
Authors reply on comment of editor 

Comment: Two reviewers have read the manuscript. They provided quite contradicting assessments 

of the work, but there are two main problematic points that are essential. The first is the innovation of 

the study. Reviewer 2 claims for no novelty at all while reviewer 1 states that the method is not novel 

but its application is. Indeed the authors state in the manuscript that the WG was never tested in the 

Alps that have some unique features. However, these features are not considered later and thus the 

point made for the novelty in application is not convincing. A second, but related point, is that the study 

is focused in complex topography according to its title; however the topography data (and its derivative 

such as slopes) were not actually used in the analyses, except for station selection, and so the unique 

application of this WG does not seem to be justified. In addition to the two above important issues, the 

manuscript seems to miss some publications of high space-time resolution WG, including in the Swiss 

environment. More important comments are listed in the two review reports. 

Reply: We would like to thank the editor for her efforts and in putting together this summary on the 

reviewers’ main points. In the following, we respond to these in a general comment. Please also 

consider our replies to referee #1 and #2. 

Indeed, the two reviewers assess the novelty of the study rather differently. It is true, that the 

precipitation generator itself is methodologically not new, but rather re-built after Wilks and others. The 

paper clearly states that. However, the main challenge (and the main work) of such a model is to 

calibrate and implement it. In a practical application a multitude of concrete decisions and assumptions 

need to be made, such as the selection of time-period, the choice of non-zero precipitation distribution, 

the setup of calibration (each month or season separately or something else) to name a few. These 

practical steps, i.e. the “lessons-learnt” and the resulting consequences for the quality of the weather 

generator, need to be documented. It was not the purpose of this study to invent a novel stochastic 

modeling approach. The aim is rather to have a sufficiently simple tool ready for current climate that 

can be re-adjusted for future climate conditions in a subsequent study (a follow-up article is planed). 

Following the reviewer comments, we realized though that the latter aspect was not emphasized 

enough in the abstract and the introduction. In addition, in retrospective, the title was misleading and 

may have caused wrong expectations. We have changed the title to “Implementation and validation of 

a multi-site daily precipitation generator over a Swiss river catchment”. 

We agree that we have not analysed topographical aspects in detail but the topographical analysis 

was implicit by using the Thur catchment with its different precipitation characteristics among the 

stations at different altitudes (see Figure 1 of the manuscript). These characteristics, ranging from e.g. 

a summer wet day frequency of 0.55 at Saentis (2502 m.a.s.l.) to a wet day frequency of 0.3 at 

Andelfingen (382 m.a.s.l, only about 60 km away), poses a challenge to a weather generator. To test 

whether a statistical tool is able to capture these different climata is one aim of our study. In the 

revised manuscript we spell out more clearly, which aspects of this project are novel, and what the 

implications of those are. 

We agree with the editor, that we have missed a few important publications of space-time WGs, in 

particular from the hydrology-community. In the revised manuscript, we will provide citations to the 

following studies: 

Huser, R., & Davison, A. C. (2014). Space-time modelling of extreme events. Journal of the Royal 
Statistical Society: Series B (Statistical Methodology), 76(2), 439–461. doi:10.1111/rssb.12035 

Mezghani, A., & Hingray, B. (2009). A combined downscaling-disaggregation weather generator for 
stochastic generation of multisite hourly weather variables over complex terrain: Development 
and multi-scale validation for the Upper Rhone River basin. Journal of Hydrology, 377, 245–260. 
doi:10.1016/j.jhydrol.2009.08.033 



Paschalis, A., Molnar, P., Fatichi, S., & Burlando, P. (2013). A stochastic model for high-resolution 
space-time precipitation simulation. Water Resources Research, 49(12), 8400–8417. 
doi:10.1002/2013WR014437 

We further have to add, that it was difficult to reply to some of the allegations raised by referee #2 due 
to their unspecific manner. However, based on the more specific comments and the issues raised by 
referee #1, we hope that we could address the main critical points. 
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Authors reply on comments of referee #1 

The authors would like to thank reviewer #1 for his/her valuable and detailed comments. We will first 

give a general reply, then answer the specific comments, and subsequently address the technical 

comments. For clarification, the referee’s comments are repeated first and displayed in italic letters, 

followed by the authors’ replies. 

General reply 

We are happy that referee #1 likes the presentation of our article in terms of readability, clarity, 

structure and presentation of visual graphics. His/Her specific comments are excellent suggestions for 

improving the current generator. Some of the suggestions require rather fundamental changes beyond 

the scope of this paper. Therefore, these particular issues must be tackled more thoroughly in future 

work. However, as suggested by the reviewer, we will discuss these aspects in the text of the revised 

manuscript version and put the existing approach in this context. 

Following the two reviewers’ comments, we will sharpen the motivation and goal of the presented 

study substantially in order to meet the expectations. The overarching goal is to document the specific 

implementation of a multi-site weather generator suggested in the literature, validate this 

implementation for the current climate and apply the generator as a statistical downscaling tool for 

future local climate. The latter will be presented in a separate, additional study currently in preparation. 

We therefore deliberately chose a simple tool that can be easily adapted in a climate change context, 

thereby complementing and improving existing climate change scenarios for Switzerland. Perturbing 

the generator for a future climate is part of the subsequent article. The aim of the article under revision 

here is to test and evaluate the implementation of the multi-site precipitation generator under current 

climate conditions in order to understand its capabilities and caveats. In the revised manuscript we will 

better motivate our study in the abstract, the introduction and through the text. 

We agree with the reviewer, that the novelty of the presented article lies not in the generator-tool itself, 

but rather in its concrete implementation and application to a Swiss catchment including the 

presentation of the complex pathway to calibrate it. Following the comment of referee #2, we realized 

that our manuscript title does not well reflect this aspect and might even evoke wrong expectations 

among the readers. We have therefore changed the title to “Implementation and validation of a multi-

site daily precipitation generator over a Swiss river catchment”. 

Specific Comments 

Comment 1: This model captures the mean behavior relatively correctly, but does not capture 

extreme events properly. The mixture of exponential variables, which describe precipitation amounts, 

is not only unable to reproduce observed extremes (see Fig. 9), but it is certainly even worse at 

predicting future (non-observed) extremes, owing to the light tail of the assumed exponential 

variable…The model advocated by Vrac and Naveau (2007), which uses a generalized Pareto 

distribution (GPD) for the tail, has an asymptotic justification and thus much better at estimating 

probabilities for rare events. If the goal of the proposed WG is to be used in impact and risk 

assessment studies (as claimed several times in the paper), possibly in a climate change context, I 

think that extreme events should be better captured. 

Reply 1: We agree that the proposed mixture model of Vrac and Naveau (2007) better represents 

daily extreme precipitation amounts. However, fitting this model to daily precipitation amounts at single 

months introduces a large uncertainty, since the proposed model relies on 5 parameters (gamma 

shape, gamma scale, threshold, pareto scale and pareto shape). Additionally, although the GPD 

distribution alleviates the underestimation of daily extreme events, it likely does not improve the 

reported underestimation of multi-day precipitation sums (Fig. 9). This is because the precipitation 

amount model currently does not include any autocorrelation. In our view, this aspect is of even 
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greater concern than the underestimation of daily extremes. However, improving our precipitation 

generator with regard to multi-day extremes goes beyond the scope of this study and will be part of 

future work. We added a sentence to Section 6 (Summary and outlook), giving a perspective on this 

aspect. 

Concerning further model development, we plan to refine the presented WG in a future study by using 

multi-state Markov chains (e.g. dry, wet and very wet) in combination with different probability density 

functions for wet and very wet days in order to improve its main deficiencies. The use of this approach 

has the advantage to better capture one-day and multi-day extremes as well as to include a temporal 

memory in the precipitation amount process. We have added a sentence in Section 6. 

The reviewer is right that care should be taken when using our simulated time-series as a data basis 

for any risk and impact assessment studies. We reformulated those sentences concerning this aspect. 

Comment 2: The proposed WG simulates stationary time series (month by month). Does this make 

sense over a period of 51 years (and for the near future)? A non-stationary model could perhaps 

explain part of the inter-annual variability, that is not captured in Fig 4. And also, again, if the goal is to 

use this WG for risk and impact assessment, does it make sense to assume that climate is stationary? 

Can the WG be used to extrapolate in the future? 

Reply 2: Our goal is to develop a simple tool that generates time-series consistent with mean 

conditions. In addition, it should be easily adjustable for future climate mean conditions. In a climate 

change context (to be published in a follow-up article) we will use standard climatological periods of 30 

years. In this study, however, we chose a relatively long time-period of 51 years, in order to accurately 

assess the added value of a multi-site generator against multiple single-site generators. Reducing the 

time-window of calibration increases the sampling uncertainty (as shown in Figure 3 with artificial data) 

and hence the determination of added value becomes more uncertain, too. In the revised manuscript 

(in Section 3.4.1) we will include this reasoning for the particular choice of time-period. 

Nevertheless, introducing a non-stationary model would certainly be a valuable extension to the 

current generator. Although precipitation over the Thur catchment does not feature a trend over the 51 

years, one could sample from the observed interannual variability in the WG-parameters and add 

henceforth an additional stochastic component. This direction of future development is briefly 

mentioned in the revised manuscript (Section 6). 

Comment 3: The model captures spatial coherency between monitoring stations, but does not 

describe spatial dependence at ungauged locations. Therefore, it is impossible to simulate 

precipitation data over the whole catchment, which may be essential for risk assessment (e.g., if the 

simulated data are needed as input of a hydrological rainfall-runoff model). All pairwise correlations 

between the different stations are computed empirically, although there is a large geostatistics 

literature about Gaussian processes, (stationary or non-stationary) correlation functions, etc. Why not 

fit a correlation function to the data, which would: - allow simulation over the whole catchment, - 

decrease the number of parameters drastically (therefore also the uncertainty) by exploiting the 

inherent spatial structure, - automatically yield positive definite correlation matrices (without any 

adjustment), - easily generalize to many more time series? 

Reply 3: We agree that the suggested geostatistical model is an interesting alternative approach but 

unfortunately it is not compatible with our proposed model for the following reasons:  

(a) The number of parameters in our model is certainly large and a correlation function would reduce 

this number drastically. However, from a theoretical point of view, geostatistical models (be it isotropic 

or anisotropic models) rely on the assumption of stationarity, which is not sufficiently fulfilled in regions 

with a complex topography (e.g. Schiemann et al., 2010), such as the Thur catchment in this study. In 

addition, from a practical point of view we see some problems in estimating a correlation function. 

Since we only use a small number of stations (8) the uncertainty of fitting a correlation function would 
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be substantial. As it can be seen from the Correlogram (see Fig. 1 below) the correlation (p) shows 

large variations for all inter-station distances (h). 

(b) The potential to simulate precipitation also at ungauged location is obviously appealing. However, 

the specification of a correlation function would not be enough. Additionally, further parameters of the 

precipitation generator (i.e. transition probabilities and parameters of the probability density function) 

would have to be interpolated consistently in space. This is not straightforward given the complex 

topography. 

(c) Concerning the problem with the positive definite correlation matrices, a correlation function could 

not alleviate this problem. This is because it is the pair-wise optimization process (see chapter 3.3.2) 

that yields non-positive correlation matrices and not the estimation of the observed correlation 

matrices. We clarified this aspect in the revised manuscript in chapter 3.3.2. 

Nevertheless, we think it is certainly worth mentioning this alternative modelling approach in the 

discussion part (Section 5) of our revised manuscript together with an explanation why we have 

decided against it. 

 

Figure.1: Correlogram for the investigated eight stations of the “Thur” catchment. It describes the 
spatial correlation p as a function of the inter-station distance h. Each point refers to a station pair. 

The correlations between the stations was calculated over a time-period of 1961-2011. 
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Comment 4: The number of parameters in the model is very large, so simplifications should be 

considered, e.g., by - fitting a correlation function (see point (3)). This would decrease the number of 

spatial dependence parameters, though spatial heterogeneity might be difficult to take into account. - 

fitting a global yearly model, for example using splines or sines/cosines (instead of fitting separately 

one model per month). This would decrease the number of temporal dependence parameters, and 

yield a coherent model throughout the whole year. 

Reply 4: We agree with the reviewer that fitting a global yearly model would decrease the number of 

parameters, for instance by specifying a GLM with cos/sin harmonic functions as co-variates as e.g. 

described in Furrer and Katz (2007). However, since our generator is later subject to be perturbed for 

future climate using a delta change approach, we would rather stick to empirical estimates of these 

parameters for each month separately. In a GLM-context, the prediction of future WG-parameters 

would have to be done using a number of co-variates (such as e.g. in Beuchat et al. 2012), assuming 

stationary link functions between the predictors and the predictand. Furthermore, the selection of the 

(large-scale) predictors is far from trivial. Especially in regions where local effects dominate the 

precipitation process (e.g. Alps) there is a risk of model over-fitting. Also, to accurately capture the 

seasonal cycle in the climatic change of certain precipitation characteristics (e.g. wet-day frequency) 

would be a huge challenge. For these reasons, we opt here for the simpler solution. 

Furthermore, the proposed model development would not substantially improve the model in terms of 

its main deficiencies: i.e. representation of extremes, too low inter-annual variability, and 

underestimation of multi-day spell lengths. For future research, we would rather spend resources in 

improving these main deficiencies. 

Regarding the spatial correlation function, we refer to reply 3. 

Comment 5: The Markov chain of order 1 does not capture well multi-day spells (see Fig. 7, for 

example). Maybe, a 2nd-order Markov chain (AR(2)) would do a better job. . . Or maybe a model of 

type ’ARMA(1,1)’ would fit better? Of course, the number of parameters would increase if a more 

complex model is considered, but this would also better capture long-range dependencies. . . 

Reply 5: To select the order of the Markov chain model we consulted the Bayesian information 

criterion (BIC). Based on this analysis we did not find a substantial improvement of 2
nd

-order against 

1
st
-order MC (see Figure 2 below). We therefore opted for the simpler model to also limit the number 

of parameters. Given a rather short sample size, the risk of introducing large uncertainty would be 

much higher for a 2
nd

-order model compared to a 1
st
-order model. For further details we refer to our 

reply to your technical comment # 2.  

Note, that selecting a higher order Markov model does not alleviate the underestimation of long multi-

day spells to a full extent. To improve the duration of multi-day spells, the model would have to be 

conditioned on other atmospheric variables (in particular circulation-related) (Chandler and Wheater, 

2002). This however is out of scope of the present study. Finally, if a correct reproduction of long-

lasting spells is the main focus, spell lengths generators (e.g. Racsko et al., 1991) might be the more 

appropriate way forward. 

Regarding the suggestion of specifying an ARMA (1,1) model, in our view this would be inappropriate, 

since we are dealing here with discrete data (dry/wet) rather than with continuous time-series. 

Comment 6: In Section 4, the authors validate their WG by looking at different temporal or spatial 

statistics, such as long-term mean, inter-annual variance, PDF of non-zero precipitation, dry and wet 

spells, annual maximum sums of consecutive days, etc. However, I guess that there is no validation of 

space-time interactions. For example, if Z(s,t) denotes the precipitation amount at station s and time t, 

a possibility would be to see if the model and the data agree on statistics of the type ’X = 
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P(Z(s2,t+k)>z | Z(s1,t)>z)’ for increasing values of z? Here, the statistic X represents the probability 

that it rains at least z mm at station s2, given that it rained similarly at station s1, k days earlier. Have 

the authors checked this kind of space-time dependencies? 

Reply 6: We have not validated this aspect. Since the investigated catchment is of rather small size, it 

is very likely that rain occurrence or non-occurrence will be recorded at all stations simultaneously on 

the same day (see also Table 1 in the manuscript). Certainly, if we have a larger catchment, e.g. those 

of the Rhine river, it would be interesting and worthwhile to investigate these time-space statistics. A 

catchment that is frequently affected by frontal passage of rain, this would be a very relevant aspect of 

analysis. 

We added a sentence to the discussion (Section 5) of the revised manuscript.  

Comment 7: The title of the paper is ‘Stochastic modeling of [. . .] over complex topography’, but the 

topography information does not appear anywhere in the model. Hence, how could the model be 

modified in order to incorporate information about altitudes, slopes, etc., and therefore hopefully better 

predict precipitation at unobserved locations? 

Reply 7: The consideration of topographic effects is a prerequisite for establishing a weather 

generator that may be applicable comprehensively over a complex topography area (not just multiple 

sites).Generalized linear models (McCullagh and Nelder, 1989) or Bayesian Hierarchical models 

(Gelman et al. 2004) are theoretically appealing frameworks that allow modelling of physiographic 

dependencies into the amount part of our weather generator. This alone is however not sufficient for a 

space-time weather generator, as the spatial dependence of (daily) precipitation is also determined by 

spatial autocorrelation not just the physiographic conditioning of parameters. Clearly, the development 

of a space-time weather generator that deals with spatial autocorrelation, physiographic conditioning, 

intermittence and temporal autocorrelation is far from trivial and will require fundamental 

methodological development, before applications can be attempted.  

Technical Comments 

Comment 1: p. 8742, L.7: A reference about space-time modeling of rainfall extremes in Switzerland 

is the following: Huser, R. and Davison, A.C. (2014, JRSS B), "Space-time modelling of extreme 

events". 

Reply 1: We have inserted this reference in the introduction. 

Comment 2: p. 8743, L.25: The BIC is used to select the order of the Markov chain. However, it is 

known that it typically over-penalizes complicated models (which might explain why a 2nd order model 

was not retained). What does the AIC say? 

Reply 2: It is true that the BIC criterion tends to be more conservative than the AIC criterion. We 

chose the BIC as a model selection criterion for two reasons: First, we deliberately aimed for a simple 

model. Second, at large sample sizes as here with 51 years of daily data, the AIC tends to select over-

proportionally higher-order models (e.g. Katz 1981 or Wilks 1998). Both, the AIC and the BIC show a 

large improvement when we go from a zero-order to a first-order model. However, the difference when 

going from a first-order to a second-order is almost negligible (see Figure. 2), which is true for both 

AIC and BIC. 
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Figure. 2: Bayesian information criterion (BIC) for 0-order (top), first-order (middle) and second-order 
(bottom) Markov chain over Switzerland. The BIC was calculated over a time-period of 1961-2011 

using a daily gridded precipitation data set from MeteoSwiss(Frei and Schär, 1998)) 
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Comment 3: p. 8744, L.2: A threshold of 1mm dayˆ{-1} was used. How sensitive are the conclusions 

with respect to this threshold? How many zeros are there? 

Reply 3: The threshold of 1mm/day to distinguish between wet and dry is standard practice for station 

measurements (see e.g. “Peterson et.al: “http://etccdi.pacificclimate.org/docs/wgccd.2001.pdf”, WMO, 

Rep. WCDMP-47, WMO-TD 1071, Geneve, Switzerland, 143pp”). An analysis of the threshold 

sensitivity was not performed so far. We expect that our main conclusions about the added value of a 

multi-site WG also hold for another threshold. This is because the precipitation generator, be it in a 

single-site or multi-site configuration, is calibrated at individual stations with the same WG parameters 

(amount and occurrence process) for both configurations. A shift in the threshold would therefore 

affect both configurations in the same way. 

We do not fully understand the question about the number of zeros. In particular, for which season, 

station, granularity does the reviewer refer to? The number of zeros per given month and station 

depends on the precipitation regime of the investigated stations. For a high-elevation site such as 

“Saentis” the wet day frequency ranges from 0.37 in fall up to 0.53 in summer (see Fig. 5 in 

manuscript). Consequently, the dry day frequency ranges from 0.47 (summer) up to 0.63 (fall), this 

yields about 15 to 19 dry days (zeros) per month. For a low-elevation site such as “Andelfingen”, the 

wet day frequency is more constant through the year and amounts approximately 0.35 with about 20 

dry days per month. 

Comment 4: p. 8745, L.22-23, ‘they underestimate [. . .] (gamma distribution)’: This sentence is 

misleading, I think, because the exponential and gamma densities decay at the same rate at infinity, 

so they are likely to give similar probabilities to extreme events. 

Reply 4: We agree and we will rewrite this sentence. 

Comment 5: p. 8746, L.7-8, ‘The parameters [. . .] maximum-likelihood’: As already mentioned above, 

it would be better to have a spatial model linking the parameters, and estimate everything 

simultaneously (instead of estimating a lot of parameters separately from station to station). 

Reply 5: We refer to our reply to your specific comment # 3. We take up this idea as alternative 

modelling approach in our discussion part. 

Comment 6: p. 8747, L.7-8: The point 4.2.2 is not very clear to me... 

Reply 6: The point 4.2.2 simply explains how we randomly sample from a mixture of two exponential 

distributions. In particular, a random number (lying between 0 and 1) is compared to the quantile-

function of the mixed distribution to assign the corresponding precipitation amount at a given day. We 

have rewritten the sentence to clarify. 

Comment 7: p. 8747-8748, S3.3.2: How are the correlation matrices estimated? Empirically? If so, this 

might induce problems if the number of stations is large, and also it does not ensure that the 

correlation matrices are positive definite. A better solution is, as explained above, to assume and 

estimate a correlation function. 

Reply 7: Yes, the correlation matrices were estimated empirically on a monthly basis. Indeed, we 

encountered problems when including more than 12 stations. The reviewer is also correct that the 

chances are higher that the correlation matrices are not positive definite. We have reported on both 

these problems in the original manuscript (page 8750, line 17-18). These limitations are certainly a 

strong downside of the proposed generator. We aim at improving the generator in this direction in 

future work.  

http://etccdi.pacificclimate.org/docs/wgccd.2001.pdf
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Comment 8: p. 8750, 19-20, ‘In absence of [. . .] matrix was chosen’: How was this fall-back solution 

implemented? By minimizing a certain norm? If so, which one? 

Reply8: The nearest positive definite matrix was found by applying the R-function “nearPD” from the 

R-package “matrix”. This function uses the algorithm proposed by Higham (2002), which uses a 

weighted version of the Frobenius norm. In the revised manuscript, we included an additional 

sentence to clarify this issue. 

Comment 9: p. 8751, S3.4.1: This section shows that the model has a lot of parameters, and that it is 

crucial to reduce this number to avoid huge uncertainties and optimization issues... 

Reply 9: We partly agree with the reviewer. For the replies we refer to your specific comment # 3 and 

# 4. 

Comment 10: p. 8752, L.18, ‘roughly 19’: In fact the theoretical reduction is (asymptotically) 

sqrt{10000/30} = 18.3. . . 

Reply 10: Yes. Thanks. We will substitute 19 by 18.3 at the indicated position. 

Comment 11: p. 8754, L.27, ‘33%’: This percentage seems very low! This might be due to 

nonstationarities that the model is unable to capture, or simply because the model strongly 

underestimates probabilities of extreme events. 

Reply 11: Indeed, the percentage is low but comparable to other studies applying a similar WG model 

(e.g. Gregory et al. 1993) as mentioned in the manuscript. We agree, that the underestimation of inter-

annual variability in the monthly sums is attributed to the stationarity assumption in the annual cycle of 

the WG parameters. We consider to highlight the existing discussion of this issue more prominently 

(see section 6). Also, in the outlook-section we have outlined how this problem could be circumvented 

(page 8762, line 26). 

Regarding the underestimation of extreme events, we suppose there are several issues contributing to 

this problem. The precipitation generator not only misses the large observed precipitation sums, but 

also misses to capture the small observed amounts of precipitation sums (compare violet and grey 

shading in Figure 4). The variability underestimation is therefore more likely caused by forcing our 

generator solely by mean conditions, whereas in real-world there are large fluctuations from year-to-

year. 



Authors reply on comment of referee # 2 

Comment: I have several problems with this scientific article. The first one is that this looks more like 

a class rather than a scientific paper. Authors expend a lot of time describing single site weather 

generators for nothing. All that is repetition and it can be found everywhere. The second problem is 

that authors are very superficial in their literature review and over simplified the publications already 

published. I’m extremely sure that they haven’t read the papers they mention in the review, so they 

have no idea of the detailed method developed in each of these previous approaches. Another 

problem is that the title made me think that they developed something especial for complex 

topography areas, something the other developer scientist didn’t take into account. In fact, authors 

only apply the weather generator in some weather stations in the mountains. Some authors have done 

the same and published their work without advertising the issue. The methodology per se is nothing 

new. Authors propose no new ideas, no new methods, and no nothing. This is an application of 

methods already published and they add nothing to the science of stochastic modelling. Unfortunately, 

from my point of view, this proposed article is not to the level of scientific publication. 

Reply: The authors would like to thank referee # 2 for his/her efforts. 

The main critics of Referee #2 is the novelty of the article. We understand this point in the sense that 

our precipitation generator is an implementation and calibration of a generator proposed in the 

literature by Wilks and others. We mention this at several locations in the original manuscript. The 

novelty lies in its application to a catchment over Switzerland with a cascade of methodological 

challenges to calibrate and implement it. We are convinced that it is of scientific relevance to 

document this specific implementation, i.e. the “lessons-learnt”, in order to make use of this weather 

generator in further studies and to make it available to other groups. Having said that, we 

acknowledge that our manuscript-title may have been misleading (as claimed by the reviewer). From 

the title alone, one would expect a novel approach on stochastic modeling taking into account 

topographical information, which is not the case here. In the revised version of the manuscript, we 

have changed the title to: “Implementation and validation of a multi-site daily precipitation generator 

over a Swiss river catchment”. In addition, we fully acknowledge that the purpose of the study needs to 

be better motivated in the abstract, introduction and conclusions. The presented precipitation 

generator is mainly developed to be used in a subsequent study as a statistical downscaling technique 

for a future climate (to be published in a follow-up article in preparation). Therefore, we deliberately 

chose a tool which is sufficiently easy to handle also in a climate change context. The main aim of the 

article under review is to describe the generator, its implementation and validation for current climate. 

We have largely rewritten the abstract and introduction with these arguments. Note, that some of the 

citations in the original manuscript have been omitted in the revised version.  

Regarding the point concerning the review of existing literature, we realize that we indeed missed to 

cite some relevant literature (see also comment by the editor), in particular from the hydrology-

community. We apologize for that and have included in the revised version citations to the following 

stochastic precipitation-modelling approaches: 

Huser, R., & Davison, A. C. (2014). Space-time modelling of extreme events. Journal of the Royal 
Statistical Society: Series B (Statistical Methodology), 76(2), 439–461. doi:10.1111/rssb.12035 

Mezghani, A., & Hingray, B. (2009). A combined downscaling-disaggregation weather generator for 
stochastic generation of multisite hourly weather variables over complex terrain: Development 
and multi-scale validation for the Upper Rhone River basin. Journal of Hydrology, 377, 245–260. 
doi:10.1016/j.jhydrol.2009.08.033 

Paschalis, A., Molnar, P., Fatichi, S., & Burlando, P. (2013). A stochastic model for high-resolution 
space-time precipitation simulation. Water Resources Research, 49(12), 8400–8417. 
doi:10.1002/2013WR014437 

 



Most of the other comments of referee #2 are difficult to address, since the critical points are not 

substantiated. Examples are the claim that we have not read the papers and that we have no idea 

about the published methods in detail. We strongly object to this substantial allegation of non-scientific 

practice. 

It is rather difficult, if not impossible, to respond point-by-point to these review comments without more 

details on what the referee is specifically criticizing. We note that the journal guidelines for reviewers 

contain the following paragraph:  

“Referees should explain and support their judgments adequately so that editors and authors may 

understand the basis of their comments. Any statement that an observation, derivation, or argument 

had been previously reported should be accompanied by the relevant citation.http://www.hydrology-

and-earth-system-sciences.net/review/obligations_for_referees.html. 

In general, we have to assume that referee #2 criticizes similar points as referee #1 and hence we 

hope that our reply to referee #1 also addresses the majority of the comments by referee #2. 



List of all relevant changes (page and line numbers refer to the marked-up version of the revised manuscript) 

Page Line Changes 
1 1-4 Title has been changed to Implementation and validation of a multi-site daily precipitation generator over a Swiss river 

catchment 
 

1 
2 

16-28 
1-24 

Abstract has been completely reformulated to better motivate the study 
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 15 

ABSTRACT 16 

Many climate impact assessments over topographically complex terrain require high-17 

resolution precipitation time-series that have a spatio-temporal correlation structure consistent 18 

with observations. This consistency is essential, for spatially distributed modelling of 19 

processes with non-linear responses to precipitation input (e.g. soil water and river runoff 20 

modelling).simulating either current or future climate conditions. In this regardrespect, 21 

weather generators (WGs) designed and calibrated for multiple sites are an appealing 22 

statistical downscaling technique to stochastically simulate multiple realizations of possible 23 

future time-series that approximate consistent with the observed temporal and spatial 24 

dependencies.local precipitation characteristics and its expected future changes. In this study, 25 

we present a stochastic the implementation and validation of a multi-site precipitation 26 

generator and validate it over the hydrological catchment Thur in the Swiss Alps. The 27 

modeldaily precipitation generator following ideas of Wilks (1998). The generator consists of 28 
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several Richardson-type WGs that are run with spatially correlated random number streams 1 

reflecting. We investigate the applicability of the observed correlation structure among all 2 

possible station pairs. A first-order two-state Markov process simulates intermittence of daily 3 

precipitation, while precipitation amounts are simulated from a mixture model of two 4 

exponential distributions. The model is generator for the current climate by analysing 5 

systematic biases and stochastically generated variability and assess the added value of a 6 

multi-site generator compared to multiple single-site WGs. Results are presented for the 7 

Swiss hydrological catchment Thur in the Swiss Alpine region for current climate condition. 8 

The calibrated separately for each month over the time-period 1961-2011. 9 

Themulti-site WG is skilful at individual sites in representing the annual cycle of the 10 

precipitation statistics, such as mean wet day frequency and intensity as well as monthly 11 

precipitation sums. It reproduces realistically the multi-day statistics such as the frequencies 12 

of dry and wet spell lengths and precipitation sums over consecutive wet days. Substantial 13 

added value is demonstrated in simulating daily areal precipitation sums in comparison to 14 

multiple WGs that lack the spatial dependency in the stochastic process: the multi-site WG is 15 

capable to capture about 95% of the observed variability in . Limitations are seen in 16 

reproducing daily areaand multi-day extreme precipitation sums, while the summed time-17 

series from multiple single-site WGs only explains about 13%. Limitation of the WG have 18 

been detected in reproducing observed variability from year to year, a component that has not 19 

been considered in the WG calibration. and in reproducing long dry spell lengths. Given the 20 

obtained performance, of the presented stochastic model is expected to be generator, we 21 

conclude that it is a useful tool to re-sample the observed record and valuable to be used as a 22 

statistical downscaling method in agenerate precipitation series consistent with the mean 23 

aspects of the current and future climate change context. 24 

 25 

1 Introduction 26 

In Switzerland, precipitation is a key weather variable with high relevance for sectors such as 27 

energy production, infrastructure, tourism, security, agriculture and ecosystems. Owing to a 28 

complex topography, daily precipitation varies strongly in space and in time (Frei and Schär, 29 

1998; Isotta et al., 2013). The spatial distribution of daily precipitation frequency and 30 

intensity clearly depends on the topography, with higher frequencies and intensities along the 31 
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North-Alpine ridge during summer, and a strong north-south gradient with heavier intensities 1 

in southern Switzerland from spring untilto autumn. The most prominent weather situations 2 

causing these precipitation patterns are shallow pressure systems favouring convective 3 

precipitation, orographically induced precipitation (e.g. Föhn situations), and frontal passages. 4 

Precipitation amounts and frequencies are typically largest in summer, mainly due to 5 

convective processes (Frei and Schär, 1998). 6 

Given the expected changes in the hydrological cycle over the 21st century (Allen and 7 

Ingram, 2002; Held and Soden, 2006), the need for reliable and quantitative future local 8 

precipitation projections in Switzerland is continuously growing. To effectively assess the 9 

impacts related to changes in precipitation, often highly localized daily data are needed that 10 

are ideally both consistent in time and in space (e.g. Köplin et al., 2010). Currently, in 11 

Switzerland various impact assessment reports rely on the statistically downscaled 12 

precipitation change data derived from regional climate models by the well-known and simple 13 

delta change approach, which shifts an observed time series by a model-derived change in the 14 

mean climate (BAFU, 2012; Bosshard et al., 2011; CH2014-Impacts, 2014). The delta change 15 

approach accounts for changes in the mean annual cycle, but potential changes in inter-annual 16 

variability, changes in wet-day frequency and intensity or of spell lengths are not taken into 17 

account. Hence, the data are also not suitable for the analysis of future changes in extreme 18 

events (Bosshard et al., 2011). It is our aim here to develop a statistical downscaling method 19 

for Switzerland that overcomes some of these limitations and that subsequently can be easy 20 

applied to climate model output. 21 

Over recent years a vast number of statistical downscaling methods have been developed that 22 

go far beyond a simple delta change approach (Maraun et al., 2010). These include bias-23 

correction methods (e.g. Themeßl et al., 2011), regression-based methods (e.g. Hertig and 24 

Jacobeit, 2013) or weather generator (WG) approaches (e.g. Chandler and Wheater, 2002; 25 

Mezghani and Hingray, 2009). For our purposes, the latter method is especially appealing, 26 

since it includes a stochastic component. This is a major improvement compared to a 27 

(deterministic) delta change approach, allowing to investigate multiple time-series and 28 

uncertainty at the local scale that are consistent with a given (current or future) mean climate. 29 

Moreover, it allows the incorporation of changes in the temporal correlation structure and 30 

consequently alterations of the dry-wet sequences. From an agricultural impact’s perspective 31 

this is a key aspect of future precipitation change (e.g. Calanca, 2007). 32 
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A serious limitation of many WGs is that they are often calibrated to observations at single 1 

sites only, therefore lacking the spatial correlation structure that is required for many 2 

applications, particularly in the context of hydrological impact modelling in a topographically 3 

complex terrain such as the Alps. A number of sophisticated approaches in time-space 4 

precipitation simulation have been put forward in the literature to address this issue, such as 5 

copula based approaches (e.g. Bárdossy and Pegram, 2009), Hidden Markov models (e.g. 6 

Hughes et al., 1999) Poisson cluster models (e.g. Cowpertwait, 1995; Fatichi et al., 2011) or 7 

more sophisticated field generators (e.g. Paschalis et al., 2013). K-nearest neighbor 8 

resampling approaches represent a further possibility to ensure the spatial coherence (e.g. 9 

Buishand and Brandsma, 2001). Each of these time-space WGs come with method-specific 10 

benefits and limitations for the reproduction of the daily precipitation statistics and 11 

consequently its use in impact models. For instance, some of them do better in simulating 12 

more realistically longer-term variability (e.g. generalized linear model (GLM) based multi-13 

site WGs, Chandler, 2014), while some are explicitly adapted to deal with extreme 14 

precipitation (e.g. Huser and Davison, 2014).  15 

The main purpose of our precipitation generator is its use as a downscaling tool in a climate 16 

change context. It should be easily transferable to different climatological regions and time-17 

periods and its generated time-series should serve several impact applications that have 18 

different needs in terms of time-space consistency. For these reasons we opt for a 19 

precipitation generator whose degree of complexity and associated calibration requirements 20 

are still sufficiently easy to handle. This is accomplished with the multi-site precipitation 21 

generator proposed by Wilks (1998) that is based on a Richardson-type WG (Richardson, 22 

1981) run with spatially correlated random number streams. 23 

In this study, we implement and validate this multi-site generator for the Swiss catchment 24 

Thur in the Swiss Alpine region under current climate conditions to document the specific 25 

challenges encountered during the setup. The Thur catchment serves as an ideal testbed with 26 

different precipitation characteristics mainly due to the complex topography. Understanding 27 

its capabilities and systematic biases in current climate is key to later interpret the climatic 28 

changes in the simulated time-series for a future climate. Of particular relevance is the actual 29 

amount of stochastically generated variability. A second goal of the study is to assess the 30 

added value of a multi-site model against multiple single-site models. To accurately quantify 31 
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these aspects, we choose a rather long calibration period that minimizes the effect of sampling 1 

uncertainties. 2 

The structure of this paper is as follows: Sect. 0 introduces the hydrological catchment of the 3 

river Thur together with the used station data. In Sect. 0 we first describe the statistical 4 

models for simulating precipitation occurrence and amount and show how these models are 5 

combined to multi-site simulation. The validity of our generated multi-site precipitation series 6 

and the comparison to single-site generators is presented in Sect. 4. Sect. We conclude the 7 

article by5 includes a discussion and finally, Sect. 6 provides a summary and an outlook 8 

(.Sect. 6). 9 

 10 

2 Data 11 

This study focuses on the hydrological catchment of the river Thur, which is located in the 12 

north-eastern part of Switzerland (Figure 1a). The river Thur is a feeder river of the Rhine 13 

with a length of about 135 km and a catchment area of approximately 1696 km
2
. It represents 14 

the largest Swiss river without a natural or artificial reservoir and therefore exhibits discharge 15 

fluctuations similar to unregulated Alpine rivers. Its flow regime is nivo-pluvial that is heavily 16 

influenced by snowmelt (BAFU, 2007). Owing to the complex topography over this 17 

catchment area, precipitation exhibits a large variability both in space and in time. This is 18 

illustrated in Figure 1b based on gridded observational data from Frei and Schär (1998). Over 19 

1961-2011 and for a winter and summer month, the data clearly show larger precipitation 20 

frequencies and intensities over higher-elevated regions compared to the lowlands. 21 

Additionally, this catchment lies in one of the Swiss regions featuring well above-average 22 

precipitation. A large portion of these precipitation characteristics can be explained by a 23 

north-east to south-west lying mountain range (Alpstein) extracting precipitation from 24 

westerly flows and triggering convective storms. 25 

For the purpose of ourthis study here, we selected eight evenly distributed measurement 26 

stations (Figure 1a) of MeteoSwiss that meet several requirements: (a) they all provide 27 

homogenized time-series covering a 51-year period from 1961-2011 (Begert et al., 2003), (b) 28 

theyand that sufficiently reflectcover the elevation profile of the catchment area from 29 

Andelfingen lying at 382 meters a.s.l. to Saentis lying at 2502 meters a.s.l. 30 

 31 
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3 Method 1 

CoreThe core of our multi-site WG is a Richardson-type precipitation generator (Richardson, 2 

1981), that relies on the concept of modelling two processes at one single station: an 3 

occurrence and an amount process. Based on earlier work byFollowing Wilks (1998), this 4 

single-site WG is then extended in order to simultaneously generate precipitation at several 5 

sites taking into account the complex spatio-temporal correlation structure. 6 

In the following, we explain the setup of our multi-site generator step by step: Sect. 3.1 and 7 

3.2 present the concepts of statistically characterizing occurrence and amount at single-sites. 8 

The simulation procedure of new synthetic time-series is detailed in Sect. 3.3. In Sect. 3.4 we 9 

give a description of how we implemented the multi-site WG over the Thur catchment. 10 

3.1 Precipitation occurrence process 11 

Our procedure toTo model occurrence at a single station is basedwe rely on the concept of a 12 

first-order two-state Markov chain (Gabriel and Neumann, 1962; Richardson, 1981). The 13 

first-order two-state Markov chain is a statistical model describing the probability to stay in 14 

the same state or switch to the other state. In this context, first-order implies the state at a 15 

given day depends only on the state at the previous day. The use of a first-order model in our 16 

WG was justified by inspecting the Bayesian information criterionThe use of a first-order 17 

model in our WG was justified by inspecting the Akaike information criterion (AIC) (Akaike, 18 

1974) and the Bayesian information criterion (BIC) (Schwarz, 1978) revealing. Both the AIC 19 

and the BIC revealed a better match compared substantial improvement when going from a 20 

zero-order to a first-order model, but the additional gain at a second- or higher -order Markov 21 

modelsmodel was negligible (not shown). We used a specific wet-day threshold of 1 mm day
-

22 

1
 to discretize a given daily precipitation time-series X(t) at a given site into the two states 23 

‘dry’ (X(t) < 1 mm day
-1

) and ‘wet’ (X(t) ≥ 1 mm day
-1

) and to dichotomise subsequently 24 

intogenerate a binary series (i.e. Jt with Jt = 0 for a dry state and Jt = 1 for a wet state). Four 25 

transitions are to be distinguishedpossible: a dry day following a dry day (00), a wet day 26 

following a dry day (01), a dry day following a wet day (10) and a wet day following a wet 27 

day (11). 28 

Mathematically, theThe first-order two-state Markov chain model can be specified by 29 

formulating the probabilities (p) of these state-transitions: 30 
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The corresponding counterparts of transition probabilities (p00 and p10) can then be easily be 2 

derived, since the sum of two probabilities conditioned on the same state at the previous day 3 

equals one: 4 
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The two transition probabilities of Eq. (1) suffice to fully specify the first-order two-state 6 

Markov chain model. For the remaining part of this study, we therefore concentrate on these 7 

two parameters when addressing state transitions. For an estimate we rely on their conditional 8 

relative frequencies (Wilks, 2011): 9 
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where n01 and n11 are the number of transitions from dry to wet and wet to wet in the binary 11 

series and n0. and n1. are the total number of zero’s and one’s in the series followed by any of 12 

the two states. From the transition probabilities of Eq. (3) other important precipitation 13 

indices can be inferred. The wet day frequency (wdf, π) is defined as the ratio of the number 14 

of wet days to the total number of days over a given time period. It can be expressed in terms 15 

of the two transition probabilities (Wilks, 2011): 16 

1101

01

1 pp

p


           (4) 17 

Similarly, the lag -1- autocorrelation r1 is defined as the difference between the transition 18 

probabilities (Wilks, 2011): 19 

01111 ppr             (5) 20 

Since day-to-day precipitation generally exhibits positive serial correlation (i.e. r1 greater than 21 

0), p11 is usually larger than p01 and the wdf is between the two. Note, that a first-order two-22 

state Markov chain does not imply independence for lags greater than one. The 23 

autocorrelation rL (6) decays exponentially with larger lags L: 24 
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3.2 Precipitation amount process 2 

As will be detailed in Sect. 3.3, at wet days, precipitation amounts at wet days are drawn from 3 

probability density functions (PDFs) fitted at single stations. Many studies use either an 4 

exponential (Richardson, 1981) or a gamma distribution (Buishand, 1978; Katz, 1977) to 5 

model non-zero precipitation amounts (X(t) ≥1 mm day
-1

). Both distribution types, however, 6 

do not appropriately characterize the frequency of the heavily right skewed precipitation 7 

amounts: they underestimate either light precipitation (exponential distribution) and / or 8 

heavy precipitation (exponential and gamma distribution). As an alternative, a mixture model 9 

of two exponential distributions has been proposed to provide better overall fits and to better 10 

represent precipitation extremes (Wilks, 1999a). The PDF can be formulated as: 11 
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f(x) is a weighted average (weight w) of two exponential distributions with means 1 and 2. 13 

Its quantile function exists in a closed form. Consequently, random samples from this 14 

distribution can easily be obtained by inversion (Wilks, 2011). The parameters w, 1 and 2 15 

are estimated by using the concept of maximum-likelihood (Tallis and Light, 1968). Note that 16 

the estimation of PDF parameters is subject to sampling uncertainty from the available 17 

number of wet days in a given calendar month. 18 

3.3 Stochastic modelling of daily precipitation 19 

3.3.1 Single-site 20 

In this section, we demonstrate how the occurrence (Sect. 3.1) and amount model (Sect. 3.2) 21 

are applied to stochastically simulate daily precipitation at a single site. The simulation 22 

process is based on Richardson (1981) with the five above-introduced parameters serving as 23 

input in Figure 2: i.e. the transition probabilities p11 and p01 as well as w, 1 and 2. The 24 

simulation of precipitation at a given day and a given station (say A) is accomplished in four 25 

main steps (see yellow circles in Figure 2): 26 

1. A random number ut,A is drawn from a standard normal distribution. 27 
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2. The conditional wet day probability pA is determined depending on the state of the 1 

previous day. It is set to p11,A or p01,A, depending on whether the previous simulated day 2 

was wet or dry, respectively. 3 

3. The random number ut,A is compared to the standard normal quantile function Q, 4 

evaluated at pA: if ut,A is larger than Q[pA], a dry day (Jt,A’=0) is simulated and else a wet 5 

day (Jt,A’=1) is set. 6 

4.1 In case of a dry day, the simulated amount Xt,A’ is set to zero. 7 

4.2.1 In case of a wet day, a second random number vt,A (independent from ut,A) is drawn 8 

from a standard normal distribution. 9 

4.2.2 This random number is then substituted by theThe corresponding quantile (xA) of the 10 

cumulative distributionrandom number vt,A is then inserted into the quantile function of the 11 

mixture model. yielding the corresponding precipitation amount (xA) at a given day.  12 

Note that this simulation procedure could be simplified by taking random uniform [0,1] 13 

numbers instead of Gaussian random numbers. We use the latter here in order to be consistent 14 

with the later introduced multi-site extension (Sec.introduced later (Sect. 3.3.2)). 15 

Steps 1-4 are repeated over all remaining days within a certain simulation period. Based on 16 

this procedure time-series of arbitrary length can be generated that resemble observed 17 

climatological precipitation statistics, both in terms of frequency and intensity. For a more 18 

realistic reproduction of the annual cycle of precipitation the WG is calibrated on a monthly 19 

basis (see Sect. 3.4). 20 

3.3.2 Multi-site 21 

So far, the procedure to generate precipitation consists of multiple single-site WGs only. 22 

Specifically, no spatial dependence in the simultaneous simulation of precipitation at several 23 

sites was taken into account. To close this gap several single-site WGs are driven 24 

simultaneously with spatially correlated but serially independent random numbers (Wilks, 25 

1998). For simplicity, the concept is illustrated in Figure 2 for the example of two fictitious 26 

sites (A and B) only. The extension to several sites is straightforward. One of the main hurdles 27 

in simultaneously generating precipitation at several sites is the prescription of the spatial 28 

correlation matrices such that the dependence is also preserved in the final generated time-29 

series (Wilks and Wilby, 1999; Wilks, 1998). This difficulty mainly arises from the stochastic 30 
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process that partly destroys the initially imposed correlation structure again (Wilks, 1998). 1 

We will come back to this problem later. For the moment, let us assume that the optimal 2 

correlation matrices for both, occurrence and amount (i.e. AB, optim and rAB, optim), are known. 3 

In this case, the main extensions to single-site WGs are two spatially correlated but serially 4 

independent random number streams (dashed boxes in Figure 2): one for the occurrence (u) 5 

and the other for the amount (v) process. They are determined prior to the simulation process 6 

(see below) and contain the same number of days as the simulation period. Once these 7 

correlated random number streams are generated, the simulation proceeds as in Sect. 3.3.1 for 8 

all stations simultaneously. In practice, the multi-site WG implies the handling of three main 9 

methodological hurdles that are the following: 10 

 11 

1) Calculating spatial correlation coefficients AB and rAB 12 

Spatial dependence in binary series at site A and B is inferred by the phi-coefficient (AB). 13 

Similarly as the Pearson correlation coefficient, the phi-coefficient AB is bounded by -1 and 14 

1. For the precipitation amounts, the spatial correlation coefficient (rAB) is determined by the 15 

conventional Pearson product-moment correlation coefficient. The correlation is calculated 16 

over the whole precipitation series that also include time-steps with zero amounts. From a 17 

statistical point of view, this is not an optimal procedure, since the correlation coefficients 18 

could be strongly affected by the number of zeros in the time-series. However, the purpose 19 

here is to use this spatial similarity measure rather as a tool to compare the observed spatial 20 

dependencies with those in artificial data. It is assumed that the statistical limitations in the 21 

calculation apply similarly to observations and generated data. The spatial correlations 22 

between different sites are determined pair-wise. Note that the pair wise estimation of the 23 

inter-station correlation can result in matrices that are not positive definite, especially when 24 

the number of station number is large or when there are incomplete station records. 25 

 26 

2) Finding optimal spatial correlation coefficients AB, optim and rAB, optim 27 

As mentioned above, imposing observed inter-site correlations as input to our WG does not 28 

guarantee its reproduction in the generated series. This is due to a randomization process 29 

through transition probabilities calibrated at each site separately. In general, the imposed 30 

correlation is reduced by the stochastic process, both in terms of occurrence and amount 31 
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process. This characteristic is illustrated at an artificial example of two fictitious sites A and B 1 

in Supplementary Fig. 1. While the random number streams (uA and uB) perfectly incorporate 2 

the observed spatial correlation in occurrence between A and B, it is essentially the two 3 

distinct transition probabilities at the two sites that lead to a final correlation in the binary 4 

series that is much reduced (AB, sim = 0.6 compared to AB, obs = 0.8). In case of precipitation 5 

amounts the mismatch in correlation magnitude is also present (rAB, sim = 0.38 compared to rAB, 6 

obs = 0.5 ) and can be mainly explained by two factors. First, precipitation amount is only 7 

simulated at wet days (i.e. where Jt’=1), while the correlated random number streams (vA(t) 8 

and vB(t)) are representative for the full time-series. Hence, the number of zeros introduced by 9 

distinct transition probabilities impact on the generated correlation coefficient. Second, if the 10 

two fitted PDFs at the two sites are markedly different, the correlation of the observed and 11 

simulated precipitation time-series will deviate, even in absence of any zeros. 12 

To overcome this inherent problem of a multi-site WG after Wilks (1998), an optimization 13 

procedure was proposed to find an input spatial correlation that ultimately yield the target 14 

correlation of the observations. This has to be done first for the occurrence process (AB,optim) 15 

and then in a subsequent step for the amount process (rAB, optim). The optimization procedure 16 

iterates over an interval of input correlations, thereby running at each iteration the full 17 

occurrence and amount model of the multi-site WG (see Supplementary Fig. 2). After each 18 

iteration, the resulting correlation is compared to the target correlation of observations. To 19 

find an optimal correlation, we use a bisection method (Burden and Faires, 2010) as non-20 

linear root finding algorithm. The iteration is repeated until the generated correlation equals 21 

the one of observations with a precision of 0.005 (see Supplementary Fig. 2). Note that this 22 

estimation procedure is done prior to the simulation and has to be repeated for each station 23 

pair and month. 24 

 25 

3) Generation of correlated random number streams 26 

There are several approaches to generate spatially correlated random numbers streams (e.g. 27 

Monahan 2011). For the study at hand we used the concept of theapplied a Cholesky 28 

decomposition (e.g. Higham 2009): 29 

1. Sample for each station a random number stream from a standard Gaussian 30 

distribution. 31 
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2. Apply a Cholesky decomposition to the optimized correlation matrix to get a lower 1 

triangular matrix and its transposed. 2 

3. Multiply the resulting lower triangular matrix with the matrix of random number 3 

streams. 4 

Cholesky decomposition requires matrices that are positive definite, i.e. that contain no 5 

negative eigenvalues. However, in case of inter-station correlationsthe applied pairwise 6 

optimization process (see section (2) above) this is not always fulfilled and depends on the 7 

number of stations with incomplete records. In absence of positive definite matrices, a fall-8 

back solution based on the nearest positive correlation matrix was chosen. The nearest 9 

positive definite matrix was found by using the algorithm proposed by Higham (1989), which 10 

uses a weighted version of the Frobenius norm. This problem occurred in our study only a 11 

few times. Note, that the temporal correlation structure of the precipitation time-series at one 12 

specific site is not altered by the imposed spatial correlation, since the spatially correlated 13 

random number streams exhibit no serial correlation. 14 

3.4 Implementation 15 

3.4.1 Implementation of the multi-site WG over the Thur catchment 16 

Our developed precipitation generator is calibrated on a monthly basis. First, all the single-17 

site input parameters (p11, p01, 1, 2 and w) were estimated for each of the 8 stations within 18 

the catchment and for each month separately using a time-window of 51 years (1961-2011). 19 

In this study we chose a relatively long calibration period in order to minimize the effect of 20 

sampling uncertainties. This allows us to accurately assess the added value of a multi-site 21 

model against multiple single-site models and to better quantify systematic biases of the WG. 22 

For the two transition probabilities in a given month, the climatological mean over the 51 23 

yearly values of p11 and p01 was taken. In the case of fitting a PDF to non-zero precipitation 24 

amounts and the estimation of 1, 2 and w, we used the daily data over all 51 years together. 25 

In addition, a three-month window centred at the month of interest was chosen, in order to 26 

increase sample size and the robustness. The distributional parameters were derived based on 27 

maximum-likelihood (Tallis and Light, 1968). Despite our three-month time-window, cases 28 

occurred when the maximum-likelihood algorithm did not converge. For such cases, a fall 29 

back solution was applied where the parameter estimates from the previous month were 30 
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adopted. With the monthly parameters from all the calibrated single-site WGs and the 1 

monthly observed inter-station correlations (symmetric correlation matrices), the optimized 2 

correlation matrices had to be found for each month based on the procedure described in Sect. 3 

3.3.2. Note, that by calibrating the multi-site WG on a monthly instead of a seasonal basis, 4 

additional sampling uncertainty is introduced due to the rather small time-window to estimate 5 

our parameters. This is the downside of prescribing an improved annual cycle in the WG 6 

parameters. 7 

Once the multi-site WG was calibrated, we generated 100 ensembles of daily time-series, of 8 

51-year length. All the results presented in Sect. 4 are calculated over the time-period 1961-9 

2011. 10 

3.4.2 Reproduction and uncertainty of WG model parameters 11 

To test whether our developed WG is properly implemented, we evaluated the reproduction of 12 

WG input parameters extracted from the generated time-series. A correct reproduction in 13 

parameters such as wet day intensity, frequency and transition probabilities is a prerequisite 14 

for all the subsequent analyses presented in Sect. 4. The evaluation was performed for four 15 

subjectively-defined climatic regimes: a very dry, a dry, a wet and a very wet climate. The 16 

corresponding model parameters are indicated in Figure 3 with dashed vertical lines. For each 17 

of these precipitation regimes, 100 synthetic daily time-series were generated. To test the 18 

effect of sample-size, different sizes of time-windows were used: (a) 10’000 days, (b) 1000 19 

days, (c) 100 days and (d) 30 days. The latter corresponds to the same sample-size as used to 20 

simulate monthly precipitation over the Thur catchment. For each of the generated time-series 21 

the WG parameters were re-estimated and the 95% interquantile range was computed across 22 

the set of 100 realizations (Figure 3). Three main results can be inferred: (a) our precipitation 23 

generator is able to correctly reproduce the key WG parameters implying that the chances for 24 

substantial coding errors are small; (b) as expected the estimate of the input parameters 25 

becomes more uncertain thefor smaller the sample size issizes; in fact, the uncertainty range 26 

enlargesincreases by a factor of roughly 1918.3 when the sample size is reduced from a 27 

sample size of 10000 down to 30. At a sample size of 1000 the uncertainty range stays at 28 

around ± 0.03, that only marginally lowers when going to a sample of 10000. (c) the different 29 

pre-defined climate regimes affect the uncertainty, particularly in the estimated transition 30 

probabilities. In a very dry (or wet) climate, the wet-wet (or dry-wet) transition probability, 31 

respectively, exhibits large uncertainties in the estimate. This again is mainly related to a 32 
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sample size problem due to very few wet-wet (or dry-wet) pairs. Thus, we expect that the 1 

weather generator does not work optimally in arid climates. 2 

4 Results 3 

An in-depth evaluation of the generated time-series with our calibrated multi-site WG is now 4 

undertaken with real observations. First, the reproduction of the daily and longer-term 5 

precipitation statistics at individual sites is analysed (Sect. 4.1). In a second step, the 6 

performance of the multi-site model is investigated regarding spatially aggregated 7 

precipitation indices in comparison to WGs without incorporating spatial dependencies (Sect. 8 

4.2). 9 

4.1 Validation of the precipitation generator at individual sites 10 

Based on our ensemble of synthetic time-series, each containing 51 years, we analyse the 11 

reproduction of key precipitation characteristics. This validation goes beyond the 12 

reproduction of pure model parameters used to calibrate the WG (Sect. 3.4.2), as it includes 13 

precipitation statistics that are not directly used in the specification and calibration of the 14 

model. Note, that we present this analysis for the same time-period as used for calibrating our 15 

WG. This is justified for the study here, as long as we treat and use our WG to simulate long-16 

term monthly precipitation statistics. In such a setup the stationarity of the model is given by 17 

definition. However, in a climate prediction or projection context, this stationarity assumption 18 

would have to be tested and hence separate calibration and validation periods are needed. 19 

4.1.1 Long-term mean and inter-annual variance of monthly precipitation sums 20 

In a first step of validating our WG, we focus on the reproduction of the long-term mean in 21 

monthly precipitation sums. Figure 4 shows both the modelled (blue) and observed (black) 22 

long-term monthly precipitation sum for each of the eight investigated stations. In general, the 23 

annual cycle of precipitation sums is well reproduced. Consistently, this is also true for the 24 

long-term seasonal as well as for the annual precipitation sums (not shown). But the WG 25 

tends to slightly underestimate precipitation sums in June and August, and overestimate them 26 

in October. In addition, the two stations Bischofszell (BIZ) and Herisau (HES) show rather 27 

large positive deviations from the observed record during the winter months. In order to 28 

explain part of these deviations, we decomposed the long-term mean of monthly (T=30 days) 29 
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precipitation sums (E[S(T)]) into the product of the mean monthly wet day frequency (wdf) 1 

and intensity (wdi) (Figure 5):  2 

   wdiwdfTTSE           (8) 3 

Since these two climatological quantities are indirectly forced (Sect. 3.4.2), we expect from 4 

the results in Figure 3 a good match on average. As shown in Figure 5, this is true for the wet 5 

day frequency, where the deviations between generated (red) and observed (black) values are 6 

relatively small. The differences, however, are more pronounced in case of mean wet day 7 

intensities. In fact, it is the wet day intensities that explain the mismatches in precipitation 8 

sums. In case of the winter performance over Bischofszell and Herisau the deviations can be 9 

attributed to the failure of converging in case of fitting the non-zero precipitation amount. For 10 

those instances, the fallback solution had to be used (see 3.4.1). 11 

Let us nowNext we focus on the inter-annual variability of monthly precipitation sums, which 12 

is often more difficult to realistically model than the long-term mean (Wilks and Wilby, 13 

1999). The shaded areas in Figure 4 represent the inter-quartile range of the observed (grey) 14 

and modelled (blue) monthly precipitation sums. From Figure 4 it is obvious that the 15 

variability of the WG is smaller than in observations for all of the analysed stations. This 16 

implies that the stochastic model only explains part of the observed total variability. This 17 

reduced variability is expected, as observations are subject to additional sources of variability, 18 

which our comparable simple WG is not trained for. The WG is forced with mean observed 19 

values, varying between months but not between different years. The annual cycle is assumed 20 

to be stationary, and hence interannual variability, e.g. related to the North Atlantic 21 

Oscillation (Hurrell et al., 2003) is missing. Consequently, the ratio of simulated over 22 

observed variance accounts for approximately 33% on average. The magnitude of this result 23 

is consistent with other studies (e.g. Gregory et al. 1993). Further insights can be gained from 24 

a decomposition of the variance of monthly (T=30 days) precipitation sums (Var[S(T)]) into 25 

the variance of non-zero amount (Var[X ≥1 mm day
-1

]) and the variance of the number of wet 26 

days (Var [N(T)]) as proposed by Wilks and Wilby (Wilks and Wilby, 1999):  27 

      21 wdiTNVar
d

mm
XVarwdfTTSVar 








      (9) 28 

Since the mean wet day frequency (wdf) and intensity (wdi) are reasonably reproduced, we 29 

expect that the reduced variability of monthly precipitation sums originate from deficiencies 30 
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in correctly reproducing the inter-annual variability of the number of wet days and/or of the 1 

non-zero amount. One likely reason is the neglect of low-frequency variability in the WG 2 

parameters. It has been shown that physically based models that include large-scale 3 

circulation as a predictor could alleviate this problem (Chandler and Wheater, 2002; Furrer 4 

and Katz, 2007; Wheater et al., 2005; Yang et al., 2005). 5 

4.1.2 Reproduction of PDF of daily non-zero amount 6 

The adequate reproduction of the mean wet day intensity and frequency is a necessary but not 7 

sufficient precondition of a WG to be used for subsequent (impact) studies. Due to a large 8 

variability of precipitation amounts, it strongly matters how its frequency distribution is 9 

reproduced. For this, we compared simulated and observed quantiles of the daily non-zero 10 

precipitation distribution at each station (Supplementary Fig. 3). Generally, the mixture model 11 

of two exponential distributions captures the frequencies of the intensities reasonably well, 12 

even at the high-Alpine station Saentis (SAE). This is at least the case up to the 80
th

 13 

percentile, above which intensities are systematically underestimated at all stations. This issue 14 

could be overcome by more sophisticated amount models combining e.g. a Gamma with a 15 

Generalized Pareto distribution (Vrac and Naveau, 2007). However, this comes at the expense 16 

of fitting many parameters with a limited sample size. 17 

4.1.3 Reproduction of multi-day statistics 18 

While the frequencies of precipitation amounts and the frequencies of wet and dry days are 19 

realistically simulated, it remains unclear how the WG performs for multi-day spells. For 20 

many application studies, this is an essential information that requires a specific analysis. 21 

Figure 6 displays observed and modelled cumulative frequencies of dry and wet spells lengths 22 

at the example of two months and two stations. The two stations Saentis and Andelfingen are 23 

selected for display since they represent the stations with the highest and lowest elevation in 24 

the catchment. For both stations a clear seasonal difference in the probability of dry spells 25 

toward more short and less long dry spells during summer compared to winter is found. A 26 

plausible explanation are the more intermittent (convective) precipitation systems during 27 

summer. In contrast to dry spells, no seasonal differences in wet spell length probabilities can 28 

be inferred. This is likely related to the fact that the dry-dry transition probability p00 exhibits 29 

a more distinct annual cycle than the wet-wet transition probability p11. Figure 6 also shows 30 

that the frequency at shorter spell lengths (up to 3 days) is more realistically reproduced by 31 
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the model than the frequency at longer spell lengths. Generally, a better reproduction of wet 1 

spell probabilities is seen compared to the dry spell counterpart. Long dry spell lengths are 2 

more frequently underestimated by the model than longer wet spell lengths. The 3 

underestimation of long wet and dry spells is a common shortcoming of the Richardson-type 4 

weather generator and has been reported by many studies before (e.g. Racsko et al. 1991). 5 

This deficiency mainly arises due to the fast exponential decay of the autocorrelation function 6 

with larger lags (see Eq. (5)).(6)). Similar to the underestimation of variability in precipitation 7 

sums, higher-order Markov chains (Wilks, 1999a)(Wilks, 1999b) or GLMs with additional 8 

predictors might improve this aspect, which is out of scope in this study here. 9 

Given that the frequency of wet spell lengths is realistically simulated, the question arises 10 

whether this also holds for multi-day precipitation sums. Multi-day periods of rain is a 11 

common phenomenon over Switzerland, especially during prevailing weather situations that 12 

favour orographic uplift. We compared observed and simulated cumulative distribution 13 

functions (CDFs) of precipitation sums over multiple consecutive wet days (Figure 7). 14 

Overall, we found that the differences between generated and observed time-series are largest 15 

for the higher quantiles and for long lasting wet spells (5-day wet spells) where the WG tends 16 

to underestimate large multi-day sums. This reduced skill in simulating longer wet spell sums 17 

can be explained by the fact that our WG is only prescribed with the temporal structure of 18 

precipitation occurrence but not in amount. In other words, the WG has memory to 19 

realistically reproduce multi-day wet spell lengths (Figure 6), while the combined analysis of 20 

multi-day occurrence and accumulated amount loses somewhat this memory again. Two 21 

further noticeable features in Figure 7 are that intense one-day precipitation sums are often 22 

overestimated by the model compared to the observations, while a relatively good match is 23 

obtained for three-day sums. Although the deficiency in correctly simulating multi-day sums 24 

of consecutive wet days is to be expected by construction of the WG, it could be improved by 25 

more sophisticated precipitation models, such as multi-states Markov-chains with different 26 

probability density distributions at each state (Buishand, 1978; Katz, 1977). This, however, 27 

comes at the expense of fitting many additional parameters with a limited sample size. 28 

4.2 Performance of spatial precipitation indices 29 

Up to this point we evaluated the generator at individual sites only. TheOne of the key issue 30 

of this study though is the potential added value of incorporating inter-station dependencies. 31 
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Similarly as in the previous section, we analyse the performance first in terms of occurrence-1 

related statistics and second in terms of the combined occurrence and amount statistics. 2 

4.2.1 Dry and wet spell statistics for the whole catchment 3 

Based on the eight stations in our catchment with each being either in a wet or dry state at a 4 

given day, theoretically 2
8
 (=256) different dry-wet patterns in space are possible. In 5 

observations, though, it turns out that 70% of the investigated days over 1961-2011 are in fact 6 

either completely dry (45%) or completely wet (25%) and the remaining 254 dry-wet-patterns 7 

are subject to far smaller frequencies (around 10
-5

- 10
-3

 %). The pre-dominance of a dry or a 8 

wet catchment makes sense given that the catchment is relatively small and given that 9 

precipitation is to a large degree circulation-triggered. Analysing the synthetic time-series 10 

from our multi-site WG reveals an almost perfect match with observations (Table 1), a 11 

consequence of prescribing the spatial dependency structure in the occurrence process. 12 

Indeed, when re-doing the same experiments with multiple single-site WGs without inter-site 13 

dependencies, only about 2% of all days are completely dry in the catchment and none of the 14 

days are simulated as completely wet (Table 1). In a single-site WG setup, the chances for all 15 

stations being dry or wet ultimately depend on the calibrated wet day frequencies at the eight 16 

stations that remain below 0.5 in almost all months (see Figure 5). This implies that the 17 

likelihood for dry conditions over the catchment is higher than for wet conditions. 18 

Those days with complete dry or wet catchment conditions were further investigated in terms 19 

of the temporal structure. Table 1 presents observed and multi-site simulated spell length 20 

statistics for the catchment. In general, remarkably good agreement between observations and 21 

the multi-site model is found. This is also true for longer spell lengths, where the spatio-22 

temporal correlation structure is only indirectly given as input to the WG. All of these results 23 

imply that ourthe calibrated multi-site WG not only captures the frequencies of spatially 24 

aggregated binary series very well, it also does a surprisingly good job in reproducing multi-25 

day dry/wet spells of the Thur catchment. 26 

4.2.2 Daily non-zero precipitation sums over the catchment 27 

The above findings on the spatio-temporal correlation structure in the occurrence process also 28 

give confidence that daily precipitation sums aggregated over the catchment are reasonably 29 

simulated. To answer this user-relevant question, we first analyse seasonal distributions of 30 

single-day precipitation area sums over the time-period 1961-2011 (Figure 8). Area sums are 31 
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defined as the precipitation sum over the eight stations. Note, that days with an area sum of 1 

zero were excluded from this analysis and are not shown. The observations (grey boxplots) 2 

show in the median only a weak inter-seasonal variability with somewhat higher sums during 3 

summer. The spread in daily precipitation is smallest for winter and spring and largest for 4 

summer owing to the higher extreme precipitation values observed. Common to all seasons is 5 

a distribution that is heavily right-skewed ranging from nearly dry conditions up to about 220 6 

mm day
-1

. Note, that the spread shown here includes variability from year-to-year but also 7 

within the season of the same year. 8 

Compared to observations, the multi-site generator reproduces well the median of the 9 

observed daily areal sums. The relative deviations remain rather small, ranging from -8.5% in 10 

summer to +1.6% in autumn. Moreover, the multi-site model is able to capture about 95% of 11 

the observed variability in the daily sums, while the single-site WG only explains about 13%. 12 

Even for extreme areal precipitation, the deficiencies are rather small. Contrary to a multi-site 13 

model, the areal sum derived from several single-site WGs over the catchment (red) 14 

systematically underestimates median, variability and consequently the magnitude of extreme 15 

precipitation amounts (Figure 8). The relative deviations from observations in the median 16 

range from -28% in autumn to -18% in spring. The underestimation may be explained by the 17 

fact that the single-site model rarely simulates days where all stations are wet (Sect. 4.2.1). 18 

Also, the spatial structure of the precipitation amount is not accounted for. 19 

4.2.3 Annual maximum precipitation sums of consecutive days over the catchment 20 

The previous analysis has revealed a pronounced added value when incorporating spatial 21 

dependencies in the stochastic simulation of daily areal precipitation sums over the Thur.  22 

Similarly to Sect. 4.2.1, we want to go a step beyond and additionally include the temporal 23 

structure. Note that by investigating spatial precipitation sums over multi-days, we explore the 24 

limits of our WG. We analyse in Figure 9 annual maxima of observed (grey), and modelled 25 

(blue and red for multi-site and single-site, respectively) precipitation sums over several 26 

consecutive days (2, 5, and 10 days). This means that out of the aggregated catchment-time-27 

series we compute temporal sums over consecutive days and take the maximum in each year. 28 

Regarding the performance of ourthe calibrated WG in multi-site and single-site mode, Fig. 29 

8Figure 9 shows that both are clearly underestimating the observed sums. Yet, the multi-site 30 

model exhibits much smaller deviations from the observed distribution than the single-site 31 
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model, and hence the added value of the multi-site WG is clearly evident. In fact, the sums 1 

simulated with the multi-site WG are larger by a factor of around 1.8 than those generated 2 

with the single-site WG. Overall, deviations from observations are reduced from about -53% 3 

(single-site WG) to about -17% (multi-site WG). The added value of the multi-site model is 4 

not constant for different consecutive sums. Differences are larger at shorter multi-day sums 5 

and decrease toward longer time-windows. This is related to the fact that the spatio-temporal 6 

correlation structure at longer lags is not prescribed in the model as already seen in Sect. 4.2.1 7 

and Table 1. The benefit of a multi-site WG in terms of maximum daily areal precipitation 8 

sums is therefore restricted to consecutive sums over a few days only. AnAnd as a 9 

consequence for time-windows of 30 days (or monthly sums), a single-site WG performs 10 

equally good as a multi-site WG (not shown), as both models are calibrated for monthly sums 11 

at the eight stations and consequently at the catchment. 12 

4.2.45 Discussion 13 

The incorporation of inter-station dependencies in the stochastic model brings substantial 14 

added value over multiple single-site models regarding daily and multi-day areal precipitation 15 

sums over the Thur catchment. Similar benefits from the multi-site WG would be expected 16 

for other Alpine catchments and regions with complex topography, where correlations 17 

between sites are significant but well below unity. For very homogeneous regimes (inter-18 

station correlation near unity) one single-site WG would be sufficient for the catchment-area, 19 

whereas for low spatial correlations several independent single-site WGs can be used. 20 

A stochastic simulation with multi-site correlation structure comes with additional uncertainty 21 

from parameter estimations, additional implementation complexity and additional 22 

computational costs. The decision for incorporating spatial dependencies must therefore be 23 

balanced with the benefit. A careful inspection of the observed precipitation regime and its 24 

spatial structure over the catchment prior to the simulation is necessary to decide in favour or 25 

against multi-site simulation. This is also important in terms of validation: for a large 26 

catchment area that is frequently affected by frontal passages, the validation of the 27 

precipitation generator should include more complex space-time dependency analyses. An 28 

example is the probability of a certain precipitation amount at a particular station given 29 

precipitation at a neighboring station some days earlier. 30 

 31 
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For many impact applications gridded precipitation data instead of multiple scattered stations 1 

would be beneficial. This demand could be achieved  by interpolating the spatially consistent 2 

synthetic station data over the area of interest. A more sophisticated and elegant method, 3 

however, is to build a field generator, for instance by high-dimensional random Gaussian 4 

fields (e.g. Pegram and Clothier, 2001), random cascade models (e.g. Over and Gupta, 1996) 5 

or Poisson cluster models (e.g. Burton et al., 2008). An alternative would be to rely on 6 

geostatistical methods, for instance by prescribing a spatial correlation function at gauged and 7 

ungauged locations, that additionally requires specifying also parameters of the WG between 8 

the sites (e.g. Wilks, 2009). In regions with complex topography this additional interpolation 9 

is not straightforward. It could be alleviated by explicitly including information of 10 

topographic aspects (e.g. altitude, aspect and slope) in a GLM- (McCullagh and Nelder, 1989) 11 

or Bayesian Hierarchical modelling-approach (Gelman and Hill, 2006). These are appealing 12 

frameworks that allow the modelling of physiographic dependencies in the precipitation 13 

amount and occurrence model. However, this alone is not sufficient for a space-time weather 14 

generator as the spatial dependence of daily precipitation is also determined by spatial 15 

autocorrelation and not just the physiographic conditioning of parameters. Clearly, the 16 

development of a gridded space-time weather generator dealing with spatial autocorrelation, 17 

physiographic conditioning, intermittence and temporal autocorrelation is highly challenging 18 

and needs fundamental methodological development. This is beyond the scope in the present 19 

study, where our main focus was to develop an easy-to-use statistical downscaling tool for 20 

current and future climate. 21 

56 Summary and Outlook 22 

A multi-site daily precipitation generatorThe multi-site precipitation generator of Wilks 23 

(1998) has been successfully developed, implemented and tested over the Swiss alpine river 24 

catchment Thur. The generator is built after suggestions by Wilks (1998). Core of our multi-25 

site precipitation generator is a Richardson-type WG with simulation of daily precipitation 26 

occurrence as a chain dependent process and simulation ofThe precipitation generator treats 27 

precipitation occurrence as a Markov chain and simulates non-zero daily precipitation 28 

amounts from a mixture model of two exponential distributions. The spatial dependencies 29 

between the stations are imposeddependency is ensured by running the precipitation 30 

modelsWG with spatially correlated but serially independent random numbers. The model 31 

was calibrated on a monthly basis by using daily station data over a 51-year long time-period 32 
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from 1961-2011, and extensively inter-compared to the observed record and to simulations 1 

based on multiple (independent) single-site WGs. 2 

Our main findings of this study are: 3 

 Our developedThe multi-site precipitation generator realistically reproduces key 4 

precipitation statistics at single stations, including the annual cycle, quantiles of non-5 

zero precipitation amounts, multi-day spells and multi-day amount statistics. 6 

 Based on its good performance in a range of spatio-temporal precipitation aspects, our 7 

weather generator is expected to serve as a helpful data provision tool for multiple 8 

applications including climate change assessments. 9 

 The precipitation generator is able to generate relatively large stochastic variability. 10 

Nevertheless, it is rather low compared to observed inter-annual variability where it 11 

underestimates inter-annual variability by a factor of 3. 12 

 The incorporation of inter-station dependencies in the stochastic process brings 13 

substantial added value over multiple single-site WGs over heterogeneous catchment 14 

areas such as the Thur catchment: 15 

(a). The median of daily area sums are higher by about a factor of 1.3 higher than 16 

those from independent single-site models. In addition, the multi-site WG is able to 17 

capture about 95% of the observed variability, while the single-site WG only explains 18 

about 13%. 19 

 (b) Annual maxima of multi-day sums over the catchment increase by about a factor of 20 

1.8 by incorporating the inter-site dependence in the stochastic simulations. 21 

 The added value is expected to become most distinctlargest when the precipitation 22 

regime is subject to a large spatial and temporal heterogeneity as it is the case over the 23 

Thur catchment. 24 

These results give usprovide confidence that the developed precipitation generator is a very 25 

helpful tool to realistically simulate mean aspects of the current climate. NeverthelessWe 26 

therefore conclude that this generator can subsequently be used as a statistical downscaling 27 

tool to generate synthetic time-series consistent with mean aspects of the future climate. 28 

Although there is substantial improvement compared to a simple delta-change approach, from 29 

an end-user perspective, some relevant limitations remain: the need to kept in mind: The 30 
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synthetically generated time-series (for current or future climate) do not fully capture the day-1 

to-day and multi-day variability of precipitation to a full extent.. Extreme values and longer 2 

spell lengths are hence underestimated and should not be the focus of any such analysis with 3 

the data at hand. Furthermore, our generator . The generator further underestimates the year-4 

to-year variability in monthly precipitation sums. 5 

Therefore, care should be taken when using the precipitation generator as a tool for a broad 6 

risk assessment, in particular with respect to extreme events. 7 

These inherent limitations point to potential future refinements of the presented model: (a) To 8 

better reproduce extreme precipitation, we intend to implement a three-state Markov chain 9 

model with the states dry, wet, and very wet and with state-dependent PDFs. From this, we 10 

expect a substantial improvement of one-day and multi-day extremes as well as a better 11 

reproduction of multi-day precipitation sums. (b) To alleviate the underestimation of inter-12 

annual variability, we will introduce a non-stationary model. This problem could be 13 

alleviatedaccomplished by sampling the input from a distribution of observed WG parameters 14 

from the observed distribution (instead of solely taking the best estimate. A more 15 

sophisticated way would be to use a model that incorporates mean) or by formulating a 16 

regression model using large-scale atmospheric variables as predictors to estimate(see e.g. 17 

Furrer and Katz, 2007). 18 

Beside these methodological improvements the precipitation generator will be subject to two 19 

extensions: (a) the coupling of daily minimum and maximum temperature as additional 20 

atmospheric variables and (b) the adjustment of the WG parameters, such as for instance 21 

demonstrated by Furrer and Katz (2007) using Generalized linear models (GLMs). to 22 

represent a future mean climate. Finally, the time-series over the Thur catchment will serve as 23 

input for a hydrological model to assess the added value of multi- versus single-site WGs in 24 

terms of runoff and to assess the implications of the systematic biases of the WG for 25 

hydrological quantities.  26 

In light of these inherent limitations, care should be taken when using the generated time-27 

series as basis for a comprehensive risk assessment of different climatic impacts. To increase 28 

robustness in our results here, the generator should be ideally applied to further catchments of 29 

different sizes and in different time-periods. This would entail a better quantification of the 30 

benefits and limitations. In any case, the presented generator is subject to further 31 

developments, including the extension to a multi-variate weather generator and its adaptation 32 
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for climate change studies. If proven skilful, it is planned to use the weather generator as a 1 

downscaling technique to simulate spatially and temporally consistent daily precipitation 2 

time-series at the local scale consistent with large-scale climate model projections of a future 3 

climate. 4 
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Table 1. Frequencies (given in percent) of a completely wet or dry catchment together with 1 

the frequencies of its spell lengths. The observed (OBS) frequencies are calculated over 1961-2 

2011. The multi-site simulated frequencies are given by the mean of 100 runs over 51 years 3 

(1961-2011). 4 

 5 

  Wet catchment Dry catchment 

  OBS multi-site single-site OBS multi-site single-site 

Overall 

frequency 
 25 25 0 45 44 2 

Frequencies 

of spell 

lengths 

1 34.8 34.4 0.0 14.1 17.3 2 

2 27.3 29.4 0.0 16.2 20.7 0.0 

3 16.7 18.2 0.0 13.0 18.2 0.0 

4 11.5 9.7 0.0 10.8 14.1 0.0 

5 4.1 4.7 0.0 9.1 10.3 0.0 

6 2.7 2.1 0.0 5.9 7.0 0.0 

7 0.9 0.9 0.0 7.2 4.7 0.0 

8 0.7 0.4 0.0 5.1 3.0 0.0 

9 0.6 0.2 0.0 3.5 1.9 0.0 

10 0.2 0.0 0.0 3.5 1.2 0.0 

 6 
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 1 

 2 

Figure 1. a) The catchment of the river Thur, located in north-eastern Switzerland, together 3 

with the underlying topography (in m.a.s.l.). The dots indicate the locations of the 4 

investigated stations. 1: Andelfingen (AFI), 2: Frauenfeld (FRF), 3: Bischofszell (BIZ), 4: 5 

Eschlikon (EKO), 5: Ebnat-Kappel (EBK), 6: Herisau (HES), 7: Appenzell (APP), 8: Saentis 6 

(SAE). b) Observed precipitation climatology of the wet day frequency (1961-2011) derived 7 

from a 2km x 2km gridded daily precipitation dataset (Frei and Schär, 1998) for December 8 

and June. c) The same as in b), but for wet day intensity (in mm day
-1

). The filled circle 9 

symbols point to the station locations (as in a) together with the observed station 10 

measurements. 11 
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 1 

 2 

Figure 2. Technical workflow of a multi-site precipitation generator after Wilks (1998) at the 3 

example of two fictitious sites A and B. In general, it is a combination of multiple single-site 4 

precipitation generators that are calibrated at each site individually (see input parameters) and 5 

run simultaneously with spatially correlated random number streams (dashed boxes). The 6 

correlated random number streams (of similar length as the simulation period) are determined 7 

beforehand (see Section 3.3.2). The orange-labelled numbers in indicate the steps for single-8 

site precipitation simulation (see Section 3.3.1). 9 

10 
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 1 

 2 

Figure 3. Reproduction of average wet day frequency (wdf), mean wet day intensity (wdi), 3 

wet-wet transition probability (p11) and dry-wet transition probability (p01) for the four 4 

idealized climate regime ranging from very dry (left) to very wet (right) as indicated by 5 

dashed lines. The shaded areas correspond to the range between the 2.5% and the 97.5% 6 

empirical quantiles of 100 realizations. Results are shown for sample sizes of 10000, 1000, 7 

100 and 30 (grey shading). 8 
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Figure 4. Long-term mean and variability of monthly precipitation sums during the period 3 

1961-2011 for eight stations in the Thur catchment. The black (blue) lines refer to the mean 4 

annual cycle of observed (modelled) precipitation sums. The grey (blue) shaded areas 5 

represent the inter-quartile ranges of observed (simulated) monthly precipitation sums. The 6 

simulation comprises 100 realizations covering each 51 years. The numbers at the bottom 7 

indicate for each month the percentage of variance explained by the precipitation generator. 8 

Note that the scale of the y-axis differ between different stations. 9 

10 



 

38 

 

 1 

 2 

Figure 5. Observed and modelled monthly mean wet day intensity (blue) and frequency (red) 3 

at eight stations during 1961-2011. The black (coloured) lines indicate the observed 4 

(modelled) values. The blue (red) shaded areas correspond to the inter-quartile range across 5 

the set of synthetic daily time-series. They comprise 100 runs covering each 51 years. 6 
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Figure 6. Cumulative distribution of the observed and simulated dry (left) and wet (right) 3 

spell length frequencies for the lowland station Andelfingen (top) and the mountain station 4 

Saentis (bottom). Results are for January and June during the time period of 1961-2011. The 5 

coloured area (line) represents the inter-quartile range (median) of the 100 realizations 6 

covering each 51 year-long daily time-series. 7 
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Figure 7. Cumulative distribution functions (CDFs) of multi-day precipitation sums for the 3 

three stations Andelfingen (AFI), Appenzell (APP) and Saentis (SAE). The lines represent the 4 

CDFs of non-zero precipitation amounts over one day (red), over three consecutive wet days 5 

(green) and over five consecutive wet days (blue). Darker and lighter colours refer to 6 

observations and simulations, respectively. The observed CDFs have been derived from a 51-7 

year long daily time-series between 1961 and 2011, those of the weather generator from 100 8 

realizations of 51-year long daily simulations. Note that the scaling of the horizontal axis 9 

differs between different stations. 10 

11 
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Figure 8. Daily non-zero precipitation sums over the catchment for the four seasons during 3 

1961-2011. Daily Precipitation intensity of the eight stations are summed and days with an 4 

area sum of zero are excluded. Boxplots of observed daily sums (grey), of multi-site 5 

simulated time-series (blue) and of single-site simulated time-series (red) are shown. The WG 6 

models were run 100 times over a 51 year time-period. The numbers (in percentage) indicated 7 

above the corresponding model represent the relative deviation of the simulated median from 8 

the observed. 9 

10 
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Figure 9. Annual maximum precipitation summed over all eight stations and over consecutive 3 

days. The analysis is done for all days of year. The bars (horizontal line) indicate the range 4 

between the 2.5% and the 97.5% empirical quantiles of the yearly maximum area sums during 5 

1961-2011. The observations are plotted in grey, the multi-site simulations in blue and the 6 

single-site simulations in red. The observations comprise 51 years, the models were run 100 7 

times over a 51 year time-period. 8 
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