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Abstract 9 

Hydrological functions of river basins are summarized as collection, storage and discharge, 10 

which can be characterized by the dynamics of hydrological variables including precipitation, 11 

evaporation, storage and runoff. The temporal patterns of each variable can be indicators of 12 

the functionality of a basin. In this paper we introduce a measure to quantify the degree of 13 

similarity in the intra-annual variations in different years for the four main variables. We 14 

introduce this measure under the term of recurrence and define it as the degree to which a 15 

monthly hydrological variable returns to the same state in subsequent years. The degree of 16 

recurrence in runoff is important not only for water resources management but also for 17 

hydrologic process understandings, especially in terms of how the other three variables 18 

determine the recurrence in runoff. The main objective of this paper is to propose a simple 19 

hydrologic classification framework applicable to large basins at global scale based on the 20 

combinations of recurrence in the four variables. We evaluate it by Lagged Autocorrelation, 21 

Fast Fourier Transforms and Colwell’s Indices of variables obtained from EU-WATCH 22 

dataset composed by eight hydrologic and land surface model outputs. By setting a threshold 23 

to define high or low recurrence in the four variables, we classify each river basin into 16 24 

possible classes. 25 

The overview of recurrence patterns at global scale suggested that precipitation is recurrent 26 

mainly in the humid tropics, Asian Monsoon area and part of higher latitudes with oceanic 27 

influence. Recurrence in evaporation was mainly dependent on the seasonality of energy 28 

availability, typically high in the tropics, temperate and subarctic regions. Recurrence in 29 
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storage at higher latitudes depends on energy/water balances and snow, while that in runoff is 1 

mostly affected by the different combinations of these three variables. According to the river 2 

basin classification 10 out of the 16 possible classes were present in the 35 largest river basins 3 

in the world. In humid tropic region, the basins belong to a class with high recurrence in all 4 

the variables, while in subtropical region many of the river basins have low recurrence. In 5 

temperate region, the energy limited or water limited in summer characterizes the recurrence 6 

in storage, but runoff exhibits generally low recurrence due to the low recurrence in 7 

precipitation. In the subarctic and arctic region, the amount of snow also influences the 8 

classes; more snow yields higher recurrence in storage and runoff. Our proposed framework 9 

follows a simple methodology that can aid in grouping river basins with similar 10 

characteristics of water, energy and storage cycles. The framework is applicable at different 11 

scales with different datasets to provide useful insights into the understanding of hydrologic 12 

regimes based on the classification.  13 

1 Introduction 14 

The hydrological cycle, as one of the main earth systems is directly dependent on several 15 

periodical cycles with a variety of frequencies. Rotation of the earth on its own axis, rotation 16 

around the sun, rotation of the moon around the earth and variations on the earth’s axial tilt 17 

are the main cause for temporal variations in the land surface and atmosphere. Variations at 18 

seasonal scale are the most recognized patterns in most hydrological processes playing 19 

important roles in water resource management. Other climatological changes and additional 20 

anthropogenic pressure also add to the complexity of the hydrological cycle. 21 

Regardless the complexity, the primary function of a river basin in the hydrological cycle is 22 

simply characterized with three main functions: collection, storage and discharge (Black, 23 

1997). The collection function describes the different paths that supplied water from 24 

precipitation follows until it reaches a storage component. This collected water is stored at 25 

different states and locations within a basin. Water storage, as the first order state variable of 26 

river basins, represents its hydrologic condition and serves as the link between collection and 27 

discharge regulating the timing and amount of collected water to be released. The discharge 28 

function refers to the processes that release the stored water in the form of evaporation back 29 

into the atmosphere or as runoff. Among these functions, the prediction and understanding of 30 

the release as runoff has been of high importance to understand water hazards and resource 31 

management. Nevertheless, as runoff is highly dependent on the other two functions, 32 
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understanding the dynamics of water collection and storage is unavoidable in order to 1 

understand hydrological processes at river basins.  2 

The importance of storage dynamics has been highlighted with emerging new concepts in 3 

watershed hydrology. Fill and Spill (Spence and Woo, 2003;Tromp‐van Meerveld and 4 

McDonnell, 2006;Shaw et al., 2012), connectivity (McGlynn et al., 2013) and threshold (Fu et 5 

al., 2013;Ali et al., 2013) are few examples amongst various concepts of runoff generation 6 

mechanisms highlighting the importance of water storage and its capacity. Recent studies 7 

have demonstrated similar concepts at multiple scales based on water balance analysis 8 

(Sayama et al., 2011), combinations of soil moisture and streamflow measurements (Sidle et 9 

al., 2000) and numerical simulations (Graham et al., 2010). For larger river basins, there are 10 

only a few studies that have identified water storage dynamics at lake/wetland river systems 11 

(Spence, 2007;Spence et al., 2010). The stored water volume and its partitioning are 12 

important also because they control on residence time and source areas (Sayama and 13 

McDonnell, 2009), which ultimately influence on the sensitivity of the system to climate 14 

change (Tague and Peng, 2013). Hence storage dynamics should be incorporated as a 15 

fundamental metric for catchment classifications and comparisons (Wagener et al., 16 

2007;McNamara et al., 2011). 17 

Jothityangkoon and Sivapalan (2009) introduced a simple theoretical framework for 18 

classifying different hydrologic regimes based on storage dynamics on different semi-arid and 19 

temperate catchments. The framework shows temporal patterns of storage change with 20 

periodic rainfall rate and constant potential evaporation. The amount of runoff generated is 21 

assumed to be varied significantly depending on water storage being below or above the soil 22 

moisture at field capacity and saturation. Therefore with different balances in rainfall, 23 

potential evaporation and the soil properties, other variables including ET, storage and runoff 24 

exhibit different temporal patterns, and these are further used for a hydrologic regime 25 

classification. The assessment further explores the effects of storminess, seasonality and 26 

interannual climate variability and their effect on their proposed regimes. Other examples of 27 

different approaches for hydrological classification include Weiskel et al. (2014) and the 28 

series of papers (Cheng et al., 2012;Coopersmith et al., 2012;Yaeger et al., 2012;Ye et al., 29 

2012). Coopersmith et al. (2012) derived the classification using the aridity index, seasonality, 30 

precipitation peak with respect to potential evaporation and the day of peak runoff for 428 31 

catchments in the United States. This classification was further used to categorize 32 
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hydrological change by analyzing the conditions of the indicators (Coopersmith et al., 2014). 1 

Berghuijs et al. (2014) utilized the seasonal water balance and temporal interaction of 2 

variables to group catchments across the United States.  3 

For global scale, several studies have also assessed the interaction of storage variables by 4 

using global circulation models. Delworth and Manabe (1988) explored the relations between 5 

soil moisture and potential evaporation and how these two interacted and affected climate. 6 

Further they explored the relation of the persistence of soil wetness with the persistence of 7 

relative humidity by comparing their lagged autocorrelations (Delworth and Manabe, 1989). 8 

Also at global scale, the interactions between runoff processes, their feedback with the 9 

atmosphere and their effects on simulated water cycle have been thoroughly studied by 10 

(Emori et al., 1996). Macroscale effects of water and energy supplies (Milly and Dunne, 11 

2002) and their influence on river discharge have been also analyzed using observed data and 12 

GCMs (Milly and Wetherald, 2002). For river basin characterization with storage information, 13 

Masuda et al. (2001) used basin and atmosphere budgets to evaluate water storage and 14 

described similarities among storage patterns for major basins in the world. More recently 15 

Kim et al. (2009) used two indices to quantify the significance of different storage 16 

components in terrestrial water storage, namely subsurface storage, snow and river storage, 17 

and describe their behavior in 29 basins.  18 

The objective of the study is to propose a classification framework for large river basins 19 

employing the temporal patterns in precipitation, evaporation, storage and runoff utilizing a 20 

global dataset. We follow the frameworks of (Masuda et al., 2001;Jothityangkoon and 21 

Sivapalan, 2009;Kim et al., 2009) in terms of analyzing the temporal variations of the four 22 

main hydrological variables in different climatologies to find similarities and dependencies in 23 

runoff generation and variable interactions. Among a variety of metrics, this study focuses on 24 

recurrence of hydrologic variables by defining it as the degree to which a monthly 25 

hydrological variable returns to the same state in subsequent years. The reason for choosing 26 

the recurrence as a metric is practical. The recurrence of runoff and other three hydrological 27 

variables are of high importance for a water management perspective. For example, Figure 1 28 

compares monthly runoff from two different basins with high and low recurrence 29 

characteristics. Although total runoff volume and the seasonality are obviously dominant 30 

factors for water resource management, and therefore many previous classification studies 31 

have focused on metrics to represent them (Weingartner et al., 2013), anthropogenic systems 32 
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have already adapted to the local hydrological regimes to some extent. Generally it is more 1 

challenging for water managers to handle a random pattern with high fluctuations and 2 

different from past experiences, such as floods and droughts happening in unexpected 3 

magnitudes in unexpected seasons. The feature of our proposed classification is to show 4 

which variables are recurrent or non-recurrent and how different combinations of the 5 

recurrence (i.e. our proposed river basin classes) distribute in the world.  6 

Section 2 describes the data used in this study, followed by the methodology to calculate 7 

recurrence and classification of large river basins in the world in Section 3. Section 4 presents 8 

the results and regional characteristics of the basins. In Section 5, we discuss the relationship 9 

between our classification and other metrics including aridity, seasonality and phasing 10 

between water and energy cycles, as well as future application of the proposed classification. 11 

2 Data 12 

This study uses the “Watch Forcing Data for the 20
th

 Century (WFD) and the “WATCH 20
th

 13 

Century Model Output” from the WaterMIP datasets provided by EU-WATCH. The forcing 14 

data are based on the European Centre for Medium Range Weather Forecasting (ECMWF) 15 

“ERA-40” reanalysis data (Weedon et al., 2010;Weedon et al., 2011).The model output data 16 

set represents contemporary naturalized conditions, with no human interaction such as 17 

reservoirs or agricultural withdrawals at 0.5
o
 spatial resolution (Haddeland et al., 2011).The 18 

EU-WATCH project includes land surface models (LSMs) and global hydrological models 19 

(GHMs) depending on models solving energy balance or not. 20 

1. Precipitation: Precipitation is provided as part of the WFD dataset. LSMs require input 21 

rainfall and snowfall independently provided by WFD dataset; whereas GHMs use their 22 

own algorithms to separate rainfall and snowfall, using total precipitation as input. Since 23 

the partitions within the GHMs are not available in the provided EU-WATCH dataset, 24 

this study used  total precipitation for the classification as the aggregated variables of 25 

rainfall and snowfall. 26 

2. Evaporation: Simulated evaporation for each model is provided as total flux without the 27 

distinction of its source (transpiration from vegetation, bare soil evaporation, sublimation, 28 

etc.). 29 

3. Runoff: Simulated surface and subsurface runoff for each model are provided 30 

independently. However, since the partitions between surface and subsurface differ 31 
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significantly among models total runoff is used in this study. River discharge is also 1 

provided for some models but for comparative purposes generated runoff from land 2 

surface is selected for the classification. 3 

4. Storage: Storage is defined in this study as the total amount of water held in a basin 4 

regardless its physical state or location. Table 1 summarizes different storage components 5 

aggregated to estimate the total storage. In the discussion, further analysis is conducted 6 

by using individual components to understand their influence.  7 

The time period selected for the analysis is from 1979-2001 at a monthly scale. The original 8 

data including precipitation, evaporation, storage and runoff was analyzed first to test their 9 

recurrences explained in the next section. Then for the world’s largest 35 river basins (Figure 10 

2), the variables are aggregated within the basin and calculated their recurrences to classify 11 

the basins. 12 

3 Methods 13 

3.1 Quantifying recurrence 14 

This section introduces three metrics for evaluating recurrence, which include autocorrelation 15 

(AC), Fast Fourier Transform intensity (FFT intensity) and Colwell Index of Contingency 16 

(Colwell, 1974). In this study, since our interest is the recurrence of monthly variable defined 17 

above, we used a period of 12 months for each metric. The definitions are described below 18 

and their characteristics are discussed in section 5.2. 19 

3.1.1 Lagged Autocorrelation (AC) 20 

A serial autocorrelation (AC) defined as (1) describes the correlation of a time series with 21 

time lag k: 22 
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where rk is the AC coefficient for lag k, N is the total number of observations, and x̄ is the 24 

mean. This AC calculation loses intensity as the lag increases dying down to zero as it 25 

approaches N. The AC can further be calculated in terms of the covariance but this 26 

computation is considered as a bias calculation of AC. In order to avoid the biased calculation 27 
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and still be able to calculate a correlation between partial series with larger lags, this series 1 

can be assumed as totally separate series with different mean and variance and the 2 

calculations can be computed as simple correlation with the following equation: 3 
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For the recurrence measure with monthly time series, evaluating the AC of time lag 12 only is 5 

insufficient because it would only take into account the recurrence in contiguous years. We 6 

find more appropriate to include the AC at other multiples of 12. Given the length of the time 7 

series used in this study, we decided to use the mean of AC from time lags 12, 24, 36, 48 and 8 

60. 9 

The results will be dependent also on the temporal resolution (e.g. daily or yearly time series). 10 

However in this study we decided to use a monthly resolution and look at yearly cycles 11 

because one year is usually a unit at which most of human activities and natural cycles repeat 12 

themselves.  13 

3.1.2 Fast Fourier Transforms (FFT) 14 

The other measure tested in this study is Fast Fourier Transform (FFT) intensity which can 15 

identify important periods based on a periodogram. The periodical part of a time series can be 16 

described by equation: 17 
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where mτ is the harmonically fitted mean, μ is the population mean, Ai and Bi are the Fourier 19 

coefficients, p is a period (12 for monthly data), and h is the total number of harmonics 20 

(usually p/2). 21 

The Fourier coefficients are calculates as: 22 
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The intensity can be calculated from these parameters as: 2 

22

iii BAI            (6) 3 

The FFT intensity is important to identify the periodicity at a particular frequency. A peak in 4 

the plot of intensity vs. frequency (periodogram) identifies a frequency for which a periodical 5 

pattern is found. For most hydrological data a peak at a frequency equivalent to a year exists 6 

(i.e. 12 months for monthly data, 52 weeks for weekly, and 365 for daily). If a series follows a 7 

pattern similar to a sinusoidal function, the intensity will be higher than a series departing 8 

from this pattern. Additionally if a series contains much noise the intensity will also be 9 

reduced. Hence a recurrent pattern shows higher FFT intensity. Since the FFT intensity is 10 

sensitive to the amplitude and magnitude we applied a standard normalization. Discussion 11 

upon the characteristics and capability of FFT to measure recurrence is provided in section 12 

5.2. 13 

3.1.3 Colwell’s Contingency Index 14 

Colwell (1974) introduced the indices of constancy and contingency, which together form the 15 

index called predictability. These indices have been used to analyze physical and biological 16 

temporal fluctuations. The index has been used widely in the analysis of flowering trees 17 

(Colwell, 1974), variations in river temperature (Vannote and Sweeney, 1980), variations in 18 

flow velocity (Riddell and Leggett, 1981), rainfall distribution at a yearly basis (Miller, 1984), 19 

periodicity analysis in streamflow or rainfall data (Gan et al., 1991), classification of flow 20 

regimes for environmental flow assessments (Zhang et al., 2012), and description of 21 

waterholes in hydrological regimes (Webb et al., 2012). Colwell (1974) defined predictability 22 

as the measure of the certainty of knowing a state at a given time, being composed by the sum 23 

of two components: constancy, which represent how uniform the state of a variable is at 24 

different time cycles, and contingency, which measures the degree to which state and time are 25 

dependent on each other. 26 

Calculation of the Colwell’s Index requires first categorizing the continuous data to prepare a 27 

matrix. The columns of the matrix represent time categories and rows represent the states of a 28 

phenomenon. In this study the columns represent different months and the rows represent 29 
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ranges of standard deviations, whose ranges are between minus four to plus four, which is 1 

equally divided into 16 categories with intervals of 0.5σ. 2 

Now let Nij be the number of times that a variable falls in state i at time step j. Sum of all 3 

columns for each state i is Xi, sum of all rows for each time step j is Yi and the total number is 4 

Z. Then Contingency (M) of Colwell’s Index is defined as: 5 
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where s is the number of rows, H(X), H(Y), and H(XY) are defined as: 7 
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Contingency becomes 1 if a variable is at the same state at a particular time step, while the 11 

index becomes 0 if the occurrences in different time steps take place at the same state. 12 

Contingency will be higher as more occurrences in a particular time happen in a particular 13 

state. If the values of a variable in a given month are similar, they will fall under the same 14 

state interval. This will be the case of variables with high recurrence. Further discussion on 15 

the capacity of Colwell’s index to represent the concept of recurrence is stated in section 5.2. 16 

For reference, the Constancy (C) and Predictability (P) are defined as: 17 
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3.2 Hydrological Classification 20 

The variables considered in this study are precipitation P, evaporation E, runoff Q and storage 21 

S, which compose the general hydrological cycle and are the main components of the water 22 

balance equation. At global scale or basin scale, each of the four variables are identified as 23 
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being of high or low recurrence based on the description in previous sections. The first order 1 

division of the classification is whether runoff has high or low recurrence, followed by 2 

precipitation, evaporation and storage. As a graphical guidance we introduce a classification 3 

tree in Figure 3. The figure shows the 16 possible classes, and the combinations that were 4 

found and not within the basins of this study. It is provided to be used as a guidance to 5 

understand further figures. We used runoff as the first variable for the classification as it is the 6 

main concern for water resource management, and other three variables are further used to 7 

explain why the runoff in each basin or region shows high or low recurrence. The value used 8 

for classifying the basins as high or low recurrence was an AC of 0.75. 9 

First we quantified recurrence at global scale except for Greenland, where models 10 

performance is questionable due to its particular conditions, and Antarctica, where the EU-11 

WATCH product did not cover. This global analysis was performed for the given time series 12 

at of each variables at each individual grid. The analysis for the world’s largest 35 basins was 13 

performed for the time series of each variable considering the spatial average of the grids 14 

included within the limits of the basin. 15 

Among all the model output from EU-WATCH, we put particular attention to the WaterGAP 16 

model results because it is the only model that includes a calibration module and is closest to 17 

observations (Haddeland et al., 2011). Meanwhile, all other model results are also analyzed to 18 

cover different model behaviors and discuss model uncertainty (section 5). 19 

4 Results 20 

In this section, we first describe the results of recurrence based on AC from the WaterGAP 21 

model as the representative case. WaterGAP is selected here as it is the only model with a 22 

simple calibration module and has better agreement with observations (Haddeland et al., 23 

2011). Autocorrelation fits our goal as it precisely measures the degree of similarity of each 24 

year when lagged by 12 months. Section 5 discusses the differences in results for the other 25 

metrics and the rest of the different models’ results. Figure 4 shows the global distribution 26 

maps of the recurrence (i.e. AC in this case) in the four variables: precipitation, evaporation, 27 

storage and runoff. From the recurrence calculated for each variable’s time series, each grid 28 

was identified with red for very low recurrence (<0.5), yellow for low recurrence (0.5~0.75) 29 

and green for high recurrence (0.75~1.0). To explain the distribution of the recurrences in the 30 

four variables, this paper uses the following terms for different latitude zones for both 31 
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hemispheres: Tropical (0
o
-23.5

o
), Subtropical (23.5

o
-35

o
), Temperate (35

o
-55

o
) and Subarctic 1 

and Arctic (55
o
-90

o
).  2 

The precipitation in the tropical region is basically characterized by the seasonality caused by 3 

the oscillation of the Intertropical Convergence Zone, and energy supply due to the effects of 4 

the earth’s tilt fluctuation. Because of this seasonality, two bands between (5
o
-23.5

o
) for both 5 

hemispheres show high recurrence in all variables, while they are lower in general at the 6 

equatorial band between 5
o
S and 5

o
N where there is no seasonality. The rest of the variables 7 

follow generally the same pattern as precipitation although the high recurrence areas of 8 

storage and runoff are comparatively smaller than that of precipitation. 9 

The subtropical region is mainly characterized by the latitudinal desert belts. This region is 10 

characterized by low humidity and general dryness in soil conditions. In this region, 11 

precipitation events are typically sudden and intense without following a certain temporal 12 

patterns. During rainfall events the other variables also behave similarly. Hence all the four 13 

variables tend to have low recurrence. The Southeast Asia Monsoon area is an exception since 14 

its behavior is similar to the humid tropics area, therefore displaying high recurrence in all 15 

variables. 16 

The temperate region also shows generally low recurrence in precipitation due to continental 17 

climates or oceanic climates with no dry season. Eastern Asia is the only region showing high 18 

recurrence due to the effects of the Asian Monsoon. Evaporation in this region has high 19 

recurrence due to seasonality with exception of dry areas in Europe and Asia. Storage has 20 

different geographic patterns throughout the region. Runoff follows the same regionalization 21 

as storage except for Europe with comparatively low recurrence in general. 22 

Precipitation in the subarctic and arctic region shows low recurrence except for some areas in 23 

North America and Eastern Siberia. Evaporation exhibits the higher recurrence in this area. 24 

The extent area of high recurrence in storage and runoff is larger in this region mainly 25 

attributed to the amount of snow. 26 

By taking the spatial average of each variable inside the 35 largest river basins in the world, 27 

we calculated recurrence and classified them following the tree illustrated in Figure 3. Figure 28 

5 shows the result of the classification, which is described below according to each latitude 29 

region. Figure 6 displays graphically the results of the calculations of recurrence for each 30 

variable. The figure shows the results of the calculated recurrence from the WaterGAP model 31 
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output and also shows the maximum, minimum, mean and interquartiles of recurrence 1 

calculated using the other models. Table 2 summarizes the characteristics of each class. 2 

4.1 Tropical region (0.0o-23.5o) 3 

The tropical region has the most diversity of classes. In this region we found basins belonging 4 

to the QPES, QPS, PES, PE and E. Mainly, there are two distinct patterns observed in runoff. 5 

High recurrence in runoff takes place in the most humid basins exemplified in Figure 7a by 6 

Amazon (QPES) and Figure 7b by Orinoco (QPS). Consistent with the global analysis results, 7 

we found that precipitation is highly recurrent for these classes due to a repeating pattern 8 

resulting from the oscillation of the ITCZ. Evaporation and Storage are also highly recurrent 9 

as they follow the same pattern as precipitation as it can be seen in the Amazon time series in 10 

Figure 8a. In Orinoco basin evaporation is maintained rather constant as the basin is energy 11 

limited and potential evaporation is constant resulting in low recurrence in evaporation. 12 

Storage on the other hand follows the same pattern as precipitation resulting in a highly 13 

recurrent pattern. 14 

More than half of the basins in the tropics exhibit a low recurrence pattern in runoff. These 15 

basins are exemplified by Zambezi (PES) and Congo (PE) in Figure 7 and Figure 8. These 16 

basins are drier, with less runoff ratio, than basins with recurrent runoff and water limited in 17 

some periods of the year. Precipitation shows high recurrence due to the availability of 18 

moisture being related to the ITCZ. In these classes evaporation follows the same pattern as 19 

precipitation, following the moisture availability pattern. Storage has high recurrence in PES 20 

basins mainly because they are characterized by peaks in precipitation and potential 21 

evaporation taking place at a different time of the year as seen on the Zambezi River’s 22 

climatology in Figure 7. As a result the storage fluctuates largely mainly because it the soil 23 

moisture component fills in the wet season and nearly dries in the dry season (Figure 8c and 24 

storage component climatology of Zambezi Basin in supplement). This creates a strong 25 

seasonal pattern in total storage leading to high recurrence. PE class is characterized by the 26 

peaks of potential evaporation and P peaking at the same time (Figure 7d: Congo PE). 27 

Compared to Amazon, average precipitation is much lower but potential evaporation is almost 28 

the same. The Congo basin can be energy limited (P>PET) in the wet season, therefore 29 

regardless the amount in precipitation, evaporation will reach its potential creating more 30 

recurrent pattern in evaporation. The anomalies in precipitation directly transfer to storage and 31 

runoff variations, and since runoff ratio (Q/P) and storage change ratio (  S/P) are much 32 
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smaller, these anomalies are larger relative fluctuations to these variables; hence recurrence in 1 

storage and runoff patterns is low. Sao Francisco basin is an exception in this region 2 

consisting only of recurrent evaporation. This type of basin is mainly seen in the temperate 3 

region and is explained in detail in section 4.3. 4 

4.2 Subtropical region (23.5o-35.0o) 5 

In subtropical region, mainly two patterns classes are observed. QPES river basins are located 6 

in Southeast Asian Monsoon, where similar behaviors are observed as the same class river 7 

basins in tropical region. On the other hand we can observe the basins that are extremely dry, 8 

represented by Orange basin in Figure 7. In these basins, all variables follow the patterns of 9 

precipitation being, sudden, abrupt and lacking any defined temporal distribution, leading to 10 

class L (i.e. none of the variables are recurrent). The Indus river basin is an exception in this 11 

region belonging to the E class. 12 

4.3 Temperate region (35.0o-55.0o) 13 

In the temperate region there are three particular classes observed: PE, ES and E. All of these 14 

classes have low recurrence in runoff and high recurrence in evaporation due to the 15 

seasonality in energy supply.  16 

Basins located in Eastern Asia belong to the PE class explained previously on the Tropical 17 

Region section. The reasons for this class to be taking place are the same for the temperate 18 

region that for the tropical region, the reason for recurrence in precipitation coming from the 19 

moisture supply following the Asia Monsoon Pattern. 20 

A dominant class in this region is the ES class exemplified by the Mississippi Basin in Figure 21 

7. In this type of basin the precipitation pattern is not recurrent without a distinct dry season. 22 

Storage is recurrent in these basins as a result of the energy balance characteristics. Due to the 23 

limited energy during the winter season, precipitation is directly transferred to storage 24 

increase. During summer, the basins in this class are characterized by being water limited, and 25 

therefore most of the precipitated water is evaporated allowing for storage to decrease.  In 26 

these basins there is some influence of snow, however, the amount of snow is not as high as to 27 

create a recurrent runoff pattern.  28 

Other group in the temperate region is characterized by recurrence in evaporation only as is 29 

exemplified by the Danube river basin. In these basins, precipitation has a pattern of low 30 
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recurrence that transfers to the variables of storage and runoff. As compared to Mississippi, 1 

Danube River Basin is not energy limited during summer. This creates a pattern where the 2 

anomalies and low recurrence of precipitation also transfer to storage reducing its recurrence. 3 

4.4 Subarctic and arctic region (55.0o-90o (N/S)) 4 

In the subarctic region we found basins belonging to the QPES, QPE, QES, QE and E classes. 5 

As in the temperate region, evaporation is recurrent due to the seasonality of energy supply. 6 

All of the basins in this region except Kolyma have recurrent runoff. The runoff pattern is 7 

dominated by snowmelt taking place similarly year after year observed in the sudden peak in 8 

runoff during spring (Figure 7 h-j).  9 

Basins belonging to the QPES and QPE classes have high recurrence in precipitation due to 10 

moisture inflow from the ocean(Figure 4s 4 and Figure 5). The recurrence in storage is 11 

dependent on the amount of snow. The climatologies of these basins (Figure 7h-j) show that 12 

storage peaks during the winter months due to the accumulation of snow. Figure 9 shows the 13 

climatology of storage in these basins further subdivided into the volume of the different 14 

components. Table 3 shows the Component Contribution Ratio (CCR), calculated as (Kim et 15 

al., 2009), describing the contribution of each storage variation to the variation of Total 16 

Storage. As it can be seen, in these basins the highest contribution takes place from snow. The 17 

WaterGAP model in particular has a small groundwater tank which includes only the 18 

dynamical part making it small in volume and contribution. Figure 10 and Figure 11 show the 19 

snow water equivalent and seasonal precipitation amounts. From these two figures, we can 20 

observe that basins with higher snow amount have higher recurrence both in storage and 21 

runoff.  22 

Basins with not recurrent runoff (QES and QE) are basins located on continental areas 23 

experiencing precipitation patterns with no defined dry period. From Figure 9, Figure 10 24 

andFigure 11 we can also conclude that storage is recurrent for these basins depending on the 25 

amount of snow; higher SWE and winter precipitation are linked to higher recurrence. For 26 

this region, the recurrence in storage and runoff is independent from the recurrence in 27 

precipitation but it is dependent on the precipitation and snow amounts.  28 
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5 Discussion 1 

5.1 Characteristics of recurrence measured by AC 2 

5.1.1 Recurrence vs. Seasonality 3 

This section discusses the characteristics of recurrence measured by AC from monthly 4 

variables with the lags of 12 month multiples. Firstly we compare the recurrence and 5 

seasonality, following the definition of (Walsh and Lawler, 1981): 6 





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1

12/
1

n

n Rx
R

SI         (13) 7 

where nx   is the mean rainfall of month n and R  is the  annual mean of a hydrological 8 

variable. Hence the seasonality measures the degree to which each monthly value of a regime 9 

curve deviates from the overall annual mean, which is essentially different from the 10 

recurrence defined above. Figure 12 displays the relationship between recurrence and 11 

seasonality for all the time series in the study, including each variable from every basin. The 12 

figure suggests that generally higher seasonal variable tends to have higher recurrence. This is 13 

because if a variable has strong seasonality, the influence of the deviation from the 14 

climatology has comparatively less impact on the AC. 15 

Nevertheless, there are exceptions where variables are highly seasonal but not recurrent.   For 16 

example, Figure 13 shows the monthly average precipitation in Ob and Yenisei. The two 17 

basins are located in the same latitudinal region sharing their borders. The climatologies of 18 

the both basins are similar with comparable magnitudes at all months. However, the year to 19 

year variability in the both basins are different; Ob shows higher variations than Yenisei. 20 

Therefore the precipitation in Ob has lower recurrence (0.65) than that in Yenisei(0.88). 21 

Similar cases can be observed when comparing the climatologies shown in Figure 7 and the 22 

measure of recurrence presented in Figure 6, and in previous work, such as (Kim et al., 2009) 23 

where storage climatologies show strong seasonality but the yearly time series does not 24 

behave in a recurrent manner. 25 

To further explain the difference between recurrence and seasonality, we use Figure 14 to 26 

show several examples. Case 1 represents a repeating sinusoidal pattern with small amplitude 27 

resulting in low seasonality and high recurrence. Case 2, is a randomly generated series 28 

without seasonality and low recurrence. Case 3 and Case 4 are precipitation of Yenisei and 29 
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Ob with similar seasonality and high recurrence in Yenisei and low recurrence in Ob as 1 

discussed above. Case 5 is a sinusoidal pattern repeating the exact same values and show high 2 

seasonality but recurrence. Case 6 adds a decreasing trend to the Case 5, but it keeps similar 3 

seasonality and recurrence. In summary, seasonality is calculated from the climatology of a 4 

variable which results from a long term average, while recurrence measures the year to year 5 

variability of the monthly pattern of a variable. Recurrence is an additional feature of 6 

temporal patterns of basins providing different information than seasonality. 7 

5.1.2 Recurrence vs. aridity 8 

Recurrence in runoff and storage also has some relation with the aridity of a basin as well as 9 

the timings of energy and water availability. These basin characteristics are essential in 10 

determining the basins’ functionality as they are a descriptor of how much water from 11 

precipitation is transferred to evaporation, storage change or runoff and they have been 12 

included as classification indices in previous works such as (Jothityangkoon and Sivapalan, 13 

2009;Coopersmith et al., 2012;Berghuijs et al., 2014;Coopersmith et al., 2014). Figure 15 14 

shows the relations between aridity and timing of peaks in precipitation (water supply) and 15 

PET (energy supply) with recurrence in runoff and precipitation by region.  16 

Figure 15a and b show that in humid basins, where the runoff ratio and the storage change 17 

ratio are high, storage and runoff follow the patterns in precipitation showing mainly a 18 

recurrent pattern. Drier basins have lower recurrence in runoff (classified as PES, PE, ES or 19 

E), essentially due to the high sensitivity of runoff to precipitation under smaller runoff ratios. 20 

For example, the case of Amazon and Congo, aforementioned in section 4.1, has difference in 21 

recurrence of storage and runoff. For precipitation, both variables have similar relative 22 

variations but the total precipitation in Congo is about 70% of the precipitation in Amazon. 23 

Additionally, the runoff ratio is smaller in Congo (0.4) than in Amazon (0.45). The physical 24 

meaning of this aspect is that there is less water volume in Congo transferring from 25 

precipitation into storage fluctuation and runoff generation. Hence, the same anomalies in 26 

precipitation have larger impact in Congo than in Amazon. 27 

Furthermore, recurrence of storage and runoff depend also on the timing of P and PET peaks. 28 

As Figure 15c and d indicate, the recurrence of storage and runoff tends to be higher if P and 29 

PET are out of phase (>2 months). 30 

 31 
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 1 

5.2 Recurrence measured by FFT intensity and Colwell’s Contingency 2 

compared to AC 3 

The proposed indices to measure recurrence are lagged AC, FFT intensity and Colwell’s 4 

Indices. For most of the cases, the basins that show higher AC also have higher values of FFT 5 

intensity and Colwell’s Predictability. However, it is to be noted that some basins showing 6 

lower AC and FFT intensity have high Colwell Predictability, especially in dry conditions. 7 

For example, in the arid basins where all the variables are low most of the time except for 8 

abrupt peaks, AC and FFT intensity are low, while Colwell’s Constancy and Predictability are 9 

high. However, these basins are rather low in Colwell’s Contingency (Table 4). Contingency 10 

measures the degree to which state and time are dependent on each other, measuring the 11 

degree to which a particular state takes place at a particular time. For this reason Colwell’s 12 

Contingency’s results are highly consistent with the results of AC and FFT intensity. 13 

Colwell’s Contingency is not only consistent with the other indices but also adequate for 14 

measuring recurrence as defined above. Table 5 shows the classification of each basin using 15 

the different metrics. 16 

Figure 16 shows the correlation between AC and FFT intensity and AC and Colwell’s 17 

Contingency from the WaterGAP model. All indices correlate well although there are 18 

particular cases that deviate from the regressions. As mentioned in the methodology section 19 

the threshold selected for AC was 0.75. For FFT intensity and Colwell’s Contingency 20 

measures thresholds of 150 and 0.25 were selected to minimize the number of basins 21 

categorized as different classes. Table 5 shows the classification of basins from different 22 

metrics.  23 

The FFT procedure is used to represent a time series by fitting a sine and cosine function, 24 

therefore the FFT intensity will be higher for variables following a sinusoidal pattern. Figure 25 

17 exemplifies the different periodogram with their respective partial time series and 26 

climatology. Figure 17a shows the example of evaporation in Changjiang for which a highly 27 

sinusoidal pattern indicates high AC and FFT intensity. Figure 17b shows an example of low 28 

recurrence with low AC and FFT intensity. However there are two examples where the FFT 29 

intensity value indicates low recurrence while AC indicates high recurrence. First, Figure17c 30 

(Congo-evaporation) shows a bimodal pattern which has a high AC but low FFT intensity, 31 
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since the peaks in evaporation appear at different frequencies, the intensity at a period of 12 1 

months becomes weaker and other high intensities appear at different frequencies. The second 2 

example shown in Figure 17d, takes place with basins in the subarctic region where the 3 

highest volume in runoff comes from snowmelt in early spring but the peak in precipitation 4 

takes place during summer creating a lump in the recession of the runoff climatology. This 5 

second lump reduces the intensity at a period of 12 months and increases other frequencies 6 

seen on the periodogram. For both of these cases with deviations from a sinusoidal function 7 

AC represents better the concept of recurrence because if the same pattern repeats, 8 

independent of the shape of the pattern, AC at lags multiples of 12 will be higher. 9 

Colwell’s Contingency also has high correlation with AC. However, Colwell’s Index is 10 

mainly used for qualitative descriptions in ecological sciences but it is adjustable to time 11 

series when variable intervals are used as states. Limitations of the use of Colwell’s Index for 12 

hydrological time series has been extensively discussed by Gan et al. (1991) and include the 13 

dependence of the results on the amount of classes selected, and the tendency for higher 14 

values in contingency with shorter record lengths. These are the intrinsic limitations of 15 

Colwell’s Index with the discretization of data. 16 

5.3 Result dependency on model structure 17 

Model differences and uncertainties have been widely discussed in literature about model 18 

intercomparison (e.g. Haddeland et al., 2011). Main differences among the models are 19 

attributed to evaporation and snow modules, as well as their storage components. Here we 20 

briefly discuss how the model structural differences affect the results in the calculation of 21 

recurrence. Figure 18 shows the boxplots containing the ranges of recurrence for every 22 

variable in all basins by the eight different models. 23 

Marginal differences on recurrence are found in most of the tropical humid basins on the 24 

QPES class. Larger differences are observed in storage variables in these basins. For the case 25 

of Brahmaputra GWAVA and MPI-HM are outliers in the recurrence of storage computing 26 

0.03 and 0.55 respectively, while other models range between 0.92.-0.96. Haddeland et al. 27 

(2011) highlighted the overestimation of evaporation on this basin due to the use of 28 

Thornthwaite evaporation scheme. This leads to higher interannual variations on storage 29 

components due to higher evaporation. In the case of GWAVA, the storage series for this 30 

basin shows a cyclic increase in storage until it is abruptly decreased to a lower volume. This 31 
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pattern is only observed in the snow component of storage which is highly overestimated in 1 

GWAVA as compared to other models. MATSIRO model has a deep groundwater tank which 2 

in general generates less seasonal variation in runoff (Haddeland et al., 2011). This  has an 3 

effect on the recurrence calculation and in many basins recurrence changes from high on all 4 

models to low in MATSIRO.  5 

Models in the temperate zone show larger differences mostly in runoff and storage recurrence. 6 

This is due to the variety of climatologies that are present in this zone and the presence of 7 

snow. Snowfall is treated differently in each GHM, with different thresholds for snowfall, and 8 

among all models there are different melting schemes. These differences affect mainly in 9 

basins that are around the threshold zone between 0 to 1˚C where precipitation is partitioned 10 

between snow or rain and melting processes start (Haddeland et al., 2011). Despite these large 11 

differences, most models indicate the same class for most basins. In subarctic basins where 12 

the influence of snow is much more important the differences are low but the WaterGAP 13 

represent the lowest recurrent pattern of all models. This is possibly due to the degree day 14 

method. Temporal and spatial variations in snow content are larger in the WaterGAP model 15 

decreasing recurrence. However, the relation of storage recurrence and snow amount is kept 16 

as basins with higher snow content also exhibit higher recurrence.  17 

Finally, arid basins have wide uncertainty due to the differences in partition between 18 

evaporation and runoff in each model. MATSIRO is an outlier in having high recurrence in 19 

evaporation. When inspecting the time series of storage for these catchments, a marked 20 

decreasing trend was found. This can be partially attributed to the deep groundwater tank that 21 

keeps water available for evaporation despite the lack of water supply through precipitation. 22 

Evaporation follows a seasonal cycle in MATSIRO increasing recurrence. 23 

The two models with storage subdivided in more components are WaterGAP and LPJmL 24 

featuring mainly a groundwater and a surface storage tank. The groundwater stores water that 25 

infiltrates from soil moisture to farther underground and drains directly into a lake tank. This 26 

groundwater component represents a small volume only simulating a dynamical part of the 27 

groundwater that actually exists in a basin. Deep groundwater is not represented by these two 28 

models. The surface water storage component includes tanks for lakes, wetlands and rivers 29 

channel. These tanks receive direct runoff, flow from the groundwater tank and direct 30 

precipitation as input. Then the outflow from the surface water tank is transported to a 31 

downstream cell to the surface water tank. Due to the inclusion of a river channel tank as part 32 
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of the total storage, the possibility that our results are affected by the travel time in river 1 

channels exists. However, according to the recurrence calculation results shown in Figures 6 2 

and 18, there were no obvious differences due to the size of river basins. Nevertheless further 3 

analysis may enhance our understanding on the effects of river channel storage in the 4 

measures of recurrence. 5 

5.4 Future application of the classification framework 6 

By deriving the classification framework based on recurrence we were able to discuss the 7 

interactions among the hydrologic variables affecting their temporal pattern. As one of future 8 

applications of the proposed classification, we would like to analyze the impact of projected 9 

climate change on hydrologic variables depending on the classes in a mechanistic way. A 10 

mechanistic approach to analyze hydrological changes is climate elasticity quantification of 11 

runoff (Sankarasubramanian et al., 2001;Yang and Yang, 2011;Vano et al., 2012). We believe 12 

that sensitivity studies could be further enhanced with this kind of classification highlighting 13 

dominant hydrologic processes, especially by incorporating a storage component. 14 

The inclusion of storage and to explain its temporal variations is one of the features of this 15 

study. The approach adds to previous studies that have identified storage as an important 16 

component for runoff generation (Black, 1997;Sayama et al., 2011) and highlighted its 17 

interaction with precipitation and evaporation temporal patterns (Jothityangkoon and 18 

Sivapalan, 2009). Our classification remarks how storage is controlled and how it controls 19 

runoff in different classes. We identified that for particular classes, the effects of precipitation 20 

and potential evaporation transfer more directly to runoff, while in other classes runoff is 21 

buffered by storage., Our framework can be utilized as a bench state of basins and analyze the 22 

shifts in classes or changes in the temporal variations due to hydrological change, similar to 23 

(Coopersmith et al., 2014). For this type of study, EU-WATCH provides excellent datasets 24 

for the 20
th

 century and projections into the 21
st
 century to analyze the change in temporal 25 

patterns under different conditions. 26 

6 Conclusions 27 

This paper presented a framework of hydrologic classification applicable to large scale river 28 

basins based on monthly temporal variations of precipitation, evaporation, storage and runoff. 29 

The classification was derived from the concept of hydrological recurrence as a metric 30 

defined as the degree to which a monthly hydrological variable returns to the same state in 31 
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subsequent years. The recurrence was measured using the mean of autocorrelations (AC) with 1 

the multiples of 12 up to 60 month lags, the intensity of Fast Fourier Transforms (FFT 2 

intensity) and Colwell’s Contingency Index. These measures were calculated at global 3 

gridded scale (0.5
o
) and at the 35 largest basins of the world based on the model forcing or 4 

output of the EU-WATCH dataset. 5 

The recurrence of individual variables is generally different in different latitudinal regions. 6 

For the recurrence in precipitation, the seasonality of moisture plays an important role, while 7 

for that in evaporation, the effect of seasonality in energy is more dominant. Storage 8 

recurrence is more dependent on the seasonality of moisture in the tropics and snow at higher 9 

latitudes. Finally, all combinations control the characteristics of the recurrence in runoff. 10 

According to our proposed classification, which results in 16 possible classes from the 11 

combinations of high or low recurrence of the four variables, only 10 classes are present from 12 

our study river basins. In the tropical region, essentially recurrence in runoff and storage is 13 

dependent on aridity. Humid basins are highly recurrent in all variables. Drier basins have low 14 

recurrence in runoff but storage recurrence is dependent on the timing of the peaks in 15 

precipitation and PET.   16 

In the temperate region, evaporation is always recurrent due to high seasonality, while 17 

precipitation shows low recurrence in this region, due to basins’ aridity. In these basins, the 18 

timing of peaks between P and PET also influence the recurrence in Q and S.  19 

In the subarctic region, evaporation is again highly recurrent due to extreme seasonality. 20 

Precipitation is recurrent in areas with oceanic currents influences. Recurrence in storage is in 21 

the basins with larger amount of snow, whose melting process dominate the patterns of runoff. 22 

As a result, the runoff recurrence is high in this region, while the storage recurrence varies in 23 

different areas. Therefore, the river basins are mainly classified into QPES, QPE, QES or QE 24 

depending on their combinations. 25 

The above results were primarily obtained based on the analysis of AC metric with 26 

WaterGAP model output. However, the other two metrics, FFT intensity and Colwell’s 27 

Contingency, and other eight models also essentially showed consistent results. 28 

Overall the presented approach is an attempt to define basin similarity accounting for the 29 

temporal patterns of water balance components. River basins in the different classes are likely 30 

to behave differently even under the similar changes in climate control. The same framework 31 
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may be applied to long-term time series data from different sources including GCM future 1 

projections. Furthermore, by using long-term time series breaking down into partial time 2 

series, the proposed framework may identify a hydrologic regime shift from one class to 3 

another, as well as the characteristics of hydrologic sensitivity in different classes. For this 4 

kind of study, EU-WATCH provides useful datasets for projecting future hydrologic variables. 5 

Finally, there are several limitations that are intrinsic to the classification framework. 6 

Although, some of the combinations that were not found are considered not feasible (e.g. only 7 

recurrent runoff), there are other classes that may be found if the sample of basins is further 8 

extended. The classification also considers no landscape controls in the hydrological 9 

processes, effects of land use, and human interactions among other important factors that also 10 

dominate and influence the temporal variability of hydrological variables. The framework 11 

currently uses the spatial average of large river basins, leaving aside heterogeneity in climatic 12 

and geographic characteristics. Downscaling to smaller sub-basins can bring insight not only 13 

in the behavior at smaller scale but also on how different sub-basins add up to create a general 14 

pattern in the large scale basins. Even though the presented method is not a definite and only 15 

classification framework, the analysis comparing different classes provide useful insights into 16 

the functions of large river basins in the world. 17 
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Table 1. Overview of models included in this research and their characteristics. Adapted from 1 

(Haddeland et al., 2011;Gudmundsson et al., 2012a;Gudmundsson et al., 2012b). Model 2 

names in bold are considered as LSMs. Precipitation input is either provided as total 3 

Precipitation (P) or as rainfall (R) and snowfall (S) separately. Storage can be handled in 4 

models as ground moisture (GM), soil moisture (SM), surface storage (SS) and snow water 5 

equivalent (SWE). 6 

Model Name Precipitation input Storage components Provided PET Reference 

GWAVA P GM, SM, SWE No Meigh et al. 

(1999) 

H08 R, S SM, SWE Yes Hanasaki et al. 

(2008) 

HTESSEL R, S SM, SWE No Balsamo et al. 

(2009) 

JULES R, S SM, SWE No Cox et al. 

(1999);(Essery 

et al., 2003) 

LPJmL P GM, SM, SS, SWE Yes Bondeau et al. 

(2007);(Rost et 

al., 2008) 

MATSIRO R, S SM, SWE No (Takata et al., 

2003;Koirala et 

al., 2014) 

MPI-HM P SM, SWE Yes (Hagemann and 

Dümenil, 

1997;Hagemann 

and Gates, 

2003) 

WaterGAP P GM, SM, SS, SWE Yes (Alcamo et al., 

2003) 

Note: Groundwater (GW) refers to the portion of water that is infiltrated from soil moisture to farther 

underground. Soil Moisture (SM) refers to the water content in the total soil layer (not one for each soil layer) 

including all phases of water (liquid, vapor and solid). Surface Storage (SS) refers to refers to the liquid water 

storage at lakes, river channel or other depressions. Snow Water Equivalent (SWE) refers to the total water mass 

of the snowpack (liquid or frozen). 
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Table 2. Summary of class characteristics. 1 

Class Basins Region Characteristics Observations 

QPES 

Amazon, Brahmaputra, 

Changjiang,  Ganges, 

Mekong, Niger, Nile, 

Yenisei 

Tropics, Subtropics (Asian 

Monsoon) and Subarctic (Central 

Eurasia) 

Tropical and Subtropical Humid 

Basins 

Snow dominated basins with high 

recurrence in precipitation and 

high precipitation during winter 

Variables follow the same pattern as precipitation fills storage and storage further 

supplies runoff and evaporation in an equally recurrent pattern 

QPE Lena, Mackenzie 
Subarctic (West Eurasia and 

Central North America) 

Snow dominated basins with small 

precipitation in winter 

Precipitation is recurrent but concentrated in summer, winter snow volume is not high 

enough to make storage recurrent. However the amount of snow does generate a 

recurrent pattern in runoff 

QPS Orinoco Tropics 
Equatorial basin with highly 

constant evaporation pattern 

Precipitation, Storage and Runoff have a recurrent pattern but the constant high water 

and low energy supplies result in a low recurrence pattern in evaporation 

QES Ob, Volga Subarctic (Central Asia) 

Snow dominated basins with low 

recurrence in precipitation, water 

limited in summer and high 

precipitation during winter 

Important amount of precipitation during winter creates a large snow volume which 

creates a recurrent runoff pattern regardless of the low recurrence in precipitation 

QE Yukon Subarctic (Alaska) 

Snow dominated basin with low 

recurrence in precipitation, water 

limited in summer and rather low 

precipitation in winter 

Low precipitation in winter does not allow a recurrent pattern in storage because of low 

snow volume, however runoff is recurrent 

PES Tocantins, Zambezi Tropics (Southern South America 

and Africa), Temperate (East 

Eurasian Continent affected by 

Oceanic atmospheric flow) 

Tropical humid basins with PET 

peaks at different time as P 

Desynchronization of the Precipitation and PET cycles allows for filling of storage and 

also emptying during rainy and dry seasons respectively. Runoff is only generated for 

extreme precipitation due to lack of saturation in storage 

PE 
Amur, Congo, Huang 

He, Okavango, Plata 

Basins with high evaporative index 

(0.7-0.8) with PET peaking at the 

same time as P 

Runoff generation and storage change are highly limited by evaporation due to the 

synchronization of precipitation and PET storage changes 

ES 

Columbia, Euphrates, 

Mississippi, 

Syr Darya 

Temperate (North America, Europe 

and Central Asia) 

South America 

Mid-latitude basins with important 

amount of precipitation in winter, 

some influence of snow, and water 

limited in summer 

Storage increases during winter regardless of the precipitation pattern, however snow 

volume is not such as to pass the pattern onto runoff 

E 

Danube, Indus, Kolyma, 

Nelson, 

Sao Francisco, St. 

Lawrence 

Winter storage dominated basins 

due to the presence of snow with 

low storage fluctuations  

Tropical basin with no recurrent 

patterns in precipitation but water 

availability restrained to one 

particular season only 

Irregular or low precipitation patterns transmit directly on to other variables, but 

evaporation is recurrent due to the seasonal availability of energy 

L 
Colorado, Darling, 

Grande, Orange 
Subtropics (Desert Belt) Arid basins 

Irregular precipitation transmits to other variables as isolated events are the only water 

available for any hydrological process to take place 
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Table 3. Component Contribution Ratio (CCR) for basins located in the subarctic region. The 1 

CCR is calculated as (Kim et al., 2009). 2 

Basin GroundMoist SoilMoist SurfStor SWE 

Yenisei 0.056 0.095 0.247 0.602 

Lena 0.021 0.076 0.391 0.512 

Mackenzie 0.077 0.135 0.109 0.679 

Ob 0.077 0.225 0.112 0.586 

Volga 0.083 0.271 0.145 0.501 

Yukon 0.059 0.052 0.312 0.577 

Kolyma 0.011 0.034 0.322 0.633 

 3 

4 
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Table 4. Results of Colwell’s Indices (Constancy (C), Contingency (M) and Predictability (P) 1 

for all variables in arid basins. Constancy has high values due to variables being constantly 2 

low increasing the total predictability index. 3 

4 Basin Variable C M P 

Colorado 

P 0.303 0.110 0.413 

E 0.284 0.265 0.549 

Q 0.433 0.115 0.548 

S 0.302 0.209 0.511 

Darling 

P 0.300 0.073 0.373 

E 0.297 0.209 0.506 

Q 0.380 0.179 0.559 

S 0.291 0.170 0.461 

Grande 

P 0.320 0.173 0.493 

E 0.320 0.207 0.527 

Q 0.432 0.089 0.521 

S 0.297 0.077 0.374 

Orange 

P 0.339 0.176 0.515 

E 0.311 0.202 0.513 

Q 0.507 0.067 0.574 

S 0.365 0.077 0.442 
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Table 5. Classification using different metrics, AC (AC), Colwell’s Contingency (M) and Fast 1 

Fourier Transform intensity (FFT intensity). 2 

3 Basin AC M FFTintensity 

Amazon QPES QPES QPES 

Amur QPE QPE QPE 

Brahmaputra QPES QPES QPES 

Changjiang QPES QPES QPES 

Colorado L E S 

Columbia ES ES ES 

Congo PE PE L 

Danube E E ES 

Darling L L L 

Euphrates ES PES QPES 

Ganges QPES QPES PES 

Grande L L L 

Huanghe PE PE PE 

Indus E E L 

Kolyma E QE E 

Lena QPE QPE PE 

Mackenzie QPE QPE PES 

Mekong QPES QPES QPES 

Mississippi ES ES ES 

Nelson E E PES 

Niger QPES QPES QPES 

Nile QPES QPES QPES 

Ob QES QES ES 

Okavango PE PE PE 

Orange L L L 

Orinoco QPS QPS QPES 

Plata PE PE PES 

Sao Francisco E E PES 

St. Lawrence E E ES 

Syr Darya ES ES ES 

Tocantins PES PES QPES 

Volga QES QES ES 

Yenisei QPES QPES PES 

Yukon QE QE QE 

Zambezi PES PES PES 
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 1 

Figure 1. Schematic representation of different levels of recurrence in runoff (Q) time series from. 2 
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 1 

Figure 2. Location of the basins included in the analysis with an assigned identification 2 

number. The latitude reference lines identify the latitudes that divide each of the regions 3 

geographically separating the basins. 4 

5 
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 1 

 2 

Figure 3. Hydrological classification tree. Color codes indicate the colors used in further maps to identify 3 

the classes to which basins belong. Dashed lines indicate paths into classes that were not found upon the 4 

studied basins.  5 

 6 
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 1 

Figure 4. Recurrence in main hydrological variables at global scale: (a) Precipitation, (b) Evaporation, (c) Storage and (d) Runoff. The map identifies the areas 2 

with lowest recurrence (<0.5), low recurrence (0.5-0.75) and High recurrence (0.75<). Reference latitude lines identify the divisions in latitudinal regions where 3 

particular conditions and similarities were found to exist. 4 
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 1 

 2 

Figure 5. Basin location map with identification by class. A threshold for defining high recurrence or low 3 

recurrence was set at 0.75. Latitude regions were defined between the reference lines shown on the map for 4 

both hemispheres delimiting the Tropical Region between (0.0
o
-23.5

o
), Subtropical Region between (23.5

o
-5 

35.0
o
), Temperate Region (35.0

o
-55.0

o
), and Subarctic and Arctic Region (55.0

o
<). 6 
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 1 
 2 

Figure 6. Radar charts depicting the results of recurrence for each variable in each individual basin. Results from the WaterGAP model are highlighted in red, the 3 

model mean is shown as a solid black line, the interquartile is shaded in grey, and the max. and min. values are shown with a dashed black line. 4 
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 1 

 2 

Figure 7. Variable climatologies for selected basins for each class and region. The charts present a 3 

particular basin for each of the 10 classes found sorted by region. Comparable axis of precipitation, 4 

evaporation, runoff and potential evaporation are shown on the left vertical axis and storage axis is shown 5 

on the right vertical axis. 6 
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 2 

 3 

Figure 8. Monthly time series of selected basins in the tropics from each class: (a) Amazon – QPES, (b) 4 

Orinoco – QPS, (c) Zambezi PES, (d) Congo - PE. The graphs exemplify time series with high or low 5 

recurrence depending on the classification. The averaged AC coefficient is provided in the top right corner 6 

of each graph. 7 
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 1 

Figure 9. Climatology of storage and the various storage components for subarctic basins.  2 

3 
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 2 

Figure 10. Snow water equivalent seasonality of sub-arctic basins. 3 

4 
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 2 

Figure 11. Seasonal precipitation climatology of sub-arctic basins. 3 

4 
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 2 

Figure 12. Relationship between recurrence and seasonality from all of the time series corresponding to 3 

each variable in each basin. 4 
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 2 

Figure 13.  Seasonal climatologies of precipitation in Yenisei and Ob river basins, a) long term mean, b) 3 

and c) 23 years precipitation in Yenisei and Ob river basins respectively. b) and c) show the minimum, 4 

maximum quartiles and mean for each month. 5 

 6 

7 
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 1 

Figure 14  Schematic time serieses representing different levels of recurrence, variability and seasonality. 2 

3 
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 2 

Figure 15 Relation of Aridity and Timing of peaks to recurrence of storage and runoff. a) Relation of 3 

aridity and recurrence in storage, b) relation of aridity and recurrence in runoff, c) relation of peaks in 4 

precipitation and PET and recurrence in storage., and d) relation between peaks in precipitation and PET 5 

and recurrence in runoff. 6 
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 1 

Figure 16. Comparison of AC with Colwell’s Contingency (M), and FFT intensity. 2 
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 1 

 2 

Figure 17. Examples of variables with different results in FFT intensity. (a) Changjiang’s evaporation (b) Runoff in Yenisei (c) Precipitation in Congo (d) Storage 3 

in Orange 4 
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 2 

Figure 18. Model differences. Box plots show the recurrence measure for each variable in each basin 3 

displaying an interquartile uncertainty band, WaterGAP marked by the red spot, the mean highlighted by 4 

the black mark and the maximum and minimum values. 5 


