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Abstract

The recent development of the non-invasive cosmic-ray soil moisture sensing
technique fills the gap between point scale soil moisture measurements and regional
scale soil moisture measurements by remote sensing. A cosmic-ray probe measures
soil moisture for a footprint with a diameter of ~600 m (at sea level) and with an
effective measurement depth between 12 cm to 76 cm, depending on the soil humidity.
In this study, it was tested whether neutron counts also allow to correct for a
systematic error in the model forcings. Lack of water management data often cause
systematic input errors to land surface models. Here, the assimilation procedure was
tested for an irrigated corn field (Heihe Watershed Allied Telemetry Experimental
Research - HIWATER, 2012) where no irrigation data were available as model input
although for the area a significant amount of water was irrigated. In the study, the
measured cosmic-ray neutron counts and Moderate Resolution Imaging
Spectroradiometer (MODIS) land surface temperature (LST) products were jointly
assimilated into the Community Land Model (CLM) with the Local Ensemble
Transform Kalman Filter. Different data assimilation scenarios were evaluated, with
assimilation of LST and/or cosmic-ray neutron counts, and possibly parameter
estimation of leaf area index (LAI). The results show that the direct assimilation of
cosmic-ray neutron counts can improve the soil moisture and evapotranspiration (ET)
estimation significantly, correcting for lack of information on irrigation amounts. The
joint assimilation of neutron counts and LST could improve further the ET estimation,

but the information content of neutron counts exceeded the one of LST. Additional
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improvement was achieved by calibrating LAI, which after calibration was also closer
to independent field measurements. It was concluded that assimilation of neutron
counts was useful for ET and soil moisture estimation even if the model has a
systematic bias like neglecting irrigation. However, also the assimilation of LST
helped to correct the systematic model bias introduced by neglecting irrigation and
LST could be used to update soil moisture with state augmentation.

Keywords: Cosmic-ray neutron counts, Land surface temperature, Evapotranspiration,

Land data assimilation, Parameter estimation
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1. Introduction

Soil moisture plays a key role for crop and plant growth, water resources
management and land surface-atmosphere interaction. Therefore accurate soil
moisture retrieval is important. Point scale measurements can be obtained by methods
like time domain reflectometry (TDR) (Robinson et al., 2003) and larger scale, coarse
soil moisture information from remote sensing sensors (Entekhabi et al., 2010; Kerr et
al., 2010). Wireless Sensor Networks (WSN) allow characterization of soil moisture at
the catchment scale with many local connected sensors at separated locations (Bogena
et al., 2010). TDR only measures the point scale soil moisture and the maintenance of
WSN is expensive. Recently, neutron count intensity measured by above-ground
cosmic-ray probes was proposed as alternative information source on soil moisture.
Neutron count intensity is measured non-invasively at an intermediate scale between
the point scale and the coarse remote sensing scale (Zreda et al., 2008). A network of
cosmic-ray sensors (CRS) has been set-up over N-America (Zreda et al., 2012).

Cosmic rays are composed of primary protons mainly. The fast neutrons
generated by high-energy neutrons colliding with nuclei lead to “evaporation” of fast
neutrons and the generated and moderated neutrons in the ground can diffuse back
into the air where their intensity can be measured by the cosmic-ray soil moisture
probe. Soil moisture affects the rate of moderation of fast neutrons, and controls the
neutron concentration and the emission of neutrons into the air. Dry soils have low
moderating power and are highly emissive; wet soils have high moderating power and

are less emissive. The neutrons are mainly moderated by the hydrogen atoms
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contained in the soil water and emitted to the atmosphere where the neutrons mix
instantaneously at a scale of hundreds of meters. The measurement area of a
cosmic-ray soil moisture probe represents a circle with a diameter of ~600 m at sea
level (Desilets and Zreda, 2013) and the measurement depth decreases non-linearly
from ~76 cm (dry soils) to ~12 cm (saturated soils) (Zreda et al., 2008). The measured
cosmic-ray neutron counts show an inverse correlation with soil moisture content. The
cosmic-ray neutron intensity could be reduced to 60% of surface cosmic-ray neutron
intensity if the soil moisture was increased from zero to 40% (Zreda et al., 2008). The
soil moisture estimation on the basis of cosmic-ray probe based neutron counts over a
horizontal footprint of hectometers received considerable attention in scientific
literature during the last years (Desilets et al., 2010; Zreda et al., 2008; Zreda et al.,
2012).

Hydrogen atoms are present as water in the soil, lattice soil water, below ground
biomass, atmospheric water vapor, snow water, above ground biomass, intercepted
water by vegetation and water on the ground. These additional hydrogen sources
contribute to the measured neutron intensity. The role of these additional hydrogen
sources should be included in the analysis of the cosmic-ray measurements in order to
isolate the main contribution from soil moisture. Formulations for handling water
vapor (Rosolem et al., 2013), for lattice water and organic carbon (Franz et al., 2013)
and for a litter layer present on the soil surface (Bogena et al., 2013) have been
developed.

The positive impact of soil moisture data assimilation was shown in several
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studies. Importantly, surface soil moisture could be used to obtain better
characterization of the root zone soil moisture (Barrett and Renzullo, 2009; Crow et
al., 2008; Das et al., 2008; Draper et al., 2011; Li et al., 2010). It was also shown that
the assimilation of soil moisture observations can be used to correct rainfall errors
(Crow et al., 2011; Yang et al., 2009). Often a systematic bias between measured and
modelled soil moisture content can be found; soil moisture estimation can be
significantly improved using joint state and bias estimation (De Lannoy et al., 2007;
Kumar et al., 2012; Reichle, 2008). Also studies on data assimilation of remotely
sensed land surface temperature products show a positive impact on the estimation of
soil moisture, latent heat flux and sensible heat flux (Ghent et al., 2010; Xu et al.,
2011). Also in these studies it was found that bias, in these cases soil temperature bias,
of land surface models can be removed with land surface temperature assimilation
(Bosilovich et al., 2007; Reichle et al., 2010). Other studies updated both land surface
model states and parameters with soil moisture and land surface temperature data
(Bateni and Entekhabi, 2012; Han et al., 2014a; Montzka et al., 2013; Pauwels et al.,
2009). The assimilation of measured cosmic-ray neutron counts in a land surface
model was successfully tested, but these studies focused on state updating alone
(Rosolem et al., 2014; Shuttleworth et al., 2013). In this paper we focus on the
assimilation of measured cosmic-ray neutron counts for improving soil moisture
content characterization at the field scale. This paper focuses on the case that model
input is biased. Land surface models still are affected by limited knowledge on water

resources management and for regions in China (and elsewhere) typically no
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information on irrigation amounts is available as irrigation is mainly by the flooding
system. We analyse whether measured neutron counts are able to correct for such
biases. This case is not only relevant for neglecting irrigation in China, but also for
other water resources management issues (e.g., groundwater pumping) which are
neglected in the simulations. Neglecting irrigation in land surface models results in a
large bias in the simulated soil moisture content because of a lack of water input. The
bias in soil moisture content also results in a too small latent heat flux and too high
sensible heat flux. We hypothesize that data assimilation also can play an important
role for removing such biases in data deficient areas. One possible strategy in data
assimilation studies for handling this type of bias, which is not followed in this paper,
is to calibrate the simulation model (e.g., land surface model) prior to data
assimilation to remove biases (Kumar et al., 2012) and use the corrected simulation
model in the context of sequential data assimilation. A different strategy was followed
in this paper and no a priori bias correction was carried out because this type of
problem (neglecting water resources management) does not allow for such an a priori
bias correction. The bias can be attributed to the model structure, model parameters,
atmospheric forcing or observation data, and the bias-aware assimilation requires the
assumption that the bias comes from a particular source. If the source of bias is not
attributed to the right source, model predictions cannot be improved (Dee, 2005).
Therefore bias-blind assimilation in which the bias estimation was not handled
explicitly was used for safety. Instead, it was investigated whether neutron counts

measured by cosmic-ray probe were able to correct for the bias. Aim is to improve the
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soil moisture profile estimation in a crop land with seed corn as main crop type.

In CLM, land surface fluxes are calculated based on the Monin-Obukhov
similarity theory. The sensible heat flux is formulated as a function of temperature and
LAI, and the latent heat flux is formulated as a function of the temperature and leaf
stomatal resistances. The leaf stomatal resistance is calculated from the Ball-Berry
conductance model (Collatz et al., 1991). The updates of soil temperature and
vegetation temperature are derived based on the solar radiation absorbed by top soil
(or vegetation), longwave radiation absorbed by soil (or vegetation), sensible heat flux
from soil (or vegetation) and latent heat flux from soil (or vegetation). Measured land
surface temperature is composed of the ground temperature and vegetation
temperature. Therefore a difference between measured and calculated land surface
temperature can be adjusted by changing land surface fluxes. As land surface fluxes
are sensitive to soil moisture content, land surface temperature is sensitive to soil
moisture content.

Therefore, the land surface temperature (LST) products measured by the
Moderate Resolution Imaging Spectroradiometer (MODIS) Terra (MOD11A1) and
Agqua (MYD11A1) are also assimilated jointly to improve the soil temperature profile
estimation because the evapotranspiration is sensitive to the soil temperature. Two
Terra LST products can be obtained per day at 10:30 am/pm and two Aqua LST
products can be obtained per day at 1:30 am/pm. Soil moisture, land surface
temperature and LAI influence the estimation of latent and sensible heat fluxes

(Ghilain et al., 2012; Jarlan et al., 2008; Schwinger et al., 2010; van den Hurk, 2003;
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Yang et al., 1999), and therefore this study focuses in addition on the calibration of
LAI with help of the assimilation of land surface temperature. However, there are
large discrepancies between the remotely retrieved LAI and measured values, and the
MODIS LAI product underestimates in situ measured LAl by 44% on average
(http://landval.gsfc.nasa.gov/), and therefore the LAI is also calibrated by data
assimilation. In summary, the novel aspects of this work are: 1) investigating whether
data assimilation is able to correct for missing water resources management data
without a priori bias correction; 2) joint assimilation of cosmic-ray neutron counts,
LST and updating of LAI; 3) application of this framework to real-world data in an

irrigated area with the availability of detailed verification data.

2. Materials and Methods
2.1 Study Area and Measurement

The Heihe River Basin is the second largest inland river basin of China, and it is
located between 97.1° E-102.0° E and 37.7° N-42.7° N and covers an area of
approximately 143,000 km? (Li et al., 2013). In 2012, a multi-scale observation
experiment of evapotranspiration with a well-equipped superstation (Daman
superstation) to measure the atmospheric forcings and soil moisture at 2 cm, 4 cm, 10
cm, 20 cm, 40 cm, 80 cm, 120 cm and 160 cm depth (Xu et al., 2013), was carried out
from June to September in the framework of the Heihe Watershed Allied Telemetry
Experimental Research (HIWATER) (Li et al., 2013). SoilNet wireless network nodes

(Bogena et al., 2010) were deployed to measure soil moisture content and soil
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temperature at four layers (4 cm, 10 cm, 20 cm and 40 cm). One cosmic-ray soil
moisture probe (CRS-1000B) was installed (Han et al., 2014b) with 23 SoilNet nodes
(Jin et al., 2014; Jin et al., 2013) in the footprint (Fig. 1). The main crop type within
the footprint of the cosmic-ray probe is seed corn. The irrigation is applied through
channels using the flooding irrigation method. Exact amounts of applied irrigation are
therefore not available.

The measured cosmic-ray neutron count data were processed to remove the
outliers according to the sensor voltage (< 11.8 Volt) and relative humidity (= 80%).
The surface fluxes were measured using the eddy covariance technique, and data were
processed using EdiRe (http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe)
software, in which the anemometer coordinate rotation, signal lag removal, frequency
response correction, density corrections and signal de-spiking were done for the raw
data. The energy balance closure was not considered in this study. The LAI was
measured by the LAI-2000 scanner during the field experiment, there are 17 samples
collected in 14 days of 3 months.

[Insert Figure 1 here]

2.2 Land Surface Model and Data

The CLM was used to simulate the spatio-temporal distribution of soil moisture,
soil temperature, land surface temperature, vegetation temperature, sensible heat flux,
latent heat flux and soil heat flux of the study area. The coupled water and energy

balance are modeled in CLM, and the land surface heterogeneity is represented by
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patched plant functional types and soil texture (Oleson et al., 2013).

The soil properties used in CLM were from the soil database of China with 1 km
spatial resolution (Shangguan et al., 2013). The MODIS 500 m resolution plant
functional type product (MCD12Q1) (Sun et al., 2008) which was resampled by
nearest neighbor interpolation to 1 km resolution and MODIS LAI product
(MCD15A3) with 1 km spatial resolution (Han et al., 2012) were used as input. Due
to a lack of measurement data, two atmospheric forcing data sets were used: the
Global Land Data Assimilation System reanalysis data (Rodell et al., 2004) was
interpolated using the National Centers for Environmental Prediction (NCEP) bilinear
interpolation library iplib in spatial and temporal dimensions and used in the CLM for

the spin-up period (http://www.nco.ncep.noaa.gov/pmb/docs/libs/iplib/ncep_iplib.sht-

ml). For the three months data assimilation period, hourly forcing data (incident
longwave radiation, incident solar radiation, precipitation, air pressure, specific
humidity, air temperature and wind speed) from the Daman superstation of HIWATER

were available and used.

2.3 Cosmic-Ray Forward Model

In this study, the new developed COsmic-ray Soil Moisture Interaction Code
(COSMIC) model (Shuttleworth et al., 2013) was used as the cosmic-ray forward
model to simulate the cosmic-ray neutron count rate using the soil moisture profile as
input. The effective measurement depth of the cosmic-ray soil moisture probe ranges

from 12 cm (wet soils) to 76 cm (dry soils) (Zreda et al., 2008), within which 86% of
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the above-ground measured neutrons originate. COSMIC also calculates the effective
sensor depth based on the cosmic-ray neutron intensity and the soil moisture profile
values (Franz et al., 2012; Shuttleworth et al., 2013).

COSMIC makes several assumptions to calculate the number of fast neutrons
reaching the cosmic-ray soil moisture probe ( N.osvos) at @ near-surface measurement
location, and the soil layer with a depth of 3 meters for the complete soil profile, was
discretized into 300 layers for the integration of Eq. 2 in COSMIC. The number of

fast neutrons reaching the cosmic-ray probe Ncqsuos 1S formulated as (Shuttleworth

etal., 2013):

Ncosmos =N I{A(Z)[aps (2)+ pu(2)]eXp (— mST(Z) + vaV_—EZ)D}dZ 1)

7
_(2 -1 1my(z) m,(2)
Alz) = [ﬂj!em[cos(e){ L, i L, } ao @)
o =0.405-0.102 x p, (3)
L, =—31.76 +99.38 x p, 4)

where N is the high energy neutron intensity (counts/hour), z denotes the soil
layer depth (m), p, the dry soil bulk density (g/cm®), p, the total water density,
including the lattice water (g/cm®) and o denotes the ratio of fast neutron creation
factor. L, is the high energy soil attenuation length with value of 162.0 g/cm? and
L, the high energy water attenuation length of 129.1 g/cm?. In equation (2) & is the
angle between the vertical below the detector and the line between the detector and
each point in the plane, m,(z) and m,(z) are the integrated mass per unit area of

dry soil and water (g/cm?), respectively. L, denotes the fast neutron soil attenuation
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length (g/cm?) and L, stands for the fast neutron water attenuation length with value
of 3.16 g/cm?.

The cosmic-ray neutron intensity reaching the land surface is influenced by air
pressure, atmospheric water vapor content and incoming neutron flux. In order to
isolate the contribution of soil moisture content to the measured neutron density, it is
important to take these effects into account and the calibrated neutron count intensity

can be derived as follows:

N = NObs x fP x fwv x fi (5)

Corr

where N represents corrected neutron counts and N, the measured

Corr

neutron counts. f, is the correction factor for air pressure, f,, the correction

wv
factor for atmospheric water vapor and f; the correction factor for incoming neutron
flux.

The correction factor for air pressure f, can be calculated as (Zreda et al.,

2012):

PP,
L

f, =exp( ) (6)

where P (mbar) is the local air pressure, P, (mbar) the average air pressure
during the measurement period and L (g/cm?) is the mass attenuation length for
high-energy neutrons; the default value of 128 g/cm?was used in this study (Zreda et
al., 2012).

The correction factor f,, for atmospheric water vapor is calculated as (Rosolem

etal., 2013):

fwv =1+0.0054 x (,Dvo - pvrgf ) (7)
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where p,, (k/gm®) is the absolute humidity at the measurement time and p[%
(kg/m?®) is the average absolute humidity during the measurement period.
Fluctuations in the incoming neutron flux should be removed because the

cosmic-ray probe is designed to measure the neutron flux based on the incoming

background neutron flux. The correcting factor f; for the incoming neutron flux is

calculated as:

f =_m (8)

where N, is the measured incoming neutron flux and N, is the average

incoming neutron flux during the measurement period. The measured data at the
Jungfraujoch station in Switzerland at 3560 m (http://cosray.unibe.ch/) was used to
calculate N, and N,,. The temporal (secular or diurnal) variations caused by the
sunspot cycle could be removed after this correction (Zreda et al., 2012).

In this study, the soil moisture for the CRS footprint scale was calculated from the
arithmetic mean of the 23 SoilNet soil moisture observations. The calibration of the
high energy neutron intensity parameter N in equation (1) was done using the
measured cosmic-ray neutron counts rate and averaged soil moisture content at the
CRS footprint scale. Because lattice water was unknown for this site, a value of 3%
was assumed in this study (Franz et al., 2012). Hourly soil moisture measurements for
a period of 2.5 months were used for COSMIC calibration. Inside the cosmic-ray
probe footprint, the amount of applied irrigation was spatially variable due to the
different management practice of each farmer. The gradient search algorithm

L-BFGS-B (Zhu et al., 1997) was used to minimize the root mean square error of the
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differences between simulated cosmic-ray neutron counts (using measured soil
moisture by SoilNet as input to COSMIC) and the measured neutron counts N, .
The optimized parameter value of N was 615.96 counts/hour in this case.

The simulated soil moisture content for 10 CLM soil layers (3.8 m depth) was
used as input to COSMIC in order to simulate the corresponding neutron count
intensity and compare it with the measured neutron count intensity. It should be
mentioned that it is unlikely that anything beyond 1 m deep will substantially impact
the results because the effective measurement depth of the cosmic-ray probe is
between 12 and 76 cm. The COSMIC model assumes a more detailed soil profile.
COSMIC interpolates the soil moisture information from the ten CLM soil layers to
information for 300 soil layers of depth 1cm. The contribution of each soil layer to the
measured neutron flux will change temporally depending on the soil moisture
condition. Therefore the effective measurement depth of the cosmic ray probe will

also change temporally. COSMIC calculates the vertically weighted soil moisture

content based on the vertical distribution of soil moisture content.

2.4 Two Source Formulation - TSF

The land surface temperature products of MODIS are composed of a ground
temperature and vegetation temperature component, which are however unknown.
CLM models the ground temperature and vegetation temperature separately, but does
not model the composed land surface temperature as seen by MODIS. The

corresponding land surface temperature of CLM should therefore be modelled for
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data assimilation purposes. The two source formulation (Kustas and Anderson, 2009)
was used in this study to calculate the land surface temperature from the MODIS view
angle using ground temperature and vegetation temperature simulated by CLM:

T, =[F (DT, +AL-F, ()T, )1"* 9)

where T, (K) is the composed surface temperature as seen by the MODIS sensor,
F.(®) is the fraction vegetation cover observed from the sensor view angle @
(radians), T, (K) is the vegetation temperature and T, (K) is the ground temperature.

(Kustas and Anderson, 2009):

—05Q(P)LAI

Fo (@) =1-exp( P

) (10)
where LAl is the leaf area index, Q(®) is a clumping index to represent the

nonrandom leaf area distributions of farmland or other heterogeneous land surfaces

(Anderson et al., 2005), and is defined as:

0.49Q
Q(P) = e 11
@) 0.49+(Q,,, —0.49)exp(k6***) D
Q. =0.49+0.51(sin®)"% (12)
k = —{0.3+[L.7*0.49* (sin ®)*'T*} (13)

2.5 Assimilation Approach

The Local Ensemble Transform Kalman Filter (LETKF) was used as the
assimilation algorithm, which is one of the square root variants of the ensemble
Kalman filter (Evensen, 2003; Hunt et al., 2007; Miyoshi and Yamane, 2007). The
model uncertainties are represented using the ensemble simulation of model states and

LETKF derives the background error covariance using the model state ensemble
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members. LETKF uses the non-perturbed observations to update all the ensemble
members of model states at each assimilation step.

In this study, x?,...x5 denote the model state ensemble members; x? is the
ensemble mean of x?,..x5; N is the ensemble size; y?,...y% denote the mapped
model state ensemble members; y? is the ensemble mean of y?,..y5; H is the
observation operator (COSMIC for soil moisture or the two source function for land

surface temperature). The analysis step of LETKF can be summarized as follows:
Prepare the model state vector XP?:

Xb =[xb —xP, .., x5 — xP] (14)

where x? is composed of one vertically weighted soil moisture content and soil
moisture content for 10 CLM-layers, resulting in a state dimension equal to 11 if only
the neutron count observation was assimilated; and x? is composed of surface
temperature, ground temperature, vegetation temperature and soil temperature for 15
CLM-layers if only the land surface temperature observations were assimilated
without soil moisture update, giving a state dimension of 18. The water and energy
balance are coupled, and in CLM the energy balance is firstly solved, then the derived
surface fluxes are used for updating soil moisture content. The cross correlation
between the soil temperature and soil moisture can be calculated using the ensemble
prediction in LETKF, and this makes the updating of soil moisture by assimilating
land surface temperature possible. We also used the land surface temperature to
update the soil moisture profile, in this case the soil moisture vector was augmented to

the LETKF state vector of land surface temperature assimilation, resulting in a state
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dimension of 28. For the calibration of the LAI, the state vector was augmented with
surface temperature, ground temperature, vegetation temperature, soil temperature for
15 CLM-layers and LAI if only the land surface temperature observations were
assimilated without soil moisture update. This resulted then in a state dimension of
19.

Construct the mapped model state vector Y? after transformation of observation

operator:
yi = H(x{) (15)
Yb = [yf_yb""'yll\jl_yb] (16)

The following analysis is looped for each model grid cell to calculate the update
of model state ensemble members:

Calculate analysis error covariance matrix P<:

P% =[(N —1)I + YPTR™1y?}] (17)

The perturbations in ensemble space are calculated as:

We = [(N — 1)P*]"/? (18)

Calculate the analysis mean w® in ensemble space and add to each column of
W@ to get the analysis ensemble in ensemble space:

wWe = PabeR—l(yo _ }—,b) (19)

Calculate the new analysis:

X% = XP[w? + W%] + xP (20)
where R is the observation error covariance matrix, y° is the observation vector

and X% contains the updated model ensemble members.
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The LETKF method can also be extended to do parameter estimation using a state
augmentation approach (Bateni and Entekhabi, 2012; Li and Ren, 2011; Moradkhani
et al., 2005; Nie et al., 2011). Alternative strategies for parameter estimation are a dual
approach (Moradkhani et al., 2005) with separate updating of states and parameters.
Vrugt et al. (2005) also proposed a dual approach with parameter updating in an outer
optimization loop using a Markov Chain Monte Carlo method, and state updating in
an inner loop. The a priori calibration of model parameters is also an option (Kumar et
al., 2012). With the augmentation approach, the state vector of LETKF can be
augmented by the parameter vector including soil properties (sand fraction, clay
fraction and organic matter density) and vegetation parameters (LAI, etc.). In a
preliminary sensitivity study it was found that for this site simulation results were
more sensitive to the LAI than to soil properties. Soil texture is also quite well known
for this site from measurements. Therefore in this study, only the LAI was in some of
the simulation scenarios calibrated. In the different scenarios of land surface
temperature assimilation, the LETKF state vector was also augmented to include LAI
as calibration target. As a consequence, the augmented state vector contains surface
temperature, ground temperature, and vegetation temperature, 15 layers of soil
temperature and LAI, making up a state dimension equal to 19 for the scenarios of
land surface temperature assimilation without soil moisture update; for the scenarios
of land surface temperature with soil moisture update, the state dimension is 29. The
10 layers of soil moisture and 15 layers of soil temperature are the standard CLM

layout for both soil moisture and soil temperature. The hydrology calculations are
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done over the top 10 layers, and the bottom 5 layers are specified as bedrock. The
lower 5 layers are hydrologically inactive layers. Temperature calculations are done

over all layers (Oleson et al., 2013).

3. Experiment Setup

First the 50 ensemble members of CLM with perturbed soil properties and
atmospheric forcing data were driven from the 1% of Jan. 2012 to the 31% of May 2012
to do the CLM spin-up; second an additional assimilation period of cosmic-ray
neutron counts was done from the 1% of Jun. 2012 to the 30" Aug. 2012 to reduce the
spin-up error. Then the final CLM states on 30" Aug. 2012 were used as the initial
states for the following data assimilation scenarios. Perturbed soil properties were
generated by adding a spatially uniform perturbation sampled from a uniform
distribution between -10% and 10% to the values extracted from the Soil Database of
China for Land Surface Modeling (1 km spatial resolution). The LAl was perturbed
with multiplicative uniform distributed random noise in the range of [0.8~1.2]. The
perturbations added to the model forcings show correlations in space and time. The
spatial correlation was induced by a Fast Fourier Transform and the temporal
correlation by a first-order auto-regressive model (Han et al., 2013; Kumar et al.,
2009; Reichle et al., 2010). The statistics on the perturbation of the forcing data are
summarized in Table 1. The values of standard deviations and temporal correlations in
Table 1 were chosen based on previous catchment scale and regional scale data

assimilation studies (De Lannoy et al., 2012; Kumar et al., 2012; Reichle et al., 2010).
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[Insert Table 1 here]

The cosmic-ray neutron intensity was assimilated every 3 days at 12Z from the 1%
of June 2012 onwards, because we found that the difference between daily
assimilation and 3 days assimilation was small (Entekhabi et al., 2010; Kerr et al.,
2010). The measured neutron count intensity showed large temporal fluctuations in
time and these fluctuations were not corresponding to the temporal variations of soil
moisture. Therefore the measured neutron count intensity was smoothed with the
Savitzky—-Golay filter using a moving average window of size 31 hours and a
polynomial of order 4 (Savitzky and Golay, 1964). The originally measured neutron
counts and smoothed neutron counts are plotted in Fig. 2. The assimilation frequency
of MODIS LST products of MOD11A1 and MYD11A1 was up to 4 times (maximum)
per day depending on the data availability. There are 230 observation data (including
cosmic-ray probe neutron counts, MODIS LST, MOD11A1 and MYD11A1 LST) in
the whole assimilation window. The variance of the instantaneous measured neutron
intensity is equal to the measured neutron count intensity (Zreda et al., 2012) and
smaller for temporal averaging for daily or sub-daily applications. The instantaneous
neutron intensity was assimilated in this study. The variance of MODIS LST was
assumed to be 1 K (Wan and Li, 2008).

The 4 days MODIS LAI product was aggregated and used as the CLM LAl
parameter. Because the LAl from MODIS is usually lower than the true value
(compared with the field measured LAI in the HIWATER experiment) and because the

surface flux and surface temperature are sensitive to the LAI, two additional scenarios
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were investigated where LAI was calibrated to study the impact of LAI estimation on
surface flux estimation within the data assimilation framework.

The following assimilation scenarios were compared: (1) CLM: open loop
simulation without assimilation; (2) Only_CRS: only the measured neutron counts
were assimilated; (3) Only_LST: only the MODIS LST products were assimilated.
The quality control flags of LST products were used to select the data with good
quality for assimilation; (4) CRS_LST: the measured neutron counts and MODIS LST
products were assimilated jointly. In the above scenarios, the neutron count data was
used to update the soil moisture and the LST data were used to update the ground
temperature, vegetation temperature and soil temperature. (5) LST_Feedback: We also
evaluated the scenario of assimilating the LST measurements to update the soil
moisture profile. (6) CRS_LST_Par_LAI: the LAI was included as variable to be
calibrated, otherwise the scenario was the same as CRS LST. (7)
LST Feedback Par LAI: the LAI was included as variable to be calibrated,
otherwise the scenario was the same as LST_Feedback. (8) CRS_LST_True_LAI: the
in situ measured LAI during the HIWATER experiment was used in the model
simulation.

[Insert Figure 2 here]

4. Results and Discussion

In order to evaluate the assimilation results for the different scenarios outlined in

section 3, the Root Mean Square Error (RMSE) was used:
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Zﬁzi(Estimated—Measured)2
N

RMSE = \/ (21)

where “Estimated” is the ensemble mean without assimilation or the ensemble
mean after assimilation, “Measured” is measured soil moisture content evaluated at
the SoilNet nodes (or latent heat flux, sensible heat flux or soil heat flux). N is the
number of time steps. For the soil moisture analysis in this study, N is equal to 2184.
The smaller the RMSE value is, the closer assimilation results are to measured values,
which is in general considered to be desirable.

The temporal evolution of soil moisture content at 10, 20, 50 and 80 cm depth for
different scenarios is plotted in Fig. 3 and Fig. 4. The RMSE values for different
scenarios are summarized in Table 2. Assimilating the land surface temperature could
improve the soil moisture profile estimation in the scenario of
LST_Feedback _Par_LAI; the soil moisture results are better than the open loop run at
all depths. With the assimilation of CRS neutron counts, the soil moisture RMSE
values (scenarios CRS_LST Par LAl and CRS_LST True LAI) decreased
significantly. The RMSE values for the scenarios Only CRS and CRS_LST (not
shown) are similar to CRS_LST Par LAI, which indicates that the main
improvement for the soil moisture profile characterization is achieved by neutron
count assimilation; and land surface temperature assimilation and LAI estimation play
a minor role. Without assimilation of cosmic-ray probe neutron counts, the soil
moisture simulation cannot be improved (scenario Only LST). However, the

scenarios of LST_Feedback and LST_Feedback _Par_LAI improve the soil moisture

profile characterization, which shows that explicitly using LST to update soil moisture
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content in the data assimilation routine gives better results than using LST only to
update soil moisture by the model equations. Results of LST_ Feedback and
LST_Feedback Par_ LAl are similar; therefore only results for
LST_Feedback_Par_LAI are shown in Fig. 3 and Fig. 4. This implies that the
improved soil moisture characterization due to LAI calibration is low. The results for
the cosmic-ray probe neutron count assimilation proved that the cosmic-ray probe
sensor can be used to improve the soil moisture profile estimation at the footprint
scale.

[Insert Figure 3 here]

[Insert Figure 4 here]

[Insert Table 2 here]

Fig. 5 depicts the scatter plots of measured ET versus modelled ET for different
scenarios, and the accumulated ET for all scenarios are summarized in the lower-right
corner of Fig. 5. The EC measured evapotranspiration (ET) is 384.7 mm for the
assimilation period, without energy balance closure correction. The true
evapotranspiration is therefore likely larger, but not much larger as the energy balance
gap was limited (3.7%). The CLM estimated ET, without data assimilation, using only
precipitation as input is 223.7 mm and is much smaller than the measured value as
applied irrigation is not considered in the model. This open loop simulated value
would imply water stress and a limitation of canopy transpiration and soil evaporation
due to low soil moisture content. Assimilation of land surface temperature only

(Only_LST) hardly affected the estimated ET and was not able to correct for the
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artificial water stress condition. However, if land surface temperature was used to
update soil moisture directly, taking into account correlations between the two states
in the data assimilation routine, the ET estimates improved to 336.8 mm and 354.8
mm for the scenarios of LST Feedback and LST_Feedback Par LAI respectively.
The assimilation of land surface temperature of MODIS with soil moisture update
results in significant improvements of ET.

The different neutron count assimilation scenarios also resulted in significantly
improved estimates of ET. Univariate assimilation of cosmic-ray neutron data
(Only_CRS) resulted in 301.9 mm ET. This shows that the impact of neutron count
assimilation to correct evapotranspiration estimates is little smaller than the impact of
land surface temperature with soil moisture update. Joint assimilation of land surface
temperature data and cosmic-ray neutron data (CRS_LST) gave a slightly larger ET of
3106 mm than Only CRS. Scenarios of CRS_LST Par LAl and
CRS_LST True LAI gave the best ET estimates (360.5 mm and 349.3 mm). This
shows that correcting the biased LAl-estimates from MODIS by in situ data or
calibration helped to improve model estimates.

[Insert Figure 5 here]

The RMSE values of latent heat flux, sensible heat flux and soil heat flux for all
scenarios are summarized in Fig. 6. It is obvious that the RMSE values are very large
for both the latent heat flux (123.9 W/m?) and sensible heat flux (80.5 W/m?) for the
open loop run and all other scenarios where the soil moisture was not updated. If the

land surface temperature was assimilated to update the soil moisture, the latent heat
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flux RMSE decreased to 60.5 W/m? (LST Feedback) and 62.5 W/m?
(LST_Feedback _Par_LAI). The scenario where soil moisture and LAI are jointly
updated (LST_Feedback Par LAI) gave worse results than the scenario of
LST_Feedback. Again, the assimilation of neutron counts also resulted in a strong
RMSE reduction for the latent heat flux (76.5 W/m? for Only_CRS). If in addition
land surface temperature was assimilated and LAI optimized, the RMSE value of
latent heat flux further decreased to 56.1 W/m? (70.7 W/m? without LAI optimization).
If the field measured LAI was used instead in the assimilation (CRS_LST_True LAI),
the RMSE was 61.0 W/m?. These results are in correspondence with the ones
discussed before for soil moisture characterization. Evidently, the combined
assimilation of cosmic-ray probe neutron counts and land surface temperature, and
calibration of LAI (or use of field measured LAI as model input) shows the strongest
improvement for the estimation of land surface fluxes. The soil heat flux did not show
a clear improvement related to assimilation and showed only some improvement in
case LAI was calibrated. For the scenario of land surface temperature assimilation
without soil moisture update (Only_LST), estimates of latent and sensible heat flux
are not improved. It means that under water stress condition, the improved
characterization of land surface temperature (and soil temperature) does not contribute
to a better estimation of land surface fluxes.
[Insert Figure 6 here]
The wupdated LAl for scenarios of LST_ Feedback Par LAl and

CRS_LST Par_LAI is shown in Fig. 7. The MODIS LAI product was used as input



578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

for CLM and time series are plotted as blue line in Fig. 7 (Background). The LAI was
also measured in the HIWATER experiment, and the measured values are shown as
green star (Observation). Ens_Mean represents the mean LAl of all ensemble
members (Ensembles). It is obvious that MODIS underestimates the LAl compared
with the observations. With the assimilation of land surface temperature, the LAI
could be updated and be closer to the observations, but there is still a significant
discrepancy between the measured LAI and the updated one. The LAI values for the
scenario with LAI calibration (CRS_LST Par_LAI) are close to the measured LAl
values (CRS_LST_True_ LAIl), which is an encouraging result. The calibrated LAI
shows some unrealistic increases and decreases during the assimilation period, which
is inherent to the data assimilation approach. A smoothed representation of the LAI
might provide a more realistic picture.

[Insert Figure 7 here]

This study illustrates that for an irrigated farmland, the measured cosmic-ray
probe neutron counts can be used to improve the soil moisture profile estimation
significantly. Without irrigation data, CLM underestimated soil moisture content. The
cosmic-ray neutron count data assimilation can be used as an alternative way to
retrieve the soil moisture content profile in CLM. The improved soil moisture
simulation was helpful for the characterization of the land surface fluxes. The
univariate assimilation of land surface temperature without soil moisture update is not
helpful for the estimation of land surface fluxes and even worsened the sensible heat

flux characterization (Fig. 6). However, in a multivariate data assimilation framework
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where land surface temperature was assimilated together with measured cosmic-ray
probe neutron counts, the land surface temperature assimilation contributed
significantly to an improved ET estimation. The simulated canopy transpiration in
CLM was in general too low, even when the water stress condition was corrected by
assimilating neutron counts, which was related to small values of the LAI The
additional estimation of LAI through the land surface temperature assimilation
resulted in an increase of the LAI yielding an increase of estimated ET.

In general, land surface models need to be calibrated before use in land data
assimilation, especially if there is an apparent large bias in the model simulation (Dee,
2005). The simulation of soil moisture and surface fluxes was biased in our study,
mainly due to the lack of irrigation water as input. This bias cannot be corrected a
priori without exact irrigation data, which are not available in the field. The data
assimilation was proven to be an efficient way to remove the model bias in this case.
We also calculated the equivalent water thickness to analyze the equivalent irrigated
water after each step of soil moisture update. For the scenarios of CRS_LST Par_ LAl
and CRS_LST_True_LAI, the equivalent irrigation in three months was 693.6 mm
and 607.6 mm, respectively. Because the irrigation method is flood irrigation, it is not
easy to evaluate the true irrigation applied in the field. From the results we see
however that the applied irrigation (in the model) is much larger than actual ET
(~600-700mm vs ~400mm). This could indicate that the amount of applied irrigation
in the model is too large, but irrigation by flooding is also inefficient and results in

excess runoff and infiltration to the groundwater, because it cannot be controlled so
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well as sprinkler irrigation or drip irrigation. Therefore, the calculated amount of
irrigation could be realistic, but might also be too large if soil properties are erroneous
in the model.

The soil moisture content measured by the cosmic-ray probe represents the depth
between 12 cm (very humid) and 76 cm (extremely dry case) depending on the
amount of soil water (soil moisture content and lattice water). Therefore the effective
sensor depth of the cosmic-ray probe will change over time. In order to model the
variable sensor depth and the relationship between the soil moisture content and
neutron counts, the new developed COSMIC model was used as the observation
operator in this study. Additionally the influences of air pressure, atmospheric vapor
pressure and incoming neutron counts were removed from the original measured
neutron counts. Because there is still some water in the crop which also affects the
cosmic-ray probe sensor, the COSMIC observation operator could be improved to
include vegetation effects. Several default parameters proposed by (Shuttleworth et al.,
2013) were used in the COSMIC model, these parameters probably need further
calibration following the development of the COSMIC model.

The spatial distribution of soil moisture for the study area was very
heterogeneous due to the small farmland patches and different irrigation periods for
the different farmlands. Therefore the soil moisture content inferred by SoilNet may
not represent the true soil moisture content of the cosmic-ray probe footprint, which is
a further limitation of this study. Although the Cosmic-ray Soil Moisture Observing

System (COSMOS) has been designed as a continental scale network by installing
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500 COSMOS probes across the USA (Zreda et al., 2012), there are still some
disadvantages of COSMOS compared with remote sensing. COSMOS is also
expensive for extensive deployment to measure the continental/regional scale soil
moisture.
5. Summary and Conclusions

In this paper, we studied the univariate assimilation of MODIS land surface
temperature products, the univariate assimilation of measured neutron counts by the
cosmic-ray probe, the bivariate assimilation of land surface temperature and neutron
count data, and the additional calibration of LAI for an irrigated farmland at the Heihe
catchment in China, where data on the amount of applied irrigation were lacking. The
most important objective of this study was to test whether data assimilation is able to
correct for the absence of information on water resources management as model input,
a situation commonly encountered in large scale land surface modelling. For the
specific case of lacking irrigation data, no prior bias correction is possible. The bias
blind assimilation without explicit bias estimation was used. We focused on the model
bias introduced by the forcing data and the LAI, and neglected the other sources of
bias. In case LAI was calibrated, this was done at each data assimilation step of land
surface temperature. The data assimilation experiments were carried out with the
CLM and the data assimilation algorithm used was the LETKF. A likely further model
bias, besides missing information on irrigation, is the underestimation of LAI by
MODIS, which was used to force the model.

The results show that the direct assimilation of measured comic-ray neutron
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counts improves the estimation of soil moisture significantly, whereas univariate
assimilation of land surface temperature without soil moisture update does not
improve soil moisture estimation. However, if the land surface temperature was
assimilated to update the soil moisture profile directly with help of the state
augmentation method, the evapotranspiration and soil moisture could be improved
significantly. This result suggests that the land surface temperature remote sensing
products are needed to correct the characterization of the soil moisture profile and the
evapotranspiration. The improved soil moisture estimation after the assimilation of
neutron counts resulted in a better ET estimation during the irrigation season,
correcting the too low ET of the open loop simulation. The joint assimilation of
neutron counts and MODIS land surface temperature improved the ET estimation
further compared to neutron count assimilation only. The best ET estimation was
obtained for the joint assimilation of cosmic-ray neutron counts, MODIS land surface
temperature including calibration of the LAI (or if field measured LAI was used as
input). This shows that bias due to neglected information on water resources
management can be corrected by data assimilation if a combination of soil moisture
and land surface temperature data is available.

We can conclude that data assimilation of neutron counts and land surface
temperature is useful for ET and soil moisture estimation of an irrigated farmland,
even if irrigation data are not available and excluded from model input. The land
surface temperature measurements are an alternative data source to improve the soil

moisture and land surface fluxes estimation under water stress conditions. This shows
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the potential of data assimilation to correct also a systematic model bias. LAl
optimization further improves simulation results, which is also likely related to a
systematic underestimation of LAI by the MODIS remote sensing product. The results
of using the calibrated LAI are comparable to the results of using field measured LAI

as model input.
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Time Spatial
. . Standard . . Cross
Variables Noise L. Correlation Correlation .
deviation correlation
scale Scale
Precipitation Multiplicative 0.5 24 h 5 km [1.0,-0.8, 0.5, 0.0,
Shortwave radiation Multiplicative 0.3 24 h 5 km -0.8, 1.0,-0.5, 0.4,
Longwave radiation Additive 20 W/m? 24 h 5 km 0.5,-05, 1.0, 0.4,
Air temperature Additive 1K 24 h 5 km 0.0,0.4,04, 1.0]
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718 Table 2 Root Mean Square Error (RMSE) of soil moisture profile of open loop run
719 (CLM), feedback assimilation of land surface temperature including LAI calibration
720 (LST_Feedback_Par_LAl), bivariate assimilation of neutron counts and land surface

721 temperature including LAI calibration (CRS_LST_Par_LAlI) and bivariate
722 assimilation of neutron counts and land surface temperature using ground-based
723 measured LAI as input (CRS_LST_True_LAI).
RMSE (m3/m3)
Soil Layer
] Open Loop LST Feedback CRS _LST CRS _LST
Dept
(CLM) _Par_LAI _Par_LAI _True_LAI
10 cm 0.202 0.137 0.085 0.086
20 cm 0.167 0.106 0.047 0.048
50 cm 0.193 0.112 0.112 0.119
80 cm 0.188 0.124 0.136 0.146
724
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771 Figure 5. Evapotranspiration estimated according different scenarios for the period
772 June-August 2012. For a full description see Fig. 3.
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777  Figure 6. RMSE values of latent heat flux, sensible heat flux and soil heat flux for the
778  period June-August 2012. For a description of the scenarios see section 3 of the paper.
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