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Dear Editor

We are grateful to you for your careful reading of our paper, that allowed to detect a number of
typos and to suggest providing additional explanations on a few methodological points. You will
find below the detailed description of the corrections that were brought to the paper.

Thanking you again for your work on this paper.

With best regards

G. Panthou

Editor comment
The paper “Characterizing the space-time structure of rainfall in the Sahel with a view to estimating
IDAF curves”  by Panthou  et  al.  was  reviewed by two referees.  The authors  responded  to  the
reviews and provided a first draft of a revised manuscript. I agree with the referees that despite the
fact  that  methodologically  this  paper  does  not  produce  novelty,  new  knowledge  gained  from
applications to new datasets in poorly studied and monitored areas, such as western Africa, are
indeed valuable.

Based on the HESS Discussion and the assessment of the reviewers I consider the manuscript to be
fit for publication in HESS. I do however have some minor technical/editorial requests to improve
the final manuscript before accepting it in HESS. I ask that the authors consider these and revise
their final manuscript accordingly, providing also a short response to me on how they dealt with
each of the questions below.

1) Firstly, I am confused with your response to the referees regarding the definition of the areal
reduction factor (ARF) as the ratio between point rainfall and areal rainfall (beginning of section
2.3). Indeed as Referee 1 pointed out the most common definition is that it is the ratio of areal/point
rainfall, bounding ARF between 0 and 1. You say the opposite in section 2.3, yet your equations (9)
and (10) are indeed showing that ARF is the ratio of areal/point rainfall as it should be. Please
correct the text at the beginning of the paragraph or explain where the problem is.
Response: You are absolutely right, this is a pure mistake of formulation (the kind of error you do
not detect at first glance, because the definition is so obvious in your mind !!); corrected as :

“In its most general sense, the Areal Reduction Factor is the ratio between areal rainfall and point rainfall,

either for a given observed rain event or in a statistical sense.”  

and

“this ARF thus denotes the ratio between the areal distribution and the point distribution of the annual

rainfall maxima”



2) In section 3.1 you describe the interpolation method by which you generate gridded precipitation
1x1 km from the point measurements by Vischel et al. (2011). I think this deserves a few more lines
to explain the method, e.g. what does dynamic kriging mean, how exactly are the gridded data
generated,  are station vales replicated exactly, is elevation used, what is the shape of the semi-
variogram,  etc.  This  is  important  in  conjunction  with  the  application  of  your  space-average  in
equation (18). In your revision you explain now that equation (18) is used on the gridded data, this
was unclear in the first manuscript.
Response: Some more details were added at the end of section 3.1, as follows:

“To estimate areal rainfall intensities, this study makes use of the dynamical kriging interpolation method

proposed by Vischel et al. (2011). Rainfields are produced over the domain of study at a time resolution of 5
minuted and a spatial resolution of 1 km2. Dynamical kriging takes advantage of the time structure of 5-min
rainfields to complement the purely spatial information provided by the gauge network. Instead of using a 3-
D variogram (the inference of the space-time cross covariance being notoriously non robust), the method
relies on the construction of Lagrangian rainfields which display a stable spatial structure represented by a
nested exponential variogram. Dynamical kriging is an exact interpolator in the sense that the measured
point values are replicated exactly; this interpolator is then used to produce 5-min rainfall grids, with a grid

mesh of 1 km².”

3) The message in the paper is that the at-a-station estimation of IDAF parameters (Fig 5) is not
indicating a systematic geographical variability, so the region is considered homogeneous and the
data are pooled for the final estimation of the global IDAF model. The spatial variability is indeed
captured by the new Fig 5, but I would consider summarizing these plots also for instance in box
plots of the estimates to better show the real variability between stations. An option would be an 8th
panel where for each parameter on the x-axis a box plot of the parameter values would be shown.
Or an additional line to Table 1, where the (between-station) mean and standard deviation would be
listed together with the new estimates for the global IDAF model. This is only a suggestion, the
authors can decide if this information has added value to their work.
Response: Thanks for the suggestion. We have opted for box plots in figure 5. We have thus added
the following sentence to the caption : “The grey box shows box plots of the parameter values obtained at

the different rain gauges.”

4) In section 2.2 the authors begin by stating that the simple scaling framework is the right way to
go arguing that multi-scaling is not tractable. I think I understand what you mean, but the fact is that
the  concept  of  the  areal  reduction  factor  has  been  analytically  treated  for  the  multiscaling
(multifractal) setup of which simple scaling is one particular case (e.g. Veneziano and Langousis,
2005). It would be advisable to read and cite this work (and perhaps others) to give recognition to
where it is due on methodology.
Response:  Good point, we were indeed aware of this work, and we now mention it in the following
way:

“The simple scaling framework has been extensively used for deriving IDF curves (Menabde et al., 1999; Yu

et  al.,  2004;  Borga et  al.,  2005;  Nhat  et  al.,  2007;  Bara  et  al.,  2009;  Ceresetti,  2011).  An analytical
formulation of the ARF was also given by Veneziano and Langousis (2005) in a multiscaling framework.
However, simple scaling provides is much more tractable than the multi-scaling approach and is more robust

in terms of parameter inference. This is thus the approach chosen here.”



5) In section 2.4 equations (15) and (16) should the term representing lambda not be the ratio
D/Dref?
Response: You are absolutely right. In our case lambda = D because Dref = 1 ; thus our equations
are correct, conditionally to the fact that Dref=1. In order to make them more general, we have
replaced D by lambda in these equations which then become valid for all Dref.

6) I advise to call the last section “Discussion and Conclusions”.
Response: Done

7) Both reviewers wrote to me that the figures need to be improved. The main deficiency is that all
figures need to have captions which are fully explaining the figure. In other words, just by reading
the caption the message of the figure has to be clear. Please critically revise all your figure captions
and consider if they submit to this requirement. Some more detailed comments are:
- Fig 2: In my version the label q=3 is missing
Response: Corrected

- Fig 3: In panel b the labels for 5 min and 1 hr resolutions must be mixed. The caption is also not
sufficiently explanatory.
Response: Yes, you are right; we have corrected this point in the legend.

And  the  new caption  is  :  Figure  3.  Space  and  time  aggregation  procedures.  (a)  illustration  of  the

procedure leading to select (right case) or to reject (left case) a gauge for becoming a center for spatial
aggregation; (b) time aggregation at a point : comparing a hyetograph of 5-min rainfall to a hyetograph of
1-hour rainfall.

- Fig 4: Why are there two lines (linear equations) for the simple scaling fit in a)? Is not one, which
is  mentioned  in  the  text  sufficient?  Please  put  units  to  miu_ref  and sigma_ref  (this  applies  to
everywhere in the text). In the label of 2) “biais” is misspelled and I suggest putting r^2 instead of
r_squared.
Response: 

a) We have deleted the black line which correspond to η=k(1).

b) We have added units

c) We have replaced r_squared by r2 and biais by bias

-  Fig 6:  Same question  as  above,  why list  two lines  for  simple  scaling  in  the  legend? Is  this
necessary?
Response:  We have deleted the black line

- Figs 7 and 8: In the label “biais” is misspelled.
Response: Replaced

- Fig 10: In my version the symbols in the legend are missing.
Response: Yes, we have modified the figure.

8) Other text editing (in the draft of the revised manuscript with track changes):
- p2 line 20: say “and equally important”
Response: Done

- p3 line 17: the item (i) does not make sense, drop “having produced”?
Response: Done



- p4 line 25: say “for a range of durations”
Response: Done

- p5 line 15: say “analytical formulation”
Response: Done

- p7 line 9: the brackets for the eta term seem wrong
Response: We have deleted the second part of the sentence since we does not use the property
eta=k(1) in figures 4 and 6 anymore.

- p9 line 8: would it make sense to stress that these parameters are “computed for the arbitrary
reference duration Dref at a point”?
Response: Yes, we have added it.

p9 line 13: will allow “to verify” or will allow the “verification of”
Response: Done : “will allow to verify”

p10 line 4: “all years with more than”
Response: Done
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Abstract

Intensity–duration–area–frequency (IDAF) curves are increasingly demanded for characteriz-
ing the severity of storms and for designing hydraulic structures. Their computation requires
inferring areal rainfall distributions over the range of space–time scales that are the most rele-
vant for hydrological studies at catchment scale. In this study, IDAF curves are computed for5

the first time in West Africa, based on the data provided by the AMMA-CATCH Niger network,
composed of 30 recording rain gauges having operated since 1990 over a 16 000 km2 area in
South West Niger. The IDAF curves are obtained by separately considering the time (IDF) and
space (Areal Reduction Factor – ARF) components of the extreme rainfall distribution. Annual
maximum intensities are extracted for resolutions between 1 and 24 h in time and from point10

(rain-gauge) to 2500 km2 in space. The IDF model used is based on the concept of scale in-
variance (simple scaling) which allows the normalization of the different temporal resolutions
of maxima series to which a global GEV is fitted. This parsimonious framework allows using
the concept of dynamic scaling to describe the ARF. The results show that coupling a simple
scaling in space and time with a dynamical scaling relating space and time allows modeling15

satisfactorily the effect of space–time aggregation on the distribution of extreme rainfall.

1 Introduction

Torrential rain and floods have long been a major issue for hydrologists. For one, defining and
computing their probability of occurrence is a scientific challenge per se, largely because it
is a scale-dependent exercise. Secondly, and as

::::::
equally

:
important, is the fact that they cause20

heavy environmental, societal, and economical damages – including human losses – thus being
a major concern for populations and decision makers.

The request of providing both an objective assessment of the probability of occurrence of high
impact rainfall and a tool for civil engineering structure design has found an answer through the
calculation of intensity–duration–frequency (IDF) curves. These curves, generally computed25

from rain gauge data, are intended at characterizing the evolution of extreme rainfall distribu-
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tions at a point when the duration of rainfall accumulation changes. However rainfall at point
location is not of greatest interest when it comes to the hydrological and socio-economic im-
pacts of extreme events, since it is essentially the convolution of the rainfall intensities over
a catchment that characterizes the severity of storms and creates the real threat.

This is why intensity–duration–area–frequency (IDAF) curves were conceived as a spatial5

extension of the IDF curves. Generally established by combining IDF curves and Areal Reduc-
tion Factors (ARF), they provide an estimation of extreme areal rainfall quantiles over a range
of time and spatial scales.

Theoretical studies on IDF and ARF have been an active research topic over the past 20
years or so (Koutsoyiannis et al., 1998; Menabde et al., 1999; De Michele et al., 2001, 2011,10

among others). IDF practical studies are also numerous but focused on regions where long
series of sub-daily rainfall are available (e.g. Borga et al., 2005; Gerold and Watkins, 2005;
Nhat et al., 2007; Bara et al., 2009; Ben-Zvi, 2009; Overeem et al., 2009; Awadallah, 2011;
Ariff et al., 2012). On the other hand, when ARF are computed from rain gauge networks (Bell,
1976; Asquith and Famiglietti, 2000; Allen and DeGaetano, 2005), it requires a fair density of15

rain gauges in order to obtain accurate estimates of areal rainfall. The computation of IDAF
curves must therefore deal with two major data requirements: (i) a high density network of rain
gauges having produced and (ii) an array of long subdaily rainfall series. In addition to these
requirements, scientists face the challenge of producing coherent ARF and IDF models, if they
wish their IDAF model to be statistically consistent. This explains why there are so few studies20

dealing with the implementation of an IDAF model over a given region (e.g. De Michele et al.,
2002; Castro et al., 2004; De Michele et al., 2011; Ceresetti, 2011).

In fact, in some regions of the world there are virtually no IDF, ARF and IDAF models
that have ever been conceived because of data limitations. This is especially the case in many
tropical regions, such as West Africa, one reason being that a harsh environment and resource25

scarcity have make very challenging the operation of recording rain gauge networks. The few
IDF studies available in the region (Oyebande, 1982; Mohymont et al., 2004; Oyegoke and
Oyebande, 2008; Soro et al., 2010) are essentially empirical with no theoretical background
allowing to upgrade their results in order to produce IDAF curves. ARF studies are still fewer,

3
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the most noticeable being an attempt by Rodier and Ribstein (1988) and Ribstein and Rodier
(1994) at computing ARF values for a return period of 10 years, with no explicit inference
of the areal rainfall distributions. All in all, there has never been any IDAF model derived for
West Africa or sub-regions of West Africa. Yet, flood management – for which IDAF curves are
a very useful tool – is now a major concern for West African countries. As a matter of fact and5

despite that West Africa is known for having experienced a major lasting drought over 1970–
2000, numerous severe floods and exceptional inundations have struck the region over the last
two decades (Tarhule, 2005; Descroix et al., 2012; Samimi et al., 2012). Moreover, the flood
damages in the region have been in constant increase since 1950 (Di-Baldassarre et al., 2010).

While operational networks of the West African National Weather Services do not allow the10

establishment of IDAF curves in a consistent way – because they do not provide any long term
subdaily rainfall series – there are other sources of data that can be used for that purpose. Among
them are the 5-min rainfall series of the long term AMMA-CATCH observing system covering
a 16 000 km2 area in South West Niger from 1990 onwards (Fig. 1). In this study we will make
use of 30 series providing continuous 5-min rainfall records from 1990 to 2012.15

This unique data set enables us to characterize the relationship between extreme rainfall
distributions computed at various spatio-temporal scales and to propose IDAF curves for this
characteristic Sahelian region.

2 IDAF curves in a GEV distribution and scale invariance framework

IDAF curves are providing an estimate of areal rain-rates – averaged over a given duration D20

and a given area A – for a given frequency of occurrence (currently expressed in term of return
period Tr). In practice, IDAF curves are generally obtained by aggregating a temporal com-
ponent and a spatial component represented respectively by the intensity–duration–frequency
curves (IDF) computed at a point (A= 0) and by the Areal Reduction Factors (ARF) computed
for a range of duration

::::::::
durations. In this framework, the most general formulation of an IDAF25

equation is as follows:

IDAF(D,A,Tr) = IDF(D,Tr)×ARF(D,A,Tr). (1)
4
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Assessing IDAF curves requires: (i) inferring appropriate statistical distributions of rainfall
to estimate the return periods and (ii) describing the statistical links between the distributions
obtained at different space–time scales.

Several recent studies have confirmed that the Generalized Extreme Value (GEV) distribution
(Coles, 2001) provides a suitable framework to describe the distribution of extreme rainfall at5

a point (e.g. Overeem et al., 2008; Panthou et al., 2012; Papalexiou and Koutsoyiannis, 2013).
Also, many authors have shown that rainfall displays scale invariance properties (Schertzer and
Lovejoy, 1987; Gupta and Waymire, 1990; Burlando and Rosso, 1996; Bendjoudi et al., 1997;
Veneziano et al., 2006); both in space and time. The temporal scaling properties give access to
a direct analytical formulation of IDF curves (Menabde et al., 1999; Borga et al., 2005; Cere-10

setti, 2011), while the spatial scaling properties allow to upscale IDF curves into IDAF curves
(De Michele et al., 2002; Castro et al., 2004; De Michele et al., 2011), thus providing an inte-
grated space–time characterization of extreme rainfall distributions. Under certain assumptions,
namely the GEV distribution of point annual rainfall maxima and simple scaling in both time
and space, an analytical formulations

::::::::::
formulation

:
of the various components of Eq. (1) may be15

obtained, as will be detailed below.

2.1 GEV distribution

Let us define I(D,A) a random variable representing the annual maxima of rainfall accumu-
lated over a given duration D and area A, and i(D,A) a sample of I(D,A). In the general
framework of the block maxima sampling scheme (Coles, 2001), working on annual maxima20

generally ensures that the block size is large enough for the maxima distribution to follow a GEV
distribution (Coles, 2001), written as:

G(i;µ,σ,ξ) = exp

{
−
[
1 + ξ

(
i−µ
σ

)]− 1
ξ

}
for 1 + ξ

(
i−µ
σ

)
> 0 (2)

where i is a generic notation for any value associated with a realization of I(D,A), µ being
the location parameter, σ > 0 the scale parameter and ξ the shape parameter of the GEV dis-25

tribution. The shape parameter describes the behavior of the distribution tail: a positive (resp.
5
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negative) shape corresponds to a heavy tailed (resp. bounded) distribution. When ξ is equal to
0, the GEV reduces to the Gumbel distribution (light tailed distribution):

G(i;µ,σ) = exp

{
−exp

[
−
(
i−µ
σ

)]}
. (3)

2.2 Simple scaling in time and analytical formulation of IDF curves

The simple scaling framework has been extensively used for deriving IDF curves (Menabde5

et al., 1999; Yu et al., 2004; Borga et al., 2005; Nhat et al., 2007; Bara et al., 2009;
Ceresetti, 2011). It provides a

:::
An

:::::::::
analytical

:::::::::::
formulation

:::
of

::::
the

:::::
ARF

:::::
was

::::
also

::::::
given

:::
by

:::::::::::::::::::::::::::::::
Veneziano and Langousis (2005) in

:
a
::::::::::::
multiscaling

::::::::::
framework.

:::::::::
However,

::::::
simple

:::::::
scaling

::
is much

more tractable analytical framework than the multi-scaling approach and is more robust in terms
of parameter inference.

::::
This

::
is

::::
thus

:::
the

:::::::::
approach

::::::
chosen

:::::
here.

:
10

The annual maximum point rainfall random variable {I(D,0)} follows a simple scaling re-
lation for a given duration D – with respect to a reference duration Dref – if:

I(D,0)
d
=λη × I(Dref,0) (4)

where λ is a scale ratio (λ=D/Dref), η is a scale exponent and d
= denotes an equality in distri-

bution. Note that, for every duration D for which Eq. (4) holds, the normalized random variable15

{I(D,0)/Dη} has the same statistical distribution than the normalized reference distribution
{I(Dref,0)/Dη

ref}; this property will be used in the optimization procedure, in Sect. 4.2. Equa-
tion (4) implies (Gupta and Waymire, 1990):

E[I(D,0)] = λη ×E[I(Dref,0)] (5)

and, more generally, a scaling of all the moments, that can be written as:20

E[Iq(D,0)] = λk(q)×E [Iq(Dref,0)] . (6)

Or:

ln{E[Iq(D,0)]}= k(q) ln(λ) + ln{E [Iq(Dref,0)]} . (7)
6
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The notion of simple scaling is related to how k(q) evolves with q. When this evolution is
linear:

k(q) = ηq (8)

then simple scaling holds (as opposed to multi-scaling if this relation in non linear).
Checking whether the simple scaling hypothesis is admissible over a given range of durations5

is thus equivalent to verifying on the data set whether the two following conditions are fulfilled
(Gupta and Waymire, 1990):

– Eq. (7): log–log linearity between the statistical moments of any given order q;

– Eq. (8): linearity between k(q) and q, η(= k(1)) being the scaling factor at order 1.
:
.

Figure 2a illustrates these two conditions.10

2.3 Spatial scaling, dynamical scaling and ARF model

In its most general sense, the Areal Reduction Factor is the ratio between point rainfall and areal

::::
areal

:::::::
rainfall

::::
and

:::::
point

:
rainfall, either for a given observed rain event or in a statistical sense.

Here we are interested in deriving a statistical ARF that can be used for obtaining an analytical
formulation of IDAF curves (which implies that the ARF does not depend on the return period15

considered); this ARF thus denotes the ratio between the point
::::
areal

:
distribution and the areal

:::::
point distribution of the annual rainfall maxima:

I(D,A)
d
=ARF(D,A)× I(D,0). (9)

Note that Eq. (9) implies the following relationship:

ARF(D,A) =
E[I(D,A)]

E[I(D,0)]
. (10)20

In this study, the ARF model proposed by De Michele et al. (2001) is used. This model is
based on two assumptions (which will have to be verified, see Sect. 5):

7
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1. the studied rainfall variable is characterized by a simple scaling relationship both in time
and space;

2. time and spatial scales are linked by a so-called dynamic scaling property written as:(
D

Dref

)
=

(
A

Aref

)z
(11)

where z is the dynamical scaling exponent.5

When these assumptions are verified, De Michele et al. (2001) show that the ARF can be
written as:

ARF(D,A) =

[
1 +ω

(
Aa

Db

)]η/b
=

[
1 +ω

(
Az

D

)b]η/b
(12)

where:

– η is the scaling exponent characterising the temporal simple scaling;10

– a and b are two positive constant scaling exponents linked by the relation z = a/b;

– ω is a factor of normalization.

This ARF formulation implies that iso-ARF are lines in the plane {ln(A), ln(D)} as shown in
Fig. 2b (De Michele et al., 2001).

2.4 GEV simple scaling IDAF model15

By assuming that the maximum annual rainfall is GEV-distributed and that the scaling relations
in time and space (Sects. 2.2 and 2.3) are verified, then the IDAF model is:

I(D,A)
d
=I(Dref,0)×λη ×ARF(D,A). (13)

8
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As shown in the Appendix A, the compatibility of the simple scaling and GEV frameworks
is defined by the following equations:

I(D,A)∼ GEV{µ(D,A),σ(D,A), ξ(D,A)} (14)

µ(D,A) = µref×Dλ:
η ×ARF(D,A) (15)

σ(D,A) = σref×Dλ:
η ×ARF(D,A) (16)5

ξ(D,A) = ξref (17)

where µref , σref , and ξref correspond to the GEV parameters computed for the arbitrary
reference duration Dref :

at
::
a

:::::
point,

::::
and

::::::::::::
λ=D/Dref .

3 Data and implementation10

Rainfall observing systems usually do not provide direct measurements at all the space and
time scales required for an IDAF study; it is thus needed to derive from the raw data set, an
elaborated data set that will allow verifying

:
to

::::::
verify

:
the various assumptions founding the

theoretical framework defined in Sect. 2.
Accordingly, this section describes both the rainfall samples initially available on our Sahe-15

lian region of South-West Niger and the process used to obtain the final data set from which the
IDAF curves were computed. This process consists in two major steps:

1. Space–time aggregation of the 5-min point rain-rates in order to obtain the average rain-
rates for various space (A) and time (D) resolutions;

2. Extraction of extreme rainfall samples for each of the above resolutions.20

3.1 The rainfall data set: AMMA-CATCH Niger records

The AMMA-CATCH Niger observing system was set up at the end of the 1980s as part of
the long term monitoring component of the Hapex-Sahel experiment (Lebel et al., 1992). Since

9
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then, it has operated continuously a large array of meteorological and hydrological instruments,
providing a unique set of high resolution hydrometeorological data, covering a 16 000 km2 area
in South West Niger. For the purpose of this research, a subset of 30 5-min rainfall series was
selected (Fig. 1), covering the entire 1990–2012 period. At each station, all year

::::
years

:
with

more than 25 % of missing data have been removed in order to limit any sampling effect due to5

missing data in a particular year. After this quality control, all stations remain with at least 20
years of valid data, constituting our raw data sample.

To estimate areal rainfall intensities, this study makes use of the dynamical kriging inter-
polation method proposed by Vischel et al. (2011). Rainfields are produced over the domain
of study at a time resolution of 5 min

:::::::
minutes and a spatial resolution of 1 km2.

::::::::::
Dynamical10

::::::
kriging

::::::
takes

:::::::::
advantage

:::
of

::::
the

::::
time

:::::::::
structure

:::
of

::::::
5-min

:::::::::
rainfields

::
to

::::::::::::
complement

::::
the

::::::
purely

::::::
spatial

:::::::::::
information

:::::::::
provided

:::
by

:::
the

::::::
gauge

:::::::::
network.

:::::::
Instead

:::
of

::::::
using

::
a

::::
3-D

::::::::::
variogram

::::
(the

::::::::
inference

:::
of

:::
the

::::::::::
space-time

:::::
cross

::::::::::
covariance

::::::
being

:::::::::::
notoriously

::::
non

:::::::
robust),

:::
the

::::::::
method

:::::
relies

::
on

:::
the

::::::::::::
construction

::
of

:::::::::::
Lagrangian

::::::::
rainfields

::::::
which

:::::::
display

:
a
::::::
stable

::::::
spatial

::::::::
structure

:::::::::::
represented

::
by

::
a

::::::
nested

:::::::::::
exponential

::::::::::
variogram.

::::::::::
Dynamical

:::::::
kriging

::
is

::
an

::::::
exact

::::::::::
interpolator

:::
in

:::
the

:::::
sense

::::
that15

:::
the

:::::::::
measured

:::::
point

::::::
values

:::
are

:::::::::
replicated

:::::::
exactly;

::::
this

:::::::::::
interpolator

::
is

::::
then

:::::
used

::
to

:::::::
produce

::::::
5-min

::::::
rainfall

::::::
grids,

::::
with

::
a

::::
grid

:::::
mesh

::
of

::
1
:
km2

:
.
:

3.2 Space–time rainfall aggregation

The starting elements of the space-time aggregation process, are the discretized fields of rain
accumulated over a time increment ∆t = 5 min and averaged over a square-pixel of side length20

∆xy = 1 km. In the following, these rainfields are denoted as r∗(x∗,y∗, t∗), where t∗ is the
ending time of the 5-min time-step, and {x∗,y∗} is the center of the 1 km2 pixel.

10



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

3.2.1 Spatial aggregation of 5 min rainfields

Let A be a surface over which the rainfall intensity is averaged. In this study, A is a square of
side Nx×∆xy km =Ny×∆xy km (corresponding to Nx×Ny pixels of 1 km2). From the
5-min rainfields we can compute series of space averaged 5-min rainfield accumulations r∗A, as:

r∗A(x∗,y∗, t∗) =
1

A

Nx−1∑
m=0

Ny−1∑
n=0

r∗
{
x∗ +

(
m− Nx− 1

2

)
∆xy,y∗ +

(
n− Ny− 1

2

)
∆xy,t∗

}
.

(18)5

From these spatially averaged rainfields, spatial rainfall series have been extracted at rain-
gauge locations. For each rain-gauge location (located at {x,y}), the nearest spatial rainfall
series r∗A (located at {x∗,y∗}) is extracted. Figure 3a illustrates this approach (the black circle
of the right panel represents a rain-gauge located at {x,y}. In total, 12 scales of spatial aggre-
gations have been retained to build the rainfall series: 1 km2 (the pixel on which the station is10

located is selected) then 4, 9, 16, 25, 49, 100, 225, 400, 900, 1600 and 2500 km2.
To limit border effects, the spatial aggregation is performed only in areas where the spatial

distribution of stations is more or less isotropic. Each of the 30 measurement stations is consid-
ered individually; a circle centered on the station is plotted and divided in eight cardinal sectors
(each sector has an angle of 45 ◦). Only rain gauges having at least one other rain gauge present15

in at least seven of the eight sectors are retained for spatial aggregation (see Fig. 3a); the dis-
tance of the other gauges from the center station is not taken into account for the selection, only
matters the presence or absence of a rain gauge in the sector. Only 13 gauges (out of 30) satisfy
this criterion (Fig. 1). They are referred to in the following as central rain-gauges (CR) because
their localization is used as a central point, from which the 12 areas of aggregation are delim-20

ited. In total there are thus 156 areal series (12 areas of aggregation centered on 13 different
locations).
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3.2.2 Time aggregation of 5-min point series and 5-min spatial series

A time aggregation procedure is applied to the 30 point 5-min rainfall series and to the 156
spatial rainfall series.

Let D be a given duration of Nt 5-min time-steps (D =Nt×∆t). The time aggregation is
done by using a moving time window of length D over which the 5-min rainfall intensity is5

averaged (this moving window procedure is carried out in order to make sure that we will be
able to extract the maximum maximorum for each duration considered). The time aggregation
can be written as:

r∗D,0(x,y, t
∗) =

1

D

Nt−1∑
p=0

r∗0(x,y, t∗− p×∆t) (19)

in the case of 5-min point series located at {x,y} (A= 0), and10

r∗D,A(x∗,y∗, t∗) =
1

D

Nt−1∑
p=0

r∗A(x∗,y∗, t∗− p×∆t) (20)

for a given surface A in the case of 5-min spatial rainfall series located at {x∗,y∗}.
Thus, Nt= 12 for D = 1 h, Nt= 24 for D = 2 h and so forth. This procedure is illustrated

in Fig. 3b. The 11 different time resolutions considered in this study range from 1 to 24 h (1, 2,
3, 4, 6, 8, 10, 12, 15, 18 and 24 h) and are all obtained from the original 5-min series.15

3.2.3 Extraction of extreme rainfall: annual block maxima

The use of GEV distribution to model the extreme rainfall series requires using the block max-
ima procedure to extract rainfall extremes. It consists of defining annual blocks of observations
separately for each of the 11 different time resolutions considered and to take the maxima within
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each block. A sample of 23 (1990–2012) annual maximum rainfall values {i(D,A)} is thus ob-
tained for each spatial aggregation and duration.

In summary:

– there are 13 reference locations;

– around each of the 13 reference locations, 12 areas of increasing size 1, 4, 9, 16, 25, 49,5

100, 225, 400, 900, 1600 and 2500 km2 are defined;

– for each of these 156 (13× 12) areas, 11 time series of 23 (1990–2012) annual maximum
values are constructed, corresponding to 11 different durations of rainfall accumulation 1,
2, 3, 4, 6, 8, 10, 12, 15, 18, 24 h.

4 Inferences of the individual components of the model10

The proposed model has seven parameters: the temporal scale exponent (η), the three ARF
parameters (a, b, ω) and the three GEV parameters (µref, σref, ξref). After having tested different
optimization procedures (most notably a global maximum likelihood estimation and the 2-step
method proposed by Koutsoyiannis et al., 1998) a 3-step method was finally retained, since it
gave the best results in the evaluation of the IDAF model (see Sect. 5). These three steps are15

explained in the following paragraphs (Sects. 4.1 to 4.3). For each step, an illustration based on
the result obtained for the Niamey Aéroport station is given in Fig. 4.

4.1 Temporal simple scaling: estimation of η

The temporal scaling of the IDAF model is described by the η parameter. The inference of η is
achieved in two steps. The first one consists in computing k(q) for different moments q through20

a linear regression between the logarithm of the statistical moments of order q (E[Iq]) and the
durations D (see Fig. 4a, left panel). Then, η is obtained by a linear regression between k(q)
and q (see Fig. 4a, right panel). At the Niamey Aéroport station, the value obtained for η is
equal to −0.91.
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4.2 GEV parameters: µref, σref, ξref

The GEV parameters µref, σref, ξref are estimated on the point samples, using the property that
all normalized samples {i(D,0)/Dη} must come from the same distribution if simple scaling
holds. All normalized samples are pooled in one single sample on which the GEV parameters
are estimated (this methodology corresponds to the second step of the 2-step method proposed5

by Koutsoyiannis et al., 1998). Figure 4b illustrates this process at the Niamey Aéroport rain
gauge: initial samples are displayed on the left panel, normalized samples are plotted on the
right panel. The fitted GEV and the estimated GEV parameters are also given in this figure.

In comparison with fitting the GEV parameters separately to each sample constituted for each
duration, this method aims at limiting sampling effects by fitting the GEV parameters on a single10

sample gathering all rainfall durations. The maximum Likelihood and the L-Moments methods
were tested for estimating the GEV parameters. The estimation provided by these methods gave
similar results, probably due to the large sample size. The results of the L-Moments method are
presented here, this method being generally considered better than the MLE for the estimation
of high quantiles when the length of the series are short (Hosking and Wallis, 1997).15

4.3 Spatial scaling

The estimation of a, b, ω was carried out by minimizing the mean square difference between
the empirical ARF (Eq. 10) and the model ARF (Eq. 12), as originally proposed by De Michele
et al. (2001). Other scores (mean and max absolute error, bias, . . . ) and variables (difference
between the observed and model mean areal rainfall) have been tried but gave poorer results in20

validation (Sect. 5). Figure 4c shows the comparison between the empirical ARF and the model
ARF at the Niamey Aéroport station and the parameters obtained for the theoretical ARF model.

4.4 Regional model

The point parameter inference (µref, σref, ξref and η) has been performed on each of the 30 point
rainfall series, which thus provide 30 IDF models. The complete IDAF model has been fitted25
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to each of the 13 rain gauges CR. The obtained IDF and IDAF parameters do not display either
any coherent spatial pattern or any trend over the domain, as may be seen in Figure 5. Sampling
effects due to the small area and the short length of the series may explain this point, since
a trend has been observed on a larger domain at the regional scale for daily rainfall (Panthou
et al., 2012).5

Assuming a spatial homogeneity of rainfall distribution (no spatial pattern), annual maxima
series have been pooled together to obtain regional samples. The regional samples were used
to fit the IDAF model over the domain in order to limit sampling effects. The point regional
sample pools together the 30 rainfall samples directly provided by the 30 rain gauges i(D,0);
the 12 areal regional samples obtained for each of the 12 spatial resolutions {i(D,A);A=10

1, . . . ,2500km2} result from pooling together the 13 individual series (CR rain-gauges) com-
puted as explained in Sect. 3.

Table 1 presents the parameters obtained for the global IDAF model. The obtained GEV
parameters are µref= 40.6 mm h−1, σref = 10.8 mm h−1, and ξref = 0.1. When upscaled to
the daily duration µ(24 h) = 2.29 mm h−1 (55.0 mm day−1) and σ(24 h) = 0.61 mm h−1 (14.615

mm day−1). It is worth noting that these latter values are coherent with those obtained for a
much larger area in this region by Panthou et al. (2012, 2013), working on the data of 126 daily
rain gauges covering the period 1950-1990. Note also that the temporal scale exponent (η) is
large (0.9), which means that the intensity strongly decreases as the duration increases. This
is not surprising given the strong convective nature of rainfall in this region. Similar values20

of the temporal scaling exponents are obtained in regions where strong convective systems
occur (Mohymont et al., 2004; Van-de Vyver and Demarée, 2010; Ceresetti et al., 2011) while
lower values are obtained in regions where extreme rainfall is generated by different kinds of
meteorological systems (for example in many mid-latitudes regions, see e.g. Menabde et al.,
1999; Borga et al., 2005; Nhat et al., 2007). The dynamic scaling exponent is roughly equal to25

1 which means that increasing the surface by a given factor leads to a similar ARF change than
increasing the duration by the same factor (keeping in mind that this rule applies only to the
range of time-space resolutions explored here).
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5 IDAF model evaluation

The evaluation of the IDAF model is carried out in two successive stages. First each component
used to build the final model (temporal simple scaling, ARF model and GEV distribution) is
checked individually; then the global goodness of fit is tested using the Anderson–Darling (AD)
and the Kolmogorov–Smirnov (KS) tests.5

In Fig. 6 two series of graphs are plotted in order to verify whether the simple scaling hy-
pothesis holds for the time dimension. On the left are the plots of ln(E[Iq]) vs. ln(D) designed
to check the log-log linearity between these two variables (Eq. 7); on the right are the plots of q
vs. k(q) aimed at checking the linearity between these two variables (Eq. 8). At all three spatial
scales, there is a clear linearity of the plots, meaning that the two conditions for accepting the10

temporal simple-scaling hypothesis are fulfilled. Note that the graphs shown are those obtained
on the regional samples for 3 different spatial scales only (point scale, 100 and 2500 km2), but
the quality of the fitting is similar for all the other spatial scales.

Simple scaling in space and dynamical scaling (e.g. the relationship between time and spatial
scaling) are checked in Fig. 7. This figure compares the empirical ARFs (Eq. 10) computed on15

the regional samples and the ARFs obtained with the model (Eq. 12) for all the space and time
scales pooled together. With a determination coefficient (r2) of 0.98, and a very small RMSE, it
appears that the model restitutes very well the empirical ARF at all space and time scales, except
at the hourly time step and for the three largest surfaces (900, 1600 and 2500 km2), for which
the model significantly underestimates the observed reduction factor. At such space–time scales20

the finite size of the convective systems generating the rain-fields creates a significant external
intermittency (see Ali et al., 2003, on the distinction between internal and external intermit-
tency). It thus seems that the simple scaling framework holds only as long as the influence of
the external intermittency is negligible or weak. Consequently it is likely that the underesti-
mation of the areal reduction factor by the simple scaling based model would be observed for25

larger space–time scales than the ones the AMMA-CATCH data set allows to explore.
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Figure 8 illustrates that the global model is also able to reproduce very correctly the mean
areal rainfall intensity over the whole time-space domain explored here, except again for the
hourly time step and the largest surfaces.

As the IDAF model is primarily designed to estimate high quantiles, its ability to represent
the mean is not a sufficient skill. It is thus of primary importance to evaluate its ability to5

also represent correctly high return levels and extreme quantiles. This was realized by visually
inspecting return level plots and by using Goodness Of Fit (GOF) statistical tests computed
in a cross validation mode (all the stations are used to calibrate the model except one which
is used to validate the model prediction). These tests are used to quantitatively assess how
well the theoretical GEV distribution based on the IDAF model fits the empirical CDFs of the10

observed annual maxima for each spatio-temporal resolution. Each test provides a statistic and
its corresponding p value. The p value is used as an acceptation/rejection criterion by fixing
a threshold of non exceedance (here 1, 5, and 10 %).

The return level plots displayed in Fig. 9 for two reference locations and 3 time steps allow
a visual inspection of the capacity of the global IDAF to fit the empirical samples. The p values15

of the two GOF tests are given in the inset caption. As could be expected, there is a significant
dispersion of the results obtained on individual samples. The difficulty of reproducing correctly
the empirical distribution when combining the smallest time steps with the largest areas is con-
firmed. While similar graphs were plotted for the other 11 reference locations, it is obviously
difficult to obtain a relevant global evaluation from the visual examination of such plots.20

Figure 10 aims at tackling this limitation by representing this information in a more synthetic
way. In this figure the percentage of individual series for which the IDAF model is rejected by
the Anderson–Darling GOF test is mapped for each duration and spatial aggregation for two
levels of significance (1 and 10 %). Here it is worth remembering that we have 30 individual
series for the point scale, and 13 different individual series for each of the 12 spatial scales,25

meaning that, for a given time step, the percentage of rejections/acceptations are computed from
a total of 186 (30+12×13) test values. Here again, the limits of the model for small time steps
and large areas are clearly visible; one can also notice a larger number of rejections for small
areas and the highest durations (duration higher than 12 h and area smaller than 25 km2). Apart
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from that, the number of rejection of the null hypothesis remains low. The KS test (not shown)
display similar result with a little less rejections of the null hypothesis. It thus appears fair to
conclude that, over the range of space–time scales covered by the AMMA-CATCH network,
a simple scaling approach allows for computing realistic areal reduction factors, the limit of
validity being reached for areas roughly larger than 1000 km2 at the hourly time step.5

6 Discussion and Conclusions

Up to now the rarity of rainfall measurements at high space–time resolution in Tropical Africa,
had not permitted to carry out comprehensive studies on the scaling properties of rain-fields in
that region. From 1990, the recording rain gauge network of the AMMA-CATCH observing
system samples rainfall in a typical Sahelian region of West Africa at a time resolution of 5 min10

and a space resolution of 20 km, over an area slightly larger than 1◦×1◦. This data set was used
here for characterizing the space–time structure of extreme rainfall distribution, the first time
such an attempt is made in this region where rainfall is notoriously highly variable.

Simple scaling was shown to hold for both the time and the space dimensions over a space–
time domain ranging from 1 to 24 h and from the point scale to 2500 km2; it was further shown15

that dynamical scaling relates the time scales to the space scales, leading to propose a global
IDAF model valid over this space–time domain, under the assumption that extreme rainfall
values are GEV distributed.

Different optimization procedures were explored in order to infer the 7 parameters of this
global IDAF model. A 3-step procedure was finally retained, the global IDAF model being20

fitted to a global sample built from all the different samples available for a given space–time
scale. This model has been evaluated through different graphical methods and scores. These
scores show that the areal reduction factors yielded by the IDAF model fit significantly well (in
a statistical sense) the observed areal reduction factors over our space–time domain, except for
the part of the domain combining the smallest time scales with the largest space scales. This25

limitation is likely related to the larger influence of the external intermittency of the rain-fields
at such space–time scales.
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Despite the growing accuracy of rainfall remote sensing devices, this study demonstrates that
dense rain-gauge networks operating in a consistent way over long periods of time are still keys
to the statistical modeling of extreme rainfall. In the numerous regions where rainfall is un-
dersampled by operational networks and where satellite monitoring is not accurate enough to
provide meaningful values of high rainfall at small space and time scales, dense networks cov-5

ering a limited area may provide the information necessary for complementing the operational
networks and satellite monitoring. In West Africa, south to the Niger site, AMMA-CATCH has
been operating another site of similar size in a Soudanian climate since 1997 (Ouémé Catch-
ment, Benin), providing ground for a similar study in a more humid tropical climate.

As mentioned in the discussion of Sect. 5, there is however a limitation of these two research10

networks, linked to their spatial coverage. Extending the area sampled by these networks to
something in the order of 2◦× 2◦ would indeed allow studying more finely the effect of the
limited size of the convective systems onto the statistical properties of the associated rain-fields.
However, this means enlarging the area by a factor 4, making it much more costly and difficult
from a logistical point of view to survey properly. For the years to come, AMMA-CATCH15

remains committed to operating both the Niger and the Benin sites for documenting possible
evolutions of the rainfall regimes at fine space and time scales in the context of global change
as well as for verifying whether the scaling relationships proposed here still hold for quantiles
at higher time periods. As a matter of fact, one strong hypothesis of the model proposed here
is that the ARF is independent of the return period. This hypothesis seems verified for return20

periods smaller than the length of our time series, but it is not possible to infer whether this
really holds for higher return periods. Therefore developing an IDAF model able to account for
a possible evolution of the ARF with the return period level is a path that has to be explored,
copulas being a candidate for such a development (e.g. Singh and Zhang, 2007; Ariff et al.,
2012).25

It is also envisioned to test other IDAF model formulations based on alternative approaches
for modeling the scale relationships, among which the method proposed by Overeem et al.
(2010) seems of particular interest.
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Appendix A:

A brief explanation of the transition between the simple-scaling framework used to described
the space–time scaling of maximum annual rainfall (Eq. 13) and the GEV model used to model
the statistical distribution of these maxima (Eqs. 15 to 17) is given here.

The random variables I(Dref,0) and I(D,A) are modeled by a GEV model:5

Prob{I(Dref,0)≤ i(Dref,0)}=

exp

{
−
[
1 + ξ(Dref,0)

(
i(Dref,0)−µ(Dref,0)

σ(Dref,0)

)]− 1
ξ(Dref,0)

}
(A1)

and

Prob{(I(D,A)≤ i(D,A)}= exp

{
−
[
1 + ξ(D,A)

(
i(D,A)−µ(D,A)

σ(D,A)

)]− 1
ξ(D,A)

}
. (A2)

Let introduce, c= λη ×ARF(D,A) then Eq. (13) becomes:10

I(D,A)
d
=I(Dref,0)× c (A3)

and if Eq. (13) holds, then:

Prob{I(D,A)≤ i(D,A)}= Prob{I(Dref,0)× c≤ i(Dref,0)× c}
= Prob{I(Dref,0)≤ i(Dref,0)}

(A4)

and15

Prob{I(D,A)≤ i(D,A)}= exp

{
−
[
1 + ξ(Dref,0)

(
i(Dref,0)−µ(Dref,0)

σ(Dref,0)

)]− 1
ξ(Dref,0)

}
.

(A5)
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By replacing I(Dref,0) by I(D,A)/c we obtain

Prob{I(D,A)≤ i(D,A)}= exp

−
[

1 + ξ(Dref,0)

(
I(D,A)

c −µ(Dref,0)

σ(Dref,0)

)]− 1
ξ(Dref,0)


(A6)

or

Prob{I(D,A)≤i(D,A)}=exp

{
−
[
1+ξ(Dref,0)

(
I(D,A)−µ(Dref,0)×c

σ(Dref,0)×c

)]− 1
ξ(Dref,0)

}
.

(A7)

The equality between Eq. (A2) and Eq. (A7) gives:5

µ(D,A) = µref× c (A8)

σ(D,A) = σref× c (A9)

ξ(D,A) = ξref. (A10)

Equations (A8) to (A10) correspond to Eqs. (15) to (17) in the main text.10
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Table 1. Obtained parameters for the global IDAF model (a) and corresponding GEV parameters values
for the different durations D for the point scale A=0 (b)

µref σref xi η a b z ω
40.60 10.81 0.10 -0.90 0.165 0.156 1.06 0.026

(a)

GEV Parameter 1h 2h 3h 4h 6h 8h 10h 12h 15h 18h 24h
µ (mm h−1) 40.60 21.68 15.02 11.58 8.02 6.19 5.05 4.29 3.50 2.97 2.29
σ (mm h−1) 10.81 5.77 4.00 3.08 2.14 1.65 1.35 1.14 0.93 0.79 0.61

ξ (-) 0.10

(b)
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Figure 5. Map of the obtained IDF parameters (η, µref , σref and ξref fitted on the 30 rain gauges
samples) and IDAF parameters (η, µref , σref , ξref , a, b and ω fitted on the 13 CR rain gauge samples).
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grey
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box
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box
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plots
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Figure 6. Checking of the temporal simple scaling conditions for the regional samples defined by the
30 available rain gauges for point resolution (top), and the 13 CR rain gauges (see Section 3.2.1) for the
resolutions 100 km2 (middle) and 2500 km2 (bottom).
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Figure 7. Comparison between empirical ARF (obtained with the regional samples: 30 rain gauges for
point resolution and 13 CR rain gauges for other spatial resolutions) and modelled ARF IDAF model.
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Figure 8. Comparison between empirical mean areal rainfall intensity (obtained with the regional sam-
ples: 30 rain gauges for point resolution and 13 CR rain gauges for other spatial resolutions) and global
IDAF model for different spatio-temporal aggregations.
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Figure 9. Empirical return level plot obtained at two rain gauges in comparison with the global IDAF
model for different durations (1 h, 6 h and 24 h from top to bottom) and different spatial aggregations
(from point to 2500 km2).
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