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I. Letter to the editor and revision summary  

Dear Dr. Buytaert 

Many thanks for handling our submitted manuscript (hess-2014-257). We revised our manuscript 

and provided a point-to-point reply to the reviewers’ comments. We found the comments 

extremely constructive. We took all necessary steps to provide a reasonable response to reviewers’ 

comments and incorporate their suggestion into our revision. We believe that the revised 

manuscript is substantially improved by reviewers’ suggestions as well as the comments we 

received from algorithm developers.  

To summarize the revisions made, we revised Section 1 to focus on the main objective of our 

paper, according to comments made by anonymous reviewer #1. Section 2.1 was extended to 

include a discussion on natural lakes according to a comment made by anonymous reviewer #1. 

Section 2.3 was extended and revised according to comments made by anonymous reviewer #1. 

Section 3.1 was revised according to comments made by both reviewers. Section 3.2 was modified 

based on a comment made by anonymous reviewer #1. Sections 3.3.1 and 3.3.2 were minorly 

revised based on suggestions made by algorithms developers, namely Drs Hanasaki and 

Hadelland, respectively. Section 4 was majorly revised and restructured based on the comments 

received from both reviewers. Section 5.1 extended based on the suggestions made by both 

reviewers. Section 5.2 was majorly revised and restructured based on the comment made by both 

reviewers. Discussions in Section 5.4 were extended and revised based on comments made by both 

reviewers. Section 5.6 was extended majorly by a new set of discussions as well a new figure and 

a new table based on comments received from anonymous reviewer #2. Finally, 18 new references 

have been used and added to the reference list to appropriately address the reviewers’ comments.    
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Below, we first provide a point-to-point reply to the reviewers’ comments and then include a 

marked up revised manuscript. Although the marked up version include most of our revisions, it 

has some minor differences with the final revised manuscript. Accordingly, we prepared our 

response to the reviewers comments based on the final revised manuscript attached separately, not 

the marked up version below this letter. Many thanks for considering our revisions.  

 

II. Point-to-point reply to Anonymous Reviewer #1    

We greatly appreciate Anonymous Reviewer #1 for their positive, constructive and thoughtful 

comments, which led to substantial improvements in the revised version of our manuscript. In the 

following, the issues raised are addressed point-by-point in the order they are asked. The 

reviewers’ comments are numbered; our reply to each comment is shown immediately below the 

comment in blue. 

1- Although well surveyed, I found some errors in text which misrepresent some formulations or 

concepts of models (please see below for detail). It is quite challenging for non-developers, if not 

impossible, to describe models perfectly by only literature review. Here I would like to suggest 

the authors to make a simple survey of models: contact the main developers of major models and 

ask to check whether the descriptions on their models are correct. 

Many thanks for your suggestion and heads-up on some of the misrepresentations in the submitted 

manuscript. We corrected all points you highlighted and contacted the main developers to take all 

reasonable steps to ensure accurate representation of the scheme. Some of the developers have 

kindly came back to us and we included their comments into the revised version.  

2- I found considerable overlaps in contents within this article. It could be attributed to its structure. 

Actually, the titles of chapters 2-4 read "Available representations of water sources in large-scale 

models", "Available representation of water allocation in large-scale models", and "Current large-

scale modeling applications". In each section, both the reservoir operation and groundwater models 

are discussed citing the same papers repeatedly. I wonder the overlaps might be drastically reduced 

if the authors reorganize them into two sections, the reservoir operation and groundwater models. 

Many thanks for your comment. We thought a lot on this and tried different variations to organize 

the content. This was not as easy task and took us a long time, considering the fact that we needed 

to somehow link the content of Part 1 and Part 2 papers together and keep the same narration style 
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in both papers. The main objective in both papers is to breakdown different aspects of water 

resource management and describes briefly how various elements are included in large-scale 

models. This is mainly to inform non-familiar readers about how the big problem of representing 

water resource management can be divided in to rather stand-alone pieces, which can be then 

represented through a specific suite of algorithms. In the Part 1 paper, we defined water resource 

management as an integration of water demand with water supply and allocation, in which water 

allocation links water demand and supply together. Therefore in this paper, we first breakdown 

water sources and then focused on algorithms available for representing water allocation. As the 

main papers cited in this paper include both water supply and allocation (and some also water 

demand, which are cited in Part 1 paper), such overlaps as you indicated become somehow 

unavoidable, even if we consider a section solely on surface water and another one only to 

groundwater supply and allocation. This is due to the fact that most of the cited papers include 

discussion on both groundwater and surface water. We believe that organizing our discussion in 

the present form can help non-familiar readers to understand how a specific paper deals with 

various issues around the representation of water resource management. Indeed, further 

consultation with original papers is required for further understanding of the algorithms reviewed 

in this review.    

3- The objective of review is a bit unclear. As the title of this paper says, the authors may intend 

to make use of this review to develop an ESM including human activities based on an atmospheric 

model and conduct online simulations to study landatmosphere interactions. If this is the case, the 

paper in the current form might pay too much attention to the application of offline simulations 

and too less to the problems inherent to ESMs and online simulation (low spatial resolution, biases 

in atmospheric and hydrological variables, small signal to noise ratio due to large internal 

variation, etc). 

Many thanks for your comment. We noticed that both offline and online effects of water resource 

management are important and relevant to ESMs, in particular GHMs and LSMs. We do agree 

that both papers have more discussion related to offline applications; however, this is wholly a 

reflection of the current literature. In fact, most of the available studies are mainly offline (with 

exception of irrigation that discussed in Part 1 paper) and we are not aware of any study that 

incorporates ESMs with full consideration of water resource management for online simulations 

at the regional or global scale. Nonetheless, we suggest that the ultimate need is to move towards 
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online simulations in a way described in Figure 1. According to your comment, now we have 

added a substantial discussion on issues around online modelling in Section 5, including 

incorporating several new references. Please see the revised manuscript (lines 580 to 696).  

4- The authors partly included discussion on water security in this paper, which confused me. 

Water security is largely a matter of socio-economic change, policy, institution, and governance, 

which is out of the scope of this paper. Above all, the review on this topic is insufficient. 

Many thanks for your comment. As you truly noted in your comments, our main aim in this paper 

is to discuss how to represent water supply and water allocation in large-scale models. We 

highlighted three main practical reasons for this, including quantifying the effect of human-water 

interactions on terrestrial water cycle and climate as well as addressing the water security concerns 

at regional and global scales. We did not intend to provide a comprehensive review on water 

security assessment. Rather, we would like to justify the need of representing water resource 

management in large-scale models based on emerging issues around water security assessment. 

From a broader perspective, water resource management and water security are rather 

interconnected as both are influenced by of socio-economic change, policy, institution, and 

governance. However as you noted these issues are beyond the scope of this paper. As a result, we 

modified the discussion related to water security assessment according to your comment to avoid 

further confusion. Please see the revised manuscript (lines 87 to 108 and 484 to 557). 

5- P8303, L2, "focus mainly on measuring the annual difference between natural water availability 

and projected demand as an indicator of water scarcity": I’m wondering this part is of relevance to 

this review article. This paper basically focuses on the representation of human activities in 

numerical models rather than its application to water resources assessments. Indeed, dozens of 

high quality papers have been published on global water scarcity and security, which is largely 

missing in this article. 

Many thanks for your comment. This comment is closely related to the previous comment and 

comment #14. As we mentioned above we revised the discussion related to water security 

assessment to keep the focus on the main objective of this paper, which as you mentioned is 

representation of human water management in large-scale models. Please see the revised 

manuscript (lines 87 to 108) 
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6- P8304, L19, "10% of the annual runoff": The number may be too small. 8000km3 of storage 

volume must be accounts for 20% of global annual runoff (approximately 40000 km3/yr). 

Many thanks for the heads-up on this. We referred to the original articles as well as Gleick (2000) 

and you are absolutely right. We highly appreciate your careful reading of our paper.  We revised 

the paper accordingly. Please see the revised manuscript (lines 147 to 150).  

7- P 8304, L16, "Available representations of water sources in large-scale models": The section 

includes a subsection "groundwater", while it excludes "surface water". I understand that river and 

lakes are "natural" processes and do not include explicit human activity, but these are the most 

fundamental water sources. 

Many thanks for the comment. We included a brief discussion about the natural lakes in Section 

2.1. Accordingly, Section 2.1 is now titled as "Lakes and reservoirs". Please see the revised 

manuscript (lines 142 to 186). Please note that we already have a brief discussion in Section 2.2 

related to river flow abstraction. Please see the revised manuscript (lines 193 to 215). 

8- P8307, L24, "often groundwater availability is assumed as unlimited local source": Please 

carefully revisit the original article. For example, Rost et al. (2008) devised a technical term 

"Nonlocal and nonrenewable blue water (NNBW)" and avoided assuming groundwater is 

unlimited source. 

Many thanks for your comment. You are absolutely right as she did advise that in the 2008 paper. 

We revised this in the paper. However, from a numerical modelling perspective, these are rather 

similar. Please see our discussion related to comment #13.  Please see the revised manuscript (lines 

235 to 239 and Table 1 in page 55).      

9- P8308, L1, "Wada et al. (2014)": Döll et al. (2014) should be mentioned here as well. 

Many thanks for introducing this paper to us. We were not aware of this paper and read it with a 

lot of interest. Accordingly, we included a brief discussion on this paper. Please see the revised 

manuscript (lines 246 to 249). We also used the reference in some other places of revised 

manuscript, where applicable.       

10- P8310, L14, "Hanasaki et al. (2006) assumed that large reservoirs can supply all downstream 

demands within 1100km and with lower elevation": When the model of Hanasaki et al. (2006) 

estimates the monthly release of individual reservoirs, it only uses the information of water demand 
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in downstream. Released water is not always sufficient to "supply the all downstream demands". 

This kind of details might be difficult to learn from literature review. Voluntary checking by model 

developers would substantially improve the accuracy. 

Many thanks for your comment. We exactly meant what you indicated but we poorly wrote it. 

What we meant was large reservoirs consider supplying demands that are located within 1100 km 

and lower elevation. This does not mean that they can fully supply them. Please see the revised 

manuscript (lines 309 to 310 and Table 1 in page 55).  

11- P8310, L28, "Irrigation has often been given the highest priority": At least, Hanasaki et al. 

(2008a) gave priority to domestic and industrial water over irrigation in abstraction of water from 

river. 

Many thanks for your very careful reading and comment. We checked the article and you are 

completely right: “The anthropogenic water withdrawal module withdraws the amount of 

consumptive water use for domestic, industrial, and agricultural purposes from river channels in 

that order at each simulation grid cell”.  However later on, it indicates that “Withdrawn irrigation 

water was added to the soil moisture in irrigated areas, and domestic and industrial waters were 

removed from the system”. We mistakenly took this statement as an indication of priority in the 

water allocation. Please see the revised manuscript (lines 320 to 322 and Table 1 in page 55).  

12- P8311, L3, "the deficit is typically shared proportionately to the demands": Because of the 

reason shown above, the proportion among water sectors is not shared at least in Hanasaki et al. 

(2008a, 2013a). 

Many thanks for the heads-up on this. We corrected this in the paper.  

13- P8312, L7, "If the groundwater is considered as an infinite local source (Rost et al. 2008; 

Hanasaki et al. 2010: : :)": This is not the case for Rost et al. (2008) and Hanasaki et al. (2010). 

What they assumed infinite was Nonlocal Nonrenewable Blue Water (NNBW) which indicates 

water sources that are not explicitly represented in their models, namely, water diversion, glacier 

melting, desalination, and others. 

Yes, you are completely right. We corrected this in the revisions. However, from modelling 

perspective, assuming groundwater or NNBW sources as infinite are quite similar. In fact, (1) both 

do not consider water shortage; (2) both bring water from outside the modelling domain and (3) 
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the estimation of water withdrawal from either sources wholly depends on how water demand and 

water supply are estimated at the grid scale. As a result, the errors from these estimations can 

wholly propagate in to estimation of groundwater or NNBW withdrawals. Please see the revised 

manuscript (lines 353 to 359).    

14- P8319, L10, "Impacts assessment and water security studies": It is not very clear what kind of 

impacts on what are discussed here. For example, the reservoirs influence not only the surface 

water/energy budget, but also sedimentation (e.g. Syvitsky et al., 2005), ecosystem (Vörösmarty 

et al., 2010). These issues are not mentioned here. 

Many thanks for your comment. In order to avoid further confusions and focus only on the main 

objective of the paper, we extensively revised this section according to you comment. Please see 

the revised manuscript (lines 87 to 108 and 484 to 557).  

15- P8322, L23, "Computational complexities": Personally, I am not very much convinced by this 

sub-section. It is quite subjective to discuss what is computationally "complex" or "expensive". I 

am wondering whether this subsection is necessary. 

Many thanks for your comment. We removed this subsection; but we modified and incorporated 

some of the discussion in Section 5.2, which is now dedicated to problems related to online 

simulations and including groundwater. Please see the revised manuscript (lines 671 to 681). 

16- P8326, L23, "implement the operation at finer temporal resolution (sub-hourly to few hours 

rather than daily and monthly)": I am wondering why such finer temporal resolution is needed. 

The atmospheric processes and reservoirs are primarily connected by the water surface of 

reservoirs. More specifically, the area and temperature of surface water, if I understood correctly. 

In most cases, both of them vary slowly, hence the reservoir operation in online modeling might 

not request such a fine temporal resolution. What I think more important here is that the river 

inflow to reservoirs by online simulation includes substantial bias compared to offline ones, 

particularly when it is not assimilated. A fundamental problem here seems to be how to represent 

reservoirs in a robust manner while the inflow simulation is highly unreliable. An old saying goes 

"garbage in garbage out". 
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You are right. This was inaccurate in our discussion and we highly appreciate your careful review 

of our paper.  We revised the discussion accordingly. Please see the revised manuscript (lines 756 

to 769). 

17- Table 1, "Demand-supply dependency": upstream reads downstream. 

Many thanks for your comment. We revised the column related to “supply-demand dependency”. 

Please see the revised manuscript (Table 1, page 55). 

18- Table 2, "Host model": H07 reads H08 (Hanasaki et al. 2008), and PCR-GLOBW reads PCR-

GLOBWB (PCRaster Global Water Balance). 

Many thanks for your comment. We corrected these typos. Please see the revised manuscript 

(Table 2, page 56). 

19- Table 2 "Discharge data": Does it show the validation data used in earlier studies? It is a bit 

confusing because many of studies simulated discharge by their models. 

Many thanks for your comment. Yes they are mainly for validation except for Wu and Chen (2012) 

that we indicated that. We added “Validation” before discharge data to avoid confusion. Please 

see the revised manuscript (Table 2, page 56). 

 

III. Point-to-point reply to Anonymous Reviewer #2    

We greatly appreciate Anonymous Reviewer #2 for their positive, constructive and thoughtful 

comments, which led to substantial improvements in the revised version of our manuscript. In the 

following, the issues raised are addressed point-by-point in the order they are asked. The 

reviewers’ comments are numbered; our reply to each comment is shown immediately below the 

comment in blue. 

1- I would agree with reviewer #1 that there are a couple of erroneous statements which could be 

verified by the different modelers. 

Many thanks for your suggestion. As indicated in our reply to reviewer #1, we took all reasonable 

steps to ensure accurate representation of the schemes reviewed. We contacted the main 

developers. Some of the developers have kindly came back to us and we included their comments 

into the revised version. 
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2- the last section suggesting a modeling and testing framework (5.6) seems limited in comparison 

to the first sections ( 2,3,4) describing the existing processes. The framework is not put in 

perspective with respect to the modeling suggestions made in the section 5 subsections. A case 

study of the suggested framework with one of the example suggested in earlier 5.s section would 

validate that framework. The point is that if a framework is being suggested in a paper, readers 

will expect a case study in order to get convinced that this is sound and feasible, even though the 

paper is already pretty long. 

Many thanks for your comment. We try to majorly extend this section using your comments. Please 

see the revised manuscript (lines 820 to 928) In particular, we added a table to summarize the 

suggested modelling improvements and the spatial and temporal scales at which this is meaningful, 

and the data required to make it possible in terms of parameterization and validation. We have also 

added a new figure on how to approach the suggested framework in a sequential manner. We 

included a very brief discussion on the activities we are currently doing in terms of benchmarking 

reservoir operation algorithms in the Saskatchewan River Basin, which is a WCRP-RHP. 

However, we did not provide any detail or simulation results as our investigation is not yet fully 

finalized and we plan to publish our result in another manuscript.  

3- There is a lot of information, which comes in text, and might seem unorganized and sometimes 

even in opposition to previous call for improvement ( especially computational burden and 

mismatch in space and time scales between LSS, GHS, and management models for example). I 

would suggest a summary table which specifies for all the suggested improved modeling, the 

spatial and temporal scales at which this is meaningful, and the data required to make it possible 

in terms of parameterization and validation at least. I think that this process would make the 

manuscript easier to properly cite and useful for directions in research. 

Many thanks for your comment. We added a new table (Table 4; see page 58 in the revised 

manuscript) in the beginning of Section 5.6 to summarize the suggested modelling improvements 

and the spatial and temporal scales at which this is meaningful, and the data required to make them 

possible in terms of parameterization and validation. Please see the revised manuscript (lines 821 

to 837 and Table 4, page 58). 

4- Section 3.3.1: Voisin et al. (2013) actually combines release targets with storage targets, ~ rule 

curves. 
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Many thanks for your comment. We consulted with the original article and revised the related 

discussion accordingly. Please see the revised manuscript (lines 328 to 334).  

5- Section3.3.2: Although there are advantages to using optimization-based algorithms, the 

computational burden and need of forecast demand and inflow makes it inappropriate for full 

online coupling. It is unclear in the paper how the authors see further research on how to integrate 

them in their vision of future research. 

You are absolutely right and we have also noted this in the manuscript and suggested simulation-

based algorithms to move forward, especially towards online simulations. However, we feel that 

we still need to review the existing algorithms for completeness of our review and discuss the pros 

and cons of both simulation-based and optimization-based algorithms in detail. Moreover, 

optimization algorithms would be valuable for offline simulation, particularly for integrated 

impact assessments. We tried to highlight this throughout the revised text. Please see the revised 

manuscript (e.g., lines 388 to 393 and 756 to 759). 

6- Section 4: GHMs are used for hydrological application because their hydrology processes are 

more complex and allow for some calibration. Reservoirs have fixed characteristics and the main 

driver of uncertainty for reservoir modeling is the bias in the inflow (Muller Schmied et al. 2014). 

This would need to be put in perspective in terms of direction of research, in the sense that there 

is a workflow in the modeling improvement; Some things need to be improved first before we can 

improve other concepts. The idea of workflow could be introduced in the summary table suggested 

above. 

Many thanks for your comment and the reference you introduced. We have incorporated the 

reference in Section 4, where we discuss the uncertainty related to the inflow to the reservoir. 

Please see the revised manuscript (lines 526 to 529 – please also see lines 530 to 535). We have 

also suggested a sequential framework to approach model development and testing framework 

suggested in Figure 2. More specifically, Figure 3 divides the model development into four 

sequential steps related to (1) benchmarking individual algorithms, data support and host models; 

(2) building various settings for offline simulations; (3) further improvements and configuring 

data, algorithms and host models for online simulations; and (4) building various setting for online 

simulations. Please see the revised manuscript (lines 889 to 900 and Figure 3, page 61). 
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7- Section 5.4: Even in local see regional operational water resources management, different 

decision support systems are used for handling events at different time scales: i.e. hydropower 

with a 5 minute market, floods with subhourly to hourly time step, and monthly seasonal water 

supply. The suggestion to move large scale water management to a sub hourly time scale seems i) 

irrelevant and ii) in contrast with the need of data for calibration when operation are driven by the 

market for example, and in constrast with the need to balance computational needs. 

Many thanks for your careful reading of our paper. You are absolutely right and the discussion 

was irrelevant. We have revised the section and also included your discussion on the decision 

support system in the following call for investing on system identification frameworks. Please see 

the revised manuscript (lines 756 to 769 and 784 to 786). 

8- The demand-supply dependency term of “upstream” is confusing. The dependence links the 

grid to places where water can be withdrawn, i.e. the grid and a couple of reservoir upstream. But 

those reservoirs are note defined at “ 5 grid upstream”. Rather, the dependent grid cells are 

downstream from a reservoir and within 5/10 grid/ 200 km from the impounded river 

(downstream). Please clarify. 

Many thanks for your comment. This issue was noted by reviewer #1 as well. We revised the 

column to avoid further confusion. Please see the revised manuscript (Table 1, page 55). 

9- Entries for Voisin et al. are inaccurate: “Dynamic priority in operation” should be changed to 

irrigation, flood control, hydropowers and others. 

Many thanks for careful reading of our paper. We corrected the Table 1 accordingly. Please see 

the revised manuscript (Table 1, page 55). 

10- The source of data for Voisin et al. (2013a,b) include USGS, USBR and GRDC as in 

Haddeland et al. There should be another row for Voisin et al. (2013b) which actually used the 

Community Land Model (CLM) instead of VIC. 

Many thanks for your comment. We included the data sources in the table and added a new row 

for Voisin et al (2013b). Please see the revised manuscript (Table 2, page 56). 
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Abstract 10 

Human water use has significantly increased during the recent past. Water withdrawals from 11 

surface and groundwater sources have altered terrestrial discharge and storage, with large 12 

variability in time and space. These withdrawals are driven by sectoral demands for water, but are 13 

commonly subject to supply constraints, which determine water allocation. Water supply and 14 

allocation, therefore, should be considered together with water demand and appropriately included 15 

in Earth System models to address various large-scale effects with or without considering possible 16 

climate interactions. In a companion paper, we review the modelling of demand in large-scale 17 

models. Here, we review the algorithms developed to represent the elements of water supply and 18 

allocation in  Land Surface Models and Global Hydrologic Models. We noted that some 19 

potentially-important online implications, such as the effects of large reservoirs on land-20 

atmospheric feedbacks, have not yet been addressed. Regarding offline implications, we find that 21 

there are important elements, such as groundwater availability and withdrawals, and the 22 

representation of large reservoirs, which should be improved. Major sources of uncertainty in 23 

offline simulations include data support, water allocation algorithms and host large-scale models. 24 

Considering these findings with those highlighted in our companion paper, we note that 25 

advancements in computation as well as natural and anthropogenic process representations, host 26 

models, remote sensing and data assimilation can facilitate improved representations of water 27 

resource management at larger scales. We further propose a modular development framework to 28 
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consider and test multiple options for data support, algorithms and host models in an integrated 38 

model diagnosis and uncertainty assessment framework. We suggest that such a framework is 39 

required to systematically improve current representations of water resource management in large-40 

scale models that are relevant to Earth System modeling. A key to this development is the 41 

availability of regional scale data. We argue that the time is right for a global initiative, based on 42 

regional case studies, to move this agenda forward. 43 

  44 

1 Introduction 45 

The water cycle is fundamental to the functioning of the Earth System and underpins the most 46 

basic needs of human society. However, as noted in our companion paper (hereafter referred to as 47 

Nazemi and Wheater, 2014a), the current scale of human activities significantly perturbs the 48 

terrestrial water cycle, with local, regional and global implications. Such disturbances affect both 49 

hydrological functioning and land-atmospheric interactions, and therefore, should be explicitly 50 

represented in large-scale models. We consider both Land Surface Models (LSMs) and Global 51 

Hydrologic Models (GHMs). LSMs generally represent water, energy and carbon cycles, and can 52 

be coupled with climate models (i.e. online simulations) for integrated Earth System modeling, or 53 

uncoupled from climate models (i.e., offline simulations) for large-scale impact assessment. 54 

GHMs are also run in uncoupled mode for impact assessment; however, they have much less detail 55 

and focus exclusively on the water cycle. In this pair of papers we focus on the representation of 56 

water resources management in these large-scale models, considering water quantity rather than 57 

water quality. We note that while historically the effects of water management have largely been 58 

neglected in LSMs and GHMs, there has been increasing interest in recent years in their inclusion 59 

and a common first step is to estimate the demand for water, in particular associated with irrigation. 60 

However, in practice water resource systems are often complex, and associated infrastructure may 61 

have competing functional requirements and constraints (e.g. flood protection, water supply, 62 

environmental flows, etc.), exacerbated during drought. In this paper, we turn to the issues around 63 

water supply and allocation and associated representations in large-scale models. 64 

Major implications are associated with water supply from surface and ground water sources. For 65 

instance, large dams and reservoirs can significantly modify downstream streamflow 66 

characteristics (e.g., Vörösmarty et al., 2003, 2004; Oki and Kanae, 2006; Wisser et al., 2010; 67 
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Tang et al., 2010; Tebakari et al., 2012; Lai et al., 2013; Lehner and Grill, 2013) with large regional 90 

variability (see e.g., Pokhrel et al., 2012a). Considering that almost all major river systems in the 91 

Northern Hemisphere (except for the arctic and sub-arctic regions) are dammed (e.g., Meybeck, 92 

2003; Nilsson et al., 2005), it can be argued that accurate simulation of continental and global 93 

runoff is impossible without considering the effects of reservoirs. Such hydrologic impacts and 94 

associated environmental consequences can be studied through offline LSMs or GHMs (see e.g., 95 

Döll et al., 2009).  There are, however, important implications that require online simulations. For 96 

instance, it has been argued that large dams can have important footprints on surface energy 97 

(Hossain et al., 2012), with associated effects on land-surface boundary conditions and potential 98 

interactions with local and regional climate (MacKay et al., 2009). For understanding these effects, 99 

online LSMs, coupled with climate models are required to provide quantitative knowledge of the 100 

extent of such impacts in time and space.   101 

Groundwater resources have been also exploited during the “Anthropocene”. Every year, a large 102 

amount of groundwater is pumped to the land-surface for both irrigative and non-irrigative 103 

purposes (e.g., Zektser and Lorne, 2004; Siebert et al., 2010).  Such extractions have already 104 

caused large groundwater depletions in some areas (Rodell et al., 2007, 2009; Gleeson et al., 2010, 105 

2012; Döll et al., 2014) and changed the surface water balance due to return flows from demand 106 

locations to river systems and ultimately to oceans (e.g., Lettenmaier and Milly, 2009; Wada et 107 

al., 2010; Pokhrel et al., 2012b). In parallel, a considerable proportion of the surface water, diverted 108 

into the irrigated lands, may recharge groundwater (Döll et al., 2012). Also, from a broader 109 

perspective, groundwater aquifers (particularly shallow groundwater) can be also an important 110 

control on soil moisture and wetlands, and thus influence atmospheric surface boundary conditions 111 

(e.g., Maxwell et al., 2007, 2011; Fan and Miguez-Macho, 2011; Dadson et al., 2013). These online 112 

effects are widely unquantified at the global scale, as the sub-surface processes below the root 113 

zone have been generally assumed to be disconnected from the atmosphere (see Taylor et al., 114 

2013). 115 

In addition to the importance for simulations of terrestrial runoff and storage as well as feedbacks 116 

to  regional and global climate, representing water allocation practice in large-scale models is 117 

urgently required to address various emerging water security concerns including human water 118 

supply (e.g. Postel, 1996), ecosystem health (e.g. Vörösmarty et al., 2010), sedimentation (e.g. 119 

Syvitsky et al., 2005) and water quality (e.g. Skliris and Lascaratos, 2004). These latter areas are 120 
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beyond the scope of this paper, but highlight the need for representing human water allocation in 131 

large-scale models for regional and global impact assessments. For instance, the most densely-132 

populated parts of the globe suffer from extremely fragile water supply conditions (e.g., Grey et 133 

al., 2013; Falkenmark, 2013; Schiermeier, 2014) and this will be amplified under future climate 134 

change and population growth (e.g., Arnell, 2004; Wada et al., 2013b; Rosenzweig et al., 2013). 135 

While population growth directly affects water demand, indirect effects include changing land and 136 

water management, with associated impacts on the aquatic environment. Similarly, climate change 137 

is expected to perturb both water demand and supply, as it also results in greater seasonal and inter-138 

annual variability with increase in the risk of extreme conditions (e.g., Dankers et al., 2013; 139 

Prudhomme et al., 2013). Looking to the future, Yoshikawa et al. (2013) argued that current 140 

sources can only account for 74 percent of the global net irrigation requirements of the 2050s and 141 

supply/demand imbalance will cause a major increase in global water scarcity (Alcamo et al., 2007; 142 

Hanasaki et al., 2008a, b, 2013a, b; Schewe et al., 2013). In water-scarce condition,  competition 143 

for water resources becomes increasingly important and the details of water allocation practice 144 

play a key role in the spatial and temporal distribution of water stress. These issues necessitates 145 

adaptation strategies to mitigate the effects of water stress and extreme conditions and large-scale 146 

models are , therefore, required to assess the effects of various global changes and to examine the 147 

impact of alternative management strategies.   148 

Representation of water allocation practice introduces a set of issues associated with management 149 

and societal preferences, local and regional differences in decision making, complexity of water 150 

resources systems (particularly at larger scales), as well as lack of data support. At local and basin 151 

scales, water allocation practice is mainly defined as an optimization problem, in which the  aim 152 

is to minimize the adverse effects of water shortage and/or to maximize the economic benefits of 153 

the water resource system. The advent of search algorithms such as Linear Programming (Dantzig, 154 

1965), Dynamic Programming (Bellman, 1952) and Genetic Algorithms (Goldberg, 1989) has 155 

resulted in a wide variety of operational models for water resource management at small basin-156 

scale (e.g., Rani and Moreira, 2010; Hossain and El-shafie, 2013; see Revelle et al., 1969 for the 157 

early developments). These small-scale water allocation models, however, typically do not include 158 

processes related to water supply and demand and receive these variables as prescribed inputs. 159 

Moreover, small-scale operational models often require detailed information about policy 160 

constraints and operational management. This information is not generally available over larger 161 
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regions and at the global scale. Even if all related information were to be available, the level of 191 

complexity within small-scale operational models cannot be supported globally due to high 192 

dimensionality in decision variables and computational burdens. These restrictions have gradually 193 

resulted in the development of macro-scale algorithms to represent water allocation practice and 194 

competition among demands at regional and global scales.  195 

The main objective of this paper is to overview the current literature and to identify the state of 196 

available methods and applications for large-scale representations of water supply and allocation 197 

in LSMs and GHMs, with relevance to both Earth System modeling and regional and global water 198 

management. Section 2 addresses the representation of surface and ground water sources. Section 199 

3 discusses the linkage between available sources and prescribed demands (see Nazemi and 200 

Wheater, 2014a) through macro-scale allocation algorithms. Section 4 reviews current large-scale 201 

modeling applications and discusses the quality of available simulations. Section 5 merges the 202 

findings of Nazemi and Wheater (2014a) with those obtained in Sections 2 to 4, and highlights 203 

current gaps and opportunities from an integrated water resources, hydrology and land-surface 204 

modeling perspective. This is finalized by suggesting a systematic framework for model 205 

development and uncertainty assessment to guide future efforts in inclusion of water resource 206 

management in large-scale models. Section 6 closes our survey and provides some concluding 207 

remarks. 208 

 209 

2 Available representations of water sources in large-scale models 210 

2.1 Lakes and reservoir 211 

Natural lakes and man-made reservoirs cover more than 2 percent of the global land surface area 212 

except for Antarctica and glaciated Greenland (Lehner and Döll, 2004). Lakes and reservoirs are 213 

important water sources due to their ability to store and release surface water for human demand. 214 

While natural lakes have been historically an important water source for human civilization, man-215 

made reservoirs have been mainly constructed since the last century. Currently, there are more 216 

than 16 million reservoirs worldwide (Lehner et al. 2011), retaining around 20 percent of the 217 

annual runoff and 10 percent of the total volume of the world’s freshwater lakes (Gleick, 2000; 218 

Meybeck, 2003; Wood et al., 2011). This makes an important global water resource: Yoshikawa 219 
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et al. (2013) estimated that reservoirs allocated 500 cubic kilometers only for irrigation during the 228 

year 2000, worldwide.  229 

From the large-scale modeling perspective, lakes and reservoirs introduce heterogeneity into land-230 

surface parameterizations, with both offline and online implications. To represent these open water 231 

bodies, first they should be identified at the grid and sub-grid scales. The  availability of basic data 232 

for larger lakes and reservoirs is relatively good (see Lehner and Döll, 2004 for a comprehensive 233 

list of data sources). For instance, the Global Lakes and Wetlands Database (GLWD; 234 

http://www.worldwildlife.org/pages/global-lakes-and-wetlands-database) includes more than 250,000 235 

lakes globally. In addition,  the International Commission of Large Dams (ICOLD; 236 

http://www.icold-cigb.net/) and Global Reservoir and Dam (GRanD; http://www.gwsp.org 237 

/products/grand-database.html) databases contain information about the location, purpose and 238 

capacity of 33,000 and 7000 large dams, worldwide. However, to estimate evaporation, as well as 239 

storage and release, more specific physical characteristics, such as storage-area-depth 240 

relationships, are required. These data are generally not available and parametric relationships 241 

have been used for approximating these properties based on various assumptions (e.g., Takeuchi, 242 

1997; Liebe et al., 2005). Nonetheless, at this stage of model development, reservoir simulations 243 

cannot be directly verified, due to the lack of observations of reservoir level and storage (Gao et 244 

al., 2012). These data limitations may be largely solved in a relatively near future by upcoming 245 

satellite missions – see the discussion of Section 5.3 below.  246 

Depending on their size, lakes and reservoirs can be represented either within channel or sub-grid 247 

routing components of host large-scale models. While larger lakes and reservoirs are normally 248 

represented within the river routing component and regulate the channel streamflow, smaller 249 

bodies are mainly considered within sub-grid parameterizations as an additional pond (e.g., Döll 250 

et al., 2003; Wisser et al., 2010). Ideally, natural lakes and reservoirs should differ in their 251 

representation due to human management. If human management is neglected, reservoir releases 252 

can be represented similar to natural lakes using simple parametric equations that link the reservoir 253 

release to  reservoir storage (or level)  (e.g., Meigh et al., 1999;, Döll et al., 2003; Pietroniro et al., 254 

2007; Rost et al., 2008). Lake algorithms, however, have had limited success in highly regulated 255 

basins. This is rather intuitive: for natural lakes, the dynamics of lake storage (and hence discharge) 256 

are regulated by climate and inflow variability, whereas the dynamics of reservoir discharge (and 257 

hence storage) are mainly controlled by pressures of downstream demands and management 258 
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decisions. Moreover, reservoirs are often multi-functional and deal with competing demands with 291 

varying priority in time; therefore, simple lake routing algorithms are unable to fully describe 292 

reservoir functionality. Alternatively, macro-scale algorithms for reservoir operation are 293 

suggested, which attempt to link reservoir releases to inflows, storage and prescribed human 294 

demands considering water allocation objectives – see Section 3.3. 295 

Considering online implications, the effects of dams on near-surface energy and moisture 296 

conditions and hence land-atmospheric feedbacks can be important for large reservoirs (Hossain 297 

et al., 2012). Addressing this issue using coupled LSMs is currently a major gap in the literature 298 

and exhibits a challenging problem at the grid scale, since the contribution of dams on the local 299 

climate can be masked by regional climate variability and surrounding land cover (e.g., Zhao and 300 

Shepherd, 2011).  301 

2.2 Streamflow diversions and inter-basin water transfers 302 

Streamflow diversions of any magnitude require dams or barrages. At smaller scales, these include 303 

in-basin water transfers from local streams to nearby demands. In-basin diversions are often 304 

represented in large-scale models by instantaneous abstractions (e.g., Hanaski et al., 2008a, 2010; 305 

Döll et al., 2009). Hydrologic routing can be alternatively considered for improved representation 306 

(e.g., Wisser et al., 2010). It should be noted that a proportion of the diverted flow normally returns 307 

to the river systems. Heuristic algorithms have been advised to mimic the mechanism of diversion 308 

based on returning the excess water to the river with some lag. Biemans et al. (2011) for instance 309 

represented the dynamics of diverted/return flows for irrigated areas by making water available 310 

for consumption for 5 days; if  unused, it is released back to the river. This can have an important 311 

implication for differentiating between the actual use and total withdrawals, in case water is over-312 

allocated. 313 

Inter-basin water transfers normally involve major infrastructure and can significantly perturb the 314 

regional streamflow regime. For instance, proposed South to North water transfer schemes in 315 

China (see Liu and Zheng, 2002; Liu and Yang, 2013) would divert 44.8 billion cubic meters of 316 

water annually (http://www.internationalrivers.org/). The associated hydrological impacts are 317 

estimated to be as, or more significant than, land-use and/or land-cover changes (Liu et al., 2013). 318 

Inter-basin water transfer can be adequately represented by hydrologic routing. Examples are 319 

Deleted: s’320 

Deleted: s’321 

Deleted:  322 

Deleted: LSS323 

Deleted: s324 

Deleted: not325 



19 
 

available for some regional applications (e.g., Nakayama and Shankman, 2013a, b; Ye et al., 326 

2013); however, efforts to represent long-distance diversions at the global scale are limited. This 327 

is mainly due to data issues regarding the location and specification of diversion channels globally. 328 

This could be largely resolved in future due to improvements in remote sensing observations – see 329 

the discussion of Section 5.3 below. 330 

2.3 Groundwater 331 

Even large-scale models with detailed water resource management schemes have limited 332 

representation of groundwater availability (see Table 1), largely due to the limitations in data 333 

related to groundwater storage, withdrawals and sub-surface properties as well as computational 334 

difficulties. There have been some efforts to include groundwater in LSMs to describe the aquifer 335 

dynamics, land-atmospheric feedbacks and watershed responses, mainly at basin and small 336 

regional scales (e.g., Maxwell and Miller, 2005; Maxwell et al., 2005, 2007, 2011; Kollet and 337 

Maxwell, 2008; Ferguson and Maxwell, 2010; Miguez-Macho and Fan, 2012). These studies 338 

consider a physically-based groundwater store, which can be updated at each modeling time step 339 

using a 3D representation of groundwater movement, and linked to land-surface calculations 340 

through soil moisture dynamics. Such representations are computationally expensive and limited 341 

at the global scale, since temporal and spatial domains should be finely gridded for accurate 342 

representations of groundwater movement and soil-moisture interactions, particularly in online 343 

studies. To the best of our knowledge, no online study, characterizing the feedback effects between 344 

groundwater management and climate, is available at the global scale. Offline representation of 345 

groundwater management has mainly been performed in the context of GHMs and involves 346 

estimation of available groundwater storage, sub-grid groundwater recharge and groundwater 347 

withdrawals. In this section, we focus on groundwater availability and recharge and leave the 348 

discussion related to groundwater withdrawals to Section 3.2. 349 

In current representations, often groundwater availability in general, or the nonrenewable and 350 

nonlocal blue water (NNBW) in particular, is assumed as an unlimited local source (e.g., Rost et 351 

al., 2008; Biemans et al., 2011; Pokhrel et al., 2012a,b). NNBW is a technical term defined as an 352 

"imaginary" source that implicitly accounts for nonrenewable fossil groundwater or other water 353 

sources that are not explicitly represented in the model. This can cause major uncertainties in 354 

estimation of actual withdrawals (see Section 3.2). Efforts have been made to improve this 355 
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assumption. For instance, Strzepek et al. (2012) bounded groundwater availability by considering 367 

a threshold for groundwater allocation. Wada et al. (2013a) proposed a conceptual linear 368 

groundwater reservoir, parameterized globally based on lithology and topography, to estimate the 369 

groundwater availability at the grid-scale using the baseflow proxy. Although this conceptual 370 

representation provides an efficient scheme for global simulations, it ignores the baseflow 371 

reduction due to groundwater depletion. In a more recent attempt, Döll et al. (2014) continuously 372 

simulated the daily groundwater storage using the difference between groundwater recharge and 373 

the sum of baseflow and net groundwater abstraction, with base flow declining with decreasing 374 

groundwater storage. Both algorithms, however, do not consider inter-grid lateral groundwater 375 

movement, which is an important contributor of water availability across various scales. Although 376 

lateral groundwater movement is widely studied in aquifer studies at smaller basin and regional 377 

scales (e.g., Ye et al., 2013), it is currently a key missing process representation at larger regions 378 

and global scales (Taylor et al., 2013).  379 

 Groundwater recharge includes the movement of water from the unsaturated soil zone to a 380 

saturated groundwater body. There are a number of approaches to represent the vertical water 381 

movement in large-scale models, including heuristic methods (e.g., Döll et al., 2003), conceptual 382 

“leaky-buckets” (e.g., Wada et al., 2010), or numerical solutions of the physically-based Richards’ 383 

equation (Best et al., 2011; D. B. Clark et al., 2011). These approaches are based on various 384 

assumptions and are subject to large uncertainties. Heuristic schemes relate the recharge rate to 385 

surface runoff, using a set of parameters based on catchment, soil and aquifer characteristics. These 386 

representations are often simplistic and may result in large estimation errors, particularly in arid 387 

and semi-arid regions (Polcher et al., 2011). Conceptual approaches widely assume a steady-state 388 

condition and use the unsaturated hydraulic conductivity to represent groundwater recharge with 389 

or without considering capillary rise (van Beek and Bierkens, 2008; Wada et al., 2010; van Beek 390 

et al., 2011; Wada et al., 2013a; Ye et al., 2013). In a global study, Wada et al. (2012) used this 391 

approach to account for additional recharge from irrigated lands based on the unsaturated hydraulic 392 

conductivity at the field capacity. This can be important for representing the excess water diverted 393 

from both surface and groundwater sources. Although conceptual representations are efficient for 394 

large-scale studies, still limitations remain in these schemes due to large heterogeneities in soil 395 

characteristics, a common assumption of steady-state recharge rate, as well as the inherent 396 

uncertainty associated with soil hydraulic properties. The physically-based approaches remove the 397 
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steady-state assumption; nonetheless as discussed above, they require a detailed numerical scheme 401 

for solving a highly non-linear partial differential equation. This is subject to various 402 

computational difficulties at larger scales, and invariably there is a gap between the scale for which 403 

Richards’ equation was developed and the scale at which it is implemented in large-scale 404 

groundwater and hydrologic models (Beven, 2006a; Gentine et al., 2012).  405 

2.4 Desalination and water reuse 406 

Water reuse and desalination are currently minor water resources at the global scale and have been 407 

widely ignored in large-scale models. Nonetheless, it should be noted that these water sources have 408 

local relevance and are important in several water-limited regions (Wade Miller, 2006; Pokhrel et 409 

al., 2012a). Wada et al. (2011) estimated that annual desalinated water use is around 15 cubic 410 

kilometers globally, of which Kazakhstan uses 10 percent of the total volume. Desalinated water 411 

availability can be estimated using a bottom-up approach based on the information available about 412 

treatment and water reuse capacity at the grid-scale (Strzepek et al., 2012). These data, however, 413 

are limited and uncertain globally. Alternatively, top-down approaches try to downscale the 414 

countrywide water reuse data. Wada et al. (2011, 2013a), for instance, downscaled the countrywide 415 

data on water reuse and desalination using a gridded population map. Considering that water reuse 416 

and desalination will likely be more important in future due to increased water scarcity at the global 417 

scale, we suggest more effort in representing these sources, including data collection to support 418 

future algorithm developments – see Section 5.3 below.  419 

 420 

3 Available representations of water allocation in large-scale models 421 

Water allocation distributes the available water sources among competing demands and should 422 

typically include a set of management decisions to systematically (1) link the prescribed demands 423 

to available sources of water; (2) determine allocation objectives as well as priorities in case of 424 

water shortage; and (3) withdraw the available water based on operational objectives and 425 

management constraints. At this stage of model development, there are limited examples for 426 

representation of water allocation at larger scales. These studies are offline and have multiple 427 

sources of uncertainty. Table 1 summarizes some examples from the recent literature. In this 428 
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section, we briefly discuss the main requirements and available algorithms for representing the 430 

water allocation in large-scale models.  431 

3.1 Main requirements  432 

The first basic requirement is to identify which sources are available to supply the water demands 433 

within each computational grid. The majority of current allocation schemes assume that grid-based 434 

demands can be supplied from the sources available within the grid locally. This assumption is 435 

intuitive and easy to implement, however, it naturally ignores long distance water transfers. 436 

Various modifications have been proposed to overcome this limitation. Relative elevation and 437 

travel time of water from source to demand have been used to condition demands to available 438 

sources upstream. For example, Hanaskai et al. (2006) assumed that large reservoirs can supply 439 

downstream demands that are located within 1100 km (based on a travel time of 1 month). 440 

Similarly, Wada et al. (2011) considered a criterion of approximately 600 km and Biemans et al. 441 

(2011) 250 km. These rules are evidently simplistic but can be easily implemented. They also 442 

generally assume steady-state conditions, so that the allocated water can be simply abstracted from 443 

the source and added at the demand location at the same time step. Alternatively, routing schemes 444 

can provide a more accurate basis for representing the water delivery and avoid this limitation – 445 

see the discussion of Section 5.5 below.      446 

The second important issue is to determine objectives of and priorities for water allocation, 447 

particularly during shortage. In the absence of access to local operating rules, this requires defining 448 

a set of generic rules to assign the relative preference of each demand and to define the purpose of 449 

water allocation. Both Irrigative (e.g., Rost et al., 2008; Döll et al., 2009; Wada et al., 2013a) and 450 

non-irrigative demands (e.g., Hanasaki et al., 2008a; Strzepek et al. 2010, 2012; Blanc et al., 2013) 451 

have been given the highest priority. In cases where multiple demands with the same priority are 452 

derived from a unique source of water, the deficit is typically shared proportionately to the 453 

demands (e.g., Biemans et al., 2011). Based on priorities and assumptions made regarding water 454 

availability, several allocation objectives have been used (see Table 1). It should be noted that 455 

water resource management is commonly multi-purpose and allocation objectives and priorities 456 

can change within a typical operational year. For example, many reservoirs are designed for two 457 

conflicting objectives, i.e. irrigation supply and flood control. To account for this, Voisin et al. 458 

(2013a) used rule curves to specifically drop the reservoir storages before snowmelt starts while 459 
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maintaining the storage in the reservoir to provide releases for irrigation, water supply and 473 

hydropower in the remaining part of the year. More specifically, they developed flood control 474 

storage targets to complement the irrigation release targets, with mass balance conservation. They 475 

also allowed for a linear drop in storage as a device to represent the operational balance between 476 

maintaining storage and releasing flow for hydropower purposes. They showed that this 477 

modification can improve the simulation of regulated flow and maintain the spatiotemporal 478 

consistency of reservoir levels. 479 

Finally, allocation algorithms are required to estimate groundwater abstractions and reservoir 480 

releases at each simulation time step based on allocation objectives and priorities. Groundwater 481 

abstraction algorithms are generally limited, due to significant gaps in information about 482 

groundwater availability and actual groundwater withdrawals at the global scale. Although current 483 

data availability for reservoir levels and storages is also poor, runoff data are relatively available 484 

regionally and globally, which can be used for algorithm development and performance 485 

assessment through comparison of simulated and observed discharges downstream of reservoirs. 486 

Apart from local or national data, data of the Global Runoff Data Centre (GRDC; 487 

http://www.bafg.de/GRDC/) have been widely used for validation of macro-scale reservoir 488 

operation algorithms.  489 

3.2 Grid-based groundwater abstractions  490 

Groundwater abstractions include both sustainable and unsustainable water uses. While 491 

sustainability of groundwater withdrawals is a complex issue, in particular related to 492 

environmental impacts of abstraction, the distinction between these for large-scale applications is 493 

generally based on the grid-based groundwater recharge, as any abstraction exceeding recharge 494 

rate results in groundwater depletion, and therefore, can be considered as unsustainable. So far, 495 

groundwater withdrawals have been estimated through either bottom-up or top-down algorithms, 496 

both subject to large uncertainty.  497 

In bottom-up procedures, the groundwater abstraction is identified using grid-based estimates of 498 

surface and groundwater availability as well as the water demand. If the groundwater and/or 499 

NNBW is considered as an infinite sources (Rost et al., 2008; Hanasaki et al., 2010; Wisser et al., 500 

2010; Pokhrel et al., 2012a,b), then the groundwater or NNBW abstraction is equal to estimated 501 
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demand minus estimated water availability at the grid scale. In this case, priorities are not 515 

inherently considered; however NNBW has the advantage that it explicitly accounts for the water 516 

that should come to the system from outside the modeled domain. If the groundwater availability 517 

is bounded at the grid or basin scale, then the maximum groundwater withdrawal cannot exceed 518 

the local groundwater availability (e.g. Strzepek et al., 2012; Wada et al., 2013a); however, errors 519 

in estimations of surface water availability and water demands can still directly propagate into 520 

estimation of groundwater withdrawals.  521 

Top-down approaches are based on using recorded regional groundwater withdrawals or 522 

downscaling national groundwater abstractions data to finer spatial scales. Siebert et al. (2010) 523 

created a global data for irrigation water supply from groundwater abstractions based on FAO-524 

AQUASTAT (http://www.fao. org/nr/water/aquastat/main/index.stm) and other census and sub-525 

national data. In an another effort, Wada et al. (2010, 2012) used the data of the International 526 

Groundwater Resources Assessment Center (IGRAC; www.igrac.net) to estimate the countrywide 527 

groundwater use for year 2000. These estimates were further downscaled to 0.5°×0.5° grids, based 528 

on a global map of yearly total water demand. In a countywide study, Blanc et al. (2013) used the 529 

groundwater withdrawal data of the USGS for the year 2005 (USGS, 2011) and repeated the data 530 

for every year of simulation. These approaches are also limited by the fact that the actual 531 

groundwater pumping might be considerably more than the recorded data (e.g., Foster and Loucks, 532 

2006; Wada et al., 2012) and groundwater withdrawals can have considerable inter-annual 533 

variability. Current and upcoming remote sensing technologies can address some of the issues 534 

around groundwater data availability – see Section 5.3 below. 535 

3.3 Macro-scale reservoir operation 536 

Current macro-scale reservoir operation algorithms are designed for offline applications and 537 

included in large-scale models for characterizing the impacts of reservoirs on terrestrial water 538 

storage, runoff and water security. These algorithms can be roughly divided into two general 539 

categories based on either simulating the reservoir release using a set of prescribed operational 540 

rules or using search algorithms to find optimal reservoir release. In brief, simulation-based 541 

schemes are based on a set of functional rules that use initial storage as well as inflows and demand 542 

pressure during a typical operational period to simulate releases during the operational period. In 543 

contrast, optimization-based algorithms search for optimal releases at each time step given an ideal 544 
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storage at the end of the operational year, storage at the beginning of the year and forecast inflows 550 

and demands during the year. Naturally, optimization-based algorithms are more computationally 551 

expensive; nonetheless, they are more suitable for evaluating competition among water demands 552 

and effects of policy change, due to the ability to explicitly include multiple allocation objectives 553 

to guide the search for optimal releases. In contrast, simulation-based algorithms are more efficient 554 

and can be modified to support online simulations – see Section 5.4. Table 2 summarizes some 555 

representative examples from the current literature.   556 

3.3.1 Available simulation-based algorithms  557 

Current simulation-based algorithms are heavily influenced by the work of Hanasaki et al. (2006), 558 

which was initially proposed for global routing models but extended to GHMs (Hanasaki et al., 559 

2008a, 2010) and LSMs (Pokhrel et al., 2012a,b). The algorithm distinguishes between operational 560 

rules for irrigation and non-irrigation purposes. The algorithm also accounts for both inter-annual 561 

variability and seasonality in reservoir releases. In simple terms, the total release in a typical 562 

operational year is first determined based on the reservoir capacity, initial storage and the annual 563 

mean natural inflow to the reservoir. Second, the monthly fluctuations in the reservoir release are 564 

parameterized based on annual mean natural inflow, mean annual demand and the prescribed 565 

monthly demand. Note that demands are considered as total water withdrawals rather than 566 

consumptive uses. Finally, monthly fluctuations are corrected based on inter-annual variability in 567 

total reservoir releases (estimated during the first step) to provide actual monthly reservoir 568 

releases. The correction, depending on the purpose and size of reservoir, is based on the ratio of 569 

initial reservoir storage to total capacity, the ratio of reservoir capacity to annual mean inflow, 570 

and/or the monthly mean natural inflows to the reservoir – see Hanasaki et al. (2006) for related 571 

formulations.  572 

Hanasaki et al.’s algorithm has been widely used in the recent literature as it provides a generic 573 

and flexible framework to represent reservoir operation. Döll et al. (2009) implemented this 574 

algorithm for representing operation of large reservoirs within the framework of WaterGAP 575 

(Alcamo et al., 2003). They considered some modifications to accommodate losses from the 576 

reservoir and to characterize the dynamics of demand pressure on reservoirs based on consumptive 577 

uses rather than total water withdrawals. Biemans et al. (2011) modified Hanasaki et al.’s 578 

algorithm by extracting the reservoir releases using annual and monthly mean regulated inflows 579 
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(rather than corresponding natural flows), limiting the demand pressure only to irrigation and 581 

changing the release rules during high demand periods. These modifications were further added to 582 

the Joint UK Land Environment Simulator (JULES; Best et al., 2011, Clark et al., 2011a) for 583 

offline simulations (Polcher et al., 2011). Voisin et al. (2013a) made a regional intercomparison 584 

between various simulation-based algorithms for the Columbia River Basin and concluded that 585 

deriving releases based on withdrawals rather than consumptive uses results in improved 586 

simulations of downstream flows. They also indicated that the choice of natural or regulated 587 

inflows depends on the severity of the demand pressure and water allocation: If the overall water 588 

demand is high with respect to mean annual inflow, it would be better to drive the algorithm with 589 

mean monthly regulated inflow; otherwise it is better to use the natural flow, due to large 590 

uncertainties associated with water demand estimates, and therefore, regulated flows. Although 591 

this study is limited to one region, it provided an assessment of uncertainties in estimating the 592 

reservoir releases due to uncertainties in estimating both inflows and water demand – see the 593 

discussion of Section 4.   594 

Existing simulation-based schemes are not limited to the above algorithms. Efforts have been made 595 

to simulate the reservoir releases using parametric functions, in which the parameters can be 596 

calibrated using observed downstream flows. For example, Wisser et al. (2010) advised a set of 597 

functional rules to parameterize the release from large reservoirs using the actual inflow and the 598 

long-term mean inflow to the reservoirs. More recently, Wu and Chen (2012) proposed a new 599 

algorithm by explicit consideration of operational rule curves, locally specified for each reservoir. 600 

In brief, rule curves are a set of pre-defined reservoir levels that divide the total reservoir capacity 601 

into different storage zones. These storage zones can be further associated with demands 602 

conditioned on the reservoir using various assumptions.  The algorithm considers the reservoir 603 

operation at a given day as a deviation from mean releases at that day and represents this by a 604 

weighted sum of individual variations as the result of allocation for each individual water demand. 605 

Demand-specific allocations can be therefore characterized based on rule curves, the available 606 

storage, total capacity as well as the history of inflow to the reservoir. Accordingly the total release 607 

at any given day can be defined as a parametric function, in which the parameters can be tuned 608 

using observed downstream flows. Although they noted that the operational parameters are 609 

inherently time-varying, as the purpose of dam can change with time, a systematic scheme for 610 
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dealing with non-stationary parametric estimation has not been provided. This remains for future 614 

efforts – see Section 5.4. 615 

3.3.2 Available optimization-based algorithms 616 

Optimization-based schemes were initially proposed by Haddeland et al. (2006a) and implemented 617 

further in Haddeland et al. (2006b, 2007). These algorithms are heavily inspired by small-scale 618 

reservoir operation algorithms within the engineering literature, particularly Dynamic 619 

Programming (see Voisin et al., 2013a), and strongly rely on estimates of future inflow and 620 

demand. Therefore, they are not suitable for online simulations, however they can be valuable for 621 

integrated impact assessment over large grids and/or assessment regions in offline mode (see e.g., 622 

Strzepek et al., 2010; 2012; Blanc et al., 2013). In brief, the calculation starts by targeting the 623 

reservoir storage at the end of a typical operational year based on forecast demands, but without 624 

considering forecast inflows. Then, the minimum release at each daily time step is defined based 625 

on the natural streamflow at the dam’s location to maintain a minimum flow requirement 626 

downstream of the reservoir. Accordingly, the maximum allowable daily release is determined 627 

based on simulated daily inflow, minimum release, reservoir storage at the beginning of the day 628 

and the targeted storage at the end of operational year. Minimum and maximum releases introduce 629 

a feasible release range, where a search algorithm can be used to find the optimal monthly releases 630 

that provide the minimum deficit during the year and the least violation from the target storage at 631 

the end of the year. Adam et al. (2007) slightly changed this algorithm by considering new 632 

thresholds for allowable release and storage and used maximization of hydropower revenue as the 633 

objective function for reservoir operation.  634 

There are two main issues with the proposed scheme. First, feasible reservoir releases are 635 

determined based on forecasts of natural flow at dam location; therefore, the algorithm essentially 636 

requires estimating both natural and regulated flow at each simulation time step.  Second, a high 637 

dimensional search (e.g. 12 releases in the case of a monthly release simulation) must be performed 638 

for each operational year, and given the uncertainty in prognostic inflows, this can result in 639 

considerable uncertainty in the optimality of actual releases. These issues were noted by van Beek 640 

et al. (2011). They modified Haddeland et al. (2006a) algorithm to decrease the complexity and 641 

uncertainty associated with the algorithm. Most importantly, they defined the expected inflow for 642 

each month prospectively as a function of the flow in the same month of the previous years; 643 
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therefore, they omitted using prognostic natural flow forecasts. In order to reduce the 644 

dimensionality of search, they considered reservoir release as a harmonic function; therefore, only 645 

release at beginnings of the release and the discharge periods needed to be determined. As the 646 

actual inflow values become available, the release can be consequently updated so that the final 647 

storage at the end of release period can meet the predefined target storage. With respect to 648 

determining the reservoir inflow based on naturalized or regulated flows, van Beek et al. (2011) 649 

noted that either set-ups can be used, depending on how the observed discharge is simulated at the 650 

large-scale. This is due to large uncertainties in simulating the regulated runoff – see the discussion 651 

below.   652 

 653 

4 Current large-scale modeling application 654 

Water supply and allocation schemes reviewed in Sections 2 and 3 have been used in a wide range 655 

of offline applications for estimation of human impacts on the terrestrial water cycle. Despite 656 

disagreements between different simulation results, the current literature agrees that the effects of 657 

water allocation are more pronounced at finer spatial and temporal scales. For example, Haddeland 658 

et al. (2007) studied the impacts of reservoir operation coupled with irrigation on continental runoff 659 

and argued that water allocation has resulted in 2.5 and 6 percent increase in annual runoff volume 660 

in North America and Asia, respectively. This is almost canceled out by increased evaporation due 661 

to irrigation. Nonetheless, as the analysis moves from global and continental to regional and large 662 

catchment scales, the effects of water allocation become more profound. For instance, while the 663 

mean annual runoff decreased in the western US by around 9 percent during a historical control 664 

period, the rate of decrement is around 37 percent in the Colorado River during the same period 665 

(Haddeland et al., 2006b). Similarly, the effects of water allocation are more significant at finer 666 

time scales. For instance, Adam et al. (2007) noted that reservoirs have a minor effect on annual 667 

flows in Eurasian watersheds but have significant seasonal effects by changing the flow timing 668 

and seasonal amplitudes (see also Döll et al., 2009; van Beek et al., 2011, Biemans et al., 2011). 669 

These simulations, however, are highly uncertain due to major limitations in algorithms reviewed 670 

above, host large-scale models and data support. The efficiency of available water allocation 671 

algorithms can be diagnosed by comparing the streamflow obtained from simulations with 672 

observations. Currently, macro-scale water allocation schemes cannot fully describe the dynamics 673 
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of regulated streamflows and there can be major disagreements between the regulated discharges 684 

obtained from different reservoir algorithms (Voisin et al., 2013a). It has been shown that 685 

calibration can improve the quality of reservoir operation algorithms (e.g. Wu and Chen, 2012); 686 

however, calibration is also associated with uncertainty and can potentially hinder model 687 

applications for future projections due to possible temporal and spatial variations in optimal 688 

parameters. Hanasaki et al. (2006) as well as Döll et al. (2009) showed that simulation-based 689 

algorithms can generally provide improved discharge simulations compared to lake routing 690 

algorithms. However, it should be noted that simulations still remain substantially biased in highly 691 

regulated catchments (e.g. San Francisco River, US; Syr Darya, Central Asia) and in cold regions 692 

(e.g. Saskatchewan and Churchill Rivers in Canada), particularly during high flows (e.g. Hanasaki 693 

et al., 2008a; Biemans et al., 2011; Pokhrel et al., 2012a). The simulation algorithm of Wu and 694 

Chen (2012) was found to be more accurate in simulating both storage and release compared to 695 

simple multi-linear regression and the target-release scheme embedded in SWAT (Arnold et al., 696 

1998); however, it was tested only at the local scale and it is not clear how the algorithm can 697 

perform in other regions with different climate, level of regulation and allocation objectives. Very 698 

similar conclusions were obtained for optimization-based algorithms. Discharge simulations are 699 

generally improved compared to the no reservoir condition (e.g., Haddeland et al., 2006a); 700 

however, there are still significant deficiencies in simulating highly regulated flows, particularly 701 

in mountainous and cold regions such as Colorado River in the US as well as Yukon and 702 

Mackenzie Rivers in Canada (e.g., Haddeland et al., 2006b; Adam et al., 2007). This  relates in 703 

particular to prognostic reservoir inflows, which remain highly uncertain in these environments; 704 

this uncertainty contributes to the uncertainty in assigning optimal reservoir releases, often in 705 

dynamic and complex manners (Nazemi and Wheater, 2014b; Muller Schmied et al. 2014).  706 

From a broader perspective, the current performance of reservoir operation and water allocation 707 

algorithms must be seen in the context of the hydrological performance of the host large-scale 708 

models, including how well the water demand has been represented (see Nazemi and Wheater, 709 

2014a). Currently, there are large biases in modeling hydrological processes across various scale 710 

and runoff estimates remain widely divergent (e.g., Wisser et al., 2010; Hejazi et al., 2013b). More 711 

clearly, it has been shown that current simulations systematically underestimate streamflow in the 712 

arctic and sub-arctic regions and overestimate the observations in dry catchments; and reservoir 713 

operation algorithms mainly improve the timing of the flow, but not the volume (van Beek et al., 714 

Deleted: majorly715 

Deleted:  and716 



30 
 

2011). While there are many potential reasons for this, one key source of this limitation is the 717 

quality of gridded precipitation products (Biemans et al., 2009; 2011). Rost et al. (2008) used 718 

different precipitation products to simulate the regulated river discharge and found substantial 719 

variations in simulated discharge due to the choice of precipitation data. Moreover, they showed 720 

that sometimes the total precipitation estimate could be less than the total observed discharge after 721 

abstraction and regulation. Upcoming satellite missions can address some of the issues regarding 722 

historical forcing (see the discussion of Section 5.3); however, uncertainty in future precipitation 723 

(and other climate variables) should be dealt systematically using multiple climate forcing options 724 

based on various combinations of concentration pathways, climate models and downscaling 725 

procedures.  726 

Turning from surface water to groundwater issues, almost all available global studies agree on a 727 

significant increasing trend in groundwater withdrawal from the late 20th century onward. As an 728 

example, Wada et al. (2013a) argued that from 1990 to 2010, the rate of global groundwater 729 

withdrawal increased by around 3 percent a year. These results are in relatively good agreement 730 

with major observed depletions in some regional aquifers (see Gleeson et al., 2012). However, 731 

various quantified assessments and further conclusions such as regarding groundwater-induced 732 

sea-level rise remain highly uncertain and show major disagreements due to crude representation 733 

of groundwater availability, recharge and withdrawal, as discussed in Sections 2.3 and 3.2 (see 734 

e.g., Wada et al., 2010; Pokhrel et al., 2012b; Döll et al., 2014). This highlights an urgent necessity 735 

for improving the representation of human-groundwater interactions at larger scales.  736 

 737 

5 Towards an improved representation of water resource management in large-738 

scale models 739 

5.1 Ideal representation and remaining gaps 740 

Throughout our survey, we highlighted the importance of including water supply and allocation in 741 

conjunction with water demand (see Nazemi and Wheater, 2014a) in models that are relevant to 742 

Earth system modeling and/or are required for understanding the effects of water resource 743 

management on the Earth System, with both online and offline implications. From an integrated 744 

water resource management and land-surface modeling perspective, water demands can be 745 
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considered as functions of climate, vegetation and soil-moisture as well as socio-economic and 891 

policy variables (see Nazemi and Wheater, 2014a). As shown in this paper, water supply is driven 892 

by water demands but controlled by natural surface and ground water availability, which determine 893 

the maximum possible water allocation. Therefore, water demand and water supply should be 894 

systematically linked through a feedback loop, represented by water allocation. This integrated 895 

water resource system should be then linked to natural land-surface processes at the grid scale. 896 

This is rather intuitive: When considered in a typical grid, water allocation perturbs hydrological 897 

and land-surface variables within the grid. In parallel, the combined effects of land-surface and 898 

hydrological processes govern the variations in surface and ground water availability, which 899 

consequently determine water demand (and accordingly water allocation) in the next simulation 900 

step. Figure 1 shows a simplified schematic for this integrated modeling framework, in which grid-901 

based calculations of natural and anthropogenic land-surface are further coupled with climate 902 

through grid-based land-atmospheric feedbacks.  903 

Major gaps remain in representing water resource management in LSMs in the way defined above. 904 

First, as also discussed in Nazemi and Wheater (2014a), the key consideration in Earth System 905 

modeling is the conservation of mass, energy and water; however, this is largely violated in current 906 

models that include elements of water resource management (see Polcher, 2014). For instance, 907 

considering groundwater or NNBW as unlimited water sources necessitates bringing water to the 908 

system from outside the modeling domain, breaking the assumption that the Earth System is a 909 

closed system. This has particular importance when understanding the effects of human-water 910 

interactions on the climate and sea-level rise is sought.  911 

Second, water resource management often takes place at the sub-grid resolution of current LSMs 912 

used for simulations over large regional and global scales (i.e., 50 kilometers and more). Including 913 

the elements of water resource management therefore requires moving towards a 914 

“hyperresolution” scale (a few kilometers or less) for explicit representation (see Wood et al., 915 

2011) and/or adding new sub-grid parameterizations related to human-water interactions, as 916 

illustrated in Figure 1. However, as the resolutions become finer or more sub-grid parameterization 917 

are added, modeling complexity, computational burdens and data requirements increase 918 

significantly, particularly in online simulation in which finer modeling resolution and better 919 

discretization of soil and vegetation is generally required to capture land-atmospheric feedbacks 920 

and possible climate responses (see Sorooshian et al., 2011a).   921 
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Third, we have noted that all currently available efforts in including water supply and allocation 938 

in large-scale models are offline and have been made mainly in the context of GHMs. GHMs 939 

provide an efficient platform for algorithm development and testing given the relative lack of 940 

computational constraints. However, self-evidently understanding online effects of large reservoir 941 

storage and large-scale groundwater pumping needs online simulations using coupled LSMs. At 942 

this stage of model development, however, many algorithms originally designed for offline 943 

applications might not be suitable for online implementations. An important example is reservoir 944 

operation, as both optimization- and simulation-based algorithms have some levels of prognosis 945 

that hinder their application in coupled simulations.  946 

Fourth, online applications are associated with complexity in representing various feedbacks and 947 

time-scaling mismatch among different LSM component and water resource management. In 948 

addition, current performance of online simulations is limited due to significant biases across 949 

different components and propagation of these biases throughout the fully coupled system (see 950 

Yuqing et al., 2004) 951 

Fifth, we have highlighted major limitations even in offline representation of water resource 952 

management at larger scales due to various sources of uncertainty. These uncertainties are due to 953 

(1) data support, particularly with respect to precipitation, actual water use and land-surface 954 

characteristics; (2) water demand, supply and allocation algorithms, particularly with respect to 955 

irrigation demand estimation, reservoir operation and groundwater withdrawals; as well as (3) host 956 

large-scale models, particularly with respect to those calculations that determine surface and 957 

ground water availability. It should be noted that here we only focus on epistemic sources of 958 

uncertainty, which needs to be addressed, quantified, communicated and possibly reduced (see 959 

Beven and Alcock, 2012). Table 3 summarizes various aspects of uncertainty related to data 960 

support, algorithmic procedures and host models, identified for estimation of water demand (see 961 

Nazemi and Wheater, 2014a) as well as water supply and allocation (see Sections 2 to 4) in offline 962 

mode. It is often quite difficult to identify the exact source of uncertainty due to complex 963 

interconnections between various elements; and currently, a formal framework to test and validate 964 

the water resource management components in the face of various sources of uncertainty is not 965 

available (see also Beven and Cloke, 2012).  966 
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In following sections, we briefly focus on these gaps and highlight the opportunities to address 1001 

them and move towards the integrated representation proposed in Figure 1. 1002 

5.2 Outstanding challenges - closing the water balance and online simulations 1003 

At this stage of research, issues around closing the water balance and online simulations are the 1004 

most fundamental challenges in representing water resource management in Earth System models. 1005 

Closing the water balance requires considering all the sources of human water withdrawals and 1006 

uses in the system and integrating them into the host large-scale models. One major gap in 1007 

representing the water sources is groundwater, which is ignored or crudely represented in most 1008 

current models. In parallel, as noted above, performing online simulations requires moving 1009 

towards finer spatial and temporal scales and handling various sources of bias within the integrated 1010 

system. Although providing an extensive discussion on issues around integrating groundwater 1011 

models with LSMs as well as online Earth System modeling remains beyond the scope of this 1012 

paper, here we attempt to briefly point to the main challenges and highlight a few opportunities 1013 

for future developments.  1014 

Technically, the issues around coupling LSMs with groundwater and/or climate models are rather 1015 

similar. In principle, (1) both require couplers to build an integrated model from independent 1016 

models; (2) both require refining temporal and spatial resolutions; (3) both substantially increase 1017 

the complexity of calculations; (4) both need research in terms of improving and adding new 1018 

algorithms for process representations; and finally (5) both require handling various sources of 1019 

uncertainty. Research on coupling individual models in an integrated Earth System modeling 1020 

framework is ongoing and currently there are various coupling strategies available (e.g., Dunlop 1021 

et al., 2014). One challenge in coupling the elements of water resource management with climate 1022 

is the mismatch between temporal scales of water resource management and natural cycles in the 1023 

Earth System. For instance, capturing the online effects of evaporation from reservoirs requires 1024 

running the climate model with fine temporal resolution; although the reservoir evaporation is 1025 

mainly a function of reservoir temperature and area, which vary slowly. Research, therefore, 1026 

should be done to compare and optimize existing coupling strategies to handle such inconsistencies 1027 

in time scaling. 1028 
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One major need for representing groundwater and for online simulations is the necessity for 1136 

moving towards finer spatial resolutions. This can result in various challenges. First, even if the 1137 

spatial resolution increases, several sources of heterogeneity would still be ignored, as current 1138 

LSMs do not consider them. For instance, LSMs usually define plant species based on Plant 1139 

Functional Types (PFTs), within which all parameters are identical. However, current LSMs 1140 

recognize only limited PFTs and hence they typically ignore much of the biodiversity. 1141 

Improvement in LSMs in terms of adding more detail into land-surface parameterization can 1142 

provide opportunities to represent such sources of heterogeneity. Second, going toward finer 1143 

modeling resolutions requires improved data support at finer scales. However, fine resolution data 1144 

are becoming more and more available. For instance, a global 1-km mesh dataset of soil properties 1145 

has been recently released (cited in Sato et al., 2014); however such datasets are normally obtained 1146 

from multiple independent sources, which differ in terms of their quality (Liu et al. 2013). More 1147 

efforts towards producing standardized and accurate data sources can support future fine-grid 1148 

Earth System modeling. Finally, moving towards finer scales requires a new set of process 1149 

representations and parameterizations (Hurrell et al., 2013). There are new developments along 1150 

scale-aware parameterizations (e.g., Hurrell et al. 2009) that can help refine parameterizations for 1151 

finer spatial scales.  1152 

One important issue with online simulations and groundwater modeling is the computational 1153 

complexities compared to offline surface water simulations (e.g. Hill et al., 2004; Kollet et al., 1154 

2010; Wood et al., 2011). Wehner et al. (2008) suggested opportunities to address computational 1155 

burdens, including hardware design (i.e., building enhanced computer processors for a specific 1156 

application) and use of distributed and grid systems. A wide range of applications exists for grid 1157 

and cloud computing systems (see Schwiegelshohn et al., 2010; Lecca et al., 2011; Fernández-1158 

Quiruelas et al., 2011). Improved computational power can also provide a basis to explore various 1159 

model resolutions to identify critical scales for process representations (see Gentine et al., 2012) 1160 

and to support computationally expensive offline calculations, such as groundwater processes, 1161 

dynamic crop growth, river routing and model calibration (e.g. von Bloh et al., 2010; 1162 

Rouholahnejad et al., 2012; Wu et al., 2013). 1163 

Understanding and handling various sources of uncertainty requires activities towards evaluating 1164 

model performance against observations, which includes new diagnostics for systematic 1165 

assessments of the modeling system. One key challenge is the fact that LSMs are run over large 1166 
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grids, whereas validation data for land-surface variables and groundwater can be only obtained at 1191 

local scales. There are several attempts to overcome this issue. For instance, FLUXNET 1192 

(daac.ornl.gov/FLUXNET/fluxnet.shtml) coordinates regional and global analyses of observations 1193 

from micrometeorological tower sites to fill validation gap for online LSMs. Such observation 1194 

networks can facilitate diagnosing the LSMs efficiency and sources of errors over large 1195 

geographical scales. Moreover, a large number of combinations of model configurations should 1196 

be tested to ensure reliability and performance of individual components and characterize the bias 1197 

propagation from one component to others. For that purpose, it should be noted that increased 1198 

modeling complexity does not necessarily result in an improved precision; therefore, a systematic 1199 

approach is required to test, intercompare and falsify modeling options in the light of validation 1200 

data available. This will be discussed in more detail in Section 5.6.  1201 

5.3 Data support 1202 

As noted through our survey, major data limitations exist in representing various aspects of water 1203 

resource management, which are related to forcing, parameterization, calibration and validation of 1204 

water demand, supply and allocation algorithms (see also Table 3). At this stage of research, major 1205 

gaps are noted in spatial and temporal quality and coverage of the data related to climate, 1206 

hydrology, socio-economy, policy and water resource management that are required to drive or to 1207 

support large-scale models (see Wood et al., 2011; Gleick et al., 2013; Oki et al., 2013). 1208 

One important opportunity to improve data support is the use of remote sensing technology, which 1209 

can provide a synoptic view of the state of land-surface and atmospheric variables (see Sorooshian 1210 

et al., 2011b; Asrar et al., 2013) and a reliable data support for dynamic forcing, parameter 1211 

estimation as well as evaluation of large-scale models (see van Dijk and Renzullo, 2011; Trenberth 1212 

and Asrar, 2012). For instance, Landsat missions (http://landsat.gsfc.nasa.gov; see Williams et al. 1213 

2006) have captured long-term variations in global land-cover with a temporal resolution of 16 1214 

days and spatial resolution of up to 30 meter, which can help to parameterize anthropogenic 1215 

activities such as crop growth and reservoir area. More recently, passive MODerate Resolution 1216 

Imaging Spectroradiometer (MODIS; http://modis.gsfc.nasa.gov; see Savtchenko et al., 2004) 1217 

provide a wide range of land-surface information and have already been applied for various large-1218 

scale modeling studies, including validation of online models (Sorooshian et al., 2011a), high 1219 

resolution parameterization (Ke et al., 2012) and monitoring storage in large reservoirs (Gao et al., 1220 
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2012). Assimilation of MODIS land measurements with meteorological data and the Penman-1225 

Monteith equation has also provided 8-day, monthly and annual evapotranspiration estimates at 1 1226 

km resolution globally (Mu et al., 2007, 2011). This can provide a basis to evaluate simulated 1227 

evapotranspiration over land-surface (see Section 5.4). Another important product is the Gravity 1228 

Recovery and Climate Experiment (GRACE; http://www.csr.utexas.edu/grace/; see Tapley et al., 1229 

2004), measuring changes in the total terrestrial water storage at rather coarser resolutions.  1230 

GRACE data have already been used in studies related to regional groundwater depletion (e.g., 1231 

Rodell et al., 2007, 2009), model calibration (Sun et al., 2012) and validation of large-scale 1232 

simulations (Pokhrel et al., 2012a,b). 1233 

Upcoming satellite missions can further support representation of water resources management. 1234 

For instance, precipitation is a key limitation in hydrological modeling in general, but is also 1235 

important for irrigation demand and scheduling. The upcoming Global Precipitation Measurement 1236 

mission (GPM; http://gpm.nasa.gov) will collect data at 10km resolution, every 3 hours, globally. 1237 

The upcoming Soil Moisture Active Passive mission (SMAP; see Entekhabi et al. 2010) will 1238 

provide improved global soil moisture measurements every 24 hours without sensitivity to cloud 1239 

cover. This can be considered as an important data support for irrigation demand algorithms. 1240 

Another upcoming remote sensing mission is the Surface Water and Ocean Topography mission 1241 

(SWOT; see Fu et al., 2009; Biancamaria et al., 2010; Durand et al., 2010), which will provide 1242 

fine-scale measurements of various surface water stores, including reservoirs as well as natural 1243 

and man-made channels. Such information at the global scale has the potential to revolutionize 1244 

representation, calibration and validation of algorithms related to estimation of inflow to 1245 

reservoirs, reservoir releases and inter-basin water transfers.  1246 

There are also important improvements in sharing ground-based data and simulation results, 1247 

including some inspiring grass-root data collection efforts. For example, the International 1248 

Groundwater Resources Assessment Centre (IGRAC; www.un-igrac.org) assigns an associate 1249 

expert to each one-degree grid cell to submit monthly groundwater levels. Such data can be a 1250 

critical source for testing groundwater withdrawal algorithms. Similar grass-root efforts could be 1251 

made to record other water resource management data, particularly with respect to actual (rather 1252 

than licensed) water uses, local management policies and water technologies. We also note that 1253 

sharing of gridded climate forcing and simulation results is important and provides a basis for 1254 

consistent model intercomparison efforts. One example is the recently finished EU-WATCH 1255 
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program (http://www.eu-watch.org/), which provides forcing and simulation results of WATCH’s 1256 

Model Intercomparison Project (WaterMIP; http://www.eu-watch.org/watermip).           1257 

5.4 Water resource management algorithms 1258 

Computational algorithms for representing the elements of water resource management have 1259 

various sources of uncertainty (see Table 3) and improving the related representations and reducing 1260 

the modeling uncertainty can be considered as an important avenue for future developments. Some 1261 

important opportunities include enhancing the simulation-based reservoir operation algorithms for 1262 

online applications and various applications of calibration, data assimilation and system 1263 

identification techniques.  1264 

 One crucial limitation, as noted above, is in current reservoir operation algorithms for 1265 

online applications. Simulation-based schemes provide a basis to move forward, however, 1266 

modifications are required to relax prognostic inputs and to represent the thermal and 1267 

evaporative functions of reservoirs for online applications.  Modeling schemes have been 1268 

already developed for representing energy balance of natural lakes at sub-grid scale (e.g., 1269 

MacKay, 2011; MacKay and Seglenieks, 2013) and can be merged with improved 1270 

simulation-based reservoir operation algorithms to simultaneously characterize reservoir 1271 

release, storage and evaporation as well as land-atmospheric feedbacks. However, an 1272 

important question remains in how to address substantial biases in estimation of reservoir 1273 

release due to the uncertainty in estimation of reservoir inflows, particularly in online 1274 

simulations. This issue can be partially handled using data assimilation frameworks; but 1275 

substantial uncertainty remains in future simulation, where assimilation is not possible. 1276 

Therefore, efforts should be made to represent reservoirs in a robust manner that can handle 1277 

the inflow biases.     1278 

 Calibration using observed, simulated or assimilated system behavior can be used to 1279 

implicitly represent management and sub-grid heterogeneity. One example would be to 1280 

address diversity in irrigation demand by finding “representative parameters” that match 1281 

the assimilated evaporation over a typical irrigated grid. Calibration with ability to identify 1282 

time-varying parameters could also be used to improve the performance of reservoir 1283 

operation algorithms and provide a basis to account for variations in water allocation 1284 

practice in time and potentially in space by considering functioning of multiple reservoirs. 1285 
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 Another opportunity is to improve functional mappings of system response and demand 1296 

through system identification techniques. These techniques can range from statistical 1297 

regression models to more sophisticated machine-learning techniques such as artificial 1298 

neural networks (e.g., Nazemi et al., 2006a) and genetic symbolic regression (e.g., 1299 

Hassanzadeh et al., 2014). One example would be building functional relationships for 1300 

estimation of irrigative or non-irrigative water demands and/or uses. Another would be to 1301 

represent reservoir operations through transfer functions and enhanced rule-based models 1302 

as well as building different decision support systems for handling operations taking place 1303 

at different time scales (i.e. hydropower with a 5-minute market, floods with sub-hourly to 1304 

hourly time step, and monthly seasonal water supply). This can provide an interesting 1305 

prospect to extract operational rules from observed data and to incorporate soft variables 1306 

such as social values and expert insights into modeling water resource management (e.g., 1307 

Nazemi et al., 2002). Having such an improved modeling capability might provide an 1308 

opportunity to guide representation of adaptive management and may provide a basis to 1309 

regionalize management policies and operational practices.  1310 

5.5 Host models 1311 

Limitations in host models can introduce a wide range of uncertainties (see Table 3). This is due 1312 

to the fact that water resource management algorithms are fully embedded within the host models 1313 

and interact with calculations related to land-surface process at the grid scale (see Figure 1). For 1314 

instance, estimation of antecedent soil moisture affects estimation of irrigation demand. Similarly, 1315 

estimates of the natural inflows to reservoirs govern the calculations related to reservoir releases 1316 

and storage. Currently, there are major limitations in representing soil moisture, snow cover, 1317 

permafrost, evapotranspiration, deep percolation and runoff in large-scale models and they cannot 1318 

be represented without large uncertainty (Lawrence et al., 2012; Trenberth and Asrar, 2012; Oki 1319 

et al., 2013). Moreover, host models often contain missing processes. For instance, current host 1320 

models often ignore the effects of increased CO2 concentration on irrigation demand. This may 1321 

result in large uncertainties under climate change effects (see Wada et al., 2013b).   1322 

While an extensive review of these issues goes beyond the scope of this paper, we note that 1323 

substantial efforts continue to be made to include missing processes and to improve current 1324 

parameterizations of natural and anthropogenic processes in large-scale models, particularly in the 1325 
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context of LSMs. For instance, the Community Land Model (CLM; Oleson et al., 2004; 2008; 1327 

Lawrence et al., 2011) has been recently improved by new algorithms for representing permafrost 1328 

(Swenson et al., 2012), agriculture (Drewniak et al., 2013) and irrigation (Levis and Sacks, 2011; 1329 

Levis et al., 2012). Another important development is the vector-based river routing algorithms 1330 

(e.g. Li et al., 2013a,b) that can improve the representation of natural and anthropogenic channel 1331 

processes such as reservoir stores, streamflow diversions and inter-basin water transfers (see 1332 

Lehner and Grill, 2013). Another key opportunity is the application of data assimilation and/or 1333 

calibration techniques to reduce parametric uncertainty and to improve prediction capability. Some 1334 

systematic frameworks for calibration and parameterization of land-surface processes are 1335 

suggested (Rosolem et al. 2012, 2013). We expect improvements in process representations and 1336 

parameterizations related to LSMs will increase in near future due to the need that has been already 1337 

recognized (e.g., Wood et al., 2011; Lawrence et al., 2012; Trenberth and Asrar, 2012; Gleick et 1338 

al., 2013; Oki et al., 2013; Dadson et al., 2013). 1339 

5.6 A framework to move forward  1340 

Several improvements need to be made in order to appropriately represent the elements of water 1341 

resource management in Earth System models. We noted that moving towards including the 1342 

elements of water resource management in a way described in Figure 1 requires continuous 1343 

developments in water resource management algorithms, host LSMs, online land-atmospheric 1344 

coupling and data support. We pointed to the main gaps and provided a brief overview on the 1345 

opportunities for overcoming these limitations. As far as the algorithms related to representing 1346 

water resource management are concerned, Table 4 summarizes improvements that need to be 1347 

made before we can properly represent human-water interaction in Earth System models, along 1348 

with targeted temporal and spatial resolutions. Modeling resolutions can vary across various 1349 

elements of water resource managements due to the difference in how different elements affect 1350 

water and energy balance at the land-surface. For instance, irrigation and crop growth directly 1351 

affect both energy and water balance at the sub-grid scale, with substantial difference between 1352 

crop function during a day. Therefore, irrigation should be represented at a fine temporal and 1353 

spatial resolution to capture potential climate responses. Reservoirs also affect water and energy 1354 

balance; however, as noted above reservoir area and surface temperature vary slowly and therefore 1355 
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there is no need to approach a finer time-scale than the scale needed for representing the water 1361 

balance and downstream releases.   1362 

As noted throughout our survey, a variety of modeling options for representing key elements of 1363 

water resource management at larger scales is currently available and new details about natural 1364 

and anthropogenic processes are continually being added to Earth System models. Nonetheless, 1365 

major limitations exist in current data, algorithms and host models, which induce major biases 1366 

within components and complicate  uncertainty quantification and model tractability. At this 1367 

juncture, a primary task for model development should be to test and compare different data and 1368 

modeling alternatives in an integrated system. This requires considering model hierarchy and the 1369 

links between different components and exploring individual and integrated model space with 1370 

respect to accuracy, identifiability and capability for generalization. This, in turn, can direct where 1371 

future attempts should be focused to reduce uncertainties further. Guidelines are available for (1) 1372 

considering multiple working hypotheses for supporting and representing relevant sub-processes 1373 

and modeling component; (2) constructing different simulations based on various combinations of 1374 

the considered options and (3) rejecting them if they fail to describe new data, violate their 1375 

underlying assumptions and/or can be equally described by simpler models (Clark et al., 2011b; 1376 

see Popper, 1959). Modular systems, such as the recently released WRF-Hydro (NCAR, 2013), 1377 

are particularly suitable for building such a framework as they provide a tool for 1378 

constructing/falsifying different hypotheses for process representations, parameterizations and 1379 

data support in a unified computational platform.  1380 

To address this and to move towards the integrated representation of water resource management 1381 

in LSMs, suggested in Figure 1, we propose a systematic framework for improving the 1382 

incorporation of water resource management through building, testing and falsifying various 1383 

modeling options. Figure 2 shows this framework based on the links between different modeling 1384 

components. In brief, Figure 2 divides the model development into six components, related to (A) 1385 

modeling set-up and data configuration, (B) climate modeling, (C) land-surface modeling, (D) 1386 

water resource management representation, (E) calibration and parametric identification, as well 1387 

as (F) testing and falsification. The framework starts with prior knowledge (A), coming from the 1388 

modeling purpose, current modeling capabilities and limitations and the knowledge obtained from 1389 

previous modeling attempts. According to the prior knowledge and emerging advancements, a 1390 

range of modeling scales can be selected and multiple working hypotheses can be configured to 1391 
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represent the data and modeling options in (B) to (E). Depending on the mode and period of 1409 

simulation, climate data or more generally climate models (B) are required to force or to be coupled 1410 

with land-surface processes. The land-surface component (C) includes relevant sub-modules 1411 

related to natural processes, water supply and allocation and irrigative and non-irrigative 1412 

withdrawals. The anthropogenic activities are controlled by the water resource management 1413 

component (D), which requires inputs from land-surface and climate components to determine 1414 

water availability and to estimate various demands with the aid of these and/or other proxies (priori 1415 

knowledge). Rules for prioritizing, partitioning and allocating water demands are reflected in a 1416 

management decisions sub-module that further drives water allocation in the land-surface 1417 

modeling component. Sub-modules within (C) and (D) often contain unknown parameters that 1418 

need to be identified through prior knowledge or calibration. As a result, calibration and parameter 1419 

identification algorithms (E) with capability for further uncertainty assessment are a key 1420 

requirement. Population-based optimization algorithms are particularly suitable for parameter 1421 

identification as they provide a range of behavioral parameters, which can be analyzed through 1422 

advanced visualization schemes and provide valuable insights into modeling uncertainty, 1423 

identifiability and multiple performance measures (e.g. Nazemi et al., 2006b, 2008; Pryke et al., 1424 

2007). Moreover, population-based algorithms can provide methodological linkage to uncertainty 1425 

assessment through various diagnostic tests. Guidelines are provided to test and falsify models 1426 

through various evaluation criteria such as parametric identifiability (e.g. Beven, 2006b), Pareto 1427 

optimality (Gupta et al., 1998), predictive uncertainty (Wagener et al. 2004) and limits of 1428 

acceptability (Beven and Alcock, 2012).   1429 

Due to the current stage of model development, there is a need to approach the framework 1430 

suggested in Figure 2 with a sequential workflow, as certain improvements should be made first 1431 

before we can improve others. Figure 3 divides the suggested framework into four sequential 1432 

working packages. First, various options for data support, water resource management (WRM) 1433 

algorithms and host models should be benchmarked, tested and intercompared individually to 1434 

highlight their relative suitability in further offline simulation. This would naturally result in 1435 

falsifying some of the working hypotheses. The selected options then should be mixed-and-1436 

matched in an offline mode. The offline simulation efficiency should be then explored and 1437 

intercompared between various integrated settings to assess the biases propagated across the 1438 

system and examine the robustness of the individual components in an integrated offline 1439 
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simulation. The non-falsified options in this stage can be further improved and configured for 1440 

online simulation, which can be then coupled with climate models in a way described in Figure 2.   1441 

A key requirement for implementing the suggested framework is the availability of suitable data, 1442 

at an appropriate scale, for algorithm development and intercomparison. Although global studies 1443 

are important to improve our knowledge of the Earth System and water security, our ability to 1444 

conduct a comprehensive global study as proposed in Figure 2 is currently limited due to 1445 

methodological, computational and funding barriers. We argue that a network of regional case 1446 

studies, however, could provide access to local data, and a sample of comparative examples to 1447 

support algorithm intercomparison and further development. We note, for example, the success of 1448 

model intercomparison projects such as MOPEX (Duan et al., 2006) for hydrological modeling, 1449 

and suggest that the time is right to develop a similar initiative for the incorporation of 1450 

anthropogenic effects in hydrological models. One possibility is to draw on the resources of the 1451 

set of Regional Hydroclimate Projects (RHPs) supported by the Global Energy and Water 1452 

Exchanges (GEWEX) initiative of the World Climate Research Program (WCRP). As an example, 1453 

our home river basin in western Canada, the 340,000 km2 trans-boundary Saskatchewan River 1454 

Basin (SaskRB), is a GEWEX RHP, embodies a complex large scale water resources system 1455 

(Nazemi et al., 2013), and poses globally-relevant science and management challenges (see 1456 

Wheater and Gober, 2013). These require improved representation of water resource management 1457 

at larger scales to diagnose the changes in the regional discharge, climate and water security as the 1458 

result of current and future water resource management and climate change. Such RHPs could 1459 

provide a basis for model development and intercomparison to support inclusion of water resource 1460 

management in Earth System models for fully coupled global simulations. We have already started 1461 

to explore various modeling options and the ways of improving individual algorithms (i.e. stage 1 1462 

of sequential model development protocol illustrated in Figure 3) throughout the SaskRB. For 1463 

instance, we have benchmarked several reservoir operation algorithms using observed inflows and 1464 

assessed the possibility of improving simulation using calibration. We have realized that the 1465 

efficiency of reservoir operation algorithms can be considerably improved if the assumption of 1466 

fixed model parameterization is relaxed and the algorithm parameters are identified through 1467 

calibration against observed reservoir level and discharge. We are about to finalize this study and 1468 

will present our findings through a technical paper in near future.      1469 

 1470 
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6 Summary and concluding remarks 1471 

Human water supply and allocation have intensively perturbed the water cycle. We noted that the 1472 

inclusion of these anthropogenic activities in Earth System models poses a new set of modeling 1473 

challenges and progress has remained incomplete. Despite some major developments, we noted 1474 

that current limitations significantly degrade the modeling capability at larger scales, particularly 1475 

with respect to future conditions, and neglect potentially-significant sources of change to land-1476 

atmospheric system. We highlighted important deficiencies related to representing groundwater 1477 

stores and withdrawals as well online implications of large reservoirs. We also noted that current 1478 

water allocation algorithms have considerable limitations in representing streamflow in regulated 1479 

catchments. We argued that these limitations are attributed to uncertainties in data support, water 1480 

allocation algorithms. 1481 

We identified four opportunities for improvements. These are advancements in (1) high 1482 

performance computing and coupling techniques; (2) remote sensing, data collection and data 1483 

sharing; (3) calibration algorithms, system identification techniques and assimilation products; and 1484 

(4) ongoing improvements in host models including both process representation and parameter 1485 

identification. As there are several options available for data support, water resource management 1486 

algorithms and host models, we proposed a modular framework for testing various modeling and 1487 

data options, which can be configured by multiple working hypotheses and implemented in a 1488 

unified and fully integrated modeling framework. The selected working hypotheses can be tested 1489 

and falsified on the basis of available information, intercomparison and/or various model diagnosis 1490 

frameworks. Similar to other recent commentaries (e.g., Clark et al., 2011b; Beven et al., 2012), 1491 

we believe that such a systematic framework in essential for improving current modeling capability 1492 

in both offline and online modes and can be pursued using regional case studies, before aiming for 1493 

fully coupled global simulations. WCRP RHPs are one source of suitable examples to move this 1494 

agenda forward.  1495 

It should be noted that filling current gaps in the inclusion of water resource management in Earth 1496 

System models requires substantial efforts across a wide range of disciplines, from social and 1497 

policy sciences to economics and water management, from natural sciences to engineering and 1498 

mathematical modeling, and from remote sensing to hardware technology and computer science. 1499 

Interdisciplinary research efforts, therefore, are important. Moreover, for various reasons including 1500 

Deleted:  can1501 

Deleted: s1502 

Deleted:  fo1503 

Deleted: r1504 

Deleted: -1505 

Deleted:  water security assessment and resource management1506 

Deleted: s1507 

Deleted:  1508 

Deleted: surface1509 

Deleted: s1510 

Deleted:  and host models and proposed that future water security 1511 
and impact assessment studies should aim to improve current 1512 
representations and move to finer spatial and temporal resolutions. 1513 



44 
 

funding limitations, the community needs to fully recognize the role of collaboration and explore 1514 

various opportunities to share data and resources for efficient model developments and for 1515 

consistent intercomparisons. 1516 

Finally, it should be indicated that our survey considered water resource management from a water 1517 

quantity perspective. Water quality concerns are increasingly associated with growing human 1518 

water demand and can also impact water supply and allocation. Coupling water quality and 1519 

quantity in Earth System models is however very much in its infancy and much future effort will 1520 

be required to fill this gap. We hope that our survey will trigger more attention towards the 1521 

necessity for improving current Earth System modeling capability to respond to the needs and 1522 

challenges of the “Anthropocene”. 1523 
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Table 1. Examples for available representations of water supply and allocation in large-scale models  

Reference 

Water supply Water allocation 

Diversions Reservoirs 
Groundwater 

store 

Desalination 

and reuse 

Supply-demand 

dependency 
Priorities in demands Operational objectives 

Haddeland et 
al. (2006b) 

In- and inter-grid 
abstraction 

Macro-scale 
operation1 

N/A N/A 
Reservoir can supply up 
to 5 grids downstream2 

Irrigation, flood control, 
hydropower, others 

Minimize deficit, maximize  
hydropower 

Hanasaki et al. 

(2008a) 

In- and inter-grid 

abstraction 

Macro-scale 

operation 
N/A N/A 

Reservoir can supply  up 

to 10 grids downstream 

Municipal, industrial, 

irrigation 

Allocate available water, share 

deficit 

Rost et al. 

(2008) 
Local abstraction Lake routing NNBW assumed unlimited 3 Local grid Irrigation only 

Meet demand using available 

water 

Döll et al. 

(2009) 

In- and inter-grid 

abstraction 

Macro-scale 

operation 
N/A N/A 

Reservoir can supply up 

to 5 grids downstream 
Irrigation, non-irrigation Meet total demand4 

Hanasaki et al. 

(2010) 
Local abstraction 

Macro-scale 
operation/local 

abstraction 

NNBW assumed unlimited  Local grid Irrigation and livestock only 
Meet total demand using 

unlimited groundwater 

Strzepek et al. 
(2010) 

Local abstraction 
Macro-scale 
operation5  

Countrywide  
estimates  

N/A Local basin  
Domestic, industry, livestock, 

irrigation 
Maximize profitability 

Wisser et al. 

(2010) 

In-grid 

hydrologic 
routing 

Macro-scale 

operation 

Unlimited local 

source6 
N/A Local grid  Irrigation only 

Meet total demand using 

unlimited groundwater 

Biemans et al. 

(2011) 

Local 

abstraction, 

Heuristic routing 

Macro-scale 

operation 
NNBW assumed unlimited 7 

Reservoir can supply up 

to 5 grids downstream 
Irrigation only 

Proportional allocation of 

available water 

Wada et al. 

(2011) 

In- and inter-grid 

abstraction 

Macro-scale 

operation 

Countrywide 

estimates 

Countrywide 

estimates 

Reservoir can supply up 

to 600 km downstream 

Irrigation, flood control, 

hydropower, others 

Minimize deficit, maximize 

hydropower 

Pokhrel et al. 

(2012a) 
Local abstraction 

Macro-scale 

operation 
NNBW assumed unlimited  Local grid Irrigation, non-irrigation 

Meet total demand using 

unlimited groundwater 

Strzepek et al. 

(2012) 
Local abstraction 

Macro-scale 

operation5  

Basin-scale 

threshold 

Function of 

capacity 
Local basin 

Non-agricultural, 

Agricultural 

Minimize groundwater use and 

spill 

Blanc et al. 

(2013) 

Local 

abstraction, 

Heuristic routing 

Macro-scale 

operation5   

Basin-scale 

threshold 
N/A Local basin 

Non-agricultural, 

Agricultural 

Minimize groundwater use and 

spill 

Hanasaki et al. 

(2013b) 
Local abstraction 

Macro-scale 

operation 
N/A N/A Local grid 

Municipal, industrial, 

irrigation 

Allocate available water, share 

deficit 

Voisin et al. 
(2013a,b) 

In- and inter-grid 
abstraction 

Macro-scale 
operation 

N/A N/A 
Reservoir can supply up 
to 200 km downstream 

irrigation, flood control, 
hydropower and others 

Allocate available water, share 
deficit 

Wada et al. 

(2013a) 

In- and inter-grid 

abstraction 

Macro-scale 

operation 

Conceptual 

reservoir 

Countrywide 

estimates 

Reservoir can supply up 

to 600 km downstream 
Irrigation, non-irrigation 

Allocate available water, share 

deficit 

                                                           
1 Simultaneous operation of multiple dams in a river basin was not considered. 
2 See Haddeland et al. (2006a). 
3 Simulations without assuming unlimited groundwater store were also performed. . 
4 Demand that cannot be allocated in any given day is allocated later in the year or in the next year, when water is available.  
5 A virtual reservoir is considered for each basin. 
6 Shallow groundwater is represented as a runoff retention pool, which delays runoff before it enters streams. 
7 Simulations with considering only surface water availability were also performed. 
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Table 2. Representative examples for available macro-scale reservoir operation algorithms 

implemented in large-scale models 

Reference Host model 
Routing 

algorithm 

Type of 

operation 
Reservoir data Validation discharge data 

Hanasaki et 

al. (2006) 
N/A 

TRIP (Oki and 

Sud, 1998) 

Simulation-

based 

WRD98 

(ICOLD) 

GSWP (Dirmeyer et al., 1999; 

Oki et al., 2001) 

Haddeland et 

al. (2006a,b, 

2007) 

VIC (Liang et 

al., 1994) 

Linearized 

Saint-Venant 

(Lohmann et al., 

1996, 1998) 

Optimizatio

n-based 

ICOLD; 

Vörösmarty et al. 

(1997, 2003) 

USGS( http://waterdata.usgs.gov) 

USBR (http:// www. usbr.gov) 

GRDC 

(http://www.bafg.de/GRDC/) 

Adam et al. 

(2007) 

VIC (Liang et 

al., 1994) 

Unit 

hydrograph and 

Linearized 

Saint-Venant 

(Lohmann et al., 

1996, 1998) 

Optimizatio

n-based 

ICOLD; 

Vörösmarty et al. 

(1997, 2003) 

Adam and Lettenmaier (2008) 

Hanasaki et 

al. (2008a) 

H08 (Hanasaki 

et al., 2008a,b) 

TRIP (Oki and 

Sud, 1998) 

Simulation-

based 

WRD98 

(ICOLD) 

GRDC 

(http://www.bafg.de/GRDC/) 

Döll et al. 

(2009) 

WaterGAP 

(Alcamo et al., 

2003) 

HBV 

(Bergström and 

Smith, 1995) 

Simulation-

based 

GRanD (Lehner 

et al., 2008) 

GRDC 

(http://www.bafg.de/GRDC/) 

Wisser et al. 

(2010) 

WBMplus 

(Vörösmarty et 

al., 1998) 

Muskingum-

Cunge (Ponce 

and Changanti, 

1994) 

Simulation-

based 
ICOLD  

UNH-GRDC (Fekete et al., 1999, 

2002) 

Biemans et al. 

(2011)` 

LPJmL (Gerten 

et al., 2004; 

Rost et al., 

2008) 

Linear reservoir 

model (Huggins 

and Burney, 

1982) 

Optimizatio

n-based 

GRanD (Lehner 

et al., 2011) 

GRDC 

(http://www.bafg.de/GRDC/) 

Van Beek et 

al. (2011) 

PCR-GLOBWB 

(van Beek and 

Bierkens, 2009) 

Kinematic 

Saint-Venant 

(Chow et al., 

1988) 

Optimizatio

n-based 

GLWD1 (Lehner 

and Döll, 2004) 

GRDC 

(http://www.bafg.de/GRDC/) 

Wu and Chen 

(2012) 

SWAT (Arnold 

et al., 1998) 

SWAT (Arnold 

et al., 1998) 

Simulation-

based 
Wu et al. (2007) Chen and Wu (2008)1 

Pokhrel et al. 

(2012a) 

MASTIRO 

(Takata et al., 

2003) 

TRIP (Oki et 

al., 2001) 

Simulation-

based 

WRD98 

(ICOLD) 

GRDC 

(http://www.bafg.de/GRDC/) 

Voisin et al. 

(2013a) 

VIC (Liang et 

al., 1994) 

MOSART (Li et 

al., 2013a,b) 

Simulation-

based 

GRanD (Lehner 

et al., 2011) 

USGS( http://waterdata.usgs.gov) 

USBR (http:// www. usbr.gov) 

GRDC 

(http://www.bafg.de/GRDC/) 

Voisin et al. 

(2013b) 

SCLM (Li et 

al., 2011; 

Lawrence et al., 

2011) 

MOSART (Li et 

al., 2013a,b) 

Simulation-

based 

GRanD (Lehner 

et al., 2011) 

USGS( http://waterdata.usgs.gov) 

USBR (http:// www. usbr.gov) 

GRDC 

(http://www.bafg.de/GRDC/) 

 

 

 

 

 

 

                                                           
1 Discharge data used for calibration as well 
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Table 3. Uncertainties in current offline representations of water resource management in large-scale models 

Component  
Type of 

activity 
Specification Data uncertainty Algorithm uncertainty  Host model uncertainty1 

Water demand 

(Nazemi and 

Wheater, 

2014a) 

Irrigative 

demands 
Irrigation 

Climate forcing; soil, crop, land-use and land management 

including sub-grid heterogeneities; actual diversions; 

socio-economy and technological variables; agricultural  

management  

Characterizing the potential evapotranspiration and crop 

water demand; representing the sub-grid crop diversity, 

irrigation expansion, crop change, return flows 

Estimation of actual 

evapotranspiration, soil water 

movement, runoff and canopy losses; 

considering  CO2 effects 

Non-

irrigative 

demands 

Industrial uses  

Location, diversity and capacity of uses;  actual 

diversions; downscaling  proxies; socio-economy and 

technological variables 

Seasonal variations in industrial water needs; structural and 

parametric uncertainty in estimation and projection of 

industrial demand. 

N/A 

Energy-related uses 

Location, diversity and capacity of uses; actual diversions; 

downscaling  proxies; socio-economy and technological 

variables 

Seasonal variations in energy-related water needs; 

structural and parametric uncertainty in estimation and 

projection of industrial demand. 

N/A 

Municipal 

Uses 

Population; diversity in uses; actual diversions and uses; 

downscaling  proxies; socio-economy and technological 

variables 

Seasonal variations in municipal water needs, structural and 

parametric uncertainty in estimation and projection of 

municipal demand 

N/A 

Livestock uses Heads; socio-economy Seasonal variations in livestock water need; return flows N/A 

Environmental flows Habitat and ecosystem needs in time and space Over-simplicity of demand calculation Hydrological processes upstream 

Water 

allocation (see 

Sections 2 to 4) 

Water 

supply 

River diversion 
Location of diversion; capacity, slope and other properties 

of diversion networks 
Diversion losses, return flows  Channel routing 

Lakes and reservoirs 

storages2 

Precipitation; reservoir location and characteristics; actual 

storage; small dams 

Crude representation of reservoir releases using 

representations of natural lake, losses from reservoir  

Hydrological processes upstream of 

dams, channel routing 

Inter-basin transfer 

Location of diversion; capacity, slope and other water 

transfer properties; management policies; actual water 

transfer.  

Diversion losses, simplicity of heuristic algorithms 
Channel routing, calculation of 

demands 

Reused water Location, capacity and actual desalinated water supply  Limited representations N/A 

Groundwater storage Soil properties, groundwater movement 
Crude representation of groundwater availability, ignoring 

inter-cell lateral groundwater movements  

Estimation of groundwater storage, 

recharge and discharge, calculation of 

demand. 

Water 

allocation 

practice 

 

Operational objectives Management policies and local constraints 
Limitations of common objective functions; Temporal and 

spatial variations in operational objective  

Estimation of water demand and 

supply 

Demand-Supply 

dependency  

Management policies and local constraints, topography, 

diversion channels 
Steady-state assumption 

Estimation of water demand and 

supply 

Priorities Management policies and local constraints Temporal and spatial variations in priorities  
Estimation of water demand and 

supply 

Reservoir operations Management policies and local constraints 

Simplicity of operational rules in simulation-based 

approaches, complexity of optimization-based algorithms, 

prognosis of both approaches  

Operational objectives, inflow to 

reservoirs, water demand 

Groundwater withdrawal 
Wells location, groundwater management, actual pumping 

capacities 

Crude representation of groundwater withdrawals based on 

both top-down and bottom-up algorithms 

Groundwater storage, surface water 

availability, grid-based water 

demands   

 

                                                           
1 Uncertainties from host-model also include the uncertainties that can extend from other algorithms, related to water resource management, embedded in host 

models (see Figure 1).  
2 See also reservoir operations. 
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Table 4. Required developments for including the elements of water resource management in Earth System 

models (see also Table 3) 

Water resource 

management 

component 

Required algorithmic 

improvements 

Targeted spatial 

scale 

Targeted temporal 

scale 

Data support for 

parameterization 

and validation 

Irrigation 

demands 

Improving the calculation of 

crop-specific water demand 

considering the effect of 

CO2, considering soil-water 

movement and other losses 

Hyperresolution 

and sub-grid 

scale 

Sub-daily/sub-

hourly (for online 

simulations) 

Crop and soil 

diversity, measured 

or assimilated 

evaporation over 

irrigated lands 

Non-irrigative 

human demands 

Improving the mapping 

relationship, representing 

the diversity of non-

irrigative demands 

Large grids with 

the ability to be 

downscaled into 

finer resolutions 

using socio-

economic and 

climate proxies 

Yearly and 

monthly with the 

ability to be 

downscaled into 

finer scales using 

socio-economic 

and climate proxies 

Water use data, 

gridded climate and 

regional socio-

economic data 

Environmental 

flow needs 

Improving the demand 

approximation considering 

the diversity in the aquatic 

life 

Catchment scale Monthly and less 

Aquatic  

biodiversity and 

water use, climate 

information, water 

temperature, water 

quality  

Lakes and 

reservoirs 

Improving the 

representation of release and 

storage, linking hydrologic 

representation with energy-

balance components 

Grid and sub-

grid 
Daily 

Reservoir storage 

and water level, 

release after 

reservoirs, storage-

area-elevation 

relationships, 

operational 

objectives 

Water 

diversions 

Representing in-grid and 

inter-grid water diversions 

including losses 

Grid and inter-

grid 
Daily 

Water distribution 

specifications, 

location of 

abstractions 

groundwater 

Improving the 

representation of  

groundwater storage and 

recharge 

Grid 
Daily (shorter in 

online simulations) 

Soil properties, well 

locations, pumping 

capacities 

Water resuse 

and desalination 

Improving the 

representation of water 

reuse and desalination and 

the annual dynamics of 

water supply from each 

facility 

Grid 

Yearly with the 

ability to be 

downscaled into 

finer time scales 

using climate and 

socio-economic 

proxies   

Location and 

capacity of 

facilities, gridded 

climate, regional 

socio-economic data  
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Figure 1. A fully coupled framework for inclusion of water resources management in a typical 

LSM grid 
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Figure 2. A modular framework for improving the inclusion of water resource management in 

LSMs through building, testing and falsifying multiple working hypotheses 
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Figure 3. A sequential workflow for benchmarking, improving and including the elements of water 

resource management into offline and online Earth System simulations  

 


