
1 
 

On inclusion of water resource management in Earth System 1 

models – Part 2: Representation of water supply and 2 

allocation and opportunities for improved modeling 3 

 4 

Ali Nazemi1 and Howard S. Wheater1 5 

[1] Global Institute for Water Security, University of Saskatchewan, 11 Innovation Boulevard, 6 

Saskatoon, SK S7N 3H5, Canada 7 

Correspondence to: A. Nazemi (ali.nazemi@usask.ca) 8 

  9 

Abstract 10 

Human water use has significantly increased during the recent past. Water withdrawals from 11 

surface and groundwater sources have altered terrestrial discharge and storage, with large 12 

variability in time and space. These withdrawals are driven by sectoral demands for water, but are 13 

commonly subject to supply constraints, which determine water allocation. Water supply and 14 

allocation, therefore, should be considered together with water demand and appropriately included 15 

in Earth System models to address various large-scale effects with or without considering possible 16 

climate interactions. In a companion paper, we review the modeling of demand in large-scale 17 

models. Here, we review the algorithms developed to represent the elements of water supply and 18 

allocation in Land Surface Models and Global Hydrologic Models. We note that some potentially 19 

important online implications, such as the effects of large reservoirs on land-atmospheric 20 

feedbacks, have not yet been fully investigated. Regarding offline implications, we find that there 21 

are important elements, such as groundwater availability and withdrawals, and the representation 22 

of large reservoirs, which should be improved. We identify major sources of uncertainty in current 23 

simulations due to limitations in data support, water allocation algorithms, host large-scale models 24 

as well as propagation of various biases across the integrated modeling system. Considering these 25 

findings with those highlighted in our companion paper, we note that advancements in 26 

computation and coupling techniques as well as improvements in natural and anthropogenic 27 

process representation and parameterization, large-scale models, remote sensing and data 28 
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assimilation can facilitate inclusion of water resource management at larger scales; however 29 

various modeling options should be carefully considered, diagnosed and intercompared. We 30 

propose a modular framework to develop integrated models based on multiple hypotheses for data 31 

support, water resource management algorithms and host models in a unified uncertainty 32 

assessment framework. A key to this development is the availability of regional scale data for 33 

model development, diagnosis and validation. We argue that the time is right for a global initiative, 34 

based on regional case studies, to move this agenda forward. 35 

  36 

1 Introduction 37 

The water cycle is fundamental to the functioning of the Earth System and underpins the most 38 

basic needs of human society. However, as noted in our companion paper (hereafter referred to as 39 

Nazemi and Wheater, 2014a), the current scale of human activities significantly perturbs the 40 

terrestrial water cycle, with local, regional and global implications. Such disturbances affect both 41 

hydrological functioning and land-atmospheric interactions, and therefore should be explicitly 42 

represented in large-scale models. We consider both Land Surface Models (LSMs) and Global 43 

Hydrologic Models (GHMs). LSMs generally represent water, energy and carbon cycles, and can 44 

be coupled with climate models (i.e. online simulations) for integrated Earth System modeling, or 45 

uncoupled from climate models (i.e., offline simulations) for large-scale impact assessment. 46 

GHMs are also run in uncoupled mode for impact assessment; however, they focus exclusively on 47 

the water cycle. In this survey, we consider the representation of water resources management in 48 

these large-scale models and focus on water quantity rather than water quality. We note that while 49 

historically the effects of water management have largely been neglected in LSMs and GHMs, 50 

there has been increasing interest in recent years in their inclusion and a common first step is to 51 

estimate the demand for water, in particular associated with irrigation (see Nazemi and Wheater, 52 

2014a). However, in practice water resource systems are often complex, and associated 53 

infrastructure may have competing functional requirements and constraints (e.g. flood protection, 54 

water supply, environmental flows, etc.), exacerbated during drought. In this paper, we turn to the 55 

issues around water supply and allocation and associated representations in large-scale models. 56 

Major implications are associated with water allocation from surface and ground water sources. 57 

For instance, large dams and reservoirs can significantly modify downstream streamflow 58 
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characteristics (e.g., Vörösmarty et al., 1997, 2003; Oki and Kanae, 2006; Wisser et al., 2010; 59 

Tang et al., 2010; Tebakari et al., 2012; Lehner and Grill, 2013; Lai et al., 2014; Haddeland et al., 60 

2014), with large regional variability (see e.g., Pokhrel et al., 2012a). Considering that almost all 61 

major river systems in the Northern Hemisphere (except for the arctic and sub-arctic regions) are 62 

dammed (e.g., Meybeck, 2003; Nilsson et al., 2005), it can be argued that accurate simulation of 63 

continental and global runoff is impossible without considering the effects of reservoirs. Such 64 

hydrologic impacts and associated environmental consequences can be studied through offline 65 

LSMs or GHMs.  There are, however, important land-surface implications are associated with 66 

reservoir operation that require online simulations. For instance, it has also been argued that large 67 

dams can have important footprints on surface energy (Hossain et al., 2012), with associated 68 

effects on land-surface boundary conditions and potential interactions with local and regional 69 

climate (MacKay et al., 2009). To understand these effects, online LSMs, i.e. coupled with climate 70 

models, are required to provide quantitative knowledge of the extent of such impacts in time and 71 

space.   72 

Groundwater resources have also been extensively perturbed during the “Anthropocene”. Every 73 

year, a large amount of groundwater is pumped to the land-surface for both irrigative and non-74 

irrigative purposes (e.g., Zektser and Lorne, 2004; Siebert et al., 2010).  Such extraction has 75 

already caused large groundwater depletion in some areas (Rodell et al., 2007, 2009; Gleeson et 76 

al., 2010, 2012) and changed the surface water balance due to return flows from demand locations 77 

to river systems and ultimately to oceans (e.g., Lettenmaier and Milly, 2009; Wada et al., 2010; 78 

Pokhrel et al., 2012b; Döll et al., 2014). In parallel, a considerable proportion of the surface water 79 

diverted into irrigated areas may recharge groundwater (Döll et al., 2012). From a broader 80 

perspective, groundwater aquifers (particularly shallow groundwater) can also be an important 81 

control on soil moisture and wetlands, and thus influence atmospheric surface boundary conditions 82 

(e.g., Maxwell et al., 2007, 2011; Fan and Miguez-Macho, 2011; Dadson et al., 2013). These online 83 

effects are widely unquantified at the global scale, as the sub-surface processes below the root 84 

zone have been generally assumed to be disconnected from the atmosphere (see Taylor et al., 85 

2013). 86 

In addition, representing water allocation practice in large-scale models is urgently required to 87 

address various emerging water security concerns including (but not limited to) human water 88 

supply (e.g. Postel, 1996), ecosystem health (e.g. Vörösmarty et al., 2010), sedimentation (e.g. 89 
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Syvitsky et al., 2005) and water quality (e.g. Skliris and Lascaratos, 2004). These latter areas are 90 

beyond the scope of this paper, but highlight the need to represent human water allocation in large-91 

scale models for regional and global impact assessments. For instance, the most densely-populated 92 

parts of the globe suffer from extremely fragile water supply conditions (e.g., Grey et al., 2013; 93 

Falkenmark, 2013; Nazemi and Wheater, 2014b) and this will be amplified under future climate 94 

change and population growth (e.g., Arnell, 2004; Wada et al., 2013b; Rosenzweig et al., 2014; 95 

Schiermeier, 2014; Haddeland et al., 2014). While population growth directly affects water 96 

demand, indirect effects include changing land and water management, with associated impacts 97 

on the aquatic environment. Similarly, climate change is expected to perturb both water demand 98 

and supply, as it also results in greater seasonal and inter-annual variability with increase in the 99 

risk of extreme conditions (e.g., Dankers et al., 2014; Prudhomme et al., 2014). Looking to the 100 

future, Yoshikawa et al. (2013) argued that current sources can only account for 74 percent of the 101 

global net irrigation requirements of the 2050s and supply/demand imbalance will cause a major 102 

increase in global water scarcity (Alcamo et al., 2007; Hanasaki et al., 2008a, b, 2013a, b; Schewe 103 

et al., 2014). In water-scarce conditions, competition for water resources becomes increasingly 104 

important and the details of water allocation practice play a key role in the spatial and temporal 105 

distribution of water stress. These issues necessitates adaptation strategies to mitigate the effects 106 

of water stress and extreme conditions and large-scale models are, therefore, required to assess the 107 

effects of various global changes and to examine the impact of alternative management strategies.   108 

Representation of water allocation practice introduces a set of issues associated with management 109 

and societal preferences, local and regional differences in decision making, complexity of water 110 

resources systems (particularly at larger scales), as well as lack of data support. At local and basin 111 

scales, water allocation practice is mainly defined as an optimization problem, in which the aim is 112 

to minimize the adverse effects of water shortage and/or to maximize the economic benefits of the 113 

water resource system. The advent of search algorithms such as Linear Programming (Dantzig, 114 

1965), Dynamic Programming (Bellman, 1952) and Genetic Algorithms (Goldberg, 1989) has 115 

resulted in a wide variety of operational models for water resource management at small basin-116 

scale (e.g., Rani and Moreira, 2010; Hossain and El-shafie, 2013; see Revelle et al., 1969 for the 117 

early developments). These small-scale water allocation models, however, typically do not include 118 

processes related to water supply and demand and receive these variables as prescribed inputs. 119 

Moreover, small-scale operational models often require detailed information about policy 120 
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constraints and operational management. This information is not generally available over larger 121 

regions and at the global scale. Even if all related information were to be available, the level of 122 

complexity within small-scale operational models cannot be supported globally due to high 123 

dimensionality in decision variables and computational burdens. These restrictions have resulted 124 

in the progressive development of macro-scale algorithms to represent water allocation practice 125 

and competition among demands at regional and global scales.  126 

The main objective of this paper is to overview the current literature and to identify the state of 127 

available methods and applications for large-scale representations of water supply and allocation 128 

in LSMs and GHMs, with relevance to both Earth System modeling and regional and global water 129 

management. Section 2 addresses the representation of surface and ground water sources. Section 130 

3 discusses the linkage between available sources and prescribed demands (see Nazemi and 131 

Wheater, 2014a) through macro-scale allocation algorithms. Section 4 reviews current large-scale 132 

modeling applications and discusses the quality of available simulations. Section 5 merges the 133 

findings of Nazemi and Wheater (2014a) with those obtained in Sections 2 to 4, and highlights 134 

current gaps and opportunities from an integrated water resources, hydrology and land-surface 135 

modeling perspective. This is finalized by suggesting a systematic framework for model 136 

development and uncertainty assessment to guide future efforts in inclusion of water resource 137 

management in large-scale models. Section 6 closes our survey and provides some concluding 138 

remarks. 139 

 140 

2 Available representations of water sources in large-scale models 141 

2.1 Lakes and reservoir 142 

Natural lakes and man-made reservoirs cover more than 2 percent of the global land surface area 143 

except for Antarctica and glaciated Greenland (Lehner and Döll, 2004). Lakes and reservoirs are 144 

important water sources due to their ability to store and release surface water for human demand. 145 

While natural lakes have been historically an important water source for human civilization, man-146 

made reservoirs have been mainly constructed over the last 50 years. Currently, there are more 147 

than 16 million reservoirs worldwide (Lehner et al. 2011), retaining around 20 percent of the 148 

annual runoff and 10 percent of the total volume of the world’s freshwater lakes (Gleick, 2000; 149 



6 
 

Meybeck, 2003; Wood et al., 2011). This makes an important global water resource: Yoshikawa 150 

et al. (2013) estimated that reservoirs allocated 500 cubic kilometers just for irrigation during the 151 

year 2000, worldwide.  152 

From the large-scale modeling perspective, lakes and reservoirs introduce heterogeneity into land-153 

surface parameterizations, with both offline and online implications. To represent these open water 154 

bodies, first they should be identified at the grid and sub-grid scales. The availability of basic data 155 

for larger lakes and reservoirs is relatively good (see Lehner and Döll, 2004 for a comprehensive 156 

list of data sources). For instance, the Global Lakes and Wetlands Database (GLWD; 157 

http://www.worldwildlife.org/pages/global-lakes-and-wetlands-database) includes more than 158 

250,000 lakes globally. In addition, the International Commission of Large Dams (ICOLD; 159 

http://www.icold-cigb.net/) and Global Reservoir and Dam (GRanD; http://www.gwsp.org 160 

/products/grand-database.html) databases contain information about the location, purpose and 161 

capacity of 33,000 and 7000 large dams, worldwide. However, to estimate evaporation, as well as 162 

storage and release, more specific physical characteristics, such as storage-area-depth 163 

relationships, are required. These data are generally not available and parametric relationships 164 

have been used to approximate these properties based on various assumptions (e.g., Takeuchi, 165 

1997; Liebe et al., 2005). Nonetheless, at this stage of model development, reservoir simulations 166 

cannot in general be directly verified, due to the lack of observations of reservoir level and storage 167 

(Gao et al., 2012). These data limitations may be largely solved in the relatively near future by 168 

upcoming satellite missions – see the discussion of Section 5.3 below.  169 

Depending on their size, lakes and reservoirs can be represented either within channel or sub-grid 170 

routing components of host large-scale models. While larger lakes and reservoirs are normally 171 

represented within the river routing component and regulate the channel streamflow, smaller 172 

bodies are mainly considered within sub-grid parameterizations as an additional pond (e.g., Döll 173 

et al., 2003; Wisser et al., 2010). Ideally, natural lakes and reservoirs should differ in their 174 

representation due to human management. If human management is neglected, reservoir releases 175 

can be represented similar to natural lakes using simple parametric equations that link the reservoir 176 

release to  reservoir storage (or level)  (e.g., Meigh et al., 1999;, Döll et al., 2003; Pietroniro et al., 177 

2007; Rost et al., 2008). Lake algorithms, however, have had limited success in highly regulated 178 

basins. This is rather intuitive: for natural lakes, the dynamics of lake storage (and hence discharge) 179 

are regulated by climate and inflow variability, whereas the dynamics of reservoir discharge (and 180 
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hence storage) are mainly controlled by pressures of downstream demands and management 181 

decisions. Moreover, reservoirs are often multi-functional and deal with competing demands with 182 

varying priority in time; therefore, simple lake routing algorithms are unable to fully describe 183 

reservoir functionality. Alternatively, macro-scale algorithms for reservoir operation have been 184 

suggested, which attempt to link reservoir releases to inflows, storage and prescribed human 185 

demands considering water allocation objectives – see Section 3.3. 186 

Considering online implications, the effects of dams on near-surface energy and moisture 187 

conditions and hence land-atmospheric feedbacks can be important for large reservoirs (Hossain 188 

et al., 2012). Addressing this issue using coupled LSMs is currently a major gap in the literature 189 

and presents a challenging problem at the grid scale, since the impact of dams on the local climate 190 

can be masked by regional climate variability and surrounding land cover (e.g., Zhao and 191 

Shepherd, 2011).  192 

2.2 Streamflow diversions and inter-basin water transfers 193 

Streamflow diversions of any magnitude require dams or barrages. At smaller scales, these include 194 

within-basin water transfers from local streams to nearby demands. In-basin diversions are often 195 

represented in large-scale models by instantaneous abstractions (e.g., Hanaski et al., 2008a, 2010; 196 

Döll et al., 2009). Hydrologic routing can be alternatively considered for improved representation 197 

(e.g., Wisser et al., 2010). It should be noted that a proportion of the diverted flow normally returns 198 

to the river systems. Heuristic algorithms have been advised to mimic the mechanism of diversion 199 

based on returning the excess water to the river with some lag. Biemans et al. (2011) for instance 200 

represented the dynamics of diverted/return flows for irrigated areas by making water available 201 

for consumption for 5 days; if unused, it is released back to the river. This can have important 202 

implications for differentiating between the actual use and total withdrawals, in the case where 203 

water is over-allocated. 204 

Inter-basin water transfers normally involve major infrastructure and can significantly perturb the 205 

regional streamflow regime. For instance, proposed South to North water transfer schemes in 206 

China (see Liu and Zheng, 2002; Liu and Yang, 2012) would divert 44.8 billion cubic meters of 207 

water annually (http://www.internationalrivers.org/). The associated hydrological impacts are 208 

estimated to be as, or more significant than, land-use and/or land-cover changes (J. Liu et al., 209 
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2013). Inter-basin water transfer can be adequately represented by hydrologic routing. Examples 210 

are available for some regional applications (e.g., Nakayama and Shankman, 2013a, b; Ye et al., 211 

2013); however, efforts to represent long-distance diversions at the global scale are limited. This 212 

is mainly due to data issues regarding the location and specification of diversion channels globally. 213 

This could be largely resolved in future due to improvements in remote sensing observations – see 214 

the discussion of Section 5.3 below. 215 

2.3 Groundwater 216 

Even large-scale models with detailed water resource management schemes have limited 217 

representation of groundwater availability (see Table 1), largely due to the limitations in data 218 

related to groundwater storage, withdrawals and sub-surface properties as well as computational 219 

difficulties. There have been some efforts to include groundwater in LSMs to describe the aquifer 220 

dynamics, land-atmospheric feedbacks and watershed responses, mainly at basin and small 221 

regional scales (e.g., Maxwell and Miller, 2005; Maxwell et al., 2007, 2011; Kollet and Maxwell, 222 

2008; Ferguson and Maxwell, 2010). These studies consider a physically-based groundwater store, 223 

which can be updated at each modeling time step using a 3D representation of groundwater 224 

movement, and linked to land-surface calculations through soil moisture dynamics. Such 225 

representations are computationally expensive and limited at the global scale, since temporal and 226 

spatial domains should be finely gridded for accurate representations of groundwater movement 227 

and soil-moisture interactions, particularly in online studies. To the best of our knowledge, no 228 

online study, characterizing the feedback effects between groundwater management and climate, 229 

is available at the global scale. Offline representation of groundwater management has mainly 230 

been performed in the context of GHMs and involves estimation of available groundwater storage, 231 

sub-grid groundwater recharge and groundwater withdrawals. In this section, we focus on 232 

groundwater availability and recharge and leave the discussion related to groundwater withdrawals 233 

to Section 3.2. 234 

In current representations, often groundwater availability in general, or the nonrenewable and 235 

nonlocal blue water (NNBW) in particular, is assumed as an unlimited local source (e.g., Rost et 236 

al., 2008; Biemans et al., 2011; Pokhrel et al., 2012a,b). NNBW is a technical term defined as an 237 

"imaginary" source that implicitly accounts for nonrenewable fossil groundwater or other water 238 

sources that are not explicitly represented in the model. This can cause major uncertainties in 239 
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estimation of actual withdrawals (see Section 3.2). Efforts have been made to improve this 240 

assumption. For instance, Strzepek et al. (2012) bounded groundwater availability by considering 241 

a threshold for groundwater allocation. Wada et al. (2013a) proposed a conceptual linear 242 

groundwater reservoir, parameterized globally based on lithology and topography, to estimate the 243 

groundwater availability at the grid-scale using the baseflow as a proxy. Although this conceptual 244 

representation provides an efficient scheme for global simulations, it ignores the baseflow 245 

reduction due to groundwater depletion. In a more recent attempt, Döll et al. (2014) continuously 246 

simulated the daily groundwater storage using the difference between groundwater recharge and 247 

the sum of baseflow and net groundwater abstraction, with base flow declining with decreasing 248 

groundwater storage. Both algorithms, however, do not consider inter-grid lateral groundwater 249 

movement, which can have an important impact on water availability across various scales. 250 

Although lateral groundwater movement is widely studied in aquifer studies at smaller basin and 251 

regional scales (e.g., Ye et al., 2013), it is currently a key missing process representation at larger 252 

regional and global scales (Taylor et al., 2013).  253 

 Groundwater recharge includes the movement of water from the unsaturated soil zone to a 254 

saturated groundwater body. There are a number of approaches to represent the vertical water 255 

movement in large-scale models, including heuristic methods (e.g., Döll et al., 2003), conceptual 256 

“leaky-buckets” (e.g., Wada et al., 2010), or numerical solutions of the physically-based Richards’ 257 

equation (Best et al., 2011; D. B. Clark et al., 2011). These approaches are based on various 258 

assumptions and are subject to large uncertainties. Heuristic schemes relate the recharge rate to 259 

surface runoff, using a set of parameters based on catchment, soil and aquifer characteristics. These 260 

representations are often simplistic and may result in large estimation errors, particularly in arid 261 

and semi-arid regions (Polcher et al., 2011). Conceptual approaches widely assume a steady-state 262 

condition and use the unsaturated hydraulic conductivity to represent groundwater recharge with 263 

or without considering capillary rise (van Beek and Bierkens, 2008; Wada et al., 2010; van Beek 264 

et al., 2011; Wada et al., 2013a; Ye et al., 2013). In a global study, Wada et al. (2012) used this 265 

approach to account for additional recharge from irrigated lands based on the unsaturated hydraulic 266 

conductivity at field capacity. This can be important for representing the excess water diverted 267 

from both surface and groundwater sources. Although conceptual representations are efficient for 268 

large-scale studies, still limitations remain in these schemes due to large heterogeneities in soil 269 

characteristics, a common assumption of steady-state recharge rate, as well as the inherent 270 
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uncertainty associated with soil hydraulic properties. The physically-based approaches remove the 271 

steady-state assumption; nonetheless as discussed above, they require a detailed numerical scheme 272 

for solving a highly non-linear partial differential equation. This is subject to various 273 

computational difficulties at larger scales, and invariably there is a gap between the scale for which 274 

Richards’ equation was developed and the scale at which it is implemented in large-scale 275 

groundwater and hydrologic models (Beven, 2006a; Gentine et al., 2012).  276 

2.4 Desalination and water reuse 277 

Water reuse and desalination are currently minor water resources at the global scale and have been 278 

widely ignored in large-scale models. Nonetheless, it should be noted that these water sources have 279 

local relevance and are important in several water-limited regions (Wade Miller, 2006; Pokhrel et 280 

al., 2012a). Wada et al. (2011) estimated that annual desalinated water use is around 15 cubic 281 

kilometers globally, of which Kazakhstan uses 10 percent of the total volume. Desalinated water 282 

availability can be estimated using a bottom-up approach based on the information available about 283 

treatment and water reuse capacity at the grid-scale (Strzepek et al., 2012). These data, however, 284 

are limited and uncertain globally. Alternatively, top-down approaches try to downscale 285 

countrywide data. Wada et al. (2011, 2013a), for instance, downscaled the countrywide data on 286 

water reuse and desalination using a gridded population map. Considering that water reuse and 287 

desalination will likely be more important in future due to increased water scarcity at the global 288 

scale, we suggest more effort in representing these sources, including data collection to support 289 

future algorithm developments – see Section 5.3 below.  290 

 291 

3 Available representations of water allocation in large-scale models 292 

Water allocation distributes the available water sources among competing demands and should 293 

typically include a set of management decisions to systematically (1) link the prescribed demands 294 

to available sources of water; (2) determine allocation objectives as well as priorities in case of 295 

water shortage; and (3) withdraw the available water based on allocation objectives and 296 

management constraints. At this stage of model development, there are limited examples for 297 

representation of water allocation at larger scales. These studies are offline and have multiple 298 

sources of uncertainty. Table 1 summarizes some examples from the recent literature. In this 299 
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section, we briefly discuss the main requirements and available algorithms for representing water 300 

allocation in large-scale models.  301 

3.1 Main requirements  302 

The first basic requirement is to identify which sources are available to supply the water demands 303 

within each computational grid. The majority of current allocation schemes assume that grid-based 304 

demands can be supplied from the sources available within the local grid. This assumption is 305 

intuitive and easy to implement, however, it naturally ignores long distance water transfers. 306 

Various modifications have been proposed to overcome this limitation. Relative elevation and 307 

travel time of water from source to demand have been used to condition demands to available 308 

sources upstream. For example, Hanaskai et al. (2006) assumed that large reservoirs can 309 

potentially supply downstream demands that are located within 1100 km (based on a travel time 310 

of 1 month). Similarly, Wada et al. (2011) considered a criterion of approximately 600 km and 311 

Biemans et al. (2011) 250 km. These rules are evidently simplistic but can be easily implemented. 312 

They also generally assume steady-state conditions, so that the allocated water can be simply 313 

abstracted from the source and added at the demand location at the same time step. Alternatively, 314 

routing schemes can provide a more accurate basis for representing the water delivery and avoid 315 

this limitation – see the discussion of Section 5.5 below.      316 

The second important issue is to determine objectives of and priorities for water allocation, 317 

particularly during shortage. In the absence of access to local operating rules, this requires defining 318 

a set of generic rules to assign the relative preference of each demand and to define the purpose of 319 

water allocation. Both irrigative (e.g., Rost et al., 2008; Döll et al., 2009; Wada et al., 2013a) and 320 

non-irrigative demands (e.g., Hanasaki et al., 2008a; Strzepek et al. 2010, 2012; Blanc et al., 2013) 321 

have been given the highest priority. In cases where multiple demands with the same priority are 322 

derived from a unique source of water, the deficit is typically shared proportionately to the 323 

demands (e.g., Biemans et al., 2011). Based on priorities and assumptions made regarding water 324 

availability, several allocation objectives have been used (see Table 1). It should be noted that 325 

water resource management is commonly multi-purpose and allocation objectives and priorities 326 

can change within a typical operational year. For example, many reservoirs are designed for two 327 

conflicting objectives, i.e. irrigation supply and flood control. To account for this, Voisin et al. 328 

(2013a) used rule curves to drop the reservoir storages before snowmelt starts while maintaining 329 
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the storage in the reservoir to provide releases for irrigation, water supply and hydropower in the 330 

remaining part of the year. More specifically, they developed flood control storage targets to 331 

complement the irrigation release targets, with mass balance conservation. They showed that this 332 

modification can improve the simulation of regulated flow and maintain the spatiotemporal 333 

consistency of reservoir levels. 334 

Finally, allocation algorithms are required to estimate groundwater abstractions and reservoir 335 

releases at each simulation time step based on allocation objectives and priorities. Groundwater 336 

abstraction algorithms are generally limited, due to significant gaps in information about 337 

groundwater availability and actual groundwater withdrawals at the global scale. Although current 338 

data availability for lakes and reservoirs storages is also poor, runoff data are relatively available 339 

regionally and globally, which can be used for algorithm development and performance 340 

assessment through comparison of simulated and observed discharges downstream of reservoirs. 341 

Apart from local or national data, data of the Global Runoff Data Centre (GRDC; 342 

http://www.bafg.de/GRDC/) have been widely used for validation of macro-scale reservoir 343 

operation algorithms.  344 

3.2 Grid-based groundwater abstractions  345 

Groundwater abstractions include both sustainable (renewable) and unsustainable (non-renewable) 346 

water uses. While sustainability of groundwater withdrawals is a complex issue, in particular 347 

related to environmental impacts of abstraction, the distinction between these for large-scale 348 

applications is generally based on the grid-based groundwater recharge, as any abstraction 349 

exceeding recharge rate results in groundwater depletion, and therefore, can be considered as 350 

unsustainable. So far, groundwater withdrawals have been estimated through either bottom-up or 351 

top-down algorithms, both subject to large uncertainty.  352 

In bottom-up procedures, the groundwater abstraction is identified using grid-based estimates of 353 

surface and groundwater availability as well as the water demand. If the groundwater and/or 354 

NNBW is considered as an infinite sources (Rost et al., 2008; Hanasaki et al., 2010; Wisser et al., 355 

2010; Pokhrel et al., 2012a,b), then the groundwater or NNBW abstraction is equal to estimated 356 

demand minus estimated water availability at the grid scale. In this case, priorities are not 357 

inherently considered; however NNBW has the advantage that it explicitly accounts for the water 358 
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that should come to the system from outside the modeled domain. If the groundwater availability 359 

is bounded at the grid or basin scale, then the maximum groundwater withdrawal cannot exceed 360 

the local groundwater availability (e.g. Strzepek et al., 2012; Wada et al., 2013a); however, errors 361 

in estimations of surface water availability and water demands can still directly propagate into 362 

estimation of groundwater withdrawals.  363 

Top-down approaches are based on using recorded regional groundwater withdrawals or 364 

downscaling national groundwater abstractions data to finer spatial scales. Siebert et al. (2010) 365 

created a global dataset for irrigation water supply from groundwater abstractions based on FAO-366 

AQUASTAT (http://www.fao. org/nr/water/aquastat/main/index.stm) and other census and sub-367 

national data. In an another effort, Wada et al. (2010, 2012) used the data of the International 368 

Groundwater Resources Assessment Center (IGRAC; www.igrac.net) to estimate the countrywide 369 

groundwater use for year 2000. These estimates were further downscaled to 0.5°×0.5° grids, based 370 

on a global map of yearly total water demand. In a countywide study, Blanc et al. (2013) used the 371 

groundwater withdrawal data of the USGS for the year 2005 (USGS, 2011) and repeated the data 372 

for every year of simulation. These approaches are also limited by the fact that the actual 373 

groundwater pumping might be considerably more than the recorded data (e.g., Foster and Loucks, 374 

2006; Wada et al., 2012) and groundwater withdrawals can have considerable inter-annual 375 

variability. Current and upcoming remote sensing technologies can address some of the issues 376 

around groundwater data availability – see Section 5.3 below. 377 

3.3 Macro-scale reservoir operation 378 

Current macro-scale reservoir operation algorithms are designed for offline applications and 379 

included in large-scale models for characterizing the impacts of reservoirs on terrestrial water 380 

storage, runoff and water supply. These algorithms can be roughly divided into two general 381 

categories based on either simulating the reservoir release using a set of prescribed operational 382 

rules or using search algorithms to find optimal reservoir release. In brief, simulation-based 383 

schemes are based on a set of functional rules that use initial storage as well as inflows and demand 384 

pressure during a typical operational period to simulate releases during the operational period. In 385 

contrast, optimization-based algorithms search for optimal releases at each time step given an ideal 386 

storage at the end of the operational year, storage at the beginning of the year and expected inflows 387 

and demands during the year. Naturally, optimization-based algorithms are more computationally 388 
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expensive; nonetheless, they are more suitable for evaluating competition among water demands 389 

and effects of policy change, due to the ability to explicitly include multiple allocation objectives 390 

to guide the search for optimal releases. In contrast, simulation-based algorithms are more efficient 391 

and can be potentially modified to support online simulations – see Section 5.4. Table 2 392 

summarizes some representative examples from the current literature.   393 

3.3.1 Available simulation-based algorithms  394 

Current simulation-based algorithms are heavily influenced by the work of Hanasaki et al. (2006), 395 

which was initially proposed for global routing models but extended to GHMs (Hanasaki et al., 396 

2008a, 2010) and LSMs (Pokhrel et al., 2012a,b). The algorithm distinguishes between operational 397 

rules for irrigation and non-irrigation purposes. The algorithm also accounts for both inter-annual 398 

variability and seasonality in reservoir releases. In simple terms, the total release in a typical 399 

operational year is first determined based on the reservoir capacity, initial storage and the annual 400 

mean natural inflow to the reservoir. Second, the monthly fluctuations in the reservoir release are 401 

parameterized based on annual mean natural inflow, mean annual demand and the prescribed 402 

monthly demand. Note that demands are considered as total water withdrawals rather than 403 

consumptive uses. Finally, monthly fluctuations are corrected based on inter-annual variability in 404 

total reservoir releases (estimated during the first step) to provide actual monthly reservoir 405 

releases. The correction, depending on the purpose and size of reservoir, is based on the ratio of 406 

initial reservoir storage to total capacity, the ratio of reservoir capacity to annual mean inflow, 407 

and/or the monthly mean natural inflows to the reservoir – see Hanasaki et al. (2006) for related 408 

formulations.  409 

Hanasaki et al.’s algorithm has been widely used in the recent literature as it provides a generic 410 

and flexible framework to represent reservoir operation. Döll et al. (2009) implemented this 411 

algorithm to represent operation of large reservoirs within the framework of WaterGAP (Alcamo 412 

et al., 2003). They considered some modifications to accommodate losses from the reservoir and 413 

to characterize the dynamics of demand pressure on reservoirs based on consumptive uses rather 414 

than total water withdrawals. Biemans et al. (2011) modified Hanasaki et al.’s algorithm by 415 

extracting the reservoir releases using annual and monthly mean regulated inflows (rather than 416 

corresponding natural flows), limiting the demand pressure only to irrigation and changing the 417 

release rules during high demand periods. These modifications were further added to the Joint UK 418 
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Land Environment Simulator (JULES; Best et al., 2011, D. B. Clark et al., 2011) for offline 419 

simulations (Polcher et al., 2011). Voisin et al. (2013a) made a regional intercomparison between 420 

various simulation-based algorithms for the Columbia River Basin and concluded that deriving 421 

releases based on withdrawals rather than consumptive uses results in improved simulations of 422 

downstream flows. They also indicated that the choice of natural or regulated inflows depends on 423 

the severity of the demand pressure and water allocation: If the overall water demand is high with 424 

respect to mean annual inflow, it would be better to drive the algorithm with mean monthly 425 

regulated inflow; otherwise it is better to use the natural flow, due to large uncertainties associated 426 

with water demand estimates, and therefore, regulated flows. Although this study is limited to one 427 

region, it provided an assessment of uncertainties in estimating the reservoir releases due to 428 

uncertainties in estimating both inflows and water demand – see the discussion of Section 4.   429 

Existing simulation-based schemes are not limited to the above algorithms. Efforts have been made 430 

to simulate the reservoir releases using parametric functions, in which the parameters can be 431 

calibrated using observed downstream flows. For example, Wisser et al. (2010) advised a set of 432 

functional rules to parameterize the release from large reservoirs using the actual inflow and the 433 

long-term mean inflow to the reservoirs. More recently, Wu and Chen (2012) proposed a new 434 

algorithm by explicit consideration of operational rule curves, locally specified for each reservoir. 435 

In brief, rule curves are a set of pre-defined reservoir levels that divide the total reservoir capacity 436 

into different storage zones. These storage zones can be further associated with demands 437 

conditioned on the reservoir using various assumptions.  The algorithm considers the reservoir 438 

operation at a given day as a deviation from mean releases at that day and represents this by a 439 

weighted sum of individual variations as the result of allocation for each individual water demand. 440 

Demand-specific allocations can be therefore characterized based on rule curves, the available 441 

storage, total capacity as well as the history of inflow to the reservoir. Accordingly the total release 442 

at any given day can be defined as a parametric function, in which the parameters can be tuned 443 

using observed downstream flows. Although they noted that the operational parameters are 444 

inherently time-varying, as the purpose of dam can change with time, a systematic scheme for 445 

dealing with non-stationary parametric estimation has not been provided. This remains for future 446 

efforts – see Section 5.4. 447 

3.3.2 Available optimization-based algorithms 448 



16 
 

Optimization-based schemes were initially proposed by Haddeland et al. (2006a) and implemented 449 

further in Haddeland et al. (2006b, 2007). These algorithms are heavily inspired by small-scale 450 

reservoir operation algorithms within the engineering literature, particularly Dynamic 451 

Programming (see Voisin et al., 2013a), and strongly rely on estimates of expected inflow and 452 

demand. Therefore, they are not suitable for online simulations, however they can be valuable for 453 

integrated impact assessment over large grids and/or assessment regions in offline mode (see e.g., 454 

Strzepek et al., 2010; 2012; Blanc et al., 2013). In brief, the calculation starts by targeting the 455 

reservoir storage at the end of a typical operational year based on expected demands. Then, the 456 

minimum release at each daily time step is defined based on the expected streamflow at the dam’s 457 

location to maintain a minimum flow requirement downstream of the reservoir. Accordingly, the 458 

maximum allowable daily release is determined based on simulated daily inflow, minimum 459 

release, reservoir storage at the beginning of the operational year and the targeted storage at the 460 

end of the year. Minimum and maximum releases introduce a feasible release range, where a search 461 

algorithm can be used to find the optimal monthly releases that provide the minimum deficit during 462 

the year and the least violation from the target storage at the end of the year. Adam et al. (2007) 463 

slightly changed this algorithm by considering new thresholds for allowable release and storage 464 

and used maximization of hydropower revenue as the objective function for reservoir operation.  465 

There are two main issues with the proposed scheme. First, feasible reservoir releases are 466 

determined based on forecasted (or expected – Haddeland, 2014; personal communication) flow 467 

at dam location; and uncertainties in flow estimates can largely affect the search for optimal 468 

releases.  Second, a high dimensional search (e.g. 12 releases in the case of a monthly release 469 

simulation) must be performed for each operational year, which is computationally demanding. 470 

These issues were noted by van Beek et al. (2011). They modified the Haddeland et al. (2006a) 471 

algorithm to decrease the complexity and uncertainty associated with the algorithm. First, they 472 

defined the expected inflow for each month prospectively as a function of the flow in the same 473 

month of the previous years; therefore, they omitted using prognostic flow forecasts. In order to 474 

reduce the dimensionality of search, they considered reservoir release as a harmonic function; 475 

therefore, only release at beginnings of the release and the discharge periods needed to be 476 

determined. As the actual inflow values become available, the release can be consequently updated 477 

so that the final storage at the end of release period can meet the predefined target storage. With 478 

respect to determining the reservoir inflow based on naturalized or regulated flows, van Beek et 479 
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al. (2011) noted that either set-ups can be used, depending on how the observed discharge is 480 

simulated at the large-scale. This is due to large uncertainties in simulating the regulated runoff – 481 

see the discussion below.   482 

 483 

4 Current large-scale modeling applications 484 

Water supply and allocation schemes reviewed in Sections 2 and 3 have been used in a wide range 485 

of offline applications for estimation of human impacts on the terrestrial water cycle. Despite 486 

disagreements between different simulation results, the current literature agrees that the effects of 487 

water allocation are more pronounced at finer spatial and temporal scales. As an earlier, Haddeland 488 

et al. (2007) studied the impacts of reservoir operation coupled with irrigation on continental runoff 489 

and argued that water allocation has resulted in 2.5 and 6 percent increase in annual runoff volume 490 

in North America and Asia, respectively. This is almost canceled out by increased evaporation due 491 

to irrigation. Nonetheless, as the analysis moves from global and continental to regional and large 492 

catchment scales, the effects of water allocation become more profound. For instance, while the 493 

mean annual runoff decreased in the western US by around 9 percent during a historical control 494 

period, the rate of decrement is around 37 percent in the Colorado River during the same period 495 

(Haddeland et al., 2006b). The results of the most recent global multi-model intercomparison 496 

showed that direct impacts of the water resource management in some regions, e.g., parts of Asia 497 

and in the western US, are similar or even more than the climate change effects (see Haddeland et 498 

al., 2014). Similarly, the effects of water allocation are more significant at finer time scales. For 499 

instance, Adam et al. (2007) noted that reservoirs have a minor effect on annual flows in Eurasian 500 

watersheds but have significant seasonal effects by changing the flow timing and seasonal 501 

amplitudes (see also Döll et al., 2009; van Beek et al., 2011, Biemans et al., 2011).  502 

These simulations, however, are highly uncertain (see e.g., Haddeland et al., 2011, 2014) due to 503 

major limitations in algorithms reviewed above, host large-scale models and data support. The 504 

efficiency of available water allocation algorithms can be diagnosed by comparing the streamflow 505 

obtained from simulations with observations. Currently, macro-scale water allocation schemes 506 

cannot fully describe the dynamics of regulated streamflows and there can be major disagreements 507 

between the regulated discharges obtained from different reservoir algorithms (Voisin et al., 508 

2013a). It has been shown that calibration can improve the quality of reservoir operation 509 



18 
 

algorithms (e.g. Wu and Chen, 2012); however, calibration is also associated with uncertainty and 510 

can potentially hinder model applications for future projections due to possible temporal and 511 

spatial variations in optimal parameters. Hanasaki et al. (2006) as well as Döll et al. (2009) showed 512 

that simulation-based algorithms can generally provide improved discharge simulations compared 513 

to lake routing algorithms. However, it should be noted that simulations still remain substantially 514 

biased in highly regulated catchments (e.g. San Francisco River, US; Syr Darya, Central Asia) and 515 

in cold regions (e.g. Saskatchewan and Churchill Rivers in Canada), particularly during high flows 516 

(e.g. Hanasaki et al., 2008a; Biemans et al., 2011; Pokhrel et al., 2012a). The simulation algorithm 517 

of Wu and Chen (2012) was found to be more accurate in simulating both storage and release 518 

compared to simple multi-linear regression and the target-release scheme embedded in SWAT 519 

(Arnold et al., 1998); however, it was tested only at the local scale and it is not clear how the 520 

algorithm can perform in other regions with different climate, level of regulation and allocation 521 

objectives. Very similar conclusions were obtained for optimization-based algorithms. Discharge 522 

simulations are generally improved compared to the no reservoir condition (e.g., Haddeland et al., 523 

2006a); however, there are still significant deficiencies in simulating highly regulated flows, 524 

particularly in mountainous and cold regions such as Colorado River in the US as well as Yukon 525 

and Mackenzie Rivers in Canada (e.g., Haddeland et al., 2006b; Adam et al., 2007). This  relates 526 

in particular to prognostic reservoir inflows, which remain highly uncertain in these environments; 527 

this uncertainty contributes to the uncertainty in assigning optimal reservoir releases, often in 528 

dynamic and complex manners (Nazemi and Wheater, 2014c; Muller Schmied et al. 2014).  529 

From a broader perspective, the current performance of reservoir operation and water allocation 530 

algorithms must be seen in the context of the hydrological performance of the host large-scale 531 

models, including how well the water demand has been represented (see Nazemi and Wheater, 532 

2014a). Currently, there are large biases in modeling hydrological processes across various scale 533 

and runoff estimates remain widely divergent (e.g., Wisser et al., 2010; Haddeland et al., 2011; 534 

Gudmundsson et al., 2012; Hejazi et al., 2013). In particular, it has been shown that current 535 

simulations systematically underestimate streamflow in the arctic and sub-arctic regions and 536 

overestimate the observations in dry catchments; and reservoir operation algorithms mainly 537 

improve the timing of the flow, but not the volume (e.g., van Beek et al., 2011). While there are 538 

many potential reasons for this, one key source of this limitation is the quality of gridded 539 

precipitation products (Biemans et al., 2009; 2011). Rost et al. (2008) used different precipitation 540 
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products to simulate the regulated river discharge and found substantial variations in simulated 541 

discharge due to the choice of precipitation data. Moreover, they showed that sometimes the total 542 

precipitation estimate could be less than the total observed discharge after abstraction and 543 

regulation. Upcoming satellite missions can address some of the issues regarding historical forcing 544 

(see the discussion of Section 5.3); however, uncertainty in future precipitation (and other climate 545 

variables) should be dealt systematically using multiple climate forcing options based on various 546 

combinations of concentration pathways, climate models and downscaling procedures.  547 

Turning from surface water to groundwater issues, almost all available global studies agree on a 548 

significant increasing trend in groundwater withdrawal from the late 20th century onward. As an 549 

example, Wada et al. (2013a) argued that from 1990 to 2010, the rate of global groundwater 550 

withdrawal increased by around 3 percent a year. These results are in relatively good agreement 551 

with major observed depletions in some regional aquifers (see Gleeson et al., 2012). However, 552 

various quantified assessments and further conclusions such as regarding groundwater-induced 553 

sea-level rise remain highly uncertain and show major disagreements due to crude representation 554 

of groundwater availability, recharge and withdrawal, as discussed in Sections 2.3 and 3.2 (see 555 

e.g., Wada et al., 2010; Pokhrel et al., 2012b; Döll et al., 2014). This highlights an urgent necessity 556 

for improving the representation of human-groundwater interactions at larger scales.  557 

 558 

5 Towards an improved representation of water resource management in large-559 

scale models 560 

5.1 Ideal representation and remaining gaps 561 

Throughout our survey, we highlighted the importance of including water supply and allocation in 562 

conjunction with water demand (see Nazemi and Wheater, 2014a) in models that are relevant to 563 

Earth system modeling and/or are required for understanding the effects of water resource 564 

management on the Earth System, with both online and offline implications. From an integrated 565 

water resource management and land-surface modeling perspective, water demands can be 566 

considered as functions of climate, vegetation and soil-moisture as well as socio-economic and 567 

policy variables (see Nazemi and Wheater, 2014a). As shown in this paper, water supply is driven 568 

by water demands but controlled by natural surface and ground water availability, which determine 569 
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the maximum possible water allocation. Therefore, water demand and water supply should be 570 

systematically linked through a feedback loop, represented by water allocation. This integrated 571 

water resource system should be then linked to natural land-surface processes at the grid scale. 572 

This is rather intuitive: When considered in a typical grid, water allocation perturbs hydrological 573 

and land-surface variables within the grid. In parallel, the combined effects of land-surface and 574 

hydrological processes govern the variations in surface and ground water availability, which 575 

consequently determine water demand (and accordingly water allocation) in the next simulation 576 

step. Figure 1 shows a simplified schematic for this integrated modeling framework, in which grid-577 

based calculations of natural and anthropogenic land-surface are further coupled with climate 578 

through grid-based land-atmospheric feedbacks.  579 

Major gaps remain in representing water resource management in LSMs in the way defined above. 580 

First, as also discussed in Nazemi and Wheater (2014a), the key consideration in Earth System 581 

modeling is the conservation of mass, energy and water; however, this is widely violated in current 582 

models that include elements of water resource management (see Polcher, 2014). For instance, 583 

considering groundwater or NNBW as unlimited water sources necessitates bringing water to the 584 

system from outside the modeling domain, breaking the assumption that the Earth System is a 585 

closed system. This has particular importance when understanding the effects of human-water 586 

interactions on the climate and sea-level rise is sought.  587 

Second, water resource management often takes place at the sub-grid resolution of current LSMs 588 

used for simulations over large regional and global scales (i.e., 50 kilometers and more). Including 589 

the elements of water resource management therefore requires moving towards a 590 

“hyperresolution” scale (a few kilometers or less) for explicit representation (see Wood et al., 591 

2011) and/or adding new sub-grid parameterizations related to human-water interactions, as 592 

illustrated in Figure 1. However, as the resolutions become finer or more sub-grid parameterization 593 

are added, modeling complexity, computational burdens and data requirements increase 594 

significantly, particularly in online simulation in which finer modeling resolution and better 595 

discretization of soil and vegetation is generally required to capture land-atmospheric feedbacks 596 

and possible climate responses (see Sorooshian et al., 2011a).   597 

Third, we have noted that all currently available efforts in including water supply and allocation 598 

in large-scale models are offline and have been made mainly in the context of GHMs. GHMs 599 
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provide an efficient platform for algorithm development and testing given the relative lack of 600 

computational constraints. However, self-evidently understanding online effects of large reservoir 601 

storage and large-scale groundwater pumping needs online simulations using coupled LSMs. At 602 

this stage of model development, however, many algorithms originally designed for offline 603 

applications might not be suitable for online implementations. An important example is reservoir 604 

operation, as both optimization- and simulation-based algorithms have some levels of prognosis 605 

that hinder their application in coupled simulations.  606 

Fourth, online applications are associated with complexity in representing various feedbacks and 607 

time-scaling mismatch among different LSM component and water resource management (see 608 

Wang et al., 2004). In addition, current performance of online simulations is limited due to 609 

significant biases across different components and propagation of these biases throughout the fully 610 

coupled system.  611 

Fifth, we have highlighted major limitations even in offline representation of water resource 612 

management at larger scales due to various sources of uncertainty. These uncertainties are due to 613 

(1) data support, particularly with respect to precipitation, actual water use and land-surface 614 

characteristics; (2) water demand, supply and allocation algorithms, particularly with respect to 615 

irrigation demand estimation, reservoir operation and groundwater withdrawals; as well as (3) host 616 

large-scale models, particularly with respect to those calculations that determine surface and 617 

ground water availability. It should be noted that here we only focus on epistemic sources of 618 

uncertainty, which needs to be addressed, quantified, communicated and possibly reduced (see 619 

Beven and Alcock, 2012). Table 3 summarizes various aspects of uncertainty related to data 620 

support, algorithmic procedures and host models, identified for estimation of water demand (see 621 

Nazemi and Wheater, 2014a) as well as water supply and allocation (see Sections 2 to 4) in offline 622 

mode. It is often quite difficult to identify the exact source of uncertainty due to complex 623 

interconnections between various elements; and currently, a formal framework to test and validate 624 

the water resource management components in the face of various sources of uncertainty is not 625 

available (see also Beven and Cloke, 2012). In following sections, we briefly focus on these gaps 626 

and highlight the opportunities to address them and move towards the integrated representation 627 

proposed in Figure 1. 628 

5.2 Outstanding challenges – closing the water balance and online simulations 629 
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At this stage of research, issues around closing the water balance and online simulations are the 630 

most fundamental challenges in representing water resource management in Earth System models. 631 

Closing the water balance requires considering all the sources of human water withdrawals and 632 

uses in the system and integrating them into the host large-scale models. One major gap in 633 

representing the water sources is groundwater, which is ignored or crudely represented in most 634 

current models. In parallel, as noted above, performing online simulations requires moving 635 

towards finer spatial and temporal scales and handling various sources of bias within the integrated 636 

system. Although providing an extensive discussion on issues around integrating groundwater 637 

models with LSMs as well as online Earth System modeling remains beyond the scope of this 638 

paper, here we attempt to briefly point to the main challenges and highlight a few opportunities 639 

for future developments.  640 

Technically, the issues around coupling LSMs with groundwater and/or climate models are rather 641 

similar. In principle, (1) both require couplers to build an integrated model from independent 642 

models; (2) both require refining temporal and spatial resolutions; (3) both substantially increase 643 

the complexity of calculations; (4) both need research in terms of improving and adding new 644 

algorithms for process representations; and finally (5) both require handling various sources of 645 

uncertainty. Research on coupling individual models in an integrated Earth System modeling 646 

framework is ongoing and currently there are various coupling strategies available (e.g., Dunlop 647 

et al., 2014). One challenge in coupling the elements of water resource management with climate 648 

is the mismatch between temporal scales of water resource management and natural cycles in the 649 

Earth System (Wang et al., 2004; Michetti and Zampieri, 2014). For instance, capturing the online 650 

effects of evaporation from reservoirs requires running the climate model with fine temporal 651 

resolution; although the reservoir evaporation is mainly a function of reservoir temperature and 652 

area, which vary slowly. Research, therefore, should be done to compare and optimize existing 653 

coupling strategies to handle such inconsistencies in time scaling. 654 

One major need for representing groundwater and for online simulations is the necessity for 655 

moving towards finer spatial resolutions. This can result in various challenges. First, even if the 656 

spatial resolution increases, several sources of heterogeneity would still be ignored, as current 657 

LSMs do not consider them. For instance, LSMs usually define plant species based on Plant 658 

Functional Types (PFTs), within which all parameters are identical. However, current LSMs 659 

recognize only limited PFTs and hence they typically ignore much of the biodiversity (Sato et al., 660 
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2014). Improvement in LSMs in terms of adding more detail into land-surface parameterization 661 

can provide opportunities to represent such sources of heterogeneity. Second, going toward finer 662 

modeling resolutions requires improved data support at finer scales. Although, fine resolution data 663 

are becoming more and more available (e.g., for soil properties – see Sato et al., 2014), such 664 

datasets are normally obtained from multiple independent sources, which differ in terms of their 665 

quality (see S. Liu et al., 2013). More efforts towards producing standardized and accurate data 666 

sources can support future fine-grid Earth System modeling. Finally, moving towards finer scales 667 

requires a new set of process representations and parameterizations (Hurrell et al., 2013). There 668 

are new developments along scale-aware parameterizations (e.g., Hurrell et al. 2009) that can help 669 

refine parameterizations for finer spatial scales.  670 

One important issue with online simulations and groundwater modeling is the computational 671 

complexities compared to offline surface water simulations (e.g. Hill et al., 2004; Kollet et al., 672 

2010; Wood et al., 2011). Wehner et al. (2008) suggested opportunities to address computational 673 

burdens, including hardware design (i.e., building enhanced computer processors for a specific 674 

application) and use of distributed and grid systems. A wide range of applications exists for grid 675 

and cloud computing systems (see Schwiegelshohn et al., 2010; Lecca et al., 2011; Fernández-676 

Quiruelas et al., 2011). Improved computational power can also provide a basis to explore various 677 

model resolutions to identify critical scales for process representations (see Gentine et al., 2012) 678 

and to support computationally expensive offline calculations, such as groundwater processes, 679 

dynamic crop growth, river routing and model calibration (e.g. von Bloh et al., 2010; 680 

Rouholahnejad et al., 2012; Wu et al., 2013). 681 

Understanding and handling various sources of uncertainty requires activities towards evaluating 682 

model performance against observations, which includes new diagnostics for systematic 683 

assessments of the modeling system. One key challenge is the fact that LSMs are run over large 684 

grids, whereas validation data for land-surface variables and groundwater can be only obtained at 685 

local scales. There are several attempts to overcome this issue. For instance, FLUXNET 686 

(daac.ornl.gov/FLUXNET/fluxnet.shtml) coordinates regional and global analyses of observations 687 

from micrometeorological tower sites to fill validation gap for online LSMs. As Sato et al. (2014) 688 

indicated, such observation networks can facilitate diagnosing the LSMs efficiency and sources of 689 

errors over large geographical scales. Moreover, a large number of combinations of model 690 

configurations should be tested to ensure reliability and performance of individual components 691 
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and characterize the bias propagation from one component to others (Hurrell et al., 2013). For that 692 

purpose, it should be noted that increased modeling complexity does not necessarily result in an 693 

improved precision (see Sato et al., 2014; Smith et al., 2014); therefore, a systematic approach is 694 

required to test, intercompare and falsify modeling options in the light of validation data available. 695 

This will be discussed in more detail in Section 5.6.  696 

5.3 Data support 697 

As noted through our survey, major data limitations exist in representing various aspects of water 698 

resource management, which are related to forcing, parameterization, calibration and validation of 699 

water demand, supply and allocation algorithms (see also Table 3). At this stage of research, major 700 

gaps are noted in spatial and temporal quality and coverage of the data related to climate, 701 

hydrology, socio-economy, policy and water resource management that are required to drive or to 702 

support large-scale models (see Wood et al., 2011; Gleick et al., 2013; Oki et al., 2013). 703 

One important opportunity to improve data support is the use of remote sensing technology, which 704 

can provide a synoptic view of the state of land-surface and atmospheric variables (see Sorooshian 705 

et al., 2011b; Asrar et al., 2013) and a reliable data support for dynamic forcing, parameter 706 

estimation as well as evaluation of large-scale models (see Dijk and Renzullo, 2011; Trenberth 707 

and Asrar, 2012). For instance, Landsat missions (http://landsat.gsfc.nasa.gov; see Williams et al. 708 

2006) have captured long-term variations in global land-cover with a temporal resolution of 16 709 

days and spatial resolution of up to 30 meter, which can help to parameterize anthropogenic 710 

activities such as crop growth and reservoir area. More recently, passive MODerate Resolution 711 

Imaging Spectroradiometer (MODIS; http://modis.gsfc.nasa.gov; see Savtchenko et al., 2004) 712 

provide a wide range of land-surface information and have already been applied for various large-713 

scale modeling studies, including validation of online models (Sorooshian et al., 2011a), high 714 

resolution parameterization (Ke et al., 2012) and monitoring storage in large reservoirs (Gao et al., 715 

2012). Assimilation of MODIS land measurements with meteorological data and the Penman-716 

Monteith equation has also provided 8-day, monthly and annual evapotranspiration estimates at 1 717 

km resolution globally (Mu et al., 2007, 2011). This can provide a basis to evaluate simulated 718 

evapotranspiration over land-surface (see Section 5.4). Another important product is the Gravity 719 

Recovery and Climate Experiment (GRACE; http://www.csr.utexas.edu/grace/; see Tapley et al., 720 

2004), measuring changes in the total terrestrial water storage at rather coarser resolutions.  721 
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GRACE data have already been used in studies related to regional groundwater depletion (e.g., 722 

Rodell et al., 2007, 2009), model calibration (e.g., Sun et al., 2012) and validation of large-scale 723 

simulations (e.g., Pokhrel et al., 2012a,b; Döll et al., 2014). 724 

Upcoming satellite missions can further support representation of water resources management. 725 

For instance, precipitation is a key limitation in hydrological modeling in general, but is also 726 

important for irrigation demand and scheduling. The upcoming Global Precipitation Measurement 727 

mission (GPM; http://gpm.nasa.gov) will collect data at 10km resolution, every 3 hours, globally. 728 

The upcoming Soil Moisture Active Passive mission (SMAP; see Entekhabi et al. 2010) will 729 

provide improved global soil moisture measurements every 24 hours without sensitivity to cloud 730 

cover. This can be considered as an important data support for irrigation demand algorithms. 731 

Another upcoming remote sensing mission is the Surface Water and Ocean Topography mission 732 

(SWOT; see Fu et al., 2009; Biancamaria et al., 2010; Durand et al., 2010), which will provide 733 

fine-scale measurements of various surface water stores, including reservoirs as well as natural 734 

and man-made channels. Such information at the global scale has the potential to revolutionize 735 

representation, calibration and validation of algorithms related to estimation of inflow to 736 

reservoirs, reservoir releases and inter-basin water transfers.  737 

There are also important improvements in sharing ground-based data and simulation results, 738 

including some inspiring grass-root data collection efforts. For example, the International 739 

Groundwater Resources Assessment Centre (IGRAC; www.un-igrac.org) assigns an associate 740 

expert to each one-degree grid cell to submit monthly groundwater levels. Such data can be a 741 

critical source for testing groundwater withdrawal algorithms. Similar grass-root efforts could be 742 

made to record other water resource management data, particularly with respect to actual (rather 743 

than licensed) water uses, local management policies and water technologies. We also note that 744 

sharing of gridded climate forcing and simulation results is important and provides a basis for 745 

consistent model intercomparison efforts. One example is the recently finished EU-WATCH 746 

program (http://www.eu-watch.org/), which provides forcing and simulation results of WATCH’s 747 

Model Intercomparison Project (WaterMIP; http://www.eu-watch.org/watermip).           748 

5.4 Water resource management algorithms 749 
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Computational algorithms for representing the elements of water resource management have 750 

various sources of uncertainty (see Table 3) and improving the related representations and reducing 751 

the modeling uncertainty can be considered as an important avenue for future developments. Some 752 

important opportunities include enhancing the simulation-based reservoir operation algorithms for 753 

online applications and various applications of calibration, data assimilation and system 754 

identification techniques.  755 

 One crucial limitation of current reservoir operation algorithms, as noted above, is in  756 

online applications. Simulation-based schemes provide a basis to move forward, however, 757 

modifications are required to relax prognostic inputs and to represent the thermal and 758 

evaporative functions of reservoirs for online applications.  Modeling schemes have been 759 

already developed for representing energy balance of natural lakes at sub-grid scale (e.g., 760 

MacKay, 2011; MacKay and Seglenieks, 2013) and can be merged with improved 761 

simulation-based reservoir operation algorithms to simultaneously characterize reservoir 762 

release, storage and evaporation as well as land-atmospheric feedbacks. However, an 763 

important question remains in how to address substantial biases in estimation of reservoir 764 

release due to the uncertainty in estimation of reservoir inflows, particularly in online 765 

simulations. This issue can be partially handled using data assimilation frameworks; but 766 

substantial uncertainty remains in future simulation, where assimilation is not possible. 767 

Therefore, efforts should be made to represent reservoirs in a robust manner that can handle 768 

the inflow biases.  769 

 Calibration using observed, simulated or assimilated system behavior can be used to 770 

implicitly represent management and sub-grid heterogeneity. One example would be to 771 

address diversity in irrigation demand by finding “representative parameters” that match 772 

the assimilated evaporation over a typical irrigated grid. Calibration with ability to identify 773 

time-varying parameters could also be used to improve the performance of reservoir 774 

operation algorithms and provide a basis to account for variations in water allocation 775 

practice in time and potentially in space by considering functioning of multiple reservoirs. 776 

 Another opportunity is to improve functional mappings of system response and demand 777 

through system identification techniques. These techniques can range from statistical 778 

regression models to more sophisticated machine-learning techniques such as artificial 779 

neural networks (e.g., Nazemi et al., 2006a) and genetic symbolic regression (e.g., 780 
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Hassanzadeh et al., 2014). One example would be building functional relationships for 781 

estimation of irrigative or non-irrigative water demands and/or uses. Another would be to 782 

represent reservoir operations through transfer functions and enhanced rule-based models 783 

as well as building different decision support systems for handling operations taking place 784 

at different time scales (i.e. hydropower with a 5-minute market, floods with sub-hourly to 785 

hourly time step, and monthly seasonal water supply). This can provide an interesting 786 

prospect to extract operational rules from observed data and to incorporate soft variables 787 

such as social values and expert insights into modeling water resource management (e.g., 788 

Nazemi et al., 2002). This can provide various opportunities, for instance for describing 789 

the operation of multiple reservoirs at the basin scale, which is widely ignored in the current 790 

large-scale reservoir operation schemes.  791 

5.5 Host models 792 

Limitations in host models can introduce a wide range of uncertainties (see Table 3). This is due 793 

to the fact that water resource management algorithms are fully embedded within the host models 794 

and interact with calculations related to land-surface process at the grid scale (see Figure 1). For 795 

instance, estimation of antecedent soil moisture affects estimation of irrigation demand. Similarly, 796 

estimates of inflows to reservoirs govern the calculations related to reservoir releases and storage. 797 

Currently, there are major limitations in representing soil moisture, snow cover, permafrost, 798 

evapotranspiration, deep percolation and runoff in large-scale models and they cannot be 799 

represented without large uncertainty (Lawrence et al., 2012; Trenberth and Asrar, 2012; Oki et 800 

al., 2013). Moreover, host models often contain missing processes. For instance, current host 801 

models often ignore the effects of increased CO2 concentration on irrigation demand. This may 802 

result in large uncertainties under climate change effects (see Wada et al., 2013b).   803 

While an extensive review of these issues goes beyond the scope of this paper, we note that 804 

substantial efforts continue to be made to include missing processes and to improve current 805 

parameterizations of natural and anthropogenic processes in large-scale models, particularly in the 806 

context of LSMs. For instance, the Community Land Model (CLM; Oleson et al., 2004; 2008; 807 

Lawrence et al., 2011) has been recently improved by new algorithms for representing permafrost 808 

(Swenson et al., 2012), agriculture (Drewniak et al., 2013) and irrigation (Levis and Sacks, 2011; 809 

Levis et al., 2012). Another important development is the vector-based river routing algorithms 810 
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(e.g. Li et al., 2013a,b) that can improve the representation of natural and anthropogenic channel 811 

processes such as reservoir stores, streamflow diversions and inter-basin water transfers (see 812 

Lehner and Grill, 2013). Another key opportunity is the application of data assimilation and/or 813 

calibration techniques to reduce parametric uncertainty and to improve prediction capability. Some 814 

systematic frameworks for calibration and parameterization of land-surface processes are 815 

suggested (Rosolem et al. 2012, 2013). We expect improvements in process representations and 816 

parameterizations related to LSMs will increase in near future due to the need that has been already 817 

recognized (e.g., Wood et al., 2011; Lawrence et al., 2012; Trenberth and Asrar, 2012; Gleick et 818 

al., 2013; Oki et al., 2013; Dadson et al., 2013). 819 

5.6 A framework to move forward  820 

Several improvements need to be made in order to appropriately represent the elements of water 821 

resource management in Earth System models. We noted that moving towards including the 822 

elements of water resource management in a way described in Figure 1 requires continuous 823 

developments in water resource management algorithms, host LSMs, online land-atmospheric 824 

coupling and data support. We pointed to the main gaps and provided a brief overview on the 825 

opportunities for overcoming these limitations. As far as the algorithms related to representing 826 

water resource management are concerned, Table 4 summarizes improvements that need to be 827 

made before we can properly represent human-water interaction in Earth System models, along 828 

with targeted temporal and spatial resolutions. Modeling resolutions can vary across various 829 

elements of water resource managements due to the difference in how different elements affect 830 

water and energy balance at the land-surface. For instance, irrigation and crop growth directly 831 

affect both energy and water balance at the sub-grid scale, with substantial difference between 832 

crop function during a day. Therefore, irrigation should be represented at a fine temporal and 833 

spatial resolution to capture potential climate responses. Reservoirs also affect water and energy 834 

balance; however, as noted above reservoir area and surface temperature vary slowly and therefore 835 

there is no need to approach a finer time-scale than the scale needed for representing the water 836 

balance and downstream releases.   837 

As noted throughout our survey, a variety of modeling options for representing key elements of 838 

water resource management at larger scales is currently available and new details about natural 839 
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and anthropogenic processes are continually being added to Earth System models. Nonetheless, 840 

major limitations exist in current data, algorithms and host models, which induce major biases 841 

within components and complicate uncertainty quantification and model tractability. At this 842 

juncture, a primary task for model development should be to test and compare different data and 843 

modeling alternatives in an integrated system. This requires considering model hierarchy and the 844 

links between different components and exploring individual and integrated model space with 845 

respect to accuracy, identifiability and capability for generalization. This, in turn, can direct where 846 

future attempts should be focused to reduce uncertainties further (see also Smith et al., 2014; 847 

Michetti and Zampieri, 2014). Guidelines are available for (1) considering multiple working 848 

hypotheses for supporting and representing relevant sub-processes and modeling component; (2) 849 

constructing different simulations based on various combinations of the considered options and 850 

(3) rejecting them if they fail to describe new data, violate their underlying assumptions and/or can 851 

be equally described by simpler models (M. P. Clark et al., 2011; see Popper, 1959). Modular 852 

systems, such as the recently released WRF-Hydro (Gochis et al., 2013), are particularly suitable 853 

for building such a framework as they provide a tool for constructing/falsifying different 854 

hypotheses for process representations, parameterizations and data support in a unified 855 

computational platform.  856 

To address this and to move towards the integrated representation of water resource management 857 

in LSMs, suggested in Figure 1, we propose a systematic framework for improving the 858 

incorporation of water resource management through building, testing and falsifying various 859 

modeling options. Figure 2 shows this framework based on the links between different modeling 860 

components. In brief, Figure 2 divides the model development into six components, related to (A) 861 

modeling set-up and data configuration, (B) climate modeling, (C) land-surface modeling, (D) 862 

water resource management representation, (E) calibration and parametric identification, as well 863 

as (F) testing and falsification. The framework starts with prior knowledge (A), coming from the 864 

modeling purpose, current modeling capabilities and limitations and the knowledge obtained from 865 

previous modeling attempts. According to the prior knowledge and emerging advancements, a 866 

range of modeling scales can be selected and multiple working hypotheses can be configured to 867 

represent the data and modeling options in (B) to (E). Depending on the mode and period of 868 

simulation, climate data or more generally climate models (B) are required to force or to be coupled 869 

with land-surface processes. The land-surface component (C) includes relevant sub-modules 870 



30 
 

related to natural processes, water supply and allocation and irrigative and non-irrigative 871 

withdrawals. The anthropogenic activities are controlled by the water resource management 872 

component (D), which requires inputs from land-surface and climate components to determine 873 

water availability and to estimate various demands with the aid of these and/or other proxies (priori 874 

knowledge). Rules for prioritizing, partitioning and allocating water demands are reflected in a 875 

management decisions sub-module that further drives water allocation in the land-surface 876 

modeling component. Sub-modules within (C) and (D) often contain unknown parameters that 877 

need to be identified through prior knowledge or calibration. As a result, calibration and parameter 878 

identification algorithms (E) with capability for further uncertainty assessment are a key 879 

requirement. Population-based optimization algorithms are particularly suitable for parameter 880 

identification as they provide a range of behavioral parameters, which can be analyzed through 881 

advanced visualization schemes and provide valuable insights into modeling uncertainty, 882 

identifiability and multiple performance measures (e.g. Nazemi et al., 2006b, 2008; Pryke et al., 883 

2007). Moreover, population-based algorithms can provide methodological linkage to uncertainty 884 

assessment through various diagnostic tests. Guidelines are provided to test and falsify models 885 

through various evaluation criteria such as parametric identifiability (e.g. Beven, 2006b), Pareto 886 

optimality (Gupta et al., 1998), predictive uncertainty (Wagener et al. 2004) and limits of 887 

acceptability (Beven and Alcock, 2012).   888 

Due to the current stage of model development, there is a need to approach the framework 889 

suggested in Figure 2 with a sequential workflow, as certain improvements should be made first 890 

before we can improve others. Figure 3 divides the suggested framework into four sequential 891 

working packages. First, various options for data support, water resource management (WRM) 892 

algorithms and host models should be benchmarked, tested and intercompared individually to 893 

highlight their relative suitability in further offline simulation. This would naturally result in 894 

falsifying some of the working hypotheses. The selected options then should be mixed-and-895 

matched in an offline mode. The offline simulation efficiency should be then explored and 896 

intercompared between various integrated settings to assess the biases propagated across the 897 

system and examine the robustness of the individual components in an integrated offline 898 

simulation. The non-falsified options in this stage can be further improved and configured for 899 

online simulation, which can be then coupled with climate models in a way described in Figure 2.   900 
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A key requirement for implementing the suggested framework is the availability of suitable data, 901 

at an appropriate scale, for algorithm development and intercomparison. Although global studies 902 

are important to improve our knowledge of the Earth System and global water supply, our ability 903 

to conduct a comprehensive global study as proposed in Figure 2 is currently limited due to 904 

methodological, computational and funding barriers. We argue that a network of regional case 905 

studies, however, could provide access to local data, and a sample of comparative examples to 906 

support algorithm intercomparison and further development. We note, for example, the success of 907 

model intercomparison projects such as MOPEX (Duan et al., 2006) for hydrological modeling, 908 

and suggest that the time is right to develop a similar initiative for the incorporation of 909 

anthropogenic effects in hydrological models. One possibility is to draw on the resources of the 910 

set of Regional Hydroclimate Projects (RHPs) supported by the Global Energy and Water 911 

Exchanges (GEWEX) initiative of the World Climate Research Program (WCRP). As an example, 912 

our home river basin in western Canada, the 340,000 km2 trans-boundary Saskatchewan River 913 

Basin (SaskRB), is a GEWEX RHP, embodies a complex large scale water resources system 914 

(Nazemi et al., 2013), and poses globally-relevant science and management challenges (see 915 

Wheater and Gober, 2013). These require improved representation of water resource management 916 

at larger scales to diagnose the changes in the regional discharge, climate and water security as the 917 

result of current and future water resource management and climate change. Such RHPs could 918 

provide a basis for model development and intercomparison to support inclusion of water resource 919 

management in Earth System models for fully coupled global simulations. We have already started 920 

to explore various modeling options and the ways of improving individual algorithms (i.e. stage 1 921 

of sequential model development protocol illustrated in Figure 3) throughout the SaskRB. For 922 

instance, we have benchmarked several reservoir operation algorithms using observed inflows and 923 

assessed the possibility of improving simulation using calibration. We have realized that the 924 

efficiency of reservoir operation algorithms can be considerably improved if the assumption of 925 

fixed model parameterization is relaxed and the algorithm parameters are identified through 926 

calibration against observed reservoir level and discharge. We are about to finalize this study and 927 

will present our findings through a technical paper in near future.      928 

 929 

6 Summary and concluding remarks 930 
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Human water supply and allocation have intensively perturbed the water cycle. We noted that the 931 

inclusion of these anthropogenic activities in Earth System models poses a new set of modeling 932 

challenges and progress has remained incomplete. Despite some major developments, we noted 933 

that current limitations significantly degrade the modeling capability at larger scales, particularly 934 

with respect to future conditions, and neglect potentially-significant sources of change to land-935 

atmospheric system. We highlighted important deficiencies related to representing groundwater 936 

stores and withdrawals as well online implications of large reservoirs. We also noted that current 937 

water allocation algorithms have considerable limitations in representing streamflow in regulated 938 

catchments. We argued that these limitations are attributed to uncertainties in data support, water 939 

allocation algorithms and host large-scale models. 940 

We identified four opportunities for improvements. These are advancements in (1) high 941 

performance computing and coupling techniques; (2) remote sensing, data collection and data 942 

sharing; (3) calibration algorithms, system identification techniques and assimilation products; and 943 

(4) ongoing improvements in host models including both process representation and parameter 944 

identification. As there are several options available for data support, water resource management 945 

algorithms and host models, we proposed a modular framework for testing various modeling and 946 

data options, which can be configured by multiple working hypotheses and implemented in a 947 

unified and fully integrated modeling framework. The selected working hypotheses can be tested 948 

and falsified on the basis of available information, intercomparison and/or various model diagnosis 949 

frameworks. Similar to other recent commentaries (e.g., M. P. Clark et al., 2011; see also Beven 950 

et al., 2012), we believe that such a systematic framework in essential for improving current 951 

modeling capability in both offline and online modes and can be pursued using regional case 952 

studies, before aiming for fully coupled global simulations. WCRP RHPs are one source of suitable 953 

examples to move this agenda forward.  954 

It should be noted that filling current gaps in the inclusion of water resource management in Earth 955 

System models requires substantial efforts across a wide range of disciplines, from social and 956 

policy sciences to economics and water management, from natural sciences to engineering and 957 

mathematical modeling, and from remote sensing to hardware technology and computer science. 958 

Interdisciplinary research efforts, therefore, are important. Moreover, for various reasons including 959 

funding limitations, the community needs to fully recognize the role of collaboration and explore 960 
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various opportunities to share data and resources for efficient model developments and for 961 

consistent intercomparisons. 962 

Finally, it should be indicated that our survey considered water resource management from a water 963 

quantity perspective. Water quality concerns are increasingly associated with growing human 964 

water demand and can also impact water supply and allocation. Coupling water quality and 965 

quantity in Earth System models is however very much in its infancy and much future effort will 966 

be required to fill this gap. We hope that our survey will trigger more attention towards the 967 

necessity for improving current Earth System modeling capability to respond to the needs and 968 

challenges of the “Anthropocene”. 969 
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Table 1. Examples of available representations of water supply and allocation in large-scale models  

Reference 

Water supply Water allocation 

Diversions Reservoirs 
Groundwater 

store 

Desalination 

and reuse 

Supply-demand 

dependency 
Priorities in demands Operational objectives 

Haddeland et 
al. (2006b) 

In- and inter-grid 
abstraction 

Macro-scale 
operation1 

N/A N/A 
Reservoir can supply up 
to 5 grids downstream2 

Irrigation, flood control, 
hydropower, others 

Minimize deficit, maximize  
hydropower 

Hanasaki et al. 

(2008a) 

In- and inter-grid 

abstraction 

Macro-scale 

operation 
N/A N/A 

Reservoir can supply  up 

to 10 grids downstream 

Municipal, industrial, 

irrigation 
Allocate available water 

Rost et al. 
(2008) 

Local abstraction Lake routing NNBW assumed unlimited 3 Local grid Irrigation only 
Meet demand using available 

water 

Döll et al. 

(2009) 

In- and inter-grid 

abstraction 

Macro-scale 

operation 
N/A N/A 

Reservoir can supply up 

to 5 grids downstream 
Irrigation, non-irrigation Meet total demand4 

Hanasaki et al. 

(2010) 
Local abstraction 

Macro-scale 
operation/local 

abstraction 

NNBW assumed unlimited  Local grid Irrigation and livestock only 
Meet total demand using 

unlimited NNBW 

Strzepek et al. 
(2010) 

Local abstraction 
Macro-scale 
operation5  

Countrywide  
estimates  

N/A Local basin  
Domestic, industry, livestock, 

irrigation 
Maximize profitability 

Wisser et al. 
(2010) 

In-grid 

hydrologic 
routing 

Macro-scale 
operation 

Unlimited local 
source6 

N/A Local grid  Irrigation only 
Meet total demand using 
unlimited groundwater 

Biemans et al. 
(2011) 

Local 

abstraction, 

Heuristic routing 

Macro-scale 
operation 

NNBW assumed unlimited 7 
Reservoir can supply up 
to 5 grids downstream 

Irrigation only 
Proportional allocation of 

available water 

Wada et al. 

(2011) 

In- and inter-grid 

abstraction 

Macro-scale 

operation 

Countrywide 

estimates 

Countrywide 

estimates 

Reservoir can supply up 

to 600 km downstream 

Irrigation, flood control, 

hydropower, others 

Minimize deficit, maximize 

hydropower 

Pokhrel et al. 

(2012a) 
Local abstraction 

Macro-scale 

operation 
NNBW assumed unlimited  Local grid Irrigation, non-irrigation 

Meet total demand using 

unlimited NNBW 

Strzepek et al. 

(2012) 
Local abstraction 

Macro-scale 

operation5  

Basin-scale 

threshold 

Function of 

capacity 
Local basin 

Non-agricultural, 

Agricultural 

Minimize groundwater use and 

spill 

Blanc et al. 

(2013) 

Local 

abstraction, 
Heuristic routing 

Macro-scale 

operation5   

Basin-scale 

threshold 
N/A Local basin 

Non-agricultural, 

Agricultural 

Minimize groundwater use and 

spill 

Hanasaki et al. 

(2013b) 
Local abstraction 

Macro-scale 

operation 
N/A N/A Local grid 

Municipal, industrial, 

irrigation 
Allocate available water 

Voisin et al. 
(2013a,b) 

In- and inter-grid 
abstraction 

Macro-scale 
operation 

N/A N/A 
Reservoir can supply up 
to 200 km downstream 

irrigation, flood control, 
hydropower and others 

Allocate available water 

Wada et al. 

(2013a) 

In- and inter-grid 

abstraction 

Macro-scale 

operation 

Conceptual 

reservoir 

Countrywide 

estimates 

Reservoir can supply up 

to 600 km downstream 
Irrigation, non-irrigation 

Allocate available water 

                                                           
1 Simultaneous operation of multiple dams in a river basin was not considered. 
2 See Haddeland et al. (2006a). 
3 Simulations without assuming unlimited groundwater store were also performed. . 
4 Demand that cannot be allocated in any given day is allocated later in the year or in the next year, when water is available.  
5 A virtual reservoir is considered for each basin. 
6 Shallow groundwater is represented as a runoff retention pool, which delays runoff before it enters streams. 
7 Simulations with considering only surface water availability were also performed. 
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Table 2. Representative examples of available macro-scale reservoir operation algorithms 

implemented in large-scale models 

Reference Host model 
Routing 

algorithm 

Type of 

operation 
Reservoir data Validation discharge data 

Hanasaki et 

al. (2006) 
N/A 

TRIP (Oki and 

Sud, 1998) 

Simulation-

based 

WRD98 

(ICOLD) 

GSWP (Dirmeyer et al., 1999; 

Oki et al., 2001) 

Haddeland et 

al. (2006a,b, 

2007) 

VIC (Liang et 

al., 1994) 

Linearized 

Saint-Venant 

(Lohmann et al., 

1996, 1998) 

Optimizatio

n-based 

ICOLD; 

Vörösmarty et al. 

(1997, 2003) 

USGS( http://waterdata.usgs.gov) 

USBR (http:// www. usbr.gov) 

GRDC 

(http://www.bafg.de/GRDC/) 

Adam et al. 

(2007) 

VIC (Liang et 

al., 1994) 

Unit 

hydrograph and 

Linearized 

Saint-Venant 

(Lohmann et al., 

1996, 1998) 

Optimizatio

n-based 

ICOLD; 

Vörösmarty et al. 

(1997, 2003) 

Adam and Lettenmaier (2008) 

Hanasaki et 

al. (2008a) 

H08 (Hanasaki 

et al., 2008a,b) 

TRIP (Oki and 

Sud, 1998) 

Simulation-

based 

WRD98 

(ICOLD) 

GRDC 

(http://www.bafg.de/GRDC/) 

Döll et al. 

(2009) 

WaterGAP 

(Alcamo et al., 

2003) 

HBV 

(Bergström and 

Singh, 1995) 

Simulation-

based 

GRanD (Lehner 

et al., 2008) 

GRDC 

(http://www.bafg.de/GRDC/) 

Wisser et al. 

(2010) 

WBMplus 

(Vörösmarty et 

al., 1998) 

Muskingum-

Cunge (Ponce 

and Changanti, 

1994) 

Simulation-

based 
ICOLD  

UNH-GRDC (Fekete et al., 1999, 

2002) 

Biemans et al. 

(2011)` 

LPJmL (Gerten 

et al., 2004; 

Rost et al., 

2008) 

Linear reservoir 

model (Huggins 

and Burney, 

1982) 

Optimizatio

n-based 

GRanD (Lehner 

et al., 2011) 

GRDC 

(http://www.bafg.de/GRDC/) 

Van Beek et 

al. (2011) 

PCR-GLOBWB 

(van Beek and 

Bierkens, 2009) 

Kinematic 

Saint-Venant 

(Chow et al., 

1998) 

Optimizatio

n-based 

GLWD1 (Lehner 

and Döll, 2004) 

GRDC 

(http://www.bafg.de/GRDC/) 

Wu and Chen 

(2012) 

SWAT (Arnold 

et al., 1998) 

SWAT (Arnold 

et al., 1998) 

Simulation-

based 
Wu et al. (2007) Chen and Wu (2008)1 

Pokhrel et al. 

(2012a) 

MASTIRO 

(Takata et al., 

2003) 

TRIP (Oki et 

al., 2001) 

Simulation-

based 

WRD98 

(ICOLD) 

GRDC 

(http://www.bafg.de/GRDC/) 

Voisin et al. 

(2013a) 

VIC (Liang et 

al., 1994) 

MOSART (Li et 

al., 2013a,b) 

Simulation-

based 

GRanD (Lehner 

et al., 2011) 

USGS( http://waterdata.usgs.gov) 

USBR (http:// www. usbr.gov) 

GRDC 

(http://www.bafg.de/GRDC/) 

Voisin et al. 

(2013b) 

SCLM (Li et 

al., 2011; 

Lawrence et al., 

2011) 

MOSART (Li et 

al., 2013a,b) 

Simulation-

based 

GRanD (Lehner 

et al., 2011) 

USGS( http://waterdata.usgs.gov) 

USBR (http:// www. usbr.gov) 

GRDC 

(http://www.bafg.de/GRDC/) 

 

 

 

 

 

 

                                                           
1 Discharge data used for calibration as well 
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Table 3. Uncertainties in current offline representations of water resource management in large-scale models 

Component  
Type of 

activity 
Specification Data uncertainty Algorithm uncertainty  Host model uncertainty1 

Water demand 

(Nazemi and 

Wheater, 

2014a) 

Irrigative 

demands 
Irrigation 

Climate forcing; soil, crop, land-use and land management 

including sub-grid heterogeneities; actual diversions; 

socio-economy and technological variables; agricultural  

management  

Characterizing the potential evapotranspiration and crop 

water demand; representing the sub-grid crop diversity, 

irrigation expansion, crop change, return flows 

Estimation of actual 

evapotranspiration, soil water 

movement, runoff and canopy losses; 

considering  CO2 effects 

Non-

irrigative 

demands 

Industrial uses  

Location, diversity and capacity of uses;  actual 

diversions; downscaling  proxies; socio-economy and 

technological variables 

Seasonal variations in industrial water needs; structural and 

parametric uncertainty in estimation and projection of 

industrial demand. 

N/A 

Energy-related uses 

Location, diversity and capacity of uses; actual diversions; 

downscaling  proxies; socio-economy and technological 

variables 

Seasonal variations in energy-related water needs; 

structural and parametric uncertainty in estimation and 

projection of industrial demand. 

N/A 

Municipal 

Uses 

Population; diversity in uses; actual diversions and uses; 

downscaling  proxies; socio-economy and technological 

variables 

Seasonal variations in municipal water needs, structural and 

parametric uncertainty in estimation and projection of 

municipal demand 

N/A 

Livestock uses Heads; socio-economy Seasonal variations in livestock water need; return flows N/A 

Environmental flows Habitat and ecosystem needs in time and space Over-simplicity of demand calculation Hydrological processes upstream 

Water 

allocation (see 

Sections 2 to 4) 

Water 

supply 

River diversion 
Location of diversion; capacity, slope and other properties 

of diversion networks 
Diversion losses, return flows  Channel routing 

Lakes and reservoirs 

storages2 

Precipitation; reservoir location and characteristics; actual 

storage; small dams 

Crude representation of reservoir releases using 

representations of natural lake, losses from reservoir  

Hydrological processes upstream of 

dams, channel routing 

Inter-basin transfer 

Location of diversion; capacity, slope and other water 

transfer properties; management policies; actual water 

transfer.  

Diversion losses, simplicity of heuristic algorithms 
Channel routing, calculation of 

demands 

Reused water Location, capacity and actual desalinated water supply  Limited representations N/A 

Groundwater storage Soil properties, groundwater movement 
Crude representation of groundwater availability, ignoring 

inter-cell lateral groundwater movements  

Estimation of groundwater storage, 

recharge and discharge, calculation of 

demand. 

Water 

allocation 

practice 

 

Operational objectives Management policies and local constraints 
Limitations of common objective functions; Temporal and 

spatial variations in operational objective  

Estimation of water demand and 

supply 

Demand-Supply 

dependency  

Management policies and local constraints, topography, 

diversion channels 
Steady-state assumption 

Estimation of water demand and 

supply 

Priorities Management policies and local constraints Temporal and spatial variations in priorities  
Estimation of water demand and 

supply 

Reservoir operations Management policies and local constraints 

Simplicity of operational rules in simulation-based 

approaches, complexity of optimization-based algorithms, 

prognosis of both approaches  

Operational objectives, inflow to 

reservoirs, water demand 

Groundwater withdrawal 
Wells location, groundwater management, actual pumping 

capacities 

Crude representation of groundwater withdrawals based on 

both top-down and bottom-up algorithms 

Groundwater storage, surface water 

availability, grid-based water 

demands   

 

                                                           
1 Uncertainties from host-model also include the uncertainties that can extend from other algorithms, related to water resource management, embedded in host 

models (see Figure 1).  
2 See also reservoir operations. 
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Table 4. Required developments to include the elements of water resource management in Earth System 

models (see also Table 3) 

Water 

resource 

management 

component 

Required algorithmic 

improvements 

Targeted spatial 

scale 

Targeted 

temporal scale 

Data support for 

parameterization 

and validation 

Irrigation 

demands 

Improving the calculation of 

crop-specific water demand 

considering the effect of 

CO2, considering soil-water 

movement and other losses 

Hyperresolution 

and sub-grid 

scale 

Sub-daily/sub-

hourly (for online 

simulations) 

Crop and soil 

diversity, measured 

or assimilated 

evaporation over 

irrigated lands 

Non-irrigative 

human demands 

Improving the mapping 

relationship, representing 

the diversity of non-

irrigative demands 

Large grids with 

the ability to be 

downscaled into 

finer resolutions 

using socio-

economic and 

climate proxies 

Yearly and 

monthly with the 

ability to be 

downscaled into 

finer scales using 

socio-economic 

and climate proxies 

Water use data, 

gridded climate and 

regional socio-

economic data 

Environmental 

flow needs 

Improving the demand 

approximation considering 

the diversity in the aquatic 

life 

Catchment scale Monthly and less 

Aquatic  

biodiversity and 

water use, climate 

information, water 

temperature, water 

quality  

Lakes and 

reservoirs 

Improving the 

representation of release and 

storage, linking hydrologic 

representation with energy-

balance components 

Grid and sub-

grid 
Daily 

Reservoir storage 

and water level, 

release downstream 

of reservoirs, 

storage-area-

elevation 

relationships, 

operational 

objectives 

Water 

diversions 

Representing in-grid and 

inter-grid water diversions 

including losses 

Grid and inter-

grid 
Daily 

Water distribution 

specifications, 

location of 

abstractions 

Groundwater 

Improving the 

representation of  

groundwater storage and 

recharge 

Grid 
Daily (shorter in 

online simulations) 

Soil properties, well 

locations, pumping 

capacities 

Water resuse 

and desalination 

Improving the 

representation of water 

reuse and desalination and 

the annual dynamics of 

water supply from each 

facility 

Grid 

Yearly with the 

ability to be 

downscaled into 

finer time scales 

using climate and 

socio-economic 

proxies   

Location and 

capacity of 

facilities, gridded 

climate, regional 

socio-economic data  
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Figure 1. A fully coupled framework for inclusion of water resources management in a typical 

LSM grid 

 

 

 

 

 

 

 

 

 

 

 

 



60 
 

 

Figure 2. A modular framework for improving the inclusion of water resource management in 

LSMs through building, testing and falsifying multiple working hypotheses 
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Figure 3. A sequential workflow for benchmarking, improving and including the elements of water 

resource management into offline and online Earth System simulations  

 


