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errors are multiplicative coefficients that relate simulated to observed discharge.
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relative errors and simulated flows. Even when using relative errors, the

heteroscedasticity of errors may be low in some cases and larger in others. Besides,

the simulation objectives should be also considered: the quantification of uncertainty

for extremes values may require a larger number of groups than for intermediate

ones. Obviously, the number of points (i.e. the number of time steps available) will

also be a constraint to keep statistically significant sub-groups. Therefore, it is difficult

to draw general conclusions on the number of groups to choose. The number of ten

groups proposed here is a compromise between performance and objective.

We added this discussion in section 5.3 and acknowledged these aspects again in

the conclusion. We think that providing more detailed guidance on this aspect will

require much more research, which is out of the scope of this article.
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Abstract

Predicting streamflow hydrographs in ungauged catchments is a
challengingissuechallenging, and accompanying the estimates with realistic uncer-
tainty bounds is an even more complex task. In this paper, we present a method to transfer
global uncertainty estimates from gauged to ungauged catchments and we test it over a
set of 907 catchments located in France, using two rainfall–runoff models. We evaluate the
quality of the uncertainty estimates based on three expected qualities: reliability, sharpness,
and overall skill. The robustness of the method to the availability of information on gauged
catchments was also evaluated using a hydrometrical desert approach. Our results show
that the method holds interesting presents advantageous perspectives, providing in a
majority of cases reliable and sharp uncertainty bounds at ungauged locations in a majority
of cases.

1 Introduction

1.1 Predicting streamflow in ungauged catchments with uncertainty estimates

Predicting the entire runoff hydrograph in ungauged catchments is a challenging issue chal-
lenge that has attracted much attention during the last decade. In this context, the use
of suitable conceptual rainfall–runoff models has proved to be useful, and because tradi-
tional calibration approaches based on observed discharge data cannot be applied in to
ungauged catchments, other approaches are required. Various methods have been pro-
posed for the estimation of rainfall–runoff model parameters in ungauged catchments, as
reported by the recent synthesis summary of the Prediction in Ungauged Basins (PUB)
decade (Blöschl et al., 2013; Hrachowitz et al., 2013; Parajka et al., 2013).

The estimation of predictive uncertainty is deemed good practice in any environmental
modelling activity (Refsgaard et al., 2007). In hydrological modelling, the topic has been
widely discussed for years, and there is still no general agreement about has yet been
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reached on how to adequately quantify uncertainty. In practice, various methodologies are
currently used.

For gauged catchments, the methodologies include Bayesian approaches
(see e.g., the review of Liu and Gupta, 2007) (see e.g., the review by Liu and Gupta, 2007) ,
informal methods related to the GLUE framework (Beven and Freer, 2001), multi-model
approaches (Duan et al., 2007; Velazquez et al., 2010) and other global uncertainty
quantification methods (Montanari and Brath, 2004; Solomatine and Shrestha, 2009;
Weerts et al., 2011; Ewen and O’Donnell, 2012). A comprehensive review of the topic can
be found in Matott et al. (2009) and Montanari (2011).

While many methods have been proposed for gauged catchments, only a few have been
proposed for the estimation of predictive uncertainty on ungauged catchments. McIntyre
et al. (2005) presented a GLUE-type approach consisting of transferring ensembles of pa-
rameter sets obtained on donor (gauged) catchments to target (ungauged) catchments.
More recently, a framework based on constrained parameter sets was applied in several
studies (Yadav et al., 2007; Zhang et al., 2008; Winsemius et al., 2009; Kapangaziwiri et al.,
2012). It is a two-step procedure. The first step consists in estimating with uncertainty var-
ious summary metrics of the hydrograph, also called “signatures” of the catchments, or
gathering other “soft” or “hard” information at the target ungauged catchment. The second
step is the selection of an ensemble of model parameter sets: “acceptable” or “behavioural”
parameter sets are those that yield sufficiently close simulated summary metrics compared
to the regionalized regionalised metrics obtained during the first step. A bayesian Bayesian
approach can also be used (Bulygina et al., 2011, 2012). The parameter sets are given a rel-
ative weight depending on the proximity of their summary metrics compared to regionalized
regionalised metrics and depending on a priori information. The reader can refer to Wa-
gener and Montanari (2011) for a comprehensive description of both formal and informal
methods belonging to this framework.

One difficulty of the above mentioned above-mentioned approaches lies in the interpreta-
tion of the uncertainty bounds obtained from the parameter ensemble predictions. As noted
by McIntyre et al. (2005) and Winsemius et al. (2009), the uncertainty bounds cannot easily

3
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be interpreted as confidence intervals, and thus therefore it remains difficult to use them
in practice. In addition, solely relying relying solely on an ensemble of model parameter
sets to quantify total predictive uncertainty is often not sufficient insufficient when imperfect
rainfall–runoff models are used.

A pragmatic alternative consists in addressing separately the parameter estimation and
the global uncertainty estimation issues separately. It has been argued by several authors
(Montanari and Brath, 2004; Andréassian et al., 2007; Ewen and O’Donnell, 2012) that
a posteriori characterization characterisation of modelling errors of a “best” or “optimal”
simulation can yield valid uncertainty bounds at gauged locations. In earlier studies, the
terms of total uncertainty, global uncertainty or “total uncertainty”, “global uncertainty” and
“post-processing” approach have been used interchangeably to refer to this approach. The
various sources of uncertainty are indeed lumped into an a unique error term with the goal
to estimate estimating uncertainty bounds for model outputs.

As stated by Solomatine and Shrestha (2009),

The historical model residuals (errors) between the model prediction ŷ and the
observed data y are the best available quantitative indicators of the discrepancy
between the model and the real-world system or process, and they provide valu-
able information that can be used to assess the predictive uncertainty.

Similarly, one could argue that the model residuals between the model’s prediction and
the observed data at neighbouring gauged locations are, perhaps, the best available indica-
tors of the discrepancy between the model and the real-world system at the target ungauged

location, under the condition that the increase of increased uncertainty introduced by the
regionalisation step compared to the calibration step is adequately taken into account.

The only attempt we are aware of to apply a global uncertainty estimation approach at
ungauged location that we are aware of is the one presented by Roscoe et al. (2012). They
quantified uncertainty for river stage prediction at ungauged locations by first estimating the
residual errors at ungauged locations based on residual errors at gauged locations, and
then applying quantile regression to these estimated errors.

4
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1.2 Scope of the paper

The aim of this paper is to provide an estimation of the global uncertainty affecting runoff
prediction at ungauged locations when a rainfall–runoff model and a regionalisation scheme
are used.

To our knowledge, a framework based on residual errors and global uncertainty quantifi-
cation has not yet been extensively tested in the context of prediction in ungauged catch-
ments. This paper contributes to the search for methods able to provide uncertainty esti-
mates when runoff predictions in ungauged catchments are sought.

2 Data and methods

Our objective is not to develop a new parameter regionalisation approach. Therefore, we
purposely chose to use ready-to-use materials and methods and only focus on the un-
certainty quantification issue. This study can be considered as a follow-up of the work by
Oudin et al. (2008) on the comparison of regionalisation approaches. We only provide here
an overview of the data set, the rainfall–runoff models and the parameter calibration and
regionalisation approach, since the details can be found in Oudin et al. (2008).

2.1 Data set

A database of 907 French catchments was used. They represent various hydrological condi-
tions, given the variability in climate, topography , and geology in France. This set includes
fast responding fast-responding Mediterranean catchments with intense precipitation as
well as larger, groundwater–dominated groundwater-dominated catchments. Some char-
acteristics of the data set are given in Table 1. Catchments were selected to have limited
snow influence, since no snowmelt module was used in the hydrological modelling. Daily
rainfall, runoff, and potential evapotranspiration (PE) data series over the 1995–2005 pe-
riod were available. Meteorological inputs originate from Météo-France SAFRAN reanalysis
(Vidal et al., 2010). PE was estimated using the temperature-based formula proposed by

5
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Oudin et al. (2005). Hydrological data were extracted from the HYDRO national archive
(www.hydro.eaufrance.fr).

2.2 Rainfall–runoff models

Two daily, continuous lumped rainfall–runoff models were used:

– The GR4J rainfall–runoff model, an efficient and parsimonious daily lumped continu-
ous rainfall–runoff model described by Perrin et al. (2003).

– The TOPMO rainfall–runoff model, inspired by TOPMODEL (Beven and Kirkby, 1979).
This version was tested on large data sets and showed performance comparable to
that of the GR4J model, while being quite different (Michel et al., 2003; Oudin et al.,
2008, 2010).

Using these two models rather than a single one makes it possible to draw more general
conclusions. The two models use a soil moisture accounting procedure as well as routing
stores. However, their they differ markedly in the formulation of their functions. While the
GR4J model uses two non-linear stores and a unit-hydrograph, the TOPM TOPMO model
uses a linear and an exponential storesstore, and a pure time delay.

The GR4J and TOPMO models have four and six free parameters, respectively. On
gauged catchments, parameter estimation is performed using a local gradient search proce-
dure, applied in combination with a pre-screening of the parameter space (Mathevet, 2005;
Perrin et al., 2008). This optimization optimisation procedure has proved to be efficient in
past applications for the conceptual models used here. As an objective function, we used
the Nash and Sutcliffe (1970) criterion computed on root square transformed flows (NSVQ).
This criterion was shown to yield a good compromise between different objectives (Oudin
et al., 2006).

6
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2.3 Regionalisation approach

By definition, no discharge data are available for calibrating parameter sets at ungauged
locations. ThusTherefore, other strategies are needed to estimate the parameters of hydro-
logical models for prediction in ungauged catchments.

Oudin et al. (2008) assessed the relative performance of three classical regionalisa-
tion schemes over a set of French catchments: spatial proximity, physical similarity and
regression. Several options within each regionalisation approach were tested and com-
pared. Based on their results, the following choices were made here for the regionalisation
approach, as they offered the best regionalisation solution:

– Poorly modelled catchments were discarded as potential donors: only catchments with
a performance criterion NSVQ in calibration above 0.7 were used as possible donors.

– The spatial proximity approach was used. It consists of transferring parameter sets
from neighbouring catchments to the target ungauged catchment. Proximity of the
ungauged The proximity of the catchments to the gauged ones catchments was quan-
tified by the distances between catchments catchment centroids.

– The output averaging option was chosen. It consists of computing the mean of the
streamflow simulations obtained on the ungauged catchment with the set of parame-
ters of the donor catchments.

– The number of neighbours was set to 4 and 7 four and seven catchments for GR4J
and TOPMO, respectively, following the work reported by Oudin et al. (2008).

3 Proposed approach: transfer of relative errors by flow groups

3.1 Description of the method

Transferring calibrated model parameters from gauged catchments to ungauged catchment
catchments is a well established well-established approach when parameters cannot be

7
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inferred from available data. The method presented here extends the parameter transfer
approach to the domain of uncertainty estimation.

The main idea ideas underlying the proposed approach is are to (i) to treat each donor
as if it was ungauged (simulating flow though through the above described regionalisation
approach), (ii) characterize characterise the empirical distribution of relative errors (under-
stood as the ratio between observed and simulated flows, i.e. considering a multiplicative
model error) for each of these donors , and (iii) transfer global uncertainty estimates to the
ungauged catchment.

The methodology used to transfer global uncertainty estimates can be described by the
following steps, illustrated by in Fig. 1:

1. Selection of catchments
Here we consider a target ungaged ungauged catchment (TUC). This catchment
has n neighbouring gauged catchments, called NGC

1

, NGC
2

, . . . ,NGC
n

, which will
be considered as donors for the TUC. For the ith catchment NGC

i

, there are one
can also select n neighbouring catchment catchments with the notation: NGC

i1

,
NGC

i2

, . . . ,NGC
in

, which can be considered as donors for NGC
i

. Obviously, the TUC
catchment would be excluded from this set of second order second-order donor catch-
ments.

2. Application of the parameter regionalisation scheme to the donor catchments NGC
i

a. Apply the parameter regionalisation scheme to obtain a simulated discharge time
series for each NGC

i

using neighbours NGC
ij

(with j between 1 and n).

b. Compute the relative errors of discharge reconstitution (i.e. the ratio between
observed and simulated discharges) by comparing simulated and observed dis-
charge series for catchment NGC

i

, and create 10 groups of relative errors ac-
cording to the magnitude of the simulated discharge. To ensure that each group
contains the same number of points, we split the simulated discharge variable is
cut into quantile groupsrange into 10 sub-groups of equal size, using the deciles

8
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of the simulated discharge distribution. Using several flow groups allows taking
into account the possible variability of model errors error characteristics.

3. Computation of the multiplicative coefficients applicable to simulated discharge

a. Put together all the relative errors from the donors NGC
ij

(with j between 1 and
n) according to the group they belong to, i.e. for a group k, all relative errors of
groups k of the n donors are assembled . into a master group k. This is done for
k between 1 and 10.

b. Compute the empirical quantiles of the relative error distribution within each
group. Each master group k (with k between 1 and 10). Since relative errors were
computed (i.e. ratio of simulated to observed discharge values), each quantile of
relative error errors can be considered a multiplicative coefficient applicable to
the simulated discharge. These multiplicative coefficients will be used to obtain
the prediction bounds.

4. Computation of the uncertainty bounds for the target ungaged ungauged catchment
TUC

a. Apply the parameter regionalisation scheme to obtain a simulated discharge time
series for the target ungaged ungauged catchment TUC using the parameter sets
of the n neighbouring gauged catchments NGC

1

, NGC
2

, . . . ,NGC
n

.

b. Multiply the simulated discharge by the set of multiplicative coefficients obtained
at Step 3b to obtain the uncertainty bounds. The coefficients calculated for the
group k are used when the simulated discharge belongs to the group k.

Note that we based our approach on multiplicative errors and not on additive errors be-
cause using multiplicative coefficients yield yields prediction bounds for discharge that are
always positive, whereas this might not always be the case with additive errors.

Finally, we mention that the choice to use 10 groups reflects a trade-off between the num-
ber of points available to obtain reasonable estimates of empirical quantiles computed for

9
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each group and an adequate treatment of the variability of the characteristics of errors with
the magnitude of simulated discharge. A larger (lower) number of groups could obviously
be used if more (lessfewer) data are available (see discussion in section 5.3) or based on
the analysis of the statistical properties of errors.

3.2 Why donors should donors be considered as ungagedungauged?

The first step deserves a brief explanation. The choice to treat donors as ungaged un-
gauged is related to the well-known fact that the performance of rainfall–runoff models
decrease decreases when they are applied at ungaged ungauged locations with a region-
alisation scheme, compared to the case where when local data are available for parameter
estimation. The quadratic efficiency criterion used here is the C2M (Mathevet et al., 2006),
a bounded version of the Nash and Sutcliffe (1970) efficiency (NSE) criterion. The criterion
is solely based based solely on the simulated discharges of the deterministic rainfall–runoff
and is completely independent of the application of the uncertainty method. The equations
are:

C2M =
NSE

2�NSE
(1)

NSE = 1�
P

T

t=1

�
Qobs

t

�Qsim

t

�
2

P
T

t=1

�
Qobs

t

�µ
o

�
2

(2)

where T is the total number of time-steps, Qobs

t

and Qsim

t

are the observed and simulated
dischargerespectively , respectively, at time-step t, and µ

o

is the mean of the observed
discharges. The advantage of this bounded version is to avoid This bounded version has
the advantage of avoiding large negative values which are difficult to interpret.

Figure 3 illustrates the general decrease of performance performance decrease for both
models on our catchment set when a regionalisation scheme is used instead of a parameter
estimation based on local data. As a consequencewe should expect , predictive uncertainty
at ungauged locations we should expect to be larger than predictive uncertainty at gauged

10
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locationlocations, i.e. , when the rainfall–runoff model is calibrated with observed discharge
data. That is why it is necessary to consider donors as ungageddonors must be considered
as ungauged. We will come back to this important point in Section 5.

4 Quantitative evaluation of uncertainty bounds

We assessed the relevance of the 90% uncertainty bounds by focusing on three character-
istics: reliability, sharpness and overall skill. A general introduction to probabilistic evaluation
can be found in Gneiting et al. (2007) and Wilks (2011), and in Franz and Hogue (2011) for
a more hydrological perspective.

Reliability refers to the statistical consistency of the uncertainty estimation with the obser-
vation, i.e. , a 90% prediction interval is expected to contain approximately 90% of the ob-
servations if prediction errors are adequately characterized characterised by the uncertainty
estimation. To estimate the reliability, we used the coverage ratio (CR) index, computed as
the percentage of observations contained in the prediction intervals.

Sharpness refers to the concentration of predictive uncertainty. The average width (AW)
of the uncertainty bounds is widely used to quantify sharpness, :

AW =
1

T

TX

t=1

⇣
Qu

t

�Ql

t

⌘
(3)

where Ql

t

and Qu

t

arerespectively , respectively, the lower and upper bounds of the predic-
tion interval [Ql

t

,Qu

t

] at time-step t.
To ease comparison between catchments, we used the width of the 90% interval [Q5,

Q95],

AWclim = Q95�Q5 (4)

where Q5 and Q95 are the 5th and 95th percentiles of the flow duration curve. This value
characterizes characterises the natural variability of the flows for a given catchment and

11
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has the same unit as the average width of the uncertainty bounds. It can be viewed as the
average width of the uncertainty bounds of a climatological prediction, where the uncer-
tainty bounds are constant in over time and defined by the interval [Q5, Q95]. A graphical
illustration is given in Fig.2.

Comparing the two values AW and AWclim leads to the following dimensionless criterion
called the average with index (AWI):

AWI = 1� AW
AWclim (5)

It is positive if the uncertainty obtained by the application of the applying the rainfall–runoff
model and the methodology presented here is reduced compared to the climatology, and
negative otherwise.

Uncertainty bounds that are as sharp as possible and reasonably reliable are sought:
indeed sharp intervals that would consistently miss the target would be misleading, while
overly large intervals that would successfully cover the observations at the expense of
sharpness would be of limited value for decision making.

To complete the assessment of the prediction bounds, we used the interval score (Gneit-
ing and Raftery, 2007). The interval score (IS) accounts for both the width of an uncertainty
bound and the position of the observed value compared to the uncertainty bound. The
scoring rule of the interval score at time-step t is defined as:

S
t
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8
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�
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t

�Qu

t

�
if Qobs
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>Qu
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(6)

where Qobs

t

is the observed value value observed at time-step t and � is equal to 90% since
a 90% interval is sought here. See Fig.2 for an illustration of how S is computed.

IS is the average value of S
t

over the time series:

IS =
1

T

TX

t=1

S
t

(7)
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To ease comparison between catchments and evaluate the skill of the prediction bounds,
we used the 90% interval [Q5, Q95] as a benchmark, similarly similar to what we did for the
sharpness index. The climatological prediction gives uncertainty bounds that are constant
in time and defined by the interval [Q5, Q95], where Q5 and Q95 are the 5th and 95th
percentiles of the flow duration curve. Thus we computed the interval skill score:

ISS = 1� IS
ISclim (8)

where ISclim is the interval score obtained with the 90% interval [Q5, Q95]. Using
skill scores is a very common approach in probabilistic forecasting. It allows to obtain
dimensionless scores , similarly to the Dimensionless scores can thus be obtained, in much
the same way as the computation of the well-known Nash and Sutcliffe (1970) efficiency
(NSE) criterion for assessing deterministic performance.

The interval skill score ISS (ISS) is positive when the prediction bounds are more skilful
than climatology, and negative otherwise. The best value that can be achieved is egal equal
to 1.

5 Results and discussion

5.1 Reliability, sharpness and overall skill

Figure 4 shows the distributions of the three criteria used to evaluate the uncertainty bounds
on the 907 catchments. Boxplots (5th, 25th, 50th, 75th and 95th percentiles) are used to
synthesize summarise the variety of scores over the 907 catchments of the data set.

5.1.1 Reliability

For both models, half of the catchments (from the lower quartile to the upper quartile) have
CR values between 80 and 95%. The median values are equal to 89 and 90% for GR4J
and TOPMO, respectively. Since a value of 90% is expected for 90% prediction bounds,
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these results suggest that the prediction bounds are in a majority of cases , able to reflect
the magnitude of errors when predicting runoff hydrographs in ungauged catchments, even
though it is clear that the perfect value of 90% is not reached in most cases.

The CR values fall below 70% for around 14% of the catchments with GR4J , and 13%
with TOPMO, which indicates cases where the proposed approach yields predictive bounds
that are clearly too narrow or biased (i.e. , not well centred on the observations). Note
that we did not find in the literature any guidance about any guidance on how to properly
evaluate the CR values in the literature. The results presented here may be used as a
benchmark to comparatively assess the ranges of values that would be obtained in future
studies.

5.1.2 Sharpness

Regarding sharpness, it can be seen that for GR4J, half of the catchments (from the lower
quartile to the upper quartile) have AWI values between 39 and 67%, while for TOPMO
corresponding values are equal to 38 and 65%. The median values are equal to 57 and
55% for GR4J and TOPMO respectively. The higher the AWI values, the lower the predictive
uncertainty is. Since it would be utopic to expect that no errors will be made when predicting
runoff hydrographs for ungauged catchments, we could consider here uncertainty reduction
values between 30 and 80% as quite satisfactory, even though we recognize recognise that
this statement is arbitrary since there is are no widely agreed values to base our analysis
on.

Note that negative values are seen for 7% of the catchments with both GR4J and
TOPMO, which indicates cases where the approach yields prediction intervals whose av-
erage width is larger than the width of the [Q5, Q95] interval (Q5 and Q95 are the 5th and
95th percentiles of the flow duration curve).
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5.1.3 Overall skill

Finally, Fig. 4c shows that the predictive skill for both models is positive for most catchments.
For both models, half of the catchments (from the lower quartile to the upper quartile) have
ISS values between 40 and 70%. The median values are equal to 61 and 59% for GR4J
and TOPMO, respectively. While it might be argued that the unconditional climatology is not
a very challenging benchmark, we consider that it is still a positive and reassuring result.

5.2 Do we need to treat the donor catchments as ungauged?

As mentioned earlier, a critical step of the proposed approach is to apply the regionalisation
scheme to obtain a simulated discharge time series for each donor catchment (Step 2a).
To assess the impact of this methodological choice, we applied the methodology described
earlier to transfer uncertainty estimates, but this time the donor catchments are treated as
gauged.

Similarly Similar to Fig. 4, Fig. 5 shows the distributions of the three criteria obtained
in the two cases: whether or not the donor catchments are treated as ungauged. We can
observe for both models a drop in reliability for both models, whereas sharpness increases.
This is because the relative errors are smaller when the donor catchments are treated
as gauged, yielding narrower but less reliable prediction bounds for the target catchment.
Interestingly, this results in skill scores that are quite similar: improvements in terms of
sharpness compensate decreases in terms of reliability.

Note that reliability is generally considered as a prevailing characteristic over sharpness,
since it reflects the ability of the uncertainty method to adequately reflect the magnitude
of errors we might expect at locations for which prediction is done. Therefore, the benefit
of treating the donor catchments as ungauged clearly appears in Fig. 5a, illustrating the
theoretical argument presented in the methodological section.
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5.3 Do we need to use groups of relative errors?

Another critical step of the proposed approach is to use 10 groups of relative errors. The
groups are defined according to the magnitude of the simulated discharge (Step 2b). This
was done to take into account the fact that the characteristics of errors usually change ac-
cording to the magnitude of the simulated discharge. To assess the impact of this method-
ological choice, we again applied the methodology described earlier to transfer global un-
certainty estimates, but this time using only one group instead of 10.

Figure 6 shows the distributions of the three criteria obtained in the following two cases:
whether 10 groups or only one group of relative errors are used. For both models, reliability
slightly increases when going from 10 groups to a single group, whereas both sharpness
and skill decrease. It appears that improvements in terms of reliability are not sufficient to
compensate for decreases in terms of sharpness when overall skill is considered. This can
be understood by the fact that considering a single group instead of a few groups widens
the uncertainty bounds on average, since the errors are generally heteroscedastic.

While it could be argued that using only one group is the preferable option because of the
slight improvement in terms of reliability, in our opinion, the improvement is not sufficiently
important to compensate for the decrease in terms of uncertainty reduction and skill. We
definitely prefer to maintain different Obviously, although it appears that a single group is
not enough to account for the variability of properties of relative errors, 10 groups may not
provide significant performance gains and a compromise may be sought. The visual inspec-
tion of scatter plots between relative errors and simulated discharge reveals that the shapes
can be very different between catchments, hence potentially requiring different numbers of
groups. Besides, the simulation objectives, e.g. simulating intermediate or extreme flows,
may also be considered when choosing the number of flow groups. Hence it appears that
the number of groups may need further trial-and-error tests in specific applications to obtain
the best compromise.
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5.4 How do the performances of the rainfall–runoff models relate to
thecharacteristics of uncertainty bounds?

Although our tests reveal that the number of groups is a sensitive setting of the method,
further research would be needed to evaluate whether different numbers of groups can be
advised for specific objectives or conditions.

5.4 How does the performance of the rainfall–runoff models relate to the
characteristics of uncertainty bounds?

To gain insights into the possible relationships between the performance of the deterministic
rainfall–runoff simulations and the characteristics of the uncertainty bounds at ungauged
locations, the three criteria used to characterize characterise the uncertainty bounds are
plotted in Fig. 7 as a function of a quadratic efficiency criterion for the 907 catchments, the
C2M defined in Eq. 1.

A trend appears between deterministic performance and characteristics of the prediction
bounds at ungauged locations, for the two rainfall–runoff models. The reliability index ex-
hibits larger greater variability compared to the sharpness index, and the stronger link is
seen for the skill score. Reliability is relatively less affected by the poor deterministic per-
formance of the simulation at an ungauged location because there are cases where poor
performance at neighbouring locations leads (though the transfer of relative errors) to wide
prediction bounds that are able to cover the observed values. We can also observe that
skill scores and C2M scores are strongly related, which indicates that when the transfer of
model parameters performs well, the transfer of global uncertainty estimates performs well
tooalso performs well.

5.5 How does the method perform in data-sparse conditions?

The results presented so far were obtained with a dense network of gauging stations. To
investigate the impact of the network density on our results, we applied a demanding test
called the hydrometrical desert. It consists in excluding potential donors that are closer to
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the target ungaged ungauged catchment than a given threshold. For example, a thresh-
old distance of 100 km means that the closest donor catchment must be at least 100 km
far from the ungaged from the ungauged target catchment. This test results in a notable
decrease of deterministic performance, as shown in Table 2, where the mean of the C2M
efficiency criterion over the 907 catchments is reported , for both models. Note that this is a
more demanding test than a decrease of network density, because catchments keeps the
possibility to still have retain the possibility of still having close donors.

Figure 6 8 shows the distributions of the three criteria obtained by applying the hydro-
metrical desert with threshold values of 10, 20, 50, 100 and 200 km, respectively. A clear
decrease appears with increasing distances. While we should expect that the sharpness of
the uncertainty bounds decreases because of larger errors, and that this situation leads to
a decrease of skill, the results in terms of reliability reveal the limitation of the method. With
increasing distances, the method becomes less able to transfer the appropriate magnitude
of the larger errors.

6 Conclusions

Runoff hydrograph prediction in ungauged catchments is notoriously difficult, and attempt-
ing to estimate the predictive uncertainty in that context is a further challenge. We have
proposed a method allowing the transfer of global uncertainty estimates from gauged to un-
gauged catchments. The method extends the parameter transfer approach to the domain
of global uncertainty estimation.

We evaluated the approach over a large set of 907 catchments by assessing three ex-
pected qualities of uncertainty estimates, estimate: reliability, sharpness and overall skill.
We applied two different rainfall–runoff models (GR4J and TOPMO) to ensure that the
presented results results presented are not model-specific. Our These results demonstrate
that the method is generally able to reflect model errors at ungauged locations and provide
reasonable reliability.

Nonetheless, the following limitations of our to the study can be mentioned:
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1. Although the approach seems promising on average on the large catchment set we
used, it is not able to adequately quantify the predictive uncertainty for some catch-
ments and it failed in some cases.

2. The method might not perform well in in regions with sparser gauging networks than
the one used here, as revealed by the application of a demanding test called the
hydrometrical desert.

3. We only tested the 90 % prediction intervals, whereas the method could be applied to
obtain other prediction intervals. We made this choice to keep the article as simple as
possible, but further work could be done in that direction.

4. We also noted that the number of flow groups used in the approach may be a sen-
sitive setting of the method, and further research would be needed to provide more
detailed guidance on this point depending on the structure of the model errors and the
modelling objectives.

It is worth stressing that although we used a transfer based on spatial proximity, the ap-
proach presented in this article is not only independent of the rainfall-runoff model but also
of the regionalisation scheme used to obtain deterministic prediction at ungauged loca-
tions. Any other similarity measure could be a basis for transferring residual errors, includ-
ing physical-based similarity measures. Accordingly, the regionalisation settings, including
the output averaging option, could be adapted if deemed more appropriate.

Since we believe that uncertainty quantification has to be considered in any modelling
study, further work should be devoted to the search for similarity measures that do not only
perform well in allowing the transfer of parameter sets from donor to target catchments, but
also allow transferring modelling error characteristics.

Last, we would like to stress that the results presented in this study are expressed in
terms of dimensionless measures. As such, they can provide a basis for future comparisons
when prediction in ungauged catchments with uncertainty estimates is performed.

19



D
i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|

Acknowledgements. The authors thank Météo-France for providing the meteorological data and
Banque HYDRO for the hydrological data. The financial support of SCHAPI to the first author is
also gratefully acknowledged. The authors also thank the Editor Ross Woods, who reviewed the
manuscript, and the five reviewers, including Alberto Viglione and Denis Hughes, for their construc-
tive comments, which helped improve the manuscript.

References

Andréassian, V., Lerat, J., Loumagne, C., Mathevet, T., Michel, C., Oudin, L., and Perrin, C.:
What is really undermining hydrologic science today?, Hydrological Processes, 21, 2819–2822,
doi:10.1002/hyp.6854, 2007.

Beven, K. and Freer, J.: Equifinality, data assimilation, and uncertainty estimation in mechanistic
modelling of complex environmental systems using the GLUE methodology, Journal of Hydrology,
249, 11–29, 2001.

Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrol-
ogy, Hydrological Sciences Bulletin, 24, 43–69, doi:10.1080/02626667909491834, 1979.

Blöschl, G., Sivapalan, M., Wagener, T., Viglione, A., and Savenije, H.: Runoff Prediction in Un-
gauged Basins: Synthesis Across Processes, Places and Scales, Cambridge University Press,
2013.

Bulygina, N., McIntyre, N., and Wheater, H.: Bayesian conditioning of a rainfall-runoff model for pre-
dicting flows in ungauged catchments and under land use changes, Water Resources Research,
47, W02 503, doi:10.1029/2010wr009240, 2011.

Bulygina, N., Ballard, C., McIntyre, N., O’Donnell, G., and Wheater, H.: Integrating differ-
ent types of information into hydrological model parameter estimation: Application to un-
gauged catchments and land use scenario analysis, Water Resources Research, 48, W06 519,
doi:10.1029/2011wr011207, 2012.

Duan, Q., Ajami, N. K., Gao, X., and Sorooshian, S.: Multi-model ensemble hydrologic pre-
diction using Bayesian model averaging, Advances in Water Resources, 30, 1371–1386,
doi:10.1016/j.advwatres.2006.11.014, 2007.

Ewen, J. and O’Donnell, G.: Prediction intervals for rainfall-runoff models: raw error method and
split-sample validation, Hydrology Research, 43, 637–648, doi:10.2166/nh.2012.038, 2012.

20

http://dx.doi.org/10.1002/hyp.6854
http://dx.doi.org/10.1080/02626667909491834
http://dx.doi.org/10.1029/2010wr009240
http://dx.doi.org/10.1029/2011wr011207
http://dx.doi.org/10.1016/j.advwatres.2006.11.014
http://dx.doi.org/10.2166/nh.2012.038


D
i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|

Franz, K. J. and Hogue, T. S.: Evaluating uncertainty estimates in hydrologic models: borrowing
measures from the forecast verification community, Hydrology and Earth System Sciences, 15,
3367–3382, doi:10.5194/hess-15-3367-2011, 2011.

Gneiting, T. and Raftery, A. E.: Strictly proper scoring rules, prediction, and estimation, Journal of
the American Statistical Association, 102, 359–378, doi:10.1198/016214506000001437, 2007.

Gneiting, T., Balabdaoui, F., and Raftery, A. E.: Probabilistic forecasts, calibration and sharp-
ness, Journal of the Royal Statistical Society Series B-Statistical Methodology, 69, 243–268,
doi:10.1111/j.1467-9868.2007.00587.x, 2007.

Hrachowitz, M., Savenije, H. H. G., Bloeschl, G., McDonnell, J. J., Sivapalan, M., Pomeroy, J. W.,
Arheimer, B., Blume, T., Clark, M. P., Ehret, U., Fenicia, F., Freer, J. E., Gelfan, A., Gupta, H. V.,
Hughes, D. A., Hut, R. W., Montanari, A., Pande, S., Tetzlaff, D., Troch, P. A., Uhlenbrook, S.,
Wagener, T., Winsemius, H. C., Woods, R. A., Zehe, E., and Cudennec, C.: A decade of Predic-
tions in Ungauged Basins (PUB)a review, Hydrological Sciences Journal-Journal Des Sciences
Hydrologiques, 58, 1198–1255, doi:10.1080/02626667.2013.803183, 2013.

Kapangaziwiri, E., Hughes, D. A., and Wagener, T.: Incorporating uncertainty in hydrological predic-
tions for gauged and ungauged basins in southern Africa, Hydrological Sciences Journal-Journal
Des Sciences Hydrologiques, 57, 1000–1019, doi:10.1080/02626667.2012.690881, 2012.

Liu, Y. Q. and Gupta, H. V.: Uncertainty in hydrologic modeling: Toward an integrated data assimila-
tion framework, Water Resources Research, 43, W07 401, doi:10.1029/2006wr005756, 2007.

Mathevet, T.: Quels modèles pluie-débit globaux au pas de temps horaire ? Développements em-
piriques et comparaison de modèles sur un large échantillon de bassins versants, Ph.D. thesis,
Paris, 2005.

Mathevet, T., Michel, C., Andréassian, V., and Perrin, C.: A bounded version of the Nash-Sutcliffe
criterion for better model assessment on large sets of basins, IAHS-AISH Publication, pp. 211–
219, 2006.

Matott, L. S., Babendreier, J. E., and Purucker, S. T.: Evaluating uncertainty in integrated envi-
ronmental models: A review of concepts and tools, Water Resources Research, 45, W06 421,
doi:10.1029/2008wr007301, 2009.

McIntyre, N., Lee, H., Wheater, H., Young, A., and Wagener, T.: Ensemble predictions of runoff in
ungauged catchments, Water Resources Research, 41, W12 434, doi:10.1029/2005wr004289,
2005.

21

http://dx.doi.org/10.5194/hess-15-3367-2011
http://dx.doi.org/10.1198/016214506000001437
http://dx.doi.org/10.1111/j.1467-9868.2007.00587.x
http://dx.doi.org/10.1080/02626667.2013.803183
http://dx.doi.org/10.1080/02626667.2012.690881
http://dx.doi.org/10.1029/2006wr005756
http://dx.doi.org/10.1029/2008wr007301
http://dx.doi.org/10.1029/2005wr004289


D
i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|

Michel, C., Perrin, C., and Andreassian, V.: The exponential store: a correct formulation for rainfall-
runoff modelling, Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 48, 109–
124, doi:10.1623/hysj.48.1.109.43484, 2003.

Montanari, A.: Uncertainty of Hydrological Predictions, in: Treatise on Water Science, edited by
Peter, W., pp. 459–478, Elsevier, Oxford, 2011.

Montanari, A. and Brath, A.: A stochastic approach for assessing the uncertainty of rainfall-runoff
simulations, Water Resources Research, 40, W01 106, doi:10.1029/2003wr002540, 2004.

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I - A discussion
of principles, Journal of Hydrology, 10, 282–290, 1970.

Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andreassian, V., Anctil, F., and Loumagne, C.: Which
potential evapotranspiration input for a lumped rainfall-runoff model? Part 2 - Towards a simple
and efficient potential evapotranspiration model for rainfall-runoff modelling, Journal of Hydrology,
303, 290–306, doi:10.1016/j.jhydrol.2004.08.026, 2005.

Oudin, L., Andreassian, V., Mathevet, T., Perrin, C., and Michel, C.: Dynamic averaging of rainfall-
runoff model simulations from complementary model parameterizations, Water Resources Re-
search, 42, W07 410, doi:10.1029/2005wr004636, 2006.

Oudin, L., Andreassian, V., Perrin, C., Michel, C., and Le Moine, N.: Spatial proximity, physical simi-
larity, regression and ungaged catchments: A comparison of regionalization approaches based on
913 French catchments, Water Resources Research, 44, W03 413, doi:10.1029/2007wr006240,
2008.

Oudin, L., Kay, A., Andreassian, V., and Perrin, C.: Are seemingly physically similar catchments truly
hydrologically similar?, Water Resources Research, 46, W11 558, doi:10.1029/2009wr008887,
2010.

Parajka, J., Viglione, A., Rogger, M., Salinas, J. L., Sivapalan, M., and Bloeschl, G.: Comparative
assessment of predictions in ungauged basins - Part 1: Runoff-hydrograph studies, Hydrology
and Earth System Sciences, 17, 1783–1795, doi:10.5194/hess-17-1783-2013, 2013.

Perrin, C., Michel, C., and Andreassian, V.: Improvement of a parsimonious model for streamflow
simulation, Journal of Hydrology, 279, 275–289, doi:10.1016/s0022-1694(03)00225-7, 2003.

Perrin, C., Andreassian, V., Serna, C. R., Mathevet, T., and Le Moine, N.: Discrete parameterization
of hydrological models: Evaluating the use of parameter sets libraries over 900 catchments, Water
Resources Research, 44, W08 447, doi:10.1029/2007wr006579, 2008.

22

http://dx.doi.org/10.1623/hysj.48.1.109.43484
http://dx.doi.org/10.1029/2003wr002540
http://dx.doi.org/10.1016/j.jhydrol.2004.08.026
http://dx.doi.org/10.1029/2005wr004636
http://dx.doi.org/10.1029/2007wr006240
http://dx.doi.org/10.1029/2009wr008887
http://dx.doi.org/10.5194/hess-17-1783-2013
http://dx.doi.org/10.1016/s0022-1694(03)00225-7
http://dx.doi.org/10.1029/2007wr006579


D
i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|

Refsgaard, J. C., van der Sluijs, J. P., Hojberg, A. L., and Vanrolleghem, P. A.: Uncertainty in the envi-
ronmental modelling process - A framework and guidance, Environmental Modelling & Software,
22, 1543–1556, doi:10.1016/j.envost.2007.02.004, 2007.

Roscoe, K. L., Weerts, A. H., and Schroevers, M.: Estimation of the uncertainty in water level fore-
casts at ungauged river locations using quantile regression, International Journal of River Basin
Management, 10, 383–394, doi:10.1080/15715124.2012.740483, 2012.

Solomatine, D. P. and Shrestha, D. L.: A novel method to estimate model uncertainty using machine
learning techniques, Water Resources Research, 45, W00B11, doi:10.1029/2008wr006839,
2009.

Velazquez, J. A., Anctil, F., and Perrin, C.: Performance and reliability of multimodel hydrological en-
semble simulations based on seventeen lumped models and a thousand catchments, Hydrology
and Earth System Sciences, 14, 2303–2317, doi:10.5194/hess-14-2303-2010, 2010.

Vidal, J.-P., Martin, E., Franchisteguy, L., Baillon, M., and Soubeyroux, J.-M.: A 50-year high-
resolution atmospheric reanalysis over France with the Safran system, International Journal of
Climatology, 30, 1627–1644, doi:10.1002/joc.2003, 2010.

Wagener, T. and Montanari, A.: Convergence of approaches toward reducing uncertainty in predic-
tions in ungauged basins, Water Resources Research, 47, W06 301, doi:10.1029/2010wr009469,
2011.

Weerts, A. H., Winsemius, H. C., and Verkade, J. S.: Estimation of predictive hydrological uncertainty
using quantile regression: examples from the National Flood Forecasting System (England and
Wales), Hydrology and Earth System Sciences, 15, 255–265, doi:10.5194/hess-15-255-2011,
2011.

Wilks, D. S.: Statistical methods in the atmospheric sciences, Academic, Oxford, 3rd edn., 2011.
Winsemius, H. C., Schaefli, B., Montanari, A., and Savenije, H. H. G.: On the calibration of hydrologi-

cal models in ungauged basins: A framework for integrating hard and soft hydrological information,
Water Resources Research, 45, W12 422, doi:10.1029/2009wr007706, 2009.

Yadav, M., Wagener, T., and Gupta, H.: Regionalization of constraints on expected watershed re-
sponse behavior for improved predictions in ungauged basins, Advances in Water Resources,
30, 1756–1774, doi:10.1016/j.advwatres.2007.01.005, 2007.

Zhang, Z., Wagener, T., Reed, P., and Bhushan, R.: Reducing uncertainty in predictions in ungauged
basins by combining hydrologic indices regionalization and multiobjective optimization, Water Re-
sources Research, 44, W00B04, doi:10.1029/2008wr006833, 2008.

23

http://dx.doi.org/10.1016/j.envost.2007.02.004
http://dx.doi.org/10.1080/15715124.2012.740483
http://dx.doi.org/10.1029/2008wr006839
http://dx.doi.org/10.5194/hess-14-2303-2010
http://dx.doi.org/10.1002/joc.2003
http://dx.doi.org/10.1029/2010wr009469
http://dx.doi.org/10.5194/hess-15-255-2011
http://dx.doi.org/10.1029/2009wr007706
http://dx.doi.org/10.1016/j.advwatres.2007.01.005
http://dx.doi.org/10.1029/2008wr006833


D
i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|

Table 1. Characteristics of the 907 catchments. P – precipitation, PE – potential evapotranspiration,
Q – discharge.

Percentiles
0.05 0.25 0.50 0.75 0.95

Catchment area (km2) 27 73 149 356 1788
Mean annual precipitation (mm yr�1) 753 853 978 1176 1665
Mean annual potential evapotranspiration (mm yr�1) 549 631 659 700 772
Mean annual runoff (mm yr�1) 133 233 344 526 1041
Q/P ratio 0.17 0.27 0.34 0.45 0.68
P/PE ratio 1.06 1.25 1.47 1.83 2.9
Median elevation (m) 76 149 314 645 1183

24



D
i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|

Table 2. Mean C2M over the 907 catchments of the data set, with calibration (CAL), regionalisation
(REGIO), and with the hydrometrical desert (HD) defined by increasing distance 10, 20, 50, 100 and
200 km.

CAL REGIO HD-10 HD-20 HD-50 HD-100 HD-200

GR4J 0,67 0.67 0,51 0.51 0,49 0.49 0,46 0.46 0,43 0.43 0,41 0.41 0,35 0.35
TOPM TOPMO 0,59 0.59 0,47 0.47 0,46 0.46 0,44 0.44 0,41 0.41 0,39 0.39 0,34 0.34
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Figure 1. Illustration of the proposed approach, in the case of n= 4 donors. Red catchments are
first-level donors while green catchments are second-level donors. For Step 2b, the simulated dis-
charge variable (x axis) is split into 10 equal-size groups. In Step 3, white dots represent the values
of the upper and lower multiplicative coefficients for each group. See the text for the description of
the four steps.

27



D
i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|

Qu

Ql

Qobs
Q95 

Q5
AWclim

t

w

d

S = w + beta x d

Figure 2. Illustration of the evaluation of the uncertainty bounds. Q5 and Q95 are the 5th and 95th
percentiles of the flow duration curve. S is the interval score defined at one time-step for the situation
where the observed value is above the upper limit of the uncertainty bound. See the text for further
details.

28



D
i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|

GR4J TOPMO

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●●
●

●
●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●
●
● ●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

●●

● ●

●

●
●

●

● ●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●
●

● ●

●

●

●●●●
●

●

●
●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●●
●

●
●

●

●
●

●

●●
●
●

● ●

●

● ●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●
●
●

●

●
●

●

●

● ●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●●

●
●

●
●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●
●

● ●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●● ●
●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●
●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●●●
●
●

●

●

●●

●

●

●
●●● ●

●

●●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●●●

●

●

●

●

●●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

● ●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

● ●

●●

●●

●●

●

●

●

●

●
●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●
●
●

●
●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0
LOCAL  GAUGED

RE
G

IO
NA

L 
 U

NG
AG

ED

Figure 3. Impact of the regionalisation scheme on deterministic performance, as quantified by the
bounded C2M efficiency criterion. Note that in a very few cases, the performance obtained with the
regionalisation scheme is better than the performance obtained with calibration. This is possible
because of the output averaging option used by the regionalisation scheme.
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Figure 4. Distributions of the three performance criteria. Boxplots (5th, 25th, 50th, 75th and 95th
percentiles) synthesize summarise the variety of scores over the 907 catchments of the data set.
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Figure 5. Distributions of the three performance criteria, obtained in two cases, (i) when the donor
catchments are treated as ungauged (continuous solid lines) and (ii) when the donor catchments are
treated as gauged (dashed lines). Boxplots (5th, 25th, 50th, 75th and 95th percentiles) synthesize
summarise the variety of scores over the 907 catchments of the data set.
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Figure 6. Distributions of the three performance criteria, obtained in two cases, (i) when 10 groups
of relatives relative errors are used (continuous solid lines) and (ii) when only one group is used
(dashed lines). Boxplots (5th, 25th, 50th, 75th and 95th percentiles) synthesize summarise the vari-
ety of scores over the 907 catchments of the data set.
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Figure 7. Impact of deterministic performance, as quantified by the bounded C2M quadratic crite-
rion, on the three performance criteria for the 907 catchments. Note that for easing easier visualisa-
tion, the lower limits of the AWI (b) and ISS (c) values are set to �100% but lower values of AWI
values are obtained in 7 seven cases for both models, and lower ISS values are obtained in 18 and
22 cases for GR4J and TOPMO, respectively.
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Figure 8. Impact of the hydrometrical desert on the distributions of the three performance criteria.
Potential donors donor catchments are not retained as donors when their distance to the target
catchment is below 10, 20, 50, 100 and 200 km. Boxplots (5th, 25th, 50th, 75th and 95th percentiles)
synthesize summarise the variety of scores over the 907 catchments of the data set.
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