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Abstract

Remote sensing, in situ networks and models are now providing unprecedented infor-
mation for environmental monitoring. To conjunctively use multi-source data nominally
representing an identical variable, one must resolve biases existing between these
disparate sources, and the characteristics of the biases can be non-trivial due to spa-5

tiotemporal variability of the target variable, inter-sensor differences with variable mea-
surement supports. One such example is of soil moisture (SM) monitoring. Triple col-
location (TC) based bias correction is a powerful statistical method that increasingly
being used to address this issue but is only applicable to the linear regime, whereas
nonlinear method of statistical moment matching is susceptible to unintended biases10

originating from measurement error. Since different physical processes that influence
SM dynamics may be distinguishable by their characteristic spatiotemporal scales, we
propose a multi-time-scale linear bias model in the framework of a wavelet-based multi-
resolution analysis (MRA). The joint MRA-TC analysis was applied to demonstrate
scale-dependent biases between in situ, remotely-sensed and modelled SM, the in-15

fluence of various prospective bias correction schemes on these biases, and lastly to
enable multi-scale bias correction and data adaptive, nonlinear de-noising via wavelet
thresholding.

1 Introduction

Global environmental monitoring requires geophysical measurements from a variety20

of sources and sensors to close the information gap. However, different direct and
remote sensing, and model simulation can yield different estimates due to different
measurement supports and errors. Soil moisture (SM) is one such variable that has
garnered increasing interest due to its influences on atmospheric, hydrologic, geomor-
phic and ecological processes (Rodriguez-Iturbe, 2000; The GLACE Team et al., 2004;25
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Legates et al., 2011). It also represents an archetype of the aforementioned problem,
where in situ networks, remote sensing and models provide extensive SM information.

In situ networks usually provide point-scale measurements; satellite retrieval of
shallow SM at mesoscale footprint of 10–50 km must resort to a homogeneity or
dominant-feature assumption; whereas modelled SM depends on the simplified model5

parameterization, and quality, resolution and availability of forcing data. Subsequently,
the spatial (lateral and vertical) variability of SM can lead to systematically differ-
ent measurements regarded as biases. Descriptive or predictive spatial SM statis-
tics can be used to relate point-scale to mesoscale estimates (Western et al., 2002),
but in situ data is often limited to describe spatial heterogeneity of SM. Yet, with-10

out bias correction, it is not possible to conduct meaningful comparisons between
in situ, satellite-retrieved and modelled SM for validation (Reichle et al., 2004) and
optimal data assimilation (Yilmaz and Crow, 2013). Standard bias correction methods
have now increasingly being applied to SM assimilation in land (Reichle et al., 2007;
Kumar et al., 2012; Draper et al., 2012), numerical weather prediction (Drusch et al.,15

2005; Scipal et al., 2008a) and hydrologic models (Brocca et al., 2012). Reichle and
Koster (2004) proposed to match statistical moments of the data while linear methods
based on simple regression and matching dynamic ranges have also been considered
(e.g., Su et al., 2013). But these methods can induce artificial biases as the error statis-
tics were ignored; this also suggests a connection that the issue of bias correction is20

inseparable from that of error characterisation (Su et al., 2014).
Triple collocation (TC) (Stoffelen, 1998), which is a form of instrument-variable re-

gression (Wright, 1928; Su et al., 2014), is increasingly being used to address these
issues in oceanography (Caires and Sterl, 2003; Janssen et al., 2007) and hydrom-
eteorology (Scipal et al., 2008b; Roebeling et al., 2013). In particular, it was used to25

estimate spatial point-to-footprint sampling errors (Miralles et al., 2011; Gruber et al.,
2013), and correct biases in SM (Yilmaz and Crow, 2013). Based on an affine sig-
nal model and additive orthogonal error model, it assumes that representativity differ-
ences are manifested as additive and multiplicative biases. But these assumptions may
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have limited validity, as the temporal behaviour of SM may vary across different spa-
tial scales, driven by a continuum of localised and mesoscale influences (e.g., Entin
et al., 2000; Mittelbach and Seneviratne, 2012). Specifically, the coupling of SM with
precipitation and evaporative losses (controlled by temperature, humidity, wind speed)
varies across spatial scales. This can be more pronounced at places where surface5

hydrological features (e.g., topography, infiltration rate and storage capacity) are highly
heterogeneous. Thus, the biases are likely to be non-systematic across short and long
time scales at different spatial scales and errors are non-white, undermining the util-
ity of the affine model. One possible remedy is to apply bias correction, either TC or
statistical-moment matching, only to anomaly timeseries (Miralles et al., 2011; Liu et al.,10

2012; Su et al., 2014), but it remains unclear how these methods affect the signal and
noise components in the corrected data.

Given the possible (time) scale dependency in biases and errors, we propose an ex-
tension to TC analyses to include wavelet-based multi-resolution analysis (MRA) (Mal-
lat, 1989) as a framework to (1) provide a fuller description of the temporal scale-by-15

scale relationships between coincident data sets; (2) study the influence of various
prospective bias correction schemes; and (3) achieve multi-scale bias correction. To
avoid excessive changes in the noise characteristics upon correction, TC can be fur-
ther combined with the wavelet thresholding to (4) achieve nonlinear, data adaptive
de-noising (Donoho and Johnstone, 1994). The techniques were applied to SM data20

from in situ probe, satellite radiometry and land-surface model, but the proposed meth-
ods are general enough to be applied to other geophysical variables.

The paper is organised as follows. Section 2 presents the study area over Australia
and the SM data sets used in our pilot studies. Section 3 explains the theoretics be-
hind MRA and applies it to SM, following by examination of scale-by-scale statistics25

in Sect. 4. Section 5 presents a new joint MRA-TC analysis framework, which is then
applied to examine the influence of different bias correction schemes in Sect. 6. Im-
portantly, both Sects. 4 and 6, using wavelet correlation, wavelet variance and scale-
level TC analyses, provide evidence to support the need to extend traditional bulk and
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anomaly-based analyses. Section 7 demonstrates the use of wavelet thresholding to
de-noise satellite SM. Section 8 offers our concluding remarks.

2 Study areas and data sets

We consider in situ, satellite-retrieved and modelled SM over Australia. For an in-depth
study, we consider point-scale and pixel-scale SM estimates at K1 monitoring site5

(147.56◦ longitude, −35.49◦ latitude) situated at Kyeamba Creek catchment, southeast
Australia (Smith et al., 2012; Su et al., 2013). The in situ SM (INS as shorthand) was
sampled at 30 min intervals, 0–8 cm depth using a time-domain interferometer-based
Campbell Scientific 615 probe during November 2001–April 2011. The region experi-
ences a temperate (Cfb) climate characterised by seasonally uniform rainfall but vari-10

able evapotranspiration forcing, so that SM varies between dry in summer (December–
February) to wet in winter (June–August). The Creek is located on gentle slopes with
rainfed cropping and pasture, and the soil varies from sandy to loam. Figure 1 illus-
trates the land cover, elevation, monthly rainfall accumulation (from 2002–2011), and
clay content over the region.15

The satellite SM was retrieved by AMSR-E (Advanced Microwave Scanning Ra-
diometer for Earth Observing System; AMS) of the AQUA satellite. The retrieval is
based on an inversion of the forward radiative transfer model of a vegetation-masked
soil surface, relating observed brightness temperature to soil dielectric constant es-
timates. A dielectric mixing model is then used to related the dielectric constant to20

volumetric SM. The version 5 combined C/X-band 1/4◦ ×1/4◦ resolution, half-daily
(∼1.30 a.m./p.m. local time) product (July 2002–October 2011) is based on Land Pa-
rameter Retrieval Model (Owe et al., 2008). C-band (X-band) has a shallow sampling
depth of ∼1–2 cm (∼5 mm). Given the 1–2 day revisit times of the satellite, there is
significant number of missing values in AMS data. However, we found that (not shown)25

over 99 % of the gaps over Australia are ≤ 1.5 day long. For use in wavelet analysis
(Sect. 4), a one-dimensional (1-D in time) interpolation algorithm based on discrete

8999

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/8995/2014/hessd-11-8995-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/8995/2014/hessd-11-8995-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 8995–9026, 2014

Multi-scale analysis
of bias correction of

soil moisture

C.-H. Su and D. Ryu

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

cosine transform (Wang et al., 2012) was applied to infill gaps of lengths ≤ 5 days in
AMSR-E.

The modelled SM is taken from MERRA (Modern Era Retrospective-analysis for Re-
search and Applications) – Land produced by Catchment land surface model GEOS
version 5.7.2. The MERRA atmospheric re-analysis is driven by a vast collection of in5

situ observations of atmospheric and surface winds, temperature, and humidity, and
remote sensing of precipitation and radiation (Rienecker et al., 2011). The MERRA
land-only fields were post-processed by reintegrating a revised Catchment model with
more realistic precipitation forcing to produce the MERRA-Land (MER as shorthand)
data set (Reichle et al., 2011). The resultant SM field corresponds to the hourly aver-10

ages of the uppermost layer (0–2 cm) and is gridded on a 2/3◦ ×1/2◦ grid.
The three data are co-located spatially via nearest neighbour and temporally at

around the satellite overpass times of 1.30 a.m./p.m. Their timeseries are plotted in
blue in the first panels of Fig. 2. While co-located, the three methods observed SM dy-
namics over different locations and areas of the catchment (Fig. 1), due to differences15

in their pixel resolutions and alignments.
Continental-scale AMS and MER data over Australia are also considered. The con-

tinent has great variability in climatic and land surface characteristics. The most of
the northern regions experience a Tropical Savannah (Aw) Köppen-Geiger climate as
classified by Peel et al. (2007), the central Australia is largely arid desert (BWh), and20

eastern mountainous areas has a Temperate climate with no dry seasons (Cf). The
south-western regions similarly have a Temperate climate, but with dry summer (Cs).
These temperate regions have higher vegetation, compared to the tropical north with
moderate vegetation cover.

3 Multi-scale decomposition of soil moisture25

The observed SM in Fig. 2 exhibit long-term cycle of wet and dry years due to El-
Niño Southern Oscillation, seasonal and diurnal cycles originating from the fluctuations
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in vegetation and solar radiation, and experiences transient decay from various loss
mechanisms, and abrupt increase from individual rainfall events. Their influences on
observed SM can vary with the measurement methods. To unravel these differences,
we turn to wavelets as the analysing kernels to study variability at individual broad-to-
fine time scales. The scale under investigation is temporal for the rest of the paper,5

unless stated otherwise.
The 1-D orthogonal discrete wavelet transform (DWT) enables MRA of a timeseries

p(t) of dyadic length N = 2j by providing the mechanism to go from one resolution to
another via a recursive function

p(a)
j−1(t) = p(a)

j (t)+pj (t), (1)10

with expectation values E (p(a)
j ) = E (p) = µp and E (pj ) = 0. The integer j ∈ [1,J ] labels

the scale of analysis with j = 1 (J) denoting the finest (coarsest) scale, and serves
to define a spectral range in a spectral analysis. The recursion therefore relates an
approximation or coarse representation p(a)

j of the signal at one resolution to that at15

a higher resolution p(a)
j−1 by adding some fine-scale detail denoted by pj . This leads to

a multi-resolution decomposition of p as,

p(t) = p(a)
j0

(t)+
j0∑
j=1

pj (t) (2)

=

nj0∑
k=1

p(a)
j0k
φjk(t)+

j0∑
j=1

nj∑
k=1

pjkψjk(t) (3)

20

under j0 levels of decomposition. Loosely speaking, for a half-daily timeseries, the
detail timeseries pj for j = 1,2,3, . . . corresponds to (fine-scale) dynamics observed

at 1 day (1d), 2d, 4d, etc, time scale, while the approximation timeseries p(a)
j at
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j = 1,2,3, . . . contains (broad-scale) dynamics at scales longer than 1d, 2d, 4d, etc.
In Eq. (3), each of these components is further decomposed into a linear summa-
tion of nj = N/2j number of basis functions φjk and ψjk with scale of variability

2j and temporal location k2j . The weighting or wavelet coefficients, determined via
DWT of p, measure the similarity between p and the bases via the inner products5

p(a)
jk ≡ 〈p,φjk〉 and pjk ≡ 〈p,ψjk〉. Hence the coefficients indicate changes on a partic-

ular scale and location and enable the above scale-by-scale decomposition. Note that
the bases as defined in L2(R) space and satisfy orthonormality conditions prescribed
by 〈φjk ,φj ′k′〉 = δjj ′δkk′ , 〈ψjk ,ψj ′k′〉 = δjj ′δkk′ , 〈φjk ,ψj ′k′〉 = 0, where δ is Kronecker
delta function. For detailed expositions of the mathematical theory of wavelets and10

MRA, consult Daubechies (1992) and Mallat (1989).
The detail and approximated timeseries of Kyeamba’s SM are illustrated in sub-

sequent panels of Fig. 2, analysed using the Daubechies D(4) wavelet for j0 = 8. At
finest scales j = 1–2 (1–2d), the details show variability due to rainfall wetting, and
over the next set of scales j = 2–6 (2–32d) they describe transient moisture loss. The15

p(a)
8 (≥ 64d) component accounts for several scales of fluctuations over seasonal, inter-

annual, and long-term time scales. The differences between the details of the three
SM are apparent at finest scales, with AMS and MER showing greater variability and
amplitude compared to INS. However the similarity of their temporal patterns, in both
details and approximations, grows with increasing scales j > 3 (see also Fig. 3). Fitting20

a trend line to their coarsest scale approximation series reveals that the AMS observes
an increase of SM of 0.16 m3 m−3 over a 10 year period, MER observes a modest
0.08 m3 m−3 increase, while INS shows insignificant change (−0.001 m3 m−3). The dif-
ferences in dynamic ranges of their detail and approximation timeseries, together with
their mismatch in shape and trend, are indicative of multiplicative biases and noise.25
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4 Multi-scale statistics

MRA enables direct comparisons between any two representations p = {X ,Y } of
a given variable f (such as SM) at various temporal scales independently, owing to
the orthonormal properties of wavelet bases. It also offers an additional degree of free-
dom in temporal positions (using the index k) to allow better representation of local5

variability. By subsetting the wavelet coefficients over certain range of k values, non-
stationary statistics can also be examined. However in this work, we consider only
variability across j and assume stationarity at each scale and performed Pearson lin-
ear correlation R and variance analyses (see Appendix A) of the Kyeamba’s INS, AMS
and MER SM (as p in Eq. 2) detail and approximation timeseries in Fig. 3.10

For the detail timeseries (Fig. 3a), the correlations between the three data are low
at finest scales (R < 0.2) but generally improves with scale (R > 0.5), as noted previ-
ously. There is however no data-pair that shows consistently higher R than other pairs:
R(INSj ,AMSj ) > R(INSj ,MERj ) at coarser scales j = 4–6,8 whereas R(INSj ,MERj ) is
highest at other scales.15

Comparing their approximation timeseries (Fig. 3b), R between AMS and MER are
higher than the other two pairs, ranging from (j = 2) 0.8 to 0.92 (j = 8), largely due
to the strong correlation between their respective p8 and p(a)

8 . But the bulk correla-
tion R(INS,AMS) is lower than INS-MER pair due to the contribution of noisy AMS1 to
the makeup of AMS. In other words: on one hand, AMS and MER both show skill in20

representing some aspects of the in situ SM temporal variability; on the other hand,
stronger AMS-MER correlations at coarsest (temporal) scales and their mesoscale
spatial resolutions would indicate lesser representativeness of in situ measurement at
these spatio-temporal scales.

Next, Fig. 3c plots their wavelet spectra that decompose total variance var(p) into25

individual scales. The standard deviation (std) statistics are presented. The three data
show clear differences in their std profile, both in the fine and coarse scales. Both
noise and/or multiplicative biases are possible contributing factors such that noise can
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inflate the variance while biases can cause suppression or inflation. Following the visual
inspection of Fig. 2 and the noted weak correlations R(INSj ,AMSj ) and R(INSj ,MERj )
at small j , it can be argued that there is significant noise in AMS (for j = 1–3) and MER
(j = 1). This in turn leads to their larger std c.f. INS. At coarser scales where R values
are significantly higher, the differences in std may be attributed to multiplicative biases.5

For instance for their p8 and p(a)
8 components, AMS and MER shows larger std and

thus positively biased relative to INS.
Figure 4 extends the variance and correlation analyses between AMS and MER

to the Australian continent using their coincident data from the period July 2002–
October 2011. The spatial maps of std differences (∆std) and correlations show sig-10

nificant variability in the statistics with time scales and spatial locations. At the finest
scale j = 1, the similarity between the difference map (Fig. 4a) and TC-derived error
map of AMSR-E (see Fig. 6a in Su et al., 2014) in terms of spatial variability and the
low AMS-MER correlations (Fig. 4f) support our observation that the detail timeseries
AMS1 is noise-dominated. By contrast, owing to strong correlation R ∼ 0.6–0.9 (Fig. 4g15

and h) at the coarse scales, the causes for ∆std (Fig. 4c and d) are related to biases.
In particular at j > 8, ∆std map in Fig. 4d also suggests possible association between
biases and climatology or land cover characteristics, with negative biases dominating
northern tropical (Aw) and semi-arid (BS) regions, and positive biases in temperate,
vegetated regions (Cs and Cf) over southeastern and southwestern Australia. The vi-20

sual comparisons between scale-level ∆std with bulk ∆std enable stratification of the
continent to central arid regions of higher noise identified in j = 1 and 2 and temperate
(tropical) regions with positive (negative) bias seen at coarser scales.

5 Joint MRA-TC analysis

In order to quantify observed differences between the data, we propose a scale-25

dependent linear model: a multi-scale (MS) model that distinguishes the signal com-
ponents of the two data X and Y via a set of positive scaling coefficients αp,j , α

′
p and
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assumes an additive and zero-mean independent but non-white noise model ε(t),

p′(t) = α′
pf

′(t)+ε′(t), (4)

pj (t) = αp,j fj (t)+εp,j (t), (5)

for p′ = p(a)
j0

−E (p) and f = f ′−E (f ). The signal and noise components have also been5

decomposed into their multi-resolution forms. The differences in the values of the scal-
ing coefficients between data, i.e. αX ,j 6= αY ,j , signify multiplicative biases at individual

scales. To see this, we express their mean-squared deviation MSD ≡ E [(Y −X )2] in
terms of variables in Eqs. (4) and (5) to arrive at,

MSD = (µX −µY )2 +
J∑
j

[
(αY ,j −αX ,j )

2var(fj )+ var(εX ,j )+ var(εY ,j )
]
. (6)10

The first term is the additive bias, and the summation consists of scale-specific multi-
plicative biases proportional to (αX ,j −αY ,j )

2 and noise contributions from each data.
Importantly the model allows for different scaling coefficients between scales, i.e.

αp,j 6= α
′
p,j for j 6= j ′, as a form of non-linearity with f . The equality αp,j = α

′
p = αp is15

therefore a special case of (bulk) linearity. As our focus of the above model is the
multiplicative biases and noise, for convenience of notations, we remove the mean
of the X and Y prior to MRA and bias correction. Furthermore, without the loss of
generality, we choose X as the reference henceforth and let αX ,j ,α

′
X = 1.

By using a third independently-derived representation (Z) of f , TC enables estima-20

tion of the required scaling coefficients and noise std(εp,j ) (Appendix B). As we will see
later, these estimates are needed for bias correction and de-noising. Within the oper-
ating assumptions of TC, TC estimates are unbiased; that is, the estimated α̂Y ,j = αY ,j
in probability. However TC’s superiority is dependent on the availability of a strong in-
strument and large sample for statistical analyses (Zwieback et al., 2012; Su et al.,25

2014). Standard linear estimators, namely ordinary least-square (OLS) regression and
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variance-matching (VAR), can be considered as substitutes, although they are biased
estimators when X and Y are both noisy (Yilmaz and Crow, 2013; Su et al., 2014),
e.g., OLS yields α̂Y ,j < αY ,j . In summary, we propose that combining these estimators
with MRA via the MS model enables investigation into the distribution of the biases and
noise over j , and their response to various bias correction schemes.5

6 Multi-scale analysis of bias correction

Consider now the bias correction of Y to “match” X . Different interpretations of a
“match” and assumptions about signal and noise statistics lead to different bias cor-
rection schemes:

– Bulk linear rescaling assumes bulk linearity between X and Y so that the correc-10

tion equation is

Y ∗ =
Y
α̂Y

, (7)

where α̂Y is ideally given by TC. When the bulk linearity is satisfied, this ap-
proach ensures that the statistical properties (std and higher moments) of the15

signal components in X and Y ∗ are identical. Linear rescaling using α̂Y values
estimated by OLS and VAR matching have previously been considered by e.g.,
Su et al. (2013); but due to error-in-variable biases, they can induce artificial case
even if the bulk linearity condition is valid.

– Bulk cumulative distribution function (CDF) matching assumes nonlinearity be-20

tween X and Y and transforms Y ∗ so that (Reichle and Koster, 2004),

cdf(Y ∗) = cdf(X ), (8)

where cdf(◦) computes the CDF. This ensures that the mean, std, and higher sta-
tistical moments of X and Y ∗ are identical, but the statistical properties of their25
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signal and noise components that make up X and Y ∗ are not necessarily identi-
cal. In particular, when the relative signal and noise statistics in the two data are
different, CDF matching leads to artificial biases between the signal components
in X and Y ∗. As with VAR matching of first two moments, the CDF counterpart is
expected to contain extraneous contribution of the error variances in the mapping5

of the second moment, as well as at higher moments (Su et al., 2014). The issue
can be exacerbated by variable signal and error statistics at different scales.

– Anomaly/seasonal (A/S) linear rescaling allows biases between X and Y to be
different at two scales of variation. In practice, the useful information content in
observations is primarily based on their representation of anomalies, where ob-10

servations are assumed into a particular land surface model’s unique climatol-
ogy (Koster et al., 2009). The correction is therefore limited to the anomalies,
although other components (e.g., seasonal fluctuation and long-term trend) may
be preserved to validate model prediction. Here the linear correction using TC
estimator is applied to match the characteristics of each component – anomaly15

(i = A) and seasonal (S) – separately, so that the corrected Y has the form,

Y ∗ = Y ∗
S
+ Y ∗

A, (9)

with Y ∗
i = Yi/α̂Yi for i ∈ {S,A}. In one approach, pS is computed using moving

window averaging of multiyear data within window size of 31 days centered on20

a given day of year (Miralles et al., 2011), so that inter-annual cycles and long-
term trends are retained in pA. In an alternative approach (Albergel et al., 2012),
a sliding 31 day window is used such that pA ≈

∑6
j=1pj for half-daily timeseries.

In this work, the former, more conventional approach was taken.

– A/S CDF matching applies CDF matching to anomaly and seasonal components25

separately as per Eq. (9) but with cdf(Y ∗
i ) = cdf(Xi ). The application of CDF match-

ing to the anomaly component of soil moisture data was considered by Liu et
al. (2012).
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– Multi-scale (MS) rescaling is the direct consequence of the MS model where in-
formation in Y is rescaled at individual scales,

Y ∗ =
Y ′

α̂′
Y

+
j0∑
j=1

Yj
α̂Y ,j

. (10)

In relation to Eq. (6), this approach eliminates that the multiplicative terms in the5

summation. It is obvious that bulk and A/S linear correction schemes are special
cases of MS rescaling where information from multiple scales are aggregated
and corrected jointly. Other aggregations of the information from different subsets
of scales are also possible, but they will similarly be conceived based on one’s
understanding or assumptions of the underlying specific processes driving SM10

dynamics. Investigations into suitable aggregations are beyond the scope of this
work, hence we implemented the most elaborate decomposition. If joint linearity
exists between two or more scales, their αY ,j values will be similarly-valued for
use in Eq. (10).

For illustrations, we correct the biases in AMS and MER SM with respect to INS SM15

at Kyeamba using the above schemes. Using the above notations, AMS and MER are
treated as Y and INS as X . MRA-TC was applied to observe their consequences. The
“true” values of the scaling coefficients αY ,j (before correction) and αY ∗,j (after) were
estimated using TC. But where TC estimates could not be retrieved (j = 1–2) due to
negative correlation amongst the data triplet (e.g., resulting from significant noise and20

weak instrument), OLS-derived (under) estimates serve as a guide. Similarly the total
std is a guide for error std in these cases.

Figure 5a shows the MRA of the biases and noise in the pre-corrected data. The
upper panel illustrates considerable variability in α̂Y ,j across the scales, ranging from
0.5–1.8 for AMS, and 0.5–1.4 for MER. In particular their α̂′

Y and α̂Y ,8 are significantly25

deviated from 1 and are responsible for the larger std (c.f. INS) observed in Fig. 3c.
Biases also exist at almost all other scales of AMS and MER. In the lower panel, the
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values std(εY ,j ) relative to std(Yj ) indicate the dominance of noise in the small scales
j = 1–3. This explains the low R values between AMS (and MER) and INS in Fig. 3a.
Furthermore, the signal-to-noise ratios are variable with scales and data sets, high-
lighting the importance of using a correction scheme that takes the signal-vs.-noise
statistics into considerations. TC-based scheme is limited to the linear case and CDF5

scheme ignores such a variability.
Within the paradigm of the MS model and Eq. (6), the goal of bias correction is to

minimize the difference |αY ,j −1|. The MRA of the corrected AMS and MER (as Y ∗) are
shown in Fig. 5b–f. In addition we assess the level of agreement between corrected
AMS and INS timeseries in Table 1 using their root-mean-squared deviation (RMSD)10

and correlation R. The timeseries plots are shown in Fig. 6 to support interpretations.
These additional results focus on the AMS-INS pair that best illustrates the influence
of noise. It is of note that for the MS scheme where the scaling coefficients cannot be
estimated for j = 1–2 by TC, CDF matching is applied to these scales.

The results of bulk, A/S and MS linear rescaling can be readily interpreted. In par-15

ticular, for bulk (Fig. 5b) and A/S linear (Fig. 5d) rescaling, the estimated scaling co-
efficients, namely α̂Y and α̂Yi , used in their implementations are greater than unity for
both AMS and MER. This leads to the suppression of the associated signal, as well as
noise, components. For AMS, the bulk linear scheme corrects the coarse-scale bias
in Y (a)

8 component and rescales the noise variance, reducing RMSD from 0.09 m3 m−3
20

to 0.06 m3 m−3. However the fine-scale biases in Yj are still present, and increased at
some scales, e.g. at j = 4,7 for AMS. Additionally for A/S linear rescaling, R(AMS,INS)
value does not change significantly and the noise are still clearly visible in Fig. 6b and d.

By construction, MS rescaling enables bias correction at all scales, as demonstrated
in Fig. 5f. The use of α̂Y ,j (j ≥ 3) values from Fig. 5a in its implementation eliminates25

biases at respective scales, but we also observed noise amplification in AMS at j = 3,7
and in MER at j = 3–6 because α̂Y ,j < 1. Indeed it is evident from Eq. (6) that it is
possible to increase the noise variance and MSE when reducing the bias component
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of the MSE. This in turn leads to larger disagreement between INS and AMS in terms
of RMSD and R, and the increased amplitudes of the noise in AMS in Fig. 6f.

The bulk and A/S CDF methods produced very similar results with each other, and
also with their linear counterparts. There are signal and noise suppression but retain
the scale-level biases. The signal components of Y ∗ are negatively biased at j = 3–75

and positively biased at j = 8. The CDF-corrected AMS shows slightly better RMSD
and R with INS, owing to the reduced noise variance and a reduced bias at Y (a)

8 .
In summary, the MRA of the bulk and A/S schemes highlights the deficiency of using

a correction scheme that does not take into account the scale variability of bias and the
differences in error statistics between the two data. The improvements in RMSD and10

correlation between the corrected Y ∗ and the reference X are somewhat superficial,
masking the fact that the bias correction is limited to the coarsest scales. On the other
hand, the A/S-based and MS methods can modify the original error profiles in the
data across the scales, by amplifying (or suppressing) errors in individual components
(either Yj , YS, or YA) with less-than (greater-than) unity pre-correction α’s. Therefore15

arguably, none of these methods is entirely satisfactory, in manners of not removing
the multiplicative biases completely and/or changing error characteristics. The task
of bias correction may therefore be seen as inseparable from that of noise reduction
when considering MS (or A/S) bias correction, unless certain components in MRA were
explicitly ignored.20

7 Combining bias correction with wavelet de-noising

The last example presents an impetus to consider noise removal prior to bias cor-
rection. Critically, TC provides noise and signal estimates that can be used for de-
noising through thresholding of wavelet coefficients pjk . The basic rationale for wavelet
thresholding (WT) is that insignificant detail coefficients are likely due to noise while25

significant ones are related to the signal component. Thus a coefficient is eliminated
if its magnitude is less than a given threshold λp; otherwise it is modified according
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to a transformation function Γ(pjk) to remove the influence of the noise (Donoho and
Johnstone, 1994).

One commonly-used transformation is soft thresholding (Donoho, 1995), where the
coefficients are modified according to,

Γλp(pjk) = sign(pjk)max(|pjk − λp|,0). (11)5

Such de-noising filters have near-optimal properties in the minmax sense. We follow
BayesShrink rule of Chang et al. (2000) to define a set of scale-dependent threshold
values using

λp,j =
var(εp,j )

αp,jstd(fj )
(12)10

where the variances are provided by TC (Appendix B). This choice of threshold is near-
optimal under the assumption that the signal is generalised Gaussian distributed and
the noise is Gaussian. When the threshold value for j = 1–2 could not be estimated
using TC, CDF matching was applied. While TC is an ideal error estimator, alternative15

estimators for the threshold values are also available to make the de-noising a stand-
alone process (Donoho and Johnstone, 1994; Donoho, 1995). The de-noised time-
series is therefore constructed via inverse DWT of the modified coefficients, and can
be subsequently corrected for biases. Combining with the MS bias correction scheme,
a biased-corrected, de-noised data is generated via,20

Y ∗ =
Y ′

α̂′
Y

+
j0∑
j=1

nj∑
k=1

Γλp,j
(Yjk)

α̂Y ,j
ψjk . (13)

The prescription, which is essentially a two-stage operation, was applied to AMS for
comparisons with the previous results. The first stage of de-noising leads to smooth-
ing of the timeseries and improved R with INS by 0.05. The actual SM variability has25
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become more apparent in Fig. 6g. Over-smoothing can occur due to our inability to
properly distinguish signal from noise in AMS1 and AMS2 where the signal-to-noise
ratio is very low. However without the second stage of bias correction, the dynamic
ranges of de-noised AMS and INS are visibly different, such that the improvement in
RMSD with INS is limited. Combining WT and MS leads to improvement in both met-5

rics of RMSD = 0.048 m3 m−3 and R = 0.711, with Fig. 6h confirming that the reduced
noise was not amplified by the MS rescaling.

8 Conclusions

This work combines MRA and TC in a new analysis framework with increased ca-
pacity to provide a more comprehensive view of the inter-data relations at short and10

long time scales. TC (or CDF) rescaling can be exploited at individual scales to re-
duce scale-specific multiplicative biases, and provide “prior” knowledge of noise for
calibrating a WT filter. As a demonstration-of-principle, these methods are applied to
SM data from in situ and satellite sensors and a land surface model. Using MRA, we
found that the three data exhibit significantly different wavelet spectra. At fine scales,15

the contribution of noise is most prominent, undermining the correlation between the
data sets. By contrast, the biases are most apparent at coarse scales. Further, these
biases are non-systematic across time scales at the study region and across spatial
locations over Australia. And, the signal-to-noise ratios vary with scales and between
the various data, pointing to the need to use correction schemes that are capable of20

handling such complexities.
These observations raised concerns about the possible inadequate treatment of SM

data in the linear regime, even with anomaly/seasonal decomposition. Scale-by-scale
linear rescaling based on a MRA-TC analysis framework offers a more comprehensive
treatment of different biases at different scales, but error characteristics are found to25

be modified by variable rescaling and can lead to undesirable noise amplification. The
method of removing biases and noise at individual scales offers a remedy, although
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few caveats should be noted. First, TC analysis requires a strong instrument and large
sample, and in cases where these prerequisites are not met, we resort to sub-optimal
estimation and rescaling methods. Second, the issue of non-stationarity in errors and
scaling has not been addressed so far, and this can lead to biased estimates of the
correction parameters for rescaling and de-noising. Despite this, DWT offers addi-5

tional degree of freedom in translation parameter k to accommodate non-stationarity.
Third, given the theoretic viewpoint presented in this work, further evaluations based
on assimilation of data treated by different schemes are still warranted to assess their
practical impacts. Notwithstanding these factors, MRA-TC analysis can be an impor-
tant tool to allow better characterisation of the inter-sensor differences and to develop10

more effective strategies in harmonising a broad range of observational data records
in oceanography and hydrometeorology.

Appendix A: Wavelet statistical analysis

MRA enables the (bulk) variance var(p) of a timeseries p to be decomposed into
wavelet variances var(pj ) at different scales j . Analogous to a Fourier spectrum, the15

expansion of var(p) yields a wavelet spectrum and is given by,

var(p) =
J∑
j=1

var(pj ) (A1)

= var(p(a)
j0

)+
j0∑
j=1

var(pj ) (A2)

where the variance of the approximation timeseries p(a)
j0

can be expressed in terms of20

that of the detail timeseries pj .
Similarly, wavelet covariance cov(Xj ,Yj ) at a given j indicates the contribution of

covariance between two timeseries (X , Y ) at that scale. Specifically, the wavelet
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covariance at scale j can be expressed as,

cov(Xj ,Yj ) =
1
nj

nj∑
k=1

XjkYjk , (A3)

noting that there is an equivalence of computing (co)variance in the wavelet and time
domains. To exclude the boundary influence of a finite-length timeseries and missing5

values in the timeseries, an estimator of the wavelet covariance can be constructed by
excluding the coefficients affected by the boundaries and gaps, followed by renormali-
sation. In the paper, we find it more intuitive to report the wavelet correlation, namely,

R(Xj ,Yj ) =
cov(Xj ,Yj )√
var(Xj )var(Yj )

(A4)

10

Appendix B: Multi-scale triple collocation

Starting with the scale-level affine model of Eqs. (4) and (5), the associated scaling
coefficients (α′

p,αp,j ) and error variances (var(ε′p), var(εp,j )) for each scale can be es-
timated using TC. We use solutions of Su et al. (2014) for data triplet p = {X ,Y ,Z} at
each scale separately: with X as the reference by setting αX ,j ,α

′
X = 1,15

α̂Y ,j =
cov(Yj ,Zj )

cov(Xj ,Zj )
, (B1)

α̂Z ,j =
cov(Yj ,Zj )

cov(Xj ,Yj )
, (B2)

ˆvar(εp,j ) = var(pj )−
cov(pj ,qj )cov(pj ,rj )

cov(qj ,rj )
, (B3)

ˆvar(fj ) = var(Xj )− var(εp,j ) (B4)
20
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where q and r are also data labels, but p 6= q 6= r . The hat-notation is used to distin-
guish estimates from true values. It can be shown that, in probability, TC yields un-
biased estimates whereby α̂p,j = αp,j , ˆvar(εp,j ) = var(εp,j ), and ˆvar(fj ) = var(fj ). These
expressions were used to compute the results in Fig. 5 and the threshold values for
wavelet de-noising. When TC does not produce physically meaningful estimates due5

to weak instruments, the OLS estimator was used,

α̂OLS
Y ,j =

cov(Xj ,Yj )

var(Xj )
(B5)

although its estimates are biased (α̂OLS
Y ,j < αY ,j ) due to the extraneous contribution of

noise variance in the denominator.10
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(http://www.clw.csiro.au/aclep). The 9 s digital elevation map is obtained from Geoscience Aus-
tralia (2008). This research was conducted with financial support from the Australian Research
Council (ARC Linkage Project No. LP110200520) and the Bureau of Meteorology, Australia.25
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Table 1. RMSD (in units of m3 m−3) and correlation between INS and AMS at Kyeamba treated
by various methods. The square brackets contain 95 % confidence interval.

Methods RMSD Correlation

None 0.088 0.659[14]
Bulk linear 0.055 0.659[14]
Bulk CDF 0.053 0.679[14]
A/S linear 0.059 0.635[15]
A/S CDF 0.054 0.671[14]
Multi-scale (MS) 0.062 0.650[15]
Wavelet thres. (WT) 0.069 0.709[13]
WT + MS 0.048 0.711[12]
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2 Su and Ryu: Multi-scale analysis of bias correction of soil moisture

thogonal error model, it assumes that representativity dif-
ferences are manifested as additive and multiplicative bi-75

ases. But these assumptions may have limited validity, as the
temporal behaviour of SM may vary across different spatial
scales, driven by a continuum of localised and mesoscale in-
fluences (e.g., Entin et al., 2000; MittelBach and Seneviratne,
2012). Specifically, the coupling of SM with precipitation80

and evaporative losses (controlled by temperature, humidity,
wind speed) varies across spatial scales. This is the same and
can be more pronounced at places where surface hydrologi-
cal features (e.g., topography, infiltration rate and storage ca-
pacity) are highly heterogeneous. Thus, the biases are likely85

to be non-systematic across short and long time scales at dif-
ferent spatial scales and errors are non-white, undermining
the utility of the affine model. One possible remedy is to ap-
ply bias correction, either TC or statistical-moment match-
ing, only to anomaly timeseries (Miralles et al., 2010; Liu et90

al., 2011; Su et al., 2014), but it remains unclear how these
methods affect the signal and noise components in the cor-
rected data.

Given the possible (time) scale dependency in biases
and errors, we propose an extension to TC analyses to in-95

clude wavelet-based multi-resolution analysis (MRA) (Mal-
lat, 1989) as a framework to (1) provide a fuller description
of the temporal scale-by-scale relationships between coinci-
dent data sets; (2) study the influence of various prospective
bias correction schemes; and (3) achieve multi-scale bias cor-100

rection. To avoid excessive changes in the noise characteris-
tics upon correction, TC can be further combined with the
wavelet thresholding to (4) achieve nonlinear, data adaptive
de-noising (Donoho and Johnstone, 1994). The techniques
were applied to SM data from in situ probe, satellite radiom-105

etry and land-surface model, but the proposed methods are
general enough to be applied to other geophysical variables.

The paper is organised as follows. Section 2 presents the
study area over Australia and the SM data sets used in our pi-
lot studies. Section 3 explains the theoretics behind MRA and110

applies it to SM, following by examination of scale-by-scale
statistics in section 4. Section 5 presents a new joint MRA-
TC analysis framework, which is then applied to examine the
influence of different bias correction schemes in section 6.
Importantly, both sections 4 and 6, using wavelet correla-115

tion, wavelet variance and scale-level TC analyses, provide
evidence to support the need to extend traditional bulk and
anomaly-based TC analyses. Section 7 demonstrates the de-
noising formalism. Section 8 offers our concluding remarks.

2 Study areas and data sets120

We consider in situ, satellite-retrieved and modelled SM over
Australia. For an in-depth scale, we consider point-scale
and pixel-scale SM estimates at K1 site (147.56◦ longitude,
−35.49◦ latitude) situated at Kyeamba Creek catchment,
southeast Australia (Smith et al., 2012; Su et al., 2013). The125

Figure 1. Spatial variability of land surface and rainfall over
Kyeamba Creek. The cross denotes the location of the K1 moni-
toring station, and the dashed (solid) box is the pixel area of AMS
(MER).

in situ SM (INS as shorthand) was sampled at 30 min inter-
vals, 0-8 cm depth using a time-domain interferometer-based
Campbell Scientific 615 probe during November 2001–April
2011. The catchment has an area of around 600 km2 and
experiences a temperate (Cfb) climate characterised by sea-130

sonally uniform rainfall but variable evapotranspiration forc-
ing, so that SM varies between dry in summer (Decem-
ber–February) to wet in winter (June–August). The Creek is
located on gentle slopes with rainfed cropping and pasture,
and the Kyeamba soils vary from sandy to loam. Fig. 1 illus-135

Figure 1. Spatial variability of land surface and rainfall over Kyeamba Creek. The cross denotes
the location of the K1 monitoring station, and the dashed (solid) box is the pixel area of AMS
(MER).
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Su and Ryu: Multi-scale analysis of bias correction of soil moisture 3

trates the land cover, elevation, monthly rainfall accumula-
tion (from 2002-2011), and clay content over the region.

The satellite SM was retrieved by AMSR-E (Advanced
Microwave Scanning Radiometer–Earth Observing System;
AMS) of the AQUA satellite. Most retrieval algorithms im-140

plement an inversion of the forward radiative transfer model
of a vegetation-masked soil surface, relating observed bright-
ness temperature to soil dielectric constant estimates. A di-
electric mixing model is then used to related the dielectric
constant to volumetric SM. The version 5 combined C/X-145

band 1/4× 1/4◦ resolution, half-daily (∼1.30am/pm local
time) product (July 2002–October 2011) is based on Land
Parameter Retrieval Model (Owe et al., 2008). C-band (X-
band) has a shallow sampling depth of ∼1-2 cm (∼5 mm).
Given the 1-2-day revisit times of the satellite, there is signif-150

icant number of missing values in AMS data. However, we
found that (not shown) over 99% of the gaps over Australia
are ≤ 1.5-day long. For use in wavelet analysis (section 4), a
one-dimensional (1D in time) interpolation algorithm based
on discrete cosine transform (Wang et al., 2012) was applied155

to infill gaps of lengths ≤ 5 days in AMSR-E.
The modelled SM is taken from MERRA (Modern Era

Retrospective-analysis for Research and Applications) –
Land produced by Catchment land surface model GEOS ver-
sion 5.7.2. The MERRA atmospheric re-analysis is driven by160

a vast collection of in situ observations of atmospheric and
surface winds, temperature, and humidity, and remote sens-
ing of precipitation and radiation (Rienecker et al., 2011).
The MERRA land-only fields were post-processed by reinte-
grating a revised Catchment model with more realistic pre-165

cipitation forcing to produce the MERRA-Land (MER as
shorthand) data set (Reichle et al., 2011). The resultant SM
field corresponds to the hourly averages of the uppermost
layer (0–2 cm) and is gridded on a 2/3◦× 1/2◦ grid.

The three data are co-located spatially via nearest neigh-170

bour and temporally at around the satellite overpass times
of 1.30 am/pm. Their timeseries are plotted in blue in the
first panels of Fig. 2. While co-located, the three methods
observed SM dynamics over different locations and areas of
the catchment (Fig 1), due to differences in their pixel reso-175

lutions and alignments.
Continental-scale AMS and MER data over Australia are

also considered. The continent has great variability in cli-
mates and land surface characteristics. The most of the north-
ern regions experience a Tropical Savannah (Aw) Köppen-180

Geiger climate as classified by Peel et al. (2007), the central
Australia is largely arid desert (BWh), and eastern mountain-
ous areas has a Temperate climate with no dry seasons (Cf).
The south-western regions similarly have a Temperate cli-
mate, but with dry summer (Cs). These temperate regions185

have higher vegetation, compared to the tropical north with
moderate vegetation cover.

Figure 2. MRA of INS, AMS and MER SM at Kyeamba. Grey
shadings are > 5-day data gaps, and red lines are trend lines fitted
to p(a)

8 .

3 Multi-scale decomposition of soil moisture

The observed SM in Fig. 2 exhibit long-term cycle of wet
and dry years due to El-Niño Southern Oscillation, seasonal190

and diurnal cycles originating from the fluctuations in veg-
etation and solar radiation, and experiences transient decay
from various loss mechanisms, and abrupt increase from in-
dividual rainfall events. Their influences on observed SM can
vary with the measurement methods. To unravel these differ-195

ences, we turn to wavelets as the analysing kernels to study
variability at individual broad-to-fine time scales. The scale
under investigation is temporal for the rest of the paper, un-
less stated otherwise.

Figure 2. MRA of INS, AMS and MER SM at Kyeamba. Grey shadings are > 5 day data gaps,
and red lines are trend lines fitted to p(a)

8 .
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Su and Ryu: Multi-scale analysis of bias correction of soil moisture 5

Figure 3. Comparisons of correlation and std between INS, AMS and MER at scale levels. Scale j > 8 corresponds to p(a)
8 , and ‘All’ refers

to statistics of the original timeseries.

std c.f. INS. At coarser scales where R-values are signifi-300

cantly higher, the differences in std may be attributed to mul-
tiplicative biases. For instance for their p8 and p(a)

8 compo-
nents, AMS and MER shows larger std and thus positively
biased relative to INS.

Fig. 4 extends the variance analysis between AMS and305

MER to the Australian continent using their coincident data
from the period July 2002 - October 2011. The spatial maps
of std differences (∆std) and correlations show significant
variability in the statistics with time scales and spatial lo-
cations. At the finest scale j = 1, the similarity between310

the difference map (Fig. 4a) and TC-derived error map of
AMSR-E (see Fig. 6a in Su et al. (2014)) in terms of spa-
tial variability and the low AMS-MER correlations (Fig. 4f)
support an observation that the detail timeseries AMS1 is
noise-dominated. By contrast, owing to strong correlation315

R∼ 0.6− 0.9 (Fig. 4g-h) at the coarse scales, the causes for
∆std (Fig. 4c-d) are related to biases. At j > 8, ∆std map in
Fig. 4d also suggests climatic influence, with negative biases
dominating northern tropical (Aw) and semi-arid (BS) re-
gions, and positive biases in temperate, vegetated regions (Cs320

and Cf) over southeastern and southwestern Australia. The
visual comparisons between scale-level ∆std with bulk ∆std
enables stratification of the continent to central arid regions
of higher noise identified in j = 1 and temperate (tropical)
regions with positive (negative) bias seen at coarser scales.325

5 Joint MRA-TC analysis

In order to study underlying causes for the observed differ-
ences between the data, we proposed a scale-dependent lin-
ear model: a multi-scale (MS) model that distinguishes the
signal components of the two data X and Y via a set of posi-330

tive scaling coefficients αp,j , α′p and assumes an additive and
zero-mean independent but non-white noise model ε(t),

p′(t) = α′pf
′(t) + ε′(t), (4)

pj(t) = αp,jfj(t) + εp,j(t), (5)
335

for p′ = p
(a)
j0
−E(p) and f = f ′−E(f). The signal and noise

components have also been decomposed into their multi-
resolution form. The differences in the values of the scal-
ing coefficients between data, i.e. αX,j 6= αY,j , signify mul-
tiplicative biases at individual scales. To see this, we express340

their mean-squared deviation MSD≡ E[(Y −X)2] in terms
of variables in Eqs. 4 and 5 to arrive at,

MSD =(µX −µY )2 +
J∑
j

[
(αY,j −αX , j)2var(fj)+ (6)

var(εX,j) + var(εY,j)
]
.

345

The first term is the additive bias, and the summation consists
of scale-specific multiplicative biases proportional to (αX,j−
αY,j)

2 and noise contributions from each data.
Importantly the model allows for different scaling coeffi-

cients between scales, i.e. αp,j 6= α′p,j for j 6= j′, as a form of350

non-linearity with f . The equality αp,j = α′p = αp is there-
fore a special case of (bulk) linearity. As our focus of the
above model is the multiplicative biases and noise, for con-
venience of notations, we remove the mean of the X and Y
prior to MRA and bias correction. Furthermore, without the355

loss of generality, we choose X as the reference henceforth
and let αX,j ,α′X = 1.

By using a third independently-derived representation (Z)
of f , TC enables estimation of the required scaling coeffi-
cients and noise std(εp,j). As we will see later, these esti-360

mates are needed for bias correction and de-noising. Within
the operating assumptions of TC, TC estimates are unbiased;
that is, the estimated α̂Y,j = αY,j in probability (see also Ap-
pendix B). However TC’s superiority is dependent on the
availability of a strong instrument and large sample for statis-365

tical analyses (Zwieback et al., 2012; Su et al., 2014). Stan-
dard linear estimators, namely ordinary least-square (OLS)
regression and variance-matching (VAR), can be considered
as substitutes, although they are biased estimators when X
and Y are both noisy (Yilmaz and Crow, 2013; Su et al.,370

2014), e.g., OLS yields α̂Y,j < αY,j . In summary, we pro-
pose that combining these estimators with MRA via the MS

Figure 3. Comparisons of correlation and std between INS, AMS and MER at scale levels.
Scale j > 8 corresponds to p(a)

8 , and “All” refers to statistics of the original timeseries.
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6 Su and Ryu: Multi-scale analysis of bias correction of soil moisture

Figure 4. Difference in std (in units of m3m−3) and correlation R between AMS and MER for (a,e) all, and (rest) at selected time scales.

model enables investigation into the distribution of the biases
and noise over j, and their response to various bias correction
schemes.375

6 Multi-scale analysis of bias correction

Consider now the bias correction of Y to ‘match’ X . Differ-
ent interpretations of a ‘match’ and assumptions about signal
and noise statistics lead to different bias correction schemes:

– Bulk linear rescaling assumes bulk linearity between X380

and Y so that the correction equation is

Y ∗ =
Y

α̂Y
, (7)

where α̂Y is ideally given by TC. When the bulk linear-
ity is satisfied, this approach ensures that the statistical
properties (std and higher moments) of the signal com-385

ponents in X and Y ∗ are identical.

– Bulk cumulative distribution function (CDF) matching
assumes nonlinearity between X and Y and transforms
Y ∗ so that (Reichle and Koster, 2004),

cdf(Y ∗) = cdf(X), (8)390

where cdf(◦) computes the CDF. This ensures that the
mean, std, and higher statistical moments of X and Y ∗

are identical, but the statistical properties of their sig-
nal components are not necessarily identical. In partic-
ular, when the relative signal and noise statistics in the395

two data are different, CDF matching leads to artificial
biases between the signal components in X and Y ∗.
As with VAR matching of first two moments, the CDF
counterpart is expected to contain extraneous contribu-
tion of the error variances in the mapping of the second400

moment, as well as at higher moments (Su et al., 2014).
The issue can be exacerbated by variable signal and er-
ror statistics at different scales.

– Anomaly/seasonal (A/S) linear rescaling allows biases
between X and Y to be different at two scales of vari-405

ation. In practice, the useful information content in ob-
servations is primarily based on their representation of
anomalies, where observations are assumed into a par-
ticular land surface model’s unique climatology (Koster
et al., 2009). The correction is therefore limited to the410

anomalies, although other components (e.g., seasonal
fluctuation and long-term trend) may be preserved to
validate model prediction. Here the linear correction us-
ing TC estimator is applied to match the characteristics
of each component – anomaly (i=A) and seasonal (S)415

– separately, so that the corrected Y has the form,

Y ∗ = Y ∗S +Y ∗A, (9)

with Yi/α̂Yi for i ∈ {S,A}. In one approach, pS is
computed using moving window averaging of multiyear
data within window size of 31-days centered on a given420

day of year (Miralles et al., 2010), so that inter-annual
cycles and long-term trends are retained in pA. In an al-
ternative approach (Albergel et al., 2012), a sliding 31-
day window is used such that pA ≈

∑6
j=1 pj for half-

daily timeseries. In this work, the former, more conven-425

tional approach was taken.

– A/S CDF matching applies CDF matching to anomaly
and seasonal components separately as per 9 but with
cdf(Y ∗i ) = cdf(Xi).

– Multi-scale (MS) rescaling is the direct consequence of430

the MS model where information in Y is rescaled at in-

Figure 4. Difference in std (in units of m3 m−3) and correlation R between AMS and MER for
(a, e) all, and (rest) at selected time scales.
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Su and Ryu: Multi-scale analysis of bias correction of soil moisture 7

Figure 5. Responses of the scaling coefficients αY,j (of AMS and MER with respect to INS), noise and total std at individual scales to 5
bias correction schemes. (a) is the analysis for AMS and MER (as Y ) and (b-f) are that for Y ∗. Two estimators, TC and OLS, were applied
to estimate αY,j . The α̂-values listed in (b,d) are the scaling coefficients used in the associated implementations. Scale j > 8 corresponds to
Y

(a)
8

dividual scales,

Y ∗ =
Y ′

α̂′Y
+

j0∑
j=1

Yj
α̂Y,j

. (10)

In relation to Eq. 6, this approach eliminates that the
multiplicative terms in the summation. It is obvious that435

bulk and A/S linear correction schemes are special cases
of MS rescaling where information from multiple scales
are aggregated and corrected jointly. Other aggregations
of the information from different subsets of scales are
also possible, but they will similarly be conceived based440

on one’s understanding or assumptions of the underly-
ing specific processes driving SM dynamics. Investiga-
tions into suitable aggregations are beyond the scope of
this work.

For illustrations, we correct the biases in AMS and MER445

SM with respect to INS SM at Kyeamba using the above
schemes. Using the above notations, AMS and MER are
treated as Y and INS as X . MRA-TC was applied to ob-
serve their consequences. The ‘true’ values of the scaling
coefficients αY,j (before correction) and αY ∗,j (after) were450

estimated using TC. But where TC estimates could not be
retrieved (j = 1− 2) due to negative correlation amongst the
data triplet (e.g., resulting from significant noise and weak
instrument), OLS-derived (under) estimates serve as a guide.
Similarly the total std is a guide for error std in these cases.455

Fig. 5a shows the MRA of the biases and noise in the pre-
corrected data. The upper panel illustrates considerable vari-
ability in α̂Y,j across the scales, ranging from 0.5− 1.8 for
AMS, and 0.5−1.4 for MER. In particular their α̂′Y and α̂Y,8
are significantly deviated from 1 and are responsible for the460

larger std (c.f. INS) observed in Fig. 3c. Biases also exist at

almost all other scales of AMS and MER. In the lower panel,
the values std(εY,j) relative to std(Yj) indicate the dominance
of noise in the small scales j = 1− 3. This explains the low
R-values between AMS (and MER) and INS in Fig. 3a. Fur-465

thermore, the signal-to-noise ratios are variable with scales
and data sets, highlighting the importance of using a correc-
tion scheme that takes the signal-versus-noise statistics into
considerations. TC-based scheme is limited to the linear case
and CDF scheme ignores such a variability.470

Within the paradigm of the MS model and Eq. 6, the goal
of bias correction is to minimize the difference |αY,j−1|. The
MRA of the corrected AMS and MER (as Y ∗) are shown in
Fig. 5b-f. In addition we assess the level of agreement be-
tween corrected AMS and INS timeseries in Tab. 1 using475

their root-mean-squared deviation (RMSD) and correlation
R. The timeseries plots are shown in Fig. 6 to support inter-
pretations. These additional results focus on the AMS-INS
pair that best illustrates the influence of noise. It is of note
that for the MS scheme where the scaling coefficients cannot480

be estimated for j = 1− 2 by TC, CDF matching is applied
to these scales.

The results of bulk, A/S and MS linear rescaling can
be readily interpreted. In particular, for bulk (Fig 5b) and
A/S linear (5d) rescaling, the estimated scaling coefficients,485

namely α̂Y and α̂Yi , used in their implementations are
greater than unity for both AMS and MER. This leads to the
suppression of the associated signal, as well as noise, compo-
nents. For AMS, the bulk linear scheme corrects the coarse-
scale bias in Y (a)

8 component and rescales the noise variance,490

reducing RMSD from 0.09 m3m−3 to 0.06 m3m−3. However
the fine-scale biases in Yj are still present, and increased at
some scales, e.g. at j = 4,7 for AMS. Additionally for A/S
linear rescaling, R(AMS,INS) value does not change signif-

Figure 5. Responses of the scaling coefficients αY ,j (of AMS and MER with respect to INS),
noise and total std at individual scales to 5 bias correction schemes. (a) is the analysis for
untreated AMS and MER (as Y ) and (b–f) are that for Y ∗ after correction. Two estimators, TC
and OLS, were applied to estimate αY ,j . The α̂ values listed in (b, d) are the scaling coefficients

used in the associated implementations. Scale j > 8 corresponds to Y (a)
8
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Su and Ryu: Multi-scale analysis of bias correction of soil moisture 9

Figure 6. Timeseries of AMS SM treated by various bias correction schemes.

8 Conclusions

This work combines MRA and TC in a new analysis frame-
work with increased capacity to provide a more comprehen-
sive view of the inter-data relations at short and long time585

scales. TC (or CDF) rescaling can be exploited at individual
scales to reduce scale-specific multiplicative biases, and pro-
vide ‘prior’ knowledge of noise for calibrating a WT filter.
As a demonstration-of-principle, these methods are applied
to SM data from in situ and satellite sensors and a land sur-590

face model. Using MRA, we found that the three data ex-
hibit significantly different wavelet spectra. At fine scales,
the contribution of noise is most prominent, undermining the
correlation between the data sets. By contrast, the biases are
most apparent at coarse scales. Further, these biases are non-595

systematic across time scales at the study region and across
spatial locations over Australia. And, the signal-to-noise ra-
tios vary with scales and between the various data, pointing
to the need to use correction schemes that are capable of han-
dling such complexities.600

These observations raised concerns about the possible in-
adequate treatment of SM data in the linear regime, even
with anomaly/seasonal decomposition. Scale-by-scaling lin-
ear rescaling based on a MRA-TC analysis framework offers
a more comprehensive treatment of different biases at differ-605

ent scales, but error characteristics are found to be modified
by variable rescaling and can lead to undesirable noise am-
plification. The method of removing biases and noise at indi-
vidual scales offers a remedy, although few caveats should
be noted. First, TC analysis requires a strong instrument610

and large sample, and in cases where these prerequisites are

not met, we resort to sub-optimal estimation and rescaling
methods. Second, the issue of non-stationarity in errors and
scaling has not been addressed so far, and this can lead to
biased estimates of the correction parameters for rescaling615

and de-noising. Despite this, DWT offers additional degree
of freedom in translation parameter k to accommodate non-
stationarity. Thirdly, given the theoretic viewpoint presented
in this work, further evaluations based on assimilation of data
treated by different schemes are still warranted to assess their620

practical impacts. Notwithstanding, MRA-TC analysis can
be an important tool to better understand the inter-sensor dif-
ferences to inform future strategies in harmonising a broad
range of observational data records in oceanography and hy-
drometeorology.625

Appendix A: Wavelet statistical analysis

MRA enables the (bulk) variance var(p) of a timeseries p
to be decomposed into wavelet variances var(pj) at different
scales j. Analogous to a Fourier spectrum, the expansion of
var(p) yields a wavelet spectrum and is given by,630

var(p) =
J∑
j=1

var(pj) (A1)

= var(p(a)
j0

) +

j0∑
j=1

var(pj) (A2)

where the variance of the approximation timeseries p(a)
j0

can
be expressed in terms of that of the detail timeseries pj .635

Figure 6. Timeseries of AMS SM treated by various bias correction schemes.
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