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Abstract

Many climate impact assessments over topographically complex terrain require high-
resolution precipitation time-series that have a spatio-temporal correlation structure
consistent with observations. This consistency is essential for spatially distributed mod-
elling of processes with non-linear responses to precipitation input (e.g. soil water and5

river runoff modelling). In this regard, weather generators (WGs) designed and cal-
ibrated for multiple sites are an appealing technique to stochastically simulate time-
series that approximate the observed temporal and spatial dependencies. In this study,
we present a stochastic multi-site precipitation generator and validate it over the hydro-
logical catchment Thur in the Swiss Alps. The model consists of several Richardson-10

type WGs that are run with correlated random number streams reflecting the observed
correlation structure among all possible station pairs. A first-order two-state Markov
process simulates intermittence of daily precipitation, while precipitation amounts are
simulated from a mixture model of two exponential distributions. The model is calibrated
separately for each month over the time-period 1961–2011.15

The WG is skilful at individual sites in representing the annual cycle of the precip-
itation statistics, such as mean wet day frequency and intensity as well as monthly
precipitation sums. It reproduces realistically the multi-day statistics such as the fre-
quencies of dry and wet spell lengths and precipitation sums over consecutive wet
days. Substantial added value is demonstrated in simulating daily areal precipitation20

sums in comparison to multiple WGs that lack the spatial dependency in the stochastic
process: the multi-site WG is capable to capture about 95 % of the observed variability
in daily area sums, while the summed time-series from multiple single-site WGs only
explains about 13 %. Limitation of the WG have been detected in reproducing observed
variability from year to year, a component that has not been considered in the WG cal-25

ibration. Given the obtained performance, the presented stochastic model is expected
to be a useful tool to re-sample the observed record and valuable to be used as a
statistical downscaling method in a climate change context.
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1 Introduction

In Switzerland, precipitation is a key weather variable with high relevance for sectors
such as energy production, infrastructure, tourism, security, agriculture and ecosys-
tems. Owing to a complex topography daily precipitation varies strongly in space and in
time (Frei and Schär, 1998; Isotta et al., 2013). The spatial distribution of daily precipita-5

tion frequency and intensity clearly depends on the topography, with higher frequencies
and intensities along the North-Alpine ridge during summer, and a strong north–south
gradient with heavier intensities in southern Switzerland from spring until autumn. The
most prominent weather situations causing these precipitation patterns are shallow
pressure systems favouring convective precipitation, orographically induced precipita-10

tion (e.g. Föhn situations), and frontal passages. Precipitation amounts and frequen-
cies are typically largest in summer, mainly due to convective processes (Frei and
Schär, 1998).

To effectively assess the impacts related to precipitation events, often highly localized
daily data are needed that are ideally both consistent in time and in space (Köplin et al.,15

2010). The observational record, however, is rather short for a broad impact assess-
ment. Different sequences of daily precipitation would have been well possible arising
from the chaotic nature of the weather system and its large spatio-temporal variability
over Switzerland. Statistical models can help to explore many such evolutions by mim-
icking observed daily precipitation. Generating synthetic data is also highly relevant in20

the context of downscaling climate predictions and climate change projections. This is
because daily data from climate models are not sufficiently reliable to be used without
bias correction and hence the information often comes in form of aggregated quantities
(e.g. regional and seasonal averages).

To accommodate these needs, stochastic simulations by weather generators (WGs)25

are an appealing technique, due to their computational cheapness and their simplicity
relative to full climate models. WGs simulate synthetic weather time-series of practi-
cally unlimited length that statistically resemble the observed weather records in terms
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of aggregated quantities (monthly means), frequency distribution, and temporal cor-
relations. The individual time-series are hence multiple plausible realizations of daily
weather sequences without a concrete day-by-day match to observations (Wilks and
Wilby, 1999).

To date, a vast number of multi-variate WGs exist that simulate precipitation as a pri-5

mary variable at single locations. These single-site WGs can be grouped into four main
classes: (a) Richardson-type WG (Dubrovsky, 1997; Richardson and Wright, 1984;
Richardson, 1981), that is the basis for this study here, (b) serial model using semi-
empirical distributions to simulate the lengths of wet and dry day series and daily pre-
cipitation (Racsko et al., 1991; Semenov and Barrow, 1997), (c) non-parametric resam-10

pling from observed weather variables at the day of interest (Lall and Sharma, 1996;
Rajagopalan and Lall, 1999), and (d) Neymann–Scott models that simulate precipita-
tion as a sequence of storms with associated rainfall cell numbers based on a Poisson-
cluster process (Rodríguez-Iturbe et al., 1987). All single-site WGs have in common
that they do not incorporate the spatial dependencies when simulating concurrently at15

multiple sites. As a result, the areal-mean time-series have too small variance. This is
a major drawback for many of the above mentioned applications.

Therefore, multi-site WGs have been developed that explicitly take into account the
spatial-temporal correlation structure between different sites. Several attempts have
been suggested to incorporate the spatial-dependency structure in a stochastic sim-20

ulation process: (a) multi-site extension of single-site Richardson-type WGs by using
correlated random number streams (Baigorria and Jones, 2010; Brissette et al., 2007;
Srikanthan and Pegram, 2009; Wilks, 1998) that is also the basis for this study here,
(b) non-homogeneous hidden Markov models that are commonly based on transition
probabilities between pre-defined precipitation states over a domain (Mehrotra and25

Sharma, 2006; Zucchini and Guttorp, 1991), (c) nearest-neighbour resampling which
implicitly take into account the spatial dimension by weather resampling at multiple
sites simultaneously (Buishand and Brandsma, 2001; Leander and Buishand, 2009)
and (d) the spatial extension of the rainfall models based on Poisson-Cluster processes
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(Cowpertwait, 1995). A conceptually different space-time model for rainfall is the string-
of-beads model developed by Pegram et al. (2001).

Each of these multi-site WGs comes with method-specific benefits and limitations
for the reproduction of the daily precipitation statistics and consequently the driving of
impact models. For instance, some of them do better in simulating more realistically5

longer-term variability (e.g. GLM-based multi-site WGs Chandler, 2014), some are ex-
plicitly adapted to deal with extreme precipitation (e.g. Maraun et al., 2009). Depending
on the envisaged application, some of these aspects are more important than others.
For instance, for agricultural studies a correct reproduction of dry and wet spell lengths
is crucial (e.g. Calanca, 2007), while areal sums of precipitation are especially relevant10

for hydrological impacts. Another selection-criteria is the degree of complexity among
the WG models and associated calibration requirements for the setup. For an exhaus-
tive review on stochastic generation of precipitation we refer to Wilks and Wilby (1999)
or Maraun et al. (2010).

In this study here, we develop, implement and evaluate a multi-site precipitation gen-15

erator, that is based on a Richardson-type WG and run with correlated random num-
ber streams. The basic concept has been described in Wilks (1998). We deliberately
choose a rather simple multi-site precipitation model, in order to be flexible in vari-
ous aspects: (a) the WG should be easily adjustable for different catchment sizes and
catchment locations regarding calibration setup, (b) the WG should be built so that it20

can be easily perturbed in a climate change context (as e.g. in Hirschi et al., 2012),
(c) the output of the WG should be the base for a wide range of subsequent impact
studies, which is why we choose a rather general method that shows on average, for
several aspects of the daily precipitation statistics, a reasonable performance. Finally,
we keep it as a simple toolbox, as one of our aims is to better understand uncertainties25

on the local scale, for which we treat the WG as toy model.
To date, only a few multi-site WGs have been tested over complex topographies.

The multi-site WG of Wilks (1998) was employed over part of the Rocky Mountains
(Wilks, 1999b), but never over the Alps which is the focus here. With its very high
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spatio-temporal variability on local scales as well as the strong separation between
southern and northern slopes, it is not guaranteed that the concept of Wilks (1998) is
also applicable over the Alps. To test this, we apply and validate the generator over
the alpine river catchment Thur. This catchment serves as an ideal testbed comprising
different precipitation regimes and steep elevation gradients. It also serves as a good5

test-domain to investigate, if and under what circumstances an added value of a multi-
site WG against multiple single-site WGs is to be expected.

The structure of this paper is as follows: Sect. 2 introduces the hydrological catch-
ment of the river Thur together with the used station data. In Sect. 3 we first describe
the statistical models for simulating precipitation occurrence and amount and show10

how these models are combined to multi-site simulation. The validity of our generated
multi-site precipitation series and the comparison to single-site generators is presented
in Sect. 4. We conclude the article by a summary and an outlook (Sect. 5).

2 Data

This study focuses on the hydrological catchment of the river Thur, which is located in15

the north-eastern part of Switzerland (Fig. 1a). The river Thur is a feeder river of the
Rhine with a length of about 135 km and a catchment area of approximately 1696 km2.
It represents the largest Swiss river without a natural or artificial reservoir and therefore
exhibits discharge fluctuations similar to unregulated Alpine rivers. Its flow regime is
nivo-pluvial that is heavily influenced by snowmelt (BAFU, 2007). Owing to the complex20

topography over this catchment area, precipitation exhibits a large variability both in
space and in time. This is illustrated in Fig. 1b based on gridded observational data
from Frei and Schär (1998). Over 1961–2011 and for a winter and summer month, the
data clearly show larger precipitation frequencies and intensities over higher-elevated
regions compared to the lowlands. Additionally, this catchment lies in one of the Swiss25

regions featuring well above-average precipitation. A large portion of these precipitation
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characteristics can be explained by a north-east to south-west lying mountain range
(Alpstein) extracting precipitation from westerly flows and triggering convective storms.

For the purpose of our study here, we selected eight evenly distributed measurement
stations (Fig. 1a) of MeteoSwiss that meet several requirements: (a) they all provide ho-
mogenized time-series covering a 51 year period from 1961–2011 (Begert et al., 2003),5

(b) they sufficiently reflect the elevation profile of the catchment area from Andelfingen
lying at 382 m a.s.l. to Saentis lying at 2502 m a.s.l.

3 Method

Core of our multi-site WG is a Richardson-type precipitation generator (Richardson,
1981), that relies on the concept of modelling two processes at one single station: an10

occurrence and an amount process. Based on earlier work by Wilks (1998), this single-
site WG is then extended in order to simultaneously generate precipitation at several
sites taking into account the complex spatio-temporal correlation structure.

In the following, we explain the setup of our multi-site generator step by step:
Sects. 3.1 and 3.2 present the concepts of statistically characterizing occurrence and15

amount at single-sites. The simulation procedure of new synthetic time-series is de-
tailed in Sect. 3.3. In Sect. 3.4 we give a description of how we implemented the multi-
site WG over the Thur catchment.

3.1 Precipitation occurrence process

Our procedure to model occurrence at a single station is based on the concept of20

a first-order two-state Markov chain (Gabriel and Neumann, 1962; Richardson, 1981).
The first-order two-state Markov chain is a statistical model describing the probability to
stay in the same state or switch to the other state. In this context, first-order implies the
state at a given day depends only on the state at the previous day. The use of a first-
order model in our WG was justified by inspecting the Bayesian information criterion25
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(Schwarz, 1978) revealing a better match compared to second- or higher order Markov
models (not shown). We used a specific wet-day threshold of 1 mm day−1 to discretize
a given daily precipitation time-series X(t) at a given site into the two states “dry”
(X(t) < 1 mm day−1) and “wet” (X(t) ≥ 1 mm day−1) and to dichotomise subsequently
into a binary series (i.e. Jt with Jt = 0 for a dry state and Jt = 1 for a wet state). Four5

transitions are to be distinguished: a dry day following a dry day (00), a wet day follow-
ing a dry day (01), a dry day following a wet day (10) and a wet day following a wet day
(11).

Mathematically, the first-order two-state Markov chain model can be specified by
formulating the probabilities (p) of these state-transitions:10

p11 = P {Jt = 1|Jt−1 = 1}
p01 = P {Jt = 1|Jt−1 = 0}

(1)

The corresponding counterparts of transition probabilities (p00 and p10) can then be
easily derived, since the sum of two probabilities conditioned on the same state at the
previous day equals one:15

p11 +p10 = 1

p00 +p01 = 1
(2)

The two transition probabilities of Eq. (1) suffice to fully specify the first-order two-state
Markov chain model. For the remaining part of this study, we therefore concentrate on
these two parameters when addressing state transitions. For an estimate we rely on20

their conditional relative frequencies (Wilks, 2011):

p̂01 =
n01

n0•

p̂11 =
n11

n1•

(3)
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where n01 and n11 are the number of transitions from dry to wet and wet to wet in the
binary series and n0• and n1• are the total number of zero’s and one’s in the series
followed by any of the two states. From the transition probabilities of Eq. (3) other
important precipitation indices can be inferred. The wet day frequency (wdf) is defined
as the ratio of the number of wet days to the total number of days over a given time5

period. It can be expressed in terms of the two transition probabilities (Wilks, 2011):

π =
p01

1+p01 −p11
(4)

Similarly, the lag-1 autocorrelation r1 is defined as the difference between the transition
probabilities (Wilks, 2011):

r1 = p11 −p01 (5)10

Since day-to-day precipitation generally exhibits positive serial correlation (i.e. r1
greater than 0), p11 is usually larger than p01 and the wdf is between the two. Note,
that a first-order two-state Markov chain does not imply independence for lags greater
than one. The autocorrelation rL decays exponentially with larger lags L:

rL = (p11 −p01)L (6)15

3.2 Precipitation amount process

As will be detailed in Sect. 3.3, at wet days, precipitation amounts are drawn from
probability density functions (PDFs) fitted at single stations. Many studies use either
an exponential (Richardson, 1981) or a gamma distribution (Buishand, 1978; Katz,
1977) to model non-zero precipitation amounts (X(t) ≥ 1 mm day−1). Both distribution20

types, however, do not appropriately characterize the frequency of the heavily right
skewed precipitation amounts: they underestimate either light precipitation (exponential
distribution) or heavy precipitation (gamma distribution). As an alternative, a mixture
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model of two exponential distributions has been proposed to provide better overall
fits and to better represent precipitation extremes (Wilks, 1999a). The PDF can be
formulated as:

f (x) =
w
β1

exp
(
− x
β1

)
+

1−w
β2

exp
(
− x
β2

)
(7)

f (x) is a weighted average (weight w) of two exponential distributions with means β15

and β2. Its quantile function exists in a closed form. Consequently, random samples
from this distribution can easily be obtained by inversion (Wilks, 2011). The parame-
ters w, β1 and β2 are estimated by using the concept of maximum-likelihood (Tallis
and Light, 1968). Note that the estimation of PDF parameters is subject to sampling
uncertainty from the available number of wet days in a given calendar month.10

3.3 Stochastic modelling of daily precipitation

3.3.1 Single-site

In this section, we demonstrate how the occurrence (Sect. 3.1) and amount model
(Sect. 3.2) are applied to stochastically simulate daily precipitation at a single site.
The simulation process is based on Richardson (1981) with the five above-introduced15

parameters serving as input in Fig. 2: i.e. the transition probabilities p11 and p01 as well
as w, β1 and β2. The simulation of precipitation at a given day and a given station (say
A) is accomplished in four main steps (see yellow circles in Fig. 2):

1. A random number ut,A is drawn from a standard normal distribution.

2. The conditional wet day probability pA is determined depending on the state of20

the previous day. It is set to p11,A or p01,A, depending on whether the previous
simulated day was wet or dry, respectively.
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3. The random number ut,A is compared to the standard normal quantile function Q,
evaluated at pA: if ut,A is larger than Q[pA], a dry day (J ′

t,A = 0) is simulated and
else a wet day (J ′

t,A = 1) is set.

4.1 In case of a dry day, the simulated amount X ′
t,A is set to zero.

4.2.1 In case of a wet day, a second random number vt,A (independent from ut,A) is5

drawn from a standard normal distribution.

4.2.2 This random number is then substituted by the corresponding quantile (xA) of the
cumulative distribution function of the mixture model.

Note that this simulation procedure could be simplified by taking random uniform [0,1]
numbers instead of Gaussian random numbers. We use the latter here in order to be10

consistent with the later introduced multi-site extension (Sect. 3.3.2).
Steps 1–4 are repeated over all remaining days within a certain simulation period.

Based on this procedure time-series of arbitrary length can be generated that resem-
ble observed climatological precipitation statistics, both in terms of frequency and in-
tensity. For a more realistic reproduction of the annual cycle of precipitation the WG is15

calibrated on a monthly basis (see Sect. 3.4).

3.3.2 Multi-site

So far, the procedure to generate precipitation consists of multiple single-site WGs
only. Specifically, no spatial dependence in the simultaneous simulation of precipitation
at several sites was taken into account. To close this gap several single-site WGs are20

driven simultaneously with spatially correlated but serially independent random num-
bers (Wilks, 1998). For simplicity, the concept is illustrated in Fig. 2 for the example of
two fictitious sites (A and B) only. The extension to several sites is straightforward. One
of the main hurdles in simultaneously generating precipitation at several sites is the pre-
scription of the spatial correlation matrices such that the dependence is also preserved25
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in the final generated time-series (Wilks and Wilby, 1999; Wilks, 1998). This difficulty
mainly arises from the stochastic process that partly destroys the initially imposed cor-
relation structure again (Wilks, 1998). We will come back to this problem later. For the
moment, let us assume that the optimal correlation matrices for both, occurrence and
amount (i.e. φAB, optim and rAB, optim), are known. In this case, the main extensions to5

single-site WGs are two spatially correlated but serially independent random number
streams (dashed boxes in Fig. 2): one for the occurrence (u) and the other for the
amount (v) process. They are determined prior to the simulation process (see below)
and contain the same number of days as the simulation period. Once these correlated
random number streams are generated, the simulation proceeds as in Sect. 3.3.1 for10

all stations simultaneously. In practice, the multi-site WG implies the handling of three
main methodological hurdles that are the following:

1. Calculating spatial correlation coefficients φAB and rAB

Spatial dependence in binary series at site A and B is inferred by the phi-15

coefficient (φAB). Similarly as the Pearson correlation coefficient, the phi-
coefficient φAB is bounded by −1 and 1. For the precipitation amounts, the spatial
correlation coefficient (rAB) is determined by the conventional Pearson product-
moment correlation coefficient. The correlation is calculated over the whole pre-
cipitation series that also include time-steps with zero amounts. From a statistical20

point of view, this is not an optimal procedure, since the correlation coefficients
could be strongly affected by the number of zeros in the time-series. However,
the purpose here is to use this spatial similarity measure rather as a tool to com-
pare the observed spatial dependencies with those in artificial data. It is assumed
that the statistical limitations in the calculation apply similarly to observations and25

generated data. The spatial correlations between different sites are determined
pair-wise.
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2. Finding optimal spatial correlation coefficients φAB, optim and rAB, optim

As mentioned above, imposing observed inter-site correlations as input to our WG
does not guarantee its reproduction in the generated series. This is due to a ran-
domization process through transition probabilities calibrated at each site sepa-5

rately. In general, the imposed correlation is reduced by the stochastic process,
both in terms of occurrence and amount process. This characteristic is illustrated
at an artificial example of two fictitious sites A and B in Fig. S1. While the random
number streams (uA and uB) perfectly incorporate the observed spatial correlation
in occurrence between A and B, it is essentially the two distinct transition proba-10

bilities at the two sites that lead to a final correlation in the binary series that is
much reduced (φAB, sim = 0.6 compared to φAB, obs = 0.8). In case of precipitation
amounts the mismatch in correlation magnitude is also present (rAB, sim = 0.38
compared to rAB, obs = 0.5) and can be mainly explained by two factors. First, pre-
cipitation amount is only simulated at wet days (i.e. where J ′

t = 1), while the cor-15

related random number streams (vA(t) and vB(t)) are representative for the full
time-series. Hence, the number of zeros introduced by distinct transition proba-
bilities impact on the generated correlation coefficient. Second, if the two fitted
PDFs at the two sites are markedly different, the correlation of the observed and
simulated precipitation time-series will deviate, even in absence of any zeros.20

To overcome this inherent problem of a multi-site WG after Wilks (1998), an op-
timization procedure was proposed to find an input spatial correlation that ulti-
mately yield the target correlation of the observations. This has to be done first for
the occurrence process (φAB, optim) and then in a subsequent step for the amount
process (rAB, optim). The optimization procedure iterates over an interval of input25

correlations, thereby running at each iteration the full occurrence and amount
model of the multi-site WG (see Fig. S2). After each iteration, the resulting cor-
relation is compared to the target correlation of observations. To find an optimum
correlation, we use a bisection method (Lange, 2010) as non-linear root finding
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algorithm. The iteration is repeated until the generated correlation equals the one
of observations with a precision of 0.005 (see Fig. S2). Note that this estimation
procedure is done prior to the simulation and has to be repeated for each station
pair and month.

3. Generation of correlated random number streams5

There are several approaches to generate spatially correlated random numbers
streams (e.g. Monahan, 2011). For the study at hand we used the concept of the
Cholesky decomposition (e.g. Higham, 2009):

(a) Sample for each station a random number stream from a standard Gaussian10

distribution.

(b) Apply a Cholesky decomposition to the optimized correlation matrix to get
a lower triangular matrix and its transposed.

(c) Multiply the resulting lower triangular matrix with the matrix of random num-
ber streams.15

Cholesky decomposition requires matrices that are positive definite, i.e. that con-
tain no negative eigenvalues. However, in case of inter-station correlations this
is not always fulfilled and depends on the number of stations with incomplete
records. In absence of positive definite matrices, a fall-back solution based on
the nearest positive correlation matrix was chosen. This problem occurred in our20

study only a few times. Note, that the temporal correlation structure of the precip-
itation time-series at one specific site is not altered by the imposed spatial cor-
relation, since the spatially correlated random number streams exhibit no serial
correlation.
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3.4 Implementation

3.4.1 Implementation of the multi-site WG over the Thur catchment

Our developed precipitation generator is calibrated on a monthly basis. First, all the
single-site input parameters (p11, p01, β1, β2 and w) were estimated for each of the
8 stations within the catchment and for each month separately using a time-window5

of 51 years (1961–2011). For the two transition probabilities in a given month, the cli-
matological mean over the 51 yearly values of p11 and p01 was taken. In case of
fitting a PDF to non-zero precipitation amounts and the estimation of β1, β2 and w,
we used the daily data over all 51 years together. In addition, a three-month window
centred at the month of interest was chosen, in order to increase sample size and the10

robustness. The distributional parameters were derived based on maximum-likelihood
(Tallis and Light, 1968). Despite our three-month time-window, cases occurred when
the maximum-likelihood algorithm did not converge. For such cases, a fall back solution
was applied where the parameter estimates from the previous month were adopted.
With the monthly parameters from all the calibrated single-site WGs and the monthly15

observed inter-station correlations (symmetric correlation matrices), the optimized cor-
relation matrices had to be found for each month based on the procedure described in
Sect. 3.3.2. Note, that by calibrating the multi-site WG on a monthly instead of a sea-
sonal basis, additional sampling uncertainty is introduced due to the rather small time-
window to estimate our parameters. This is the downside of prescribing an improved20

annual cycle in the WG parameters.
Once the multi-site WG was calibrated, we generated 100 ensembles of daily time-

series, of 51 year length. All the results presented in Sect. 4 are calculated over the
time-period 1961–2011.
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3.4.2 Reproduction and uncertainty of WG model parameters

To test whether our developed WG is properly implemented, we evaluated the repro-
duction of WG input parameters extracted from the generated time-series. A correct
reproduction in parameters such as wet day intensity, frequency and transition prob-
abilities is a prerequisite for all the subsequent analyses presented in Sect. 4. The5

evaluation was performed for four subjectively-defined climatic regimes: a very dry,
a dry, a wet and a very wet climate. The corresponding model parameters are indi-
cated in Fig. 3 with dashed vertical lines. For each of these precipitation regimes, 100
synthetic daily time-series were generated. To test the effect of sample-size, different
sizes of time-windows were used: (a) 10 000 days, (b) 1000 days, (c) 100 days and (d)10

30 days. The latter corresponds to the same sample-size as used to simulate monthly
precipitation over the Thur catchment. For each of the generated time-series the WG
parameters were re-estimated and the 95 % interquantile range was computed across
the set of 100 realizations (Fig. 3). Three main results can be inferred: (a) our precip-
itation generator is able to correctly reproduce the key WG parameters implying that15

the chances for substantial coding errors are small, (b) as expected the estimate of the
input parameters becomes more uncertain the smaller the sample size is; in fact, the
uncertainty range enlarges by a factor of roughly 19 from a sample size of 10 000 down
to 30. At a sample size of 1000 the uncertainty range stays at around ±0.03, that only
marginally lowers when going to a sample of 10 000. (c) The different pre-defined cli-20

mate regimes affect the uncertainty, particularly in the estimated transition probabilities.
In a very dry (wet) climate, the wet–wet (dry–wet) transition probability exhibits large
uncertainties in the estimate. This again is mainly related to a sample size problem due
to very few wet–wet (dry–wet) pairs. Thus, we expect that the weather generator does
not work optimally in arid climates.25
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4 Results

An in-depth evaluation of the generated time-series with our multi-site WG is now un-
dertaken with real observations. First, the reproduction of the daily and longer-term
precipitation statistics at individual sites is analysed (Sect. 4.1). In a second step, the
performance of the multi-site model is investigated regarding spatially aggregated pre-5

cipitation indices in comparison to WGs without incorporating spatial dependencies
(Sect. 4.2).

4.1 Validation of the precipitation generator at individual sites

Based on our ensemble of synthetic time-series, each containing 51 years, we analyse
the reproduction of key precipitation characteristics. This validation goes beyond the10

reproduction of pure model parameters used to calibrate the WG (Sect. 3.4.2), as it
includes precipitation statistics that are not directly used in the specification and cali-
bration of the model. Note, that we present this analysis for the same time-period as
used for calibrating our WG. This is justified for the study here, as long as we treat
and use our WG to simulate long-term monthly precipitation statistics. In such a setup15

the stationarity of the model is given by definition. However, in a climate prediction
or projection context, this stationarity assumption would have to be tested and hence
separate calibration and validation periods are needed.

4.1.1 Long-term mean and inter-annual variance of monthly precipitation sums

In a first step of validating our WG, we focus on the reproduction of the long-term mean20

in monthly precipitation sums. Figure 4 shows both the modelled (blue) and observed
(black) long-term monthly precipitation sum for each of the eight investigated stations.
In general, the annual cycle of precipitation sums is well reproduced. Consistently, this
is also true for the long-term seasonal as well as for the annual precipitation sums
(not shown). But the WG tends to slightly underestimate precipitation sums in June25
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and August, and overestimate them in October. In addition, the two stations Bischof-
szell (BIZ) and Herisau (HES) show rather large positive deviations from the observed
record during the winter months. In order to explain part of these deviations, we decom-
posed the long-term mean of monthly (T = 30 days) precipitation sums (E [S(T )]) into
the product of the mean monthly wet day frequency (wdf) and intensity (wdi) (Fig. 5):5

E [S(T )] = T ·wdf ·wdi (8)

Since these two climatological quantities are indirectly forced (Sect. 3.4.2), we expect
from the results in Fig. 3 a good match on average. As shown in Fig. 5, this is es-
pecially true for the wet day frequency, where the deviations between generated (red)
and observed (black) values are relatively small. The differences, however, are more10

pronounced in case of mean wet day intensities. In fact, it is the wet day intensities
that explain the mismatches in precipitation sums. In case of the winter performance
over Bischofszell and Herisau the deviations can be attributed to the failure of converg-
ing in case of fitting the non-zero precipitation amount model. For those instances, the
fallback solution had to be used (see Sect. 3.4.1).15

Let us now focus on the inter-annual variability of monthly precipitation sums, which
is often more difficult to realistically model than the long-term mean (Wilks and Wilby,
1999). The shaded areas in Fig. 4 represent the inter-quartile range of the observed
(grey) and modelled (blue) monthly precipitation sums. From Fig. 4 it is obvious that
the variability of the WG is smaller than in observations for all of the analysed stations.20

This implies that the stochastic model only explains part of the observed total variability.
This reduced variability is expected, as observations are subject to additional sources
of variability, which our comparable simple WG is not trained for. The WG is forced with
mean observed values, varying between months but not between different years. The
annual cycle is assumed to be stationary, and hence interannual variability, e.g. related25

to the North Atlantic Oscillation (Hurrell et al., 2003) is missing. Consequently, the ratio
of simulated over observed variance accounts for approximately 33 % on average. The
magnitude of this result is consistent with other studies (e.g. Gregory et al., 1993).
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Further insights can be gained from a decomposition of the variance of monthly (T = 30
days) precipitation sums (Var[S(T )]) into the variance of non-zero amount (Var[X ≥
1mm day−1]) and the variance of the number of wet days (Var[N(T )]) as proposed by
Wilks and Wilby (1999):

Var[S(T )] = T ·wdf ·Var[X ≥ 1mm d−1]+Var[N(T )] ·wdi2 (9)5

Since the mean wet day frequency (wdf) and intensity (wdi) are reasonably reproduced,
we expect that the reduced variability of monthly precipitation sums originate from de-
ficiencies in correctly reproducing the inter-annual variability of the number of wet days
and/or of the non-zero amount. One likely reason is the neglect of low-frequency vari-
ability in the WG parameters. It has been shown that physically based models that10

include large-scale circulation as a predictor could alleviate this problem (Chandler
and Wheater, 2002; Furrer and Katz, 2007; Wheater et al., 2005; Yang et al., 2005).

4.1.2 Reproduction of PDF of daily non-zero amount

The adequate reproduction of the mean wet day intensity and frequency is a necessary
but not sufficient precondition of a WG to be used for subsequent (impact) studies. Due15

to a large variability of precipitation amounts, it strongly matters how its frequency dis-
tribution is reproduced. For this, we compared simulated and observed quantiles of the
daily non-zero precipitation distribution at each station (Fig. S3). Generally, the mixture
model of two exponential distributions captures the frequencies of the intensities rea-
sonably well, even at the high-Alpine station Saentis (SAE). This is at least the case20

up to the 80th percentile, above which intensities are systematically underestimated at
all stations. This issue could be overcome by more sophisticated amount models com-
bining e.g. a Gamma with a Generalized Pareto distribution (Vrac and Naveau, 2007).
However, this comes at the expense of fitting many parameters with a limited sample
size.25
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4.1.3 Reproduction of multi-day statistics

While the frequencies of precipitation amounts and the frequencies of wet and dry
days are realistically simulated, it remains unclear how the WG performs for multi-
day spells. For many application studies, this is an essential information that requires
a specific analysis. Figure 6 displays observed and modelled cumulative frequencies5

of dry and wet spells lengths at the example of two months and two stations. The two
stations Saentis and Andelfingen are selected for display since they represent the sta-
tions with the highest and lowest elevation in the catchment. For both stations a clear
seasonal difference in the probability of dry spells toward more short and less long
dry spells during summer compared to winter is found. A plausible explanation are the10

more intermittent (convective) precipitation systems during summer. In contrast to dry
spells, no seasonal differences in wet spell length probabilities can be inferred. This is
likely related to the fact that the dry–dry transition probability p00 exhibits a more dis-
tinct annual cycle than the wet–wet transition probability p11. Figure 6 also shows that
the frequency at shorter spell lengths (up to 3 days) is more realistically reproduced15

by the model than the frequency at longer spell lengths. Generally, a better reproduc-
tion of wet spell probabilities is seen compared to the dry spell counterpart. Long dry
spell lengths are more frequently underestimated by the model than longer wet spell
lengths. The underestimation of long wet and dry spells is a common shortcoming of
the Richardson-type weather generator and has been reported by many studies before20

(e.g. Racsko et al., 1991). This deficiency mainly arises due to the fast exponential
decay of the autocorrelation function with larger lags (see Eq. 5). Similar to the un-
derestimation of variability in precipitation sums, higher-order Markov chains (Wilks,
1999a) or GLMs with additional predictors might improve this aspect, which is out of
scope in this study here.25

Given that the frequency of wet spell lengths is realistically simulated, the question
arises whether this also holds for multi-day precipitation sums. Multi-day periods of
rain is a common phenomenon over Switzerland, especially during prevailing weather
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situations that favour orographic uplift. We compared observed and simulated cumu-
lative distribution functions (CDFs) of precipitation sums over multiple consecutive wet
days (Fig. 7). Overall, we found that the differences between generated and observed
time-series are largest for the higher quantiles and for long lasting wet spells (5 day wet
spells) where the WG tends to underestimate large multi-day sums. This reduced skill5

in simulating longer wet spell sums can be explained by the fact that our WG is only
prescribed with the temporal structure of precipitation occurrence but not in amount. In
other words, the WG has memory to realistically reproduce multi-day wet spell lengths
(Fig. 6), while the combined analysis of multi-day occurrence and accumulated amount
loses somewhat this memory again. Two further noticeable features in Fig. 7 are that10

intense one-day precipitation sums are often overestimated by the model compared
to the observations, while a relatively good match is obtained for three-day sums. Al-
though the deficiency in correctly simulating multi-day sums of consecutive wet days is
to be expected by construction of the WG, it could be improved by more sophisticated
precipitation models, such as multi-states Markov-chains with different probability den-15

sity distributions at each state (Buishand, 1978; Katz, 1977). This, however, comes at
the expense of fitting many additional parameters with a limited sample size.

4.2 Performance of spatial precipitation indices

Up to this point we evaluated the generator at individual sites only. The key issue of
this study though is the potential added value of incorporating inter-station dependen-20

cies. Similarly as in the previous section, we analyse the performance first in terms
of occurrence-related statistics and second in terms of the combined occurrence and
amount statistics.

4.2.1 Dry and wet spell statistics for the whole catchment

Based on the eight stations in our catchment with each being either in a wet or dry25

state at a given day, theoretically 28 (= 256) different dry–wet patterns in space are
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possible. In observations, though, it turns out that 70 % of the investigated days over
1961–2011 are in fact either completely dry (45 %) or completely wet (25 %) and the
remaining 254 dry–wet-patterns are subject to far smaller frequencies (around 10−5–
10−3 %). The pre-dominance of a dry or a wet catchment makes sense given that the
catchment is relatively small and given that precipitation is to a large degree circulation-5

triggered. Analysing the synthetic time-series from our multi-site WG reveals an almost
perfect match with observations (Table 1), a consequence of prescribing the spatial
dependency structure in the occurrence process. Indeed, when re-doing the same ex-
periments with multiple single-site WGs without inter-site dependencies, only about 2 %
of all days are completely dry in the catchment and none of the days are simulated as10

completely wet (Table 1). In a single-site WG setup, the chances for all stations being
dry or wet ultimately depend on the calibrated wet day frequencies at the eight stations
that remain below 0.5 in almost all months (see Fig. 5). This implies that the likelihood
for dry conditions over the catchment is higher than for wet conditions.

Those days with complete dry or wet catchment conditions were further investigated15

in terms of the temporal structure. Table 1 presents observed and multi-site simulated
spell length statistics for the catchment. In general, remarkably good agreement be-
tween observations and the multi-site model is found. This is also true for longer spell
lengths, where the spatio-temporal correlation structure is only indirectly given as in-
put to the WG. All of these results imply that our multi-site WG not only captures the20

frequencies of spatially aggregated binary series very well, it also does a surprisingly
good job in reproducing multi-day dry/wet spells of the Thur catchment.

4.2.2 Daily non-zero precipitation sums over the catchment

The above findings on the spatio-temporal correlation structure in the occurrence pro-
cess also give confidence that daily precipitation sums aggregated over the catch-25

ment are reasonably simulated. To answer this user-relevant question, we first anal-
yse seasonal distributions of single-day precipitation area sums over the time-period
1961–2011 (Fig. 8). Area sums are defined as the precipitation sum over the eight
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stations. Note, that days with an area sum of zero were excluded from this analysis
and are not shown. The observations (grey boxplots) show in the median only a weak
inter-seasonal variability with somewhat higher sums during summer. The spread in
daily precipitation is smallest for winter and spring and largest for summer owing to
the higher extreme precipitation values observed. Common to all seasons is a dis-5

tribution that is heavily right-skewed ranging from nearly dry conditions up to about
220 mm day−1. Note, that the spread shown here includes variability from year-to-year
but also within the season of the same year.

Compared to observations, the multi-site generator reproduces well the median of
the observed daily areal sums. The relative deviations remain rather small, ranging10

from −8.5 % in summer to +1.6 % in autumn. Moreover, the multi-site model is able to
capture about 95 % of the observed variability in the daily sums, while the single-site
WG only explains about 13 %. Even for extreme areal precipitation, the deficiencies are
rather small. Contrary to a multi-site model, the areal sum derived from several single-
site WGs over the catchment (red) systematically underestimates median, variability15

and consequently the magnitude of extreme precipitation amounts (Fig. 8). The relative
deviations from observations in the median range from −28 % in autumn to −18 % in
spring. The underestimation may be explained by the fact that the single-site model
rarely simulates days where all stations are wet (Sect. 4.2.1). Also, the spatial structure
of the precipitation amount is not accounted for.20

4.2.3 Annual maximum precipitation sums of consecutive days over the
catchment

The previous analysis has revealed a pronounced added value when incorporating
spatial dependencies in the stochastic simulation of daily areal precipitation sums over
the Thur.25

Similarly to Sect. 4.2.1, we want to go a step beyond and additionally include the tem-
poral structure. Note that by investigating spatial precipitation sums over multi-days, we
explore the limits of our WG. We analyse in Fig. 9 annual maxima of observed (grey),
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and modelled (blue and red for multi-site and single-site, respectively) precipitation
sums over several consecutive days (2, 5, and 10 days). This means that out of the
aggregated catchment-time-series we compute temporal sums over consecutive days
and take the maximum in each year.

Regarding the performance of our WG in multi-site and single-site mode, Fig. 85

shows that both are clearly underestimating the observed sums. Yet, the multi-site
model exhibits much smaller deviations from the observed distribution than the single-
site model, and hence the added value of the multi-site WG is clearly evident. In fact,
the sums simulated with the multi-site WG are larger by a factor of around 1.8 than
those generated with the single-site WG. Overall, deviations from observations are re-10

duced from about −53 % (single-site WG) to about −17 % (multi-site WG). The added
value of the multi-site model is not constant for different consecutive sums. Differences
are larger at shorter multi-day sums and decrease toward longer time-windows. This is
related to the fact that the spatio-temporal correlation structure at longer lags is not pre-
scribed in the model as already seen in Sect. 4.2.1 and Table 1. The benefit of a multi-15

site WG in terms of maximum daily areal precipitation sums is therefore restricted to
consecutive sums over a few days only. And as a consequence for time-windows of 30
days (or monthly sums), a single-site WG performs equally good as a multi-site WG
(not shown), as both models are calibrated for monthly sums at the eight stations and
consequently at the catchment.20

4.2.4 Discussion

The incorporation of inter-station dependencies in the stochastic model brings substan-
tial added value over multiple single-site models regarding daily and multi-day areal
precipitation sums over the Thur catchment. Similar benefits from the multi-site WG
would be expected for other Alpine catchments and regions with complex topography,25

where correlations between sites are significant but well below unity. For very homo-
geneous regimes (inter-station correlation near unity) one single-site WG would be
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sufficient for the catchment-area, whereas for low spatial correlations several indepen-
dent single-site WGs can be used.

A stochastic simulation with multi-site correlation structure comes with additional
uncertainty from parameter estimations, additional implementation complexity and ad-
ditional computational costs. The decision for incorporating spatial dependencies must5

therefore be balanced with the benefit. A careful inspection of the observed precip-
itation regime and its spatial structure over the catchment prior to the simulation is
necessary to decide in favour or against multi-site simulation.

5 Summary and outlook

A multi-site daily precipitation generator has been successfully developed, imple-10

mented and tested over the Swiss alpine river catchment Thur. The generator is built
after suggestions by Wilks (1998). Core of our multi-site precipitation generator is
a Richardson-type WG with simulation of daily precipitation occurrence as a chain de-
pendent process and simulation of non-zero daily precipitation amounts from a mixture
model of two exponential distributions. The spatial dependencies between the stations15

are imposed by running the precipitation models with spatially correlated but serially
independent random numbers. The model was calibrated on a monthly basis by us-
ing daily station data over a 51 year long time-period from 1961–2011 and extensively
inter-compared to the observed record and to simulations based on multiple (indepen-
dent) single-site WGs.20

Our main findings of this study are:

– Our developed multi-site precipitation generator realistically reproduces key pre-
cipitation statistics at single stations, including the annual cycle, quantiles of non-
zero precipitation amounts, multi-day spells and multi-day amount statistics.
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– Based on its good performance in a range of spatio-temporal precipitation as-
pects, our weather generator is expected to serve as a helpful data provision tool
for multiple applications including climate change assessments.

– The precipitation generator is able to generate relatively large stochastic variabil-
ity. Nevertheless, it is rather low compared to observed inter-annual variability5

where it underestimates inter-annual variability by a factor of 3.

– The incorporation of inter-station dependencies in the stochastic process brings
substantial added value over multiple single-site WGs over heterogeneous catch-
ment areas such as the Thur catchment:

a. The median of daily area sums are by about a factor of 1.3 higher than those10

from independent single-site models. In addition, the multi-site WG is able to
capture about 95 % of the observed variability, while the single-site WG only
explains about 13 %.

b. Annual maxima of multi-day sums over the catchment increase by about
a factor of 1.8 by incorporating the inter-site dependence in the stochastic15

simulations.

– The added value is expected to become most distinct when the precipitation
regime is subject to a large spatial and temporal heterogeneity as is the case
over the Thur catchment.

These results give us confidence that the developed precipitation generator is a very20

helpful tool to simulate current climate. Nevertheless, from an end-user perspective,
some relevant limitations remain: the synthetically generated time-series do not capture
the day-to-day and multi-day variability of precipitation to a full extent. Extreme values
are hence underestimated and should not be the focus of any such analysis with the
data at hand. Furthermore, our generator underestimates the year-to-year variability in25

monthly precipitation sums. This problem could be alleviated by sampling the input WG
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parameters from the observed distribution instead of solely taking the best estimate.
A more sophisticated way would be to use a model that incorporates large-scale atmo-
spheric variables as predictors to estimate the WG parameters, such as for instance
demonstrated by Furrer and Katz (2007) using Generalized linear models (GLMs).

In light of these inherent limitations, care should be taken when using the generated5

time-series as basis for a comprehensive risk assessment of different climatic impacts.
To increase robustness in our results here, the generator should be ideally applied
to further catchments of different sizes and in different time-periods. This would en-
tail a better quantification of the benefits and limitations. In any case, the presented
generator is subject to further developments, including the extension to a multi-variate10

weather generator and its adaptation for climate change studies. If proven skilful, it is
planned to use the weather generator as a downscaling technique to simulate spatially
and temporally consistent daily precipitation time-series at the local scale consistent
with large-scale climate model projections of a future climate.

The Supplement related to this article is available online at15

doi:10.5194/hessd-11-8737-2014-supplement.
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Table 1. Frequencies (given in percent) of a completely wet or dry catchment together with the
frequencies of its spell lengths. The observed (OBS) frequencies are calculated over 1961–
2011. The multi-site simulated frequencies are given by the mean of 100 runs over 51 years
(1961–2011).

Wet catchment Dry catchment

OBS multi- single- OBS multi- single-
site site site site

Overall
25 25 0 45 44 2

frequency

Fr
eq

ue
nc

ie
s

of
sp

el
ll

en
gt

hs

1 34.8 34.4 0.0 14.1 17.3 2

2 27.3 29.4 0.0 16.2 20.7 0.0

3 16.7 18.2 0.0 13.0 18.2 0.0

4 11.5 9.7 0.0 10.8 14.1 0.0

5 4.1 4.7 0.0 9.1 10.3 0.0

6 2.7 2.1 0.0 5.9 7.0 0.0

7 0.9 0.9 0.0 7.2 4.7 0.0

8 0.7 0.4 0.0 5.1 3.0 0.0

9 0.6 0.2 0.0 3.5 1.9 0.0

10 0.2 0.0 0.0 3.5 1.2 0.0
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Dec June 

Dec June 

a) 

b) Wet day frequency 

c) Wet day intensity [mm/d]  

Figure 1. (a) The catchment of the river Thur, located in north-eastern Switzerland, together
with the underlying topography (in m.a.s.l.). The dots indicate the locations of the investigated
stations. 1: Andelfingen (AFI), 2: Frauenfeld (FRF), 3: Bischofszell (BIZ), 4: Eschlikon (EKO),
5: Ebnat-Kappel (EBK), 6: Herisau (HES), 7: Appenzell (APP), 8: Saentis (SAE). (b) Observed
precipitation climatology of the wet day frequency (1961–2011) derived from a 2km×2km
gridded daily precipitation dataset (Frei and Schär, 1998) for December and June. (c) The
same as in (b), but for wet day intensity (in mm day−1). The filled circle symbols point to the
station locations (as in a) together with the observed station measurements.
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Site A Site B 

Input 
parameters  

p11,A, p01,A, wA 1,A, 2,A  p11,B, p01,B, wB 1,B, 2,B  
ΦAB,optim  (occurrence) 

rAB,optim  (amount) 

pA=p11,A, if Jt-1,A’ = 1  

pA=p01,A, if Jt-1,A’ = 0  

pB=p11,B, if Jt-1,B’ = 1  

pB=p01,B, if Jt-1,B’ = 0  

Correlated random number streams  

uA(t) ~N(0,1) 
uB(t) ~N(0,1) 

ΦAB,optim 

Correlated random number streams  

vA(t) ~N(0,1) 
vB(t) ~N(0,1) 

rAB,optim 

ut,A ≤ Q[pA] 

no yes 

Jt,A’ = 0 Jt,A’ = 1 

ut,B ≤ Q[pB] 

yes no 

Jt,B’ = 0 Jt,B’ = 1 

Xt,A’ = 0 Xt,A’ = xA Xt,B’ = xB Xt,B’ = 0 

Resampling from 
PDFA 

Resampling from 
PDFB 

Simulation of next  day 
 t=t+1 

Stochastic 
simulation 

Occurrence 
J‘(t) 

Amount X‘(t)  

Spatial correlation 

1 
2 

3 

4.1 

4.2.2 

4.2.1 

Figure 2. Technical workflow of a multi-site precipitation generator after Wilks (1998) at the
example of two fictitious sites A and B. In general, it is a combination of multiple single-site
precipitation generators that are calibrated at each site individually (see input parameters) and
run simultaneously with spatially correlated random number streams (dashed boxes). The cor-
related random number streams (of similar length as the simulation period) are determined
beforehand (see Sect. 3.3.2). The orange-labelled numbers indicate the steps for single-site
precipitation simulation (see Sect. 3.3.1).
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Figure 3. Reproduction of average wet day frequency (wdf), mean wet day intensity (wdi),
wet–wet transition probability (p11) and dry–wet transition probability (p01) for the four idealized
climate regime ranging from very dry (left) to very wet (right) as indicated by dashed lines. The
shaded areas correspond to the range between the 2.5 % and the 97.5 % empirical quantiles
of 100 realizations. Results are shown for sample sizes of 10 000, 1000, 100 and 30 (grey
shading).
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Figure 4. Long-term mean and variability of monthly precipitation sums during the period 1961–
2011 for eight stations in the Thur catchment. The black (blue) lines refer to the mean annual
cycle of observed (modelled) precipitation sums. The grey (blue) shaded areas represent the
inter-quartile ranges of observed (simulated) monthly precipitation sums. The simulation com-
prises 100 realizations covering each 51 years. The numbers at the bottom indicate for each
month the percentage of variance explained by the precipitation generator. Note that the scale
of the y-axis differ between different stations.
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Figure 5. Observed and modelled monthly mean wet day intensity (blue) and frequency (red) at
eight stations during 1961–2011. The black (coloured) lines indicate the observed (modelled)
values. The blue (red) shaded areas correspond to the inter-quartile range across the set of
synthetic daily time-series. They comprise 100 runs covering each 51 years.
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Figure 6. Cumulative distribution of the observed and simulated dry (left) and wet (right) spell
length frequencies for the lowland station Andelfingen (top) and the mountain station Saentis
(bottom). Results are for January and June during the time period of 1961–2011. The coloured
area (line) represents the inter-quartile range (median) of the 100 realizations covering each
51 year-long daily time-series.
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Figure 7. Cumulative distribution functions (CDFs) of multi-day precipitation sums for the three
stations Andelfingen (AFI), Appenzell (APP) and Saentis (SAE). The lines represent the CDFs
of non-zero precipitation amounts over one wet day (red), over three consecutive wet days
(green) and over five consecutive wet days (blue). Darker and lighter colours refer to observa-
tions and simulations, respectively. The observed CDFs have been derived from a 51 year long
daily time-series between 1961 and 2011, those of the weather generator from 100 realizations
of 51 year long daily simulations. Note that the scaling of the horizontal axis differs between
different stations.
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Figure 8. Daily non-zero precipitation sums over the catchment for the four seasons during
1961–2011. Daily Precipitation intensity of the eight stations are summed and days with an
area sum of zero are excluded. Boxplots of observed daily sums (grey), of multi-site simulated
time-series (blue) and of single-site simulated time-series (red) are shown. The WG models
were run 100 times over a 51 year time-period. The numbers (in percentage) indicated above
the corresponding model represent the relative deviation of the simulated median from the
observed.

8776

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/8737/2014/hessd-11-8737-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/8737/2014/hessd-11-8737-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 8737–8777, 2014

Stochastic modelling
of spatially

consistent daily
precipitation
time-series

D. E. Keller et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

●

●

●

200

400

600

800

1000

1200

1400

1600

A
nn

ua
l m

ax
. p

re
ci

pi
ta

tio
n 

su
m

 [m
m

]

Consecutive Days

2 5 10

Figure 9. Annual maximum precipitation summed over all eight stations and over consecutive
days. The analysis is done for all days of year. The bars indicate the range between the 2.5 %
and the 97.5 % empirical quantiles of the yearly maximum area sums during 1961–2011. The
observations are plotted in grey, the multi-site simulations in blue and the single-site simulations
in red. The observations comprise 51 years, the models were run 100 times over a 51 year
time-period.
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