 

calibration helped to improve model estimates. 549 

[Insert Figure 5 here] 550 

The RMSE values of latent heat flux, sensible heat flux and soil heat flux for all 551 

scenarios are summarized in Fig. 6. It is obvious that the RMSE values are very large 552 

for both the latent heat flux (123.9 W/m2) and sensible heat flux (80.5 W/m2) for the 553 

open loop run and all other scenarios where the soil moisture was not updated. If the 554 

land surface temperature was assimilated to update the soil moisture, the latent heat 555 



flux RMSE decreased to 60.5 W/m2 (LST_Feedback) and 62.5 W/m2 556 

(LST_Feedback_Par_LAI). The scenario where soil moisture and LAI are jointly 557 

updated (LST_Feedback_Par_LAI) gave worse results than the scenario of 558 

LST_Feedback. Again, the assimilation of neutron counts also resulted in a strong 559 

RMSE reduction for the latent heat flux (76.5 W/m2 for Only_CRS). If in addition 560 

land surface temperature was assimilated and LAI optimized, the RMSE value of 561 

latent heat flux further decreased to 56.1 W/m2 (70.7 W/m2 without LAI optimization). 562 

If the field measured LAI was used instead in the assimilation (CRS_LST_True_LAI), 563 

the RMSE was 61.0 W/m2. These results are in correspondence with the ones 564 

discussed before for soil moisture characterization. Evidently, the combined 565 

assimilation of cosmic-ray probe neutron counts and land surface temperature, and 566 

calibration of LAI (or use of field measured LAI as model input) shows the strongest 567 

improvement for the estimation of land surface fluxes. The soil heat flux did not show 568 

a clear improvement related to assimilation and showed only some improvement in 569 

case LAI was calibrated. For the scenario of land surface temperature assimilation 570 

without soil moisture update (Only_LST), estimates of latent and sensible heat flux 571 

are not improved. It means that under water stress condition, the improved 572 

characterization of land surface temperature (and soil temperature) does not contribute 573 

to a better estimation of land surface fluxes. 574 

 [Insert Figure 6 here] 575 

The updated LAI for scenarios of LST_Feedback_Par_LAI and 576 

CRS_LST_Par_LAI is shown in Fig. 7. The MODIS LAI product was used as input 577 



for CLM and time series are plotted as blue line in Fig. 7 (Background). The LAI was 578 

also measured in the HiWATER experiment, and the measured values are shown as 579 

green star (Observation). Ens_Mean represents the mean LAI of all ensemble 580 

members (Ensembles). It is obvious that MODIS underestimates the LAI compared 581 

with the observations. With the assimilation of land surface temperature, the LAI 582 

could be updated and be closer to the observations, but there is still a significant 583 

discrepancy between the measured LAI and the updated one. The LAI values for the 584 

scenario with LAI calibration (CRS_LST_Par_LAI) are close to the measured LAI 585 

values (CRS_LST_True_LAI), which is an encouraging result. The calibrated LAI 586 

shows some unrealistic increases and decreases during the assimilation period, which 587 

is inherent to the data assimilation approach. A smoothed representation of the LAI 588 

might provide a more realistic picture. 589 

[Insert Figure 7 here] 590 

This study illustrates that for an irrigated farmland, the measured cosmic-ray 591 

probe neutron counts can be used to improve the soil moisture profile estimation 592 

significantly. Without irrigation data, CLM underestimated soil moisture content. The 593 

cosmic-ray neutron count data assimilation can be used as an alternative way to 594 

retrieve the soil moisture content profile in CLM. The improved soil moisture 595 

simulation was helpful for the characterization of the land surface fluxes. The 596 

univariate assimilation of land surface temperature without soil moisture update is not 597 

helpful for the estimation of land surface fluxes and even worsened the sensible heat 598 

flux characterization (Fig. 6). However, in a multivariate data assimilation framework 599 



where land surface temperature was assimilated together with measured cosmic-ray 600 

probe neutron counts, the land surface temperature assimilation contributed 601 

significantly to an improved ET estimation. The simulated canopy transpiration in 602 

CLM was in general too low, even when the water stress condition was corrected by 603 

assimilating neutron counts, which was related to small values of the LAI. The 604 

additional estimation of LAI through the land surface temperature assimilation 605 

resulted in an increase of the LAI yielding an increase of estimated ET. 606 

In general, land surface models need to be calibrated before use in land data 607 

assimilation, especially if there is an apparent large bias in the model simulation (Dee, 608 

2005). The simulation of soil moisture and surface fluxes was biased in our study, 609 

mainly due to the lack of irrigation water as input. This bias cannot be corrected a 610 

priori without exact irrigation data, which are not available in the field. The data 611 

assimilation was proven to be an efficient way to remove the model bias in this case. 612 

We also calculated the equivalent water thickness to analyze the equivalent irrigated 613 

water after each step of soil moisture update. For the scenarios of CRS_LST_Par_LAI 614 

and CRS_LST_True_LAI, the equivalent irrigation in three months was 693.6 mm 615 

and 607.6 mm, respectively. Because the irrigation method is flood irrigation, it is not 616 

easy to evaluate the true irrigation applied in the field. From the results we see 617 

however that the applied irrigation (in the model) is much larger than actual ET 618 

(600-700mm vs 400mm). This could indicate that the amount of applied irrigation 619 

in the model is too large, but irrigation by flooding is also inefficient and results in 620 

excess runoff and infiltration to the groundwater, because it cannot be controlled so 621 



well as sprinkler irrigation or drip irrigation. Therefore, the calculated amount of 622 

irrigation could be realistic, but might also be too large if soil properties are erroneous 623 

in the model. 624 

The soil moisture content measured by the cosmic-ray probe represents the depth 625 

between 12 cm (very humid) and 76 cm (extremely dry case) depending on the 626 

amount of soil water (soil moisture content and lattice water). Therefore the effective 627 

sensor depth of the cosmic-ray probe will change over time. In order to model the 628 

variable sensor depth and the relationship between the soil moisture content and 629 

neutron counts, the new developed COSMIC model was used as the observation 630 

operator in this study. Additionally the influences of air pressure, atmospheric vapor 631 

pressure and incoming neutron counts were removed from the original measured 632 

neutron counts. Because there is still some water in the crop which also affects the 633 

cosmic-ray probe sensor, the COSMIC observation operator could be improved to 634 

include vegetation effects. Several default parameters proposed by (Shuttleworth et al., 635 

2013) were used in the COSMIC model, these parameters probably need further 636 

calibration following the development of the COSMIC model. 637 

The spatial distribution of soil moisture for the study area was very 638 

heterogeneous due to the small farmland patches and different irrigation periods for 639 

the different farmlands. Therefore the soil moisture content inferred by SoilNet may 640 

not represent the true soil moisture content of the cosmic-ray probe footprint, which is 641 

a further limitation of this study. Although the Cosmic-ray Soil Moisture Observing 642 

System (COSMOS) has been designed as a continental scale network by installing 643 



500 COSMOS probes across the USA (Zreda et al., 2012), there are still some 644 

disadvantages of COSMOS compared with remote sensing. COSMOS is also 645 

expensive for extensive deployment to measure the continental/regional scale soil 646 

moisture. 647 

5. Summary and Conclusions 648 

In this paper, we studied the univariate assimilation of MODIS land surface 649 

temperature products, the univariate assimilation of measured neutron counts by the 650 

cosmic-ray probe, the bivariate assimilation of land surface temperature and neutron 651 

count data, and the additional calibration of LAI for an irrigated farmland at the Heihe 652 

catchment in China, where data on the amount of applied irrigation were lacking. The 653 

most important objective of this study was to test whether data assimilation is able to 654 

correct for the absence of information on water resources management as model input, 655 

a situation commonly encountered in large scale land surface modelling. For the 656 

specific case of lacking irrigation data, no prior bias correction is possible. The bias 657 

blind assimilation without explicit bias estimation was used. We focused on the model 658 

bias introduced by the forcing data and the LAI, and neglected the other sources of 659 

bias. In case LAI was calibrated, this was done at each data assimilation step of land 660 

surface temperature. The data assimilation experiments were carried out with the 661 

CLM and the data assimilation algorithm used was the LETKF. A likely further model 662 

bias, besides missing information on irrigation, is the underestimation of LAI by 663 

MODIS, which was used to force the model.  664 

The results show that the direct assimilation of measured comic-ray neutron 665 



counts improves the estimation of soil moisture significantly, whereas univariate 666 

assimilation of land surface temperature without soil moisture update does not 667 

improve soil moisture estimation. However, if the land surface temperature was 668 

assimilated to update the soil moisture profile directly with help of the state 669 

augmentation method, the evapotranspiration and soil moisture could be improved 670 

significantly. This result suggests that the land surface temperature remote sensing 671 

products are needed to correct the characterization of the soil moisture profile and the 672 

evapotranspiration. The improved soil moisture estimation after the assimilation of 673 

neutron counts resulted in a better ET estimation during the irrigation season, 674 

correcting the too low ET of the open loop simulation. The joint assimilation of 675 

neutron counts and MODIS land surface temperature improved the ET estimation 676 

further compared to neutron count assimilation only. The best ET estimation was 677 

obtained for the joint assimilation of cosmic-ray neutron counts, MODIS land surface 678 

temperature including calibration of the LAI (or if field measured LAI was used as 679 

input). This shows that bias due to neglected information on water resources 680 

management can be corrected by data assimilation if a combination of soil moisture 681 

and land surface temperature data is available. 682 

We can conclude that data assimilation of neutron counts and land surface 683 

temperature is useful for ET and soil moisture estimation of an irrigated farmland, 684 

even if irrigation data are not available and excluded from model input. The land 685 

surface temperature measurements are an alternative data source to improve the soil 686 

moisture and land surface fluxes estimation under water stress conditions. This shows 687 



the potential of data assimilation to correct also a systematic model bias. LAI 688 

optimization further improves simulation results, which is also likely related to a 689 

systematic underestimation of LAI by the MODIS remote sensing product. The results 690 

of using the calibrated LAI are comparable to the results of using field measured LAI 691 

as model input. 692 
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Table 1 Summary of perturbation parameters for atmospheric forcing data 715 

Variables Noise 
Standard 

deviation 

Time 

Correlation 

scale 

Spatial 

Correlation 

Scale 

Cross 

correlation 

Precipitation 

Shortwave radiation 

Longwave radiation 

Air temperature 

Multiplicative 

Multiplicative 

Additive 

Additive 

0.5 

0.3 

20 W/m2 

1 K 

24 h 

24 h 

24 h 

24 h 

5 km 

5 km 

5 km 

5 km 

[ 1.0,-0.8, 0.5, 0.0, 

-0.8, 1.0,-0.5, 0.4, 

0.5, -0.5, 1.0, 0.4, 

0.0, 0.4, 0.4, 1.0] 
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assimilation of neutron counts and land surface temperature using ground-based 722 

measured LAI as input (CRS_LST_True_LAI). 723 

Soil Layer 

Depth 

RMSE (m3/m3) 

Open Loop  

(CLM) 

LST_Feedback 

_Par_LAI 

CRS_LST 

_Par_LAI 

CRS_LST 

_True_LAI 

10 cm 0.202 0.137 0.085 0.086 

20 cm 0.167 0.106 0.047 0.048 

50 cm 0.193 0.112 0.112 0.119 

80 cm 0.188 0.124 0.136 0.146 
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