
Transferring model uncertainty estimates from 
gauged to ungauged catchments 

 

Dear Editor, 

We would like to thank you and the five reviewers for the overall positive feedbacks 
on the article. We understood from the comments that several parts of the manuscript 
needed rewriting, clarification and further analyses.  

As explained in the detailed response to the review comments, we agree with most 
comments made by the five reviewers. The main modifications we made in the 
manuscript to answer the major comments consist in: 

- improving the description of the proposed approach, with the introduction of a 
general diagram of the method that intends to clarify the various steps; 

- better explaining the evaluation method and criteria; 

- providing a complementary analysis on the behaviour of the method in the 
case of data-scarce region, with an appropriate sensitivity analysis consisting 
in creating a “hydrometrical desert” in the gauging network around the target 
station; 

- better discussing results and outcomes of the study and its possible 
implications, and also the possible limitations of the proposed approach; 

- using a more consistent terminology throughout the paper and introducing 
definition of terms when necessary. 

The revised version of the manuscript also account for all the specific changes 
requested by the reviewers, as explained below. 

In the following pages, we shortly explain how we effectively accounted for each 
reviewer’s suggestion, following our initial reply (see bullet points ¾ in red). 

  



D.A. HUGHES (R1) 

While this paper presents an interesting and novel approach to quantifying 
uncertainty in hydrological modelling, I think that more should be said about 
the limitations of the approach. It has been applied in France, but I suspect 
that it would be difficult to apply in data scarce regions. There are many areas 
where there are simply not enough gauged catchments to represent the 
variability in the hydrological response across many ungauged catchments. A 
further problem is that many gauged catchments are also affected by poorly 
quantified anthropogenic impacts that will impact on the ability of the data to 
adequately represent the natural hydrological response that the model is trying 
to simulate. There are also potential problems with the lack of 
representativeness of the climate inputs in the gauged catchments that could 
lead to bias in the quantified parameter values of the donor catchments. These 
additional uncertainty issues do not seem to be addressed in the paper and I 
think that they should at least be mentioned and there impacts on the overall 
likely success of the method should be noted. 

We thank Pr. Denis Hughes (reviewer R1), for his positive comments about the 
paper. We will take his comments into consideration to enhance the revised 
manuscript.  

We agree that the approach is difficult to apply in data scarce regions and that 
anthropogenic impacts can lead to misleading results. But the same limitations apply 
to any regionalisation approach. We intend to include a complementary analysis in 
the discussion section, in which we will progressively decrease the density of donor 
catchments, to show the impact on uncertainty. This will help better discussing the 
applicability of the method in data scarce region. We will also discuss the issue of 
representativeness of the input and impact of human influences.  

¾ We have included a complementary analysis with tests of a “hydrometrical 
desert” around the target station. This test is more demanding that decreasing 
the density of the donor catchments and reveals the limitation of the method. 

Spatial proximity is mentioned on page 8045, but what about the effects of 
highly variable topography (or other factors) between closely adjacent 
catchments? Would this not invalidate an approach based solely on distance? 

The selected approach for transfer of information from gauged to ungauged 
catchments is based on spatial proximity. This choice is motivated by previous work 
on regionalisation based on this data set. We are aware that physical similarity may 
be better adapted in some cases, as shown by other comparative studies on 
regionalization methods. However the proposed approach of uncertainty 
quantification could also be applied with any regionalisation strategy, for example 
physical proximity if it is deemed to be more appropriate. This will be further 
underlined in the discussion section.  

¾ See the discussion section. 



I did manage eventually to understand all of the steps in the method and the 
performance measures. However, I had to read them several times and I really 
think that they could be better explained. The paper is quite concise (generally 
a good thing), but in terms of the explanations I think it is too concise and 
would benefit from further and clearer explanations of some of the points 
within section 3 and 4. I refer to some examples below. 

We agree that further and clearer explanations are needed to fully describe the 
method. We will modify the manuscript to make it more easily understandable and 
improve the graphical illustrations to support the explanation. 

¾ See in particular the modification of the method section. 

Page 8047 explains the sharpness index that used the Q5/Q95 ratio for the 
historical FDC. I think that the authors did not use the ’width’, which would be 
Q5-Q95, and therefore should not refer to width. I also fail to see how 1-
Q5/Q95 can provide a measure of uncertainty when it is solely based on 
historical flows according to the explanation provided in the text. 

This is indeed not detailed in the manuscript. We will better explain how the 
sharpness index is calculated and how it is related to the mean width of the intervals, 
based on appropriate references. 

¾ Done 

Page 8048 refers to the skill or interval skill score. I think that the use of the 
1{X,Y} notation is confusing in equation 1. Why not give this a variable name 
(e.g. INDF) and then use separate equations to define how INDF is calculated. 
I tried to understand what the skill score is doing and it seems as if high values 
of S relates to poor skill - is that correct, or did I get it wrong? I assume that l 
and u represent the lower and upper bounds of the uncertainty at any point in 
the time series? What is ’unconditional climatology’? 

We also agree that further explanation is needed here. In particular, the equation will 
be rewritten in a simpler form. 

¾ Done 

Page 8050 refers to using donor catchments as gauged (the difference 
between this and treating them as ungauged also needs further explanation I 
think). Why should the results be less reliable in this case and why is there a 
benefit when treating donor catchments as ungauged - this seems to be 
somewhat counter intuitive? 

As A. Viglione (R2) puts it, treating donor catchment as gauged is simply “wrong” 
because we have to expect that errors are larger in a regionalisation context as the 
errors obtained with calibration. As a consequence, the uncertainty estimates are 
less reliable because uncertainty is underestimated. But we agree that the two-step 
approach is not so intuitive and we will therefore improve the explanations on this 
aspect. 



¾ See in particular the modification of the method section. 

Page 8051: It was not immediately clear to me what data are used to calculate 
the NSE criterion? Is it the upper and lower prediction bounds or what? Please 
provide a clearer explanation. 

We apologize for the confusion. We used the simulated discharge values to compute 
the NSE criterion as it is usually done. We will make this point clear in the revised 
manuscript. 

¾ See in particular the modification of the method section. 

I would therefore like to suggest to the authors that they seriously consider 
making the explanations for most of the methods a lot more clear so that 
readers can understand the approach and methods much easier. 

This concern has also been expressed by most of the reviewers of this paper and we 
agree that we have to put more effort on the explanations. We will make appropriate 
changes to make the explanations of the methods a lot more clear. 

¾ See in particular the modification of the method section. 

Minor points and corrections: 
P8042, L16: Surely this should be residual errors at gauged locations. 

Our sentence was misleading and we will modify it. In the paper we cite, residual 
errors are first estimated at ungauged locations based on residual errors at gauged 
locations, and then quantile regression was applied with the estimated errors at 
ungauged locations. 

¾ Done 

P8043, L5: ’.. of the work by Oudin...’ P8044, L16: ’ ... discharge data ARE 
available..’  

Thanks.  

¾ Done 

P8044, L17: ’.. ungauged LOCATIONS ...’ 

Thanks. 

¾ Done 

P8044, L25: Please indicate what the performance criterion is (NSE 
presumably)? 

The performance criterion is the one used to calibrate the models, i.e. NSE computed 
on root square transformed flows. We will modify the sentence. 



P8048, L24: Please use percentages (70%) instead of a fraction (0.7) to be 
consistent with the rest of the text.  

Agreed. 

¾ Done 

P8049, L11: What is the basis for 30 and 80%? P8049, L13: ’yield’ shoud be 
plural. 

The values of 30 and 80% are arbitrary. We will add a sentence to make it clear. 

¾ Done 

P8049, L18: I do not understand what 92% represents nor where it comes 
from. 

It was meant to be the fraction of catchments where ISS is positive. We will clarify 
this point. 

¾ Done 

P8050, L2: ’rainfall-runoff MODEL’  

Thanks. 

¾ Done 

P8050, L26: ’increase’ should be plural. 

Thanks. 

¾ Done 

P8050, L26 & P8051, L3: should be ’compensate FOR..’ 

Thanks. 

¾ Done 

The lines used for the boxplots in figures 6 to 8 could be thicker to make them 
clearer in a printed version of the paper. 

Thanks for noticing the issue. We will make the appropriate changes to get better 
figures. 

¾ We include the figures in pdf format.  



A. VIGLIONE (R2) 

In this paper an estimation of the total uncertainty affecting runoff prediction in 
ungauged locations is performed. The total uncertainty is estimated based on 
residuals of the estimated runoff at neighbouring gauged catchments treated 
as ungauged (i.e., in cross-validation mode). I like the pragmatic procedure for 
the estimation of the total uncertainty. In fact, I was recently involved in editing 
a book on runoff prediction in ungauged basins (Blöschl et al., 2013, already 
cited in the paper), where, consistently with this paper, “total uncertainty” was 
assessed based on the performance of runoff prediction obtained in cross-
validation over many locations (see also Parajka et al., 2013, already cited in 
the paper).  

We thank A. Viglione (R2) for his positive comments about our paper and the 
pragmatic approach we presented. We will take his comments into consideration to 
enhance the revised manuscript. 

One addition which, in my opinion, would make the results of this paper more 
interesting for the hydrologic community, would be to stratify the measures of 
reliability, sharpness and interval score as a function of climatic and catchment 
characteristics (i.e., aridity index, catchment area, catchment elevation, density 
of the gauging network, ...). In other words, is the method performing equally 
well in all France or are there problematic regions? If the latter is true, what 
could be the reasons? This could also serve to address the concerns of 
Reviewer #1 (Denis Hughes).  

We thank R2 for his suggestion. We will carry out the suggested analyses and 
provide comments on the possible links. However, results from past regionalization 
studies in France showed it was very difficult to find regional trends or links between 
efficiency and catchment characteristics. This can be explained by the fact that 
modelling errors are manifold. So we are not sure convincing conclusions will be 
drawn on this aspect. 

¾ We computed Spearman correlation between the C2M and the three 
probabilistic scores and P, Q, EP, P/Q and P/E, but did not obtain any value 
above 0.25. This indicates that it is difficult given those characteristics to 
provide further insights into the reason for the variability of performance we 
obtained. 

The Authors have chosen to assess the reliability, sharpness and interval 
score for the 90% prediction intervals. Does the method perform equally well 
for other prediction intervals? More generally, since the method gives an 
estimation of the empirical distribution of the error for different flow groups, 
why haven’t the Authors checked the goodness-of-fit of these distributions, for 
example through an uniformity test of the non-exceedence frequency of the 
actual error values (see e.g., Laio and Tamea, 2007, pages 1272-1273)?  

We only presented the results obtained for the 90% prediction intervals; however the 
method can indeed be applied to obtain other prediction intervals and an 
approximation of the distribution. We believe that introducing the approach and 



focusing on the 90% helps making the paper concise and easier to understand, even 
though most of the reviewers already pointed out that our presentation should be 
clearer. We agree that further work could be done in that direction. We will introduce 
corresponding comments in the concluding part of the article. 

¾ Done 

Overall I think that the paper is well written and sufficiently clear, even though I 
agree with Reviewer #1 in that some points could be better clarified. Even 
though I’ve asked to add some analyses, I think that a minor revision should 
be sufficient for that. Some specific comments follow.  

Actually, the article will be quite deeply modified following all the comments received 
from the reviewers. 

¾ See in particular the modification of the method section. 

Page 8044, line 5: I would suggest to shortly discuss here in what are the two 
models different. I understand that this may be found in the previous papers, 
but for readability I would summarise the main differences here too.  

Agreed. We will shortly discuss the main differences between the two models. 

¾ A short description was added. 

Page 8045, line 5: I have a concern about the “output averaging option”. Since 
averaging many signals results into a smoother one (also in the case that they 
are correlated), are the extremes well predicted? If so, are the results in this 
paper affected by that? This could be checked, for instance, applying the 
procedure for the 98% interval.  

The output averaging option concerns the regionalisation method used to obtain a 
deterministic prediction at the outlet of any catchment. As such it does not directly 
affect the procedure used to obtain uncertainty bounds. If for example the extremes 
are consistently underestimated at neighbouring locations, the procedure will be able 
to reflect such systematic bias. However, we agree that the choice of the 
regionalization option may affect the quality of simulation of some parts of the 
hydrograph. However, the proposed approach is not specific to a given 
regionalization setting and others could be adapted if deemed more appropriate. This 
will be clarified in the discussion section. 

¾ Done. 

Page 8047, Section 4: here the Authors introduce the concepts of “reliability”, 
“sharpness” and “interval score”. Regarding the first two, unless the concepts 
are new, which is not the case, I would suggest to add references here to 
where these concepts are extensively discussed (e.g., statistical books?). 

Agreed. The concepts are not new and were used before in other publications. We 
will add references to previous work. 



¾ Done 

Page 8047, line 13: The sentence about the “two values” is a bit confusing 
here. The Authors intend the two average widths of the uncertainty bounds 
and of the historical flow quantiles, while at first I confused the two values to 
Q5 and Q95. I see that also Reviewer #1 had a problem with this sentence.  

Agreed. The sentence was confusing and we will make the presentation of the 
sharpness index clearer. 

¾ Done 

Page 8047, line 15: What is the climatology?  

By climatology we mean the unconditional distribution of observed values, i.e. the 
flow duration curve, from which we calculated the width of the 90% interval. That 
way, we obtain one value per catchment that reflects the natural variability. We agree 
that the presentation was unclear and we will make it clearer. A better definition of 
terms will be provided. 

¾ Done 

Page 8048, line 9: That’s related to the previous point. I do not understand 
what a climatological interval is.  

Agreed. We will make it clearer and we propose to add a new figure showing how it is 
calculated. 

¾ Done 

Page 8048, “interval score”: I have difficulties to understand what S measures. 
Maybe some more information should be given to help the reader. I’ve seen 
that also Reviewer #1 has concerns about this.  

The interval score accounts for both the width of an uncertainty bound and the 
position of the observed value compared to the uncertainty bound values. We will 
add a figure to show how the score is calculated.  

¾ Done 

Page 8049, line 21: Same here. What is the unconditional climatology?  

Agreed. This point needs a clearer presentation. 

¾ Done 

Page 8049, Section 5.2: The results obtained using donor catchments as 
gauged are not surprising. They descend from the fact that the procedure is 
wrong, since calibration removes biases. It is interesting, though, to see the 
results from a wrong procedure. However I would stress in the section that the 
procedure would be “wrong” since the uncertainty of runoff prediction in 
ungauged catchments is of interest. 



You are perfectly right, the procedure is "wrong" by construction because the 
magnitude of errors is not the same when calibration is used instead of the 
regionalisation procedure. We propose to add a new figure to clearly show how the 
performance of the two models decreases when we move from calibration to 
regionalisation. 

¾ Done, see Figure 3. 

                                                                                                       
  



ANONYMOUS REFEREE #3 (R3) 

Overview: 
The aim of the paper is very clear: estimate global uncertainty of the model 
output in ungauged catchments. Overall the paper is well-structured. It is also 
concise, which in general in a good thing. However, at certain points 
throughout the text further explanation would be helpful to aid interpretation. 

We thank the anonymous reviewer R3 for his positive comments about the paper. 
We will take his comments into consideration to enhance the revised manuscript. 

Main Points: 
1) The Authors aim to estimate total uncertainty. However, in the text 
(including the title of the paper) they often refer to total/global uncertainty as 
‘model uncertainty’. The Reviewer thinks this can be misleading, as it sounds 
like the Authors are trying to assess the uncertainty introduced by the choice 
of the rainfall-runoff model. 

The terminology used in the context of uncertainty estimation is indeed sometimes 
confusing, and R5 also pointed out this issue. We agree that the procedure we 
presented aim to estimate total/global uncertainty. We propose to modify the title of 
our paper and the expression “model uncertainty” by “global uncertainty”. 

¾ Done 

2) The Authors suggest a way to estimate total uncertainty in an ungauged 
catchment based on neighbouring gauged catchments. Although the Reviewer 
does not have a problem with this, the way the Authors implemented this 
methodology may be faulty. Using the catchments shown in Figure 1 as an 
example, the errors estimated for the green catchment resulting from 
transferring information from the yellow catchments (figure 1 B) are probably 
not representative of the errors expected from the transference of the 
information from the red catchments to the grey catchment (Figure 1 A). The 
errors calculated for the green catchment based on the yellow catchments are 
likely to be smaller as the catchments seem to be nested. On the contrary, the 
prediction of the runoff hydrograph of the grey catchment uses four 
catchments from different river branches and therefore the Reviewer expects 
that the error in this case is higher. Therefore, the Reviewer believes that the 
way the catchments were selected to estimate the uncertainty is not adequate. 

R3 rightly points out that we did not take into account the fact that some catchments 
are nested. This could be done within the framework of our methodology. We do not 
have any expectation regarding the fact that the errors are higher or not in these 
cases but we will mention that further work could be done to investigate this issue. 
Note that we agree that the example used to illustrate the approach may introduce 
some confusion on these aspects and we will therefore use an example without 
nested catchments. 

¾ We changed the illustration of the method. 



3) The paper lacks a critical evaluation of the methodology suggested. 

We are not sure to understand what R3 means here. We believe that applying the 
methodology on a large set of catchments and using a quantitative evaluation with 
three widely used and recognized scores of the obtained uncertainty bounds is a way 
to rigorously evaluate the methodology. But as suggested by other reviewers, we will 
better discuss the possible limitations of the proposed approach. 

¾ We acknowledge some limitations in the conclusion. 

Minor points: 
1) American English and British English are used interchangeably. Some 
examples (among many others) include: on page 8040, line 21, ’modelling’; on 
page 8041, line 16, ’behavioural’; on page 8044, line 10, ’optimization’; on 
page 8051, line 9, ’characterize’. 

Thank you for pointing out this issue. We will make adequate modifications to correct 
the mistakes in our manuscript and use more consistent language writing. 

¾ We tried to correct the mistakes but we acknowledge that our English is 
perfectible. Therefore, we will ask a professional to carefully check our 
wording if the paper reaches the publication phase. 

2) Page 8040, lines 24-25: What do the Authors mean by ’prediction 
approaches’? 

We apologize for the misunderstanding. By "Bayesian calibration and prediction 
approaches" we mean the application of Bayes theorem to infer unknown values and 
then propagate the uncertainty sources for prediction. 

¾ Precision introduced 

3) Page 8041, line 10: What are the parameter sets constrained on? 

Parameter sets can be constrained by various sources of information, including the 
regionalized "signatures" and soft information, as mentioned lines 14-15. 

¾ No modification necessary 

4) Page 8041, line 14: hydrographs or hydrograph? 

Thanks. We mean hydrograph. 

¾ Done 

5) Page 8041, line 16: How does the second step relate to the first step? 

The first step provides regionalized metrics used in the second step where only some 
parameter sets - the ones that provide metrics close to the regionalized metrics- are 
retained. This will be clarified. 



¾ Done 

6) Page 8041, lines 10-19: In a Bayesian approach, like Bulygina et al. (2012) 
used, there is no distinction between ‘acceptable’/‘behavioural’ and ‘non-
behavioural’ parameter sets. All parameters are acceptable, though some are 
more likely than others. Therefore, the Reviewer suggests the Authors to 
rewrite this sentence. 

Agreed. We will rewrite the sentence to introduce the distinction between formal and 
informal approaches. 

¾ Done 

7) Page 8042, lines 9-12: This is an example of where the Authors were too 
concise resulting in an explanation that is not satisfactory. Before reading the 
rest of the paper, and solely based on this paragraph, it seems that the 
Authors are suggesting that neighbouring gauged locations are calibrated and 
the residuals between model prediction and the observed data at these 
catchments are used/transposed to the ungauged catchment for uncertainty 
estimation at this location. The Reviewer does not agree with this, as in the 
ungauged problem there are additional sources of uncertainty when compared 
to the gauged problem. For instance, additional sources of uncertainty 
introduced by the transference of information should be taken into account 
when the final goal is to estimate the global uncertainty of the model output in 
the ungauged catchment. This is, in fact, highlighted later on by the Authors 
(Figure 7 and Section 5.2, page 8050, lines 1-3). This needs to be more 
clearly explained in the early stages (e.g.Introduction) of the paper. 

Thanks for pointing out this issue. The sentence can indeed introduce some 
confusion and we will modify it in the revised paper. 

¾ Done 

8) Page 8042, line 21: are instead of is. 

Thanks. 

¾ Done 

9) Page 8044, line 2: Why did the Authors select 4 and 7 catchments? What is 
the justification for using these particular number of catchments? 

In this paper, we chose to adopt the options in the application of the regionalisation 
method, which were selected by Oudin et al. (2008) in their previous study on the 
same data set and the same models. We purposely considered that the 
regionalisation procedure is given and we focused on the uncertainty quantification 
issue only. However, we wanted to present an approach that could be used with any 
regionalisation strategy. This will be more clearly stated in the paper. 

¾ Done 



10) Page 8047, lines 9-21: In general, the definition of sharpness is confusing 
and should be clarified. The Reviewer interpreted AWI as being [1-average 
width uncertain bounds/(Q95-Q5)], but this should be better explained. In 
particular, it is not clear which ‘two values’ the Authors are referring to on line 
13. It is also not clear what the Authors mean by ‘compared to the 
climatology’, in line 15. In line 16, what is the percentage reduction of the 
average width in relation to? Line 17, reduced in relation to what? 

Agreed. Similar comments were made by other reviewers. We will modify the 
paragraph to better define the evaluation strategy. 

¾ Done 

11) Pages 8047-8048, Equation 1: It may be worth explaining what range of 
values would be expected for S, which values correspond to a poor prediction 
and which values correspond to a better prediction. 

Agreed. 

¾ Done 

12) Page 8048, line 1: It may be worth clarifying what ’l’ and ’u’ are. 

Agreed. 

¾ Done 

13) Page 8048, line 5: What does ’unconditional climatology’ mean? Please 
clarify. 

Agreed. By climatology we mean the unconditional distribution of observed values, 
i.e. the flow duration curve, from which we calculated the width of the 90% interval. 
This will be clarified in the manuscript. 

¾ Done 

14) Page 8048, Equation 2: The Authors have used ISS on the left and on the 
right hand side. The Reviewer assumes that on the right hand side it should be 
IS instead of ISS. Please correct this, if that is the case. 

Thanks for pointing out this mistake in the equation. We will modify it. 

¾ Done 

15) Page 8048, line 11: Do the Authors mean skill score (IS) or interval skill 
score (ISS) here? 

We mean the interval skill score (ISS). 

¾ Done 

16) Page 8048, lines 21-23: The Authors say that the median values for 
reliability for GR4J and TOPMO are 89% and 90% respectively (also shown in 



Figure 6). Roughly half of the catchments are above the expected 90% value 
for the 90% prediction bounds, and the other half is below. Therefore, the 
Reviewer is of the opinion that the Authors should not say that “the prediction 
bounds are, in most of the cases, able to reflect the magnitude of the errors”, 
when those cases represent only 50% of the cases. The Reviewer suggests 
that ‘in most cases’ should be changed. 

Agreed. We will modify the sentence so that our presentation of results does not 
appear too optimistic. 

¾ Done 

17) Page 8048, line 24, and page 8049, lines 1-3: This comment links with 
comment 16. Why do the Authors use CR=0.7 as a benchmark, when they say 
beforehand that 0.9 should be expected for reliability? Using CR=0.7 as a 
benchmark is misleading as it makes the results seem better than they actually 
are. If the aim here is to estimate total uncertainty and a value of 90% is 
expected for 90%prediction bounds, the Authors should focus on CR=0.9. As 
said before, approximately half of the catchments present a CR<=0.9, 
indicating that for 50% of the cases the uncertainty bounds might be too 
narrow or biased. 

Agreed. The choice of using a value of CR=0.7 is arbitrary, and a perfectly reliable 
methodology used to quantify uncertainty should yield a value of CR=0.9. In fact it is 
difficult to find in the literature any guidance about how to evaluate properly the CR 
values. We propose to add a few sentences to discuss this issue. We will also make 
clearer that the results show some limitations of the proposed approach. 
Nonetheless, we believe that the results shown in this study could be used by other 
teams as a general benchmark. 

¾ Done 

 
  



ANONYMOUS REFEREE #4 (R4) 

This paper deals with the highly challenging and important problem of 
quantifying uncertainty in streamflow estimates at ungaged locations. I think 
this paper moves forward the discussion on this topic by providing a novel and 
practical approach and is, therefore, suitable for publication in Hydrology and 
Earth Systems Science. The manuscript is well-written and I have only minor 
editorial comments. I do also have some major comments/questions that could 
improve the clarity of the manuscript.  

We thank reviewer R4 for his positive comments about the paper. We will take his 
comments into consideration to enhance the revised manuscript. 

Major comments/questions:  
1. Could the authors make some clarifying comments about the difference 
between confidence intervals/estimated and prediction intervals/estimates? It 
seems to me that that the early part of the experiment presented here focuses 
on the confidence intervals/estimates around estimated streamflows and the 
latter portion of the work (Section 5.2) as an attempt to define the prediction 
intervals of the estimated streamflows. Is this what the authors intended? 

We use the term “prediction intervals” to describe intervals aiming at describing 
uncertainty around a deterministic value. In particular, prediction intervals are 
expected to cover the range of variability of the target variable, while confidence 
intervals do not. Note that there is no difference amongst the different experiments 
presented here. We will clarify this confusing point. 

¾ We introduced a new section and statements to clarify the different 
experiments presented. We hope that it helps to make it clear that we only 
focus on prediction intervals. Thus, we did not feel that other modification were 
necessary to explain the difference between confidence intervals and 
prediction intervals. 

2. If the authors were intending to obtain prediction intervals for the estimated 
streamflows, then only the experiment design for Section 5.2 seems valid to 
analyze here. More clarifying statements are needed to understand why the 
experiments were done both ways (treat donors as gauged or ungauged). 

We did the two experiments because we wanted to highlight the impact of the 
“wrong” procedure based on a single step approach (i.e. not treating donor as 
ungauged). In our opinion, it helps to understand two important choices we made: 
treating the donor catchments as ungauged and using different values for different 
flow groups. The objective of this test will be clarified. 

¾ Done 

3. I think there needs to be some additional strategies for validation of the 
uncertainty estimates. I would also ask the authors to consider other behaviors 
typical of confidence or predication estimates and test whether their approach 
follows what would be expected behavior, such as the effect of sample size or 



changes in the estimates related to different flow categories. Is there null 
hypothesis for the method that could be tested? 

We believe that our evaluation of uncertainty estimates based on three expected 
qualities follows common practice and is deemed sufficient to support the key points 
of the paper. We do not believe that testing uncertainty estimates from different 
perspective can be framed into a null hypothesis. However, testing reliability is 
essential and the coverage ratio we used provides a way to investigate if the method 
is able to yield reliable estimates. 

¾ No modification introduced 

4. Please provide more details in the text for Section 5.3. The use of groups 
seems to be somewhat arbitrary and the authors should expand more on their 
findings here. What would the authors recommend for a practitioner trying to 
use this approach? 

We agree that the choice of 10 groups appears quite arbitrary. Our main motivation 
was to account for potential changes across different flow groups, but this has to be 
balanced with making sure that the number of points inside each group is sufficient to 
obtain reliable estimates of the empirical quantiles. We will expand more on this issue 
in the revised paper. 

¾ Done 

Minor comments:  
p. 8045, line 22: Change to read “Here we consider a target ungauged 
catchments (TUC)…”  

Thanks. 

¾ Done 

p. 8045, lines 23-26: The subscripts and superscripts seem inconsistent to me. 
For any one ungauged catchment, the authors define its neighbors as NGC1, 
NGC2, etc. I think that would mean that in the next sentence, the subscripts 
should stay the same and the superscript should be i’s. Maybe it woud be 
better to say something like, “For the ith ungauged catchments, there are n 
neighbouring catchments with the notation: 𝑁𝐺𝐶1𝑖, 𝑁𝐺𝐶2𝑖, 𝑁𝐺𝐶3𝑖, etc.  

Thanks. We will make appropriate changes to make it easier to understand. 

¾ Done 

p. 8046, line 13: Think it should be “error” and not “errors” 

Thanks. 

¾ Done  



ANONYMOUS REFEREE #5 (R5) 

The paper presents an interesting approach allowing for assessing uncertainty 
of flow estimates in ungauged catchments. It is well motivated, refers to the 
relevant sources and well structured. Illustrative material is adequate. It is a 
very welcome addition to the PUB, and at the same time to the uncertainty-
related studies. It can be recommended to publication provided the comments 
below are addressed. 

We thank reviewer R5 for his positive comments about the paper. We will take his 
comments into consideration to enhance the revised manuscript. 

This review is one of the last submitted, so I can be brief since a number of 
points raised by other reviewers I share as well. However there are couple of 
additional points that are worth stressing, and which are recommended to 
address in the revision. 
I would define the notion of the total uncertainty clearer pointing at the main 
source of it. The problem is that in some earlier studies the ‘total’ and ‘residual’ 
uncertainty are sometimes used interchangingly so some clarity in definitions 
is needed (‘total’ may be treated as including all possible sources of 
uncertainty (e.g. including input) which is not the case here). 

Agreed. This point was also raised by another reviewer. We will add a paragraph at 
the beginning of Section 3 to clarify our approach, and we will change the expression 
“model uncertainty” into “global uncertainty”. 

¾ Done 

The paper is very concise but not always easy to understand due to lack of 
formal representation of ideas; I would introduce more formalism in describing 
the main procedure on pp 8045-8046, e.g. use some notations for flows for 
catchments NGC, groups, multiplicative coefficients, etc. This is easy to do. 

Agreed. We will introduce more formalism, write new equations, rewrite the equations 
that were not clear and also add new figures to help understanding the approach and 
the evaluation strategy. 

¾ We introduced a general diagram of the method that intends to clarify the 
various steps and modified some notations in the description of the method. 
But we did not feel that it was necessary to introduce new equations to define 
the multiplicative coefficients or the groups. 

Some more clarity and rigour may be needed in the statements like: 
8046, L7: The groups are based on the quantiles of the simulated discharges, 
so that each group is equally populated. L8: The subdivision into flow groups 
allows accounting for the heteroscedasticity of model errors. L11: Put together 
the relative errors from the donors according to the group they belong to. 

Agreed. 



¾ Modified 

On p 8050 (Sec. 5) the reader may find more explanation of the methodology 
but it comes a bit late; I would be clearer in the description of the methodology 
in Section 3, I think this is an important point to address. 

Agreed. We will make it clear in Section 3. 

¾ Done 

P 8046: groups: would they be better described as intervals? 

We do not believe that the groups will be better described as intervals because the 
groups are defined based on the quantiles of the empirical distribution of the 
simulated discharge values and not based on absolute values. 

¾ No modification made 

The presented methodology contains couple of elements that may require 
somewhat stronger justification, e.g. creating 10 groups, using multiplicative 
coeffs. 

Agreed. The choice of the number of groups has to be better explained, and the use 
of multiplicative coefficients has to be justified. We used multiplicative coefficients 
instead of additive coefficients because it is the easiest way to make sure that the 
prediction bounds are positive. And we used 10 groups because we had to balance 
two objectives: having a sufficient number of points inside each groups and 
describing how the multiplicative coefficients vary with the magnitude of the simulated 
discharge. We will add a few sentences to discuss the mentioned choices. 

¾ Done 

907 catchments is great to have, but I suppose many readers would like to 
read about the recommendations on using this method in less data-rich cases. 

Agreed. We will mention this limitation of our work. 

¾ See the complementary analysis. 

In the version for printing most figures are hardly readable, it is suggested to 
check this. 

Thank you very much for noticing this issue. We will make the appropriate 
modifications to have better figures. 

¾ We include the figures in pdf format. 
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Abstract

Predicting streamflow hydrographs in ungauged catchments is a challenging issue, and ac-
companying the estimates with realistic uncertainty bounds is an even more complex task.
In this paper, we present a method to transfer model global uncertainty estimates from
gauged to ungauged catchments and we test it over a set of 907 catchments located in
France, using two rainfall–runoff models. We evaluate the quality of the uncertainty esti-
mates based on three expected qualities: reliability, sharpness, and overall skill. The ro-
bustness of the method to the availability of information on gauged catchments was also
evaluated using a hydrometrical desert approach. Our results show that the method holds
interesting perspectives, providing in most a majority of cases reliable and sharp uncertainty
bounds at ungauged locations.

1 Introduction

1.1 Predicting streamflow in ungauged catchments with uncertainty estimates

Predicting the entire runoff hydrograph in ungauged catchments is a challenging issue that
has attracted much attention during the last decade. In this context, the use of suitable con-
ceptual rainfall–runoff models has proved to be useful, and because traditional calibration
approaches based on observed discharge data cannot be applied in ungauged catchments,
other approaches are required. Various methods have been proposed for the estimation of
rainfall–runoff model parameters in ungauged catchments, as reported by the recent syn-
thesis of the Prediction in Ungauged Basins (PUB) decade (Blöschl et al., 2013; Hrachowitz
et al., 2013; Parajka et al., 2013).

The estimation of predictive uncertainty is deemed good practice in any environmental
modelling activity (Refsgaard et al., 2007). In hydrological modelling, the topic has been
widely discussed for years, and there is still no general agreement about how to adequately
quantify uncertainty. In practice, various methodologies are currently used.
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For gauged catchments, the methodologies include Bayesian calibration and prediction
approaches (see e.g., the review of Liu and Gupta, 2007), informal methods related to the
GLUE framework (Beven and Freer, 2001), multi-model approaches (Duan et al., 2007; Ve-
lazquez et al., 2010) and other total global uncertainty quantification methods (Montanari
and Brath, 2004; Solomatine and Shrestha, 2009; Weerts et al., 2011; Ewen and O’Donnell,
2012). A comprehensive review of the topic can be found in Matott et al. (2009) and Monta-
nari (2011).

While many methods have been proposed for gauged catchments, only
a few have been proposed for the estimation of predictive uncertainty on un-
gauged catchments. McIntyre et al. (2005) presented a GLUE-type approach
consisting of transferring ensembles of parameter sets obtained on donor
(gauged) catchments to target (ungauged) catchments. More recently, a frame-
work based on constrained parameter sets was applied in several studies
(Yadav et al., 2007; Zhang et al., 2008; Winsemius et al., 2009; Bulygina et al., 2011, 2012; Kapangaziwiri et al., 2012) (Yadav et al., 2007; Zhang et al., 2008; Winsemius et al., 2009; Kapangaziwiri et al., 2012) .
It is a two-step procedure. The first step consists in estimating with uncertainty various sum-
mary metrics of the hydrographshydrograph, also called “signatures” of the catchments, or
gathering other “soft” or “hard” information at the target ungauged catchment. The second
step is the selection of an ensemble of model parameter sets. “Acceptable: “acceptable”
or “behavioural” parameter sets are those that yield sufficiently close simulated summary
metrics compared to regionalized metrics. The the regionalized metrics obtained during
the first step. A bayesian approach can also be used (Bulygina et al., 2011, 2012) . The
parameter sets are given a relative weight depending on the proximity of their summary
metrics compared to regionalized metrics and depending on a priori information. The
reader can refer to Wagener and Montanari (2011) for a comprehensive description of both
formal and informal methods belonging to this framework.

One difficulty of the above mentioned approaches lies in the interpretation of the uncer-
tainty bounds obtained from the parameter ensemble predictions. As noted by McIntyre
et al. (2005) and Winsemius et al. (2009), the uncertainty bounds cannot easily be in-
terpreted as confidence intervals, and thus it remains difficult to use them in practice. In
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addition, solely relying on an ensemble of model parameter sets to quantify total predictive
uncertainty is often not sufficient when imperfect rainfall–runoff models are used.

A pragmatic alternative consists in addressing separately the parameter estimation and
the global uncertainty estimation issues. It has been argued by several authors (Montanari
and Brath, 2004; Andréassian et al., 2007; Ewen and O’Donnell, 2012) that a posteriori
characterization of modelling errors of a “best” or “optimal” simulation can yield valid uncer-
tainty bounds at gauged locations. In earlier studies, the terms of total uncertainty, global
uncertainty or post-processing approach have been used interchangeably to refer to this
approach. The various sources of uncertainty are indeed lumped into an unique error term
with the goal to estimate uncertainty bounds for model outputs.

As stated by Solomatine and Shrestha (2009),

The historical model residuals (errors) between the model prediction ŷ and the
observed data y are the best available quantitative indicators of the discrepancy
between the model and the real-world system or process, and they provide valu-
able information that can be used to assess the predictive uncertainty.

Similarly, one could argue that the model residuals between the model prediction and the
observed data at neighbouring gauged locations are, perhaps, the best available indicators
of the discrepancy between the model and the real-world system at the target ungauged lo-

cation, under the condition that the increase of uncertainty introduced by the regionalisation
step compared to the calibration step is adequately taken into account.

The only attempt we are aware of to apply a total global uncertainty estimation approach
at ungauged location is the one presented by Roscoe et al. (2012). They quantified uncer-
tainty for river stage prediction at ungauged locations by first interpolating estimating the
residual errors at ungauged locations based on residual errors at gauged locations, and
then applying quantile regression to these estimated errors.
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1.2 Scope of the paper

The aim of this paper is to provide an estimation of the total global uncertainty affecting
runoff prediction at ungauged locations when a rainfall–runoff model and a regionalisation
scheme is are used.

To our knowledge, a framework based on residual errors and total global uncertainty
quantification has not yet been extensively tested in the context of prediction in ungauged
catchments. This paper contributes to the search for methods able to provide uncertainty
estimates when runoff predictions in ungauged catchments are sought.

2 Data and methods

Our objective is not to develop a new parameter regionalisation approach. Therefore, we
purposely chose to use ready-to-use materials and methods and only focus on the uncer-
tainty quantification issue. This study can be considered as a follow-up of the work made
by Oudin et al. (2008) on the comparison of regionalisation approaches. We only provide
here an overview of the data set, the rainfall–runoff models and the parameter calibration
and regionalisation approach, since the details can be found in Oudin et al. (2008).

2.1 Data set

A database of 907 French catchments was used. They represent various hydrological
conditions, given the variability in climate, topography, and geology in France. This set
includes fast responding Mediterranean catchments with intense precipitation as well as
larger, groundwater-dominated groundwater–dominated catchments. Some characteristics
of the data set are given in Table 1. Catchments were selected to have limited snow in-
fluence, since no snowmelt module was used in the hydrological modelling. Daily rain-
fall, runoff, and potential evapotranspiration (PE) data series over the 1995–2005 period
were available. Meteorological inputs originate from Météo-France SAFRAN reanalysis (Vi-
dal et al., 2010). PE was estimated using the temperature-based formula proposed by
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Oudin et al. (2005). Hydrological data were extracted from the HYDRO national archive
(www.hydro.eaufrance.fr).

2.2 Rainfall–runoff models

Two daily, continuous lumped rainfall–runoff models were used:

– The GR4J rainfall–runoff model, an efficient and parsimonious daily lumped continu-
ous rainfall–runoff model described by Perrin et al. (2003).

– The TOPMO rainfall–runoff model, inspired by TOPMODEL (Beven and Kirkby, 1979).
This version was tested on large data sets and showed performance comparable to
that of the GR4J model, while being quite different (Michel et al., 2003; Oudin et al.,
2008, 2010).

Using these two models rather than a single one makes it possible to draw more general
conclusions. The two models use a soil moisture accounting procedure as well as routing
stores. However, their differ markedly in the formulation of their functions. While the GR4J
model uses two non-linear stores and a unit-hydrograph, the TOPM model uses a linear
and an exponential stores, and a pure time delay.

The GR4J and TOPMO models have four and six free parameters respectively. On
gauged catchments, parameter estimation is performed using a local gradient search proce-
dure, applied in combination with a pre-screening of the parameter space (Mathevet, 2005;
Perrin et al., 2008). This optimization procedure has proved to be efficient in past applica-
tions for the conceptual models used here. As objective function, we used the Nash and
Sutcliffe (1970) criterion computed on root square transformed flows (NSVQ). This criterion
was shown to yield a good compromise between different objectives (Oudin et al., 2006).
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2.3 Regionalisation approach

By definition, no discharge data is are available for calibrating parameter sets at ungauged
locationlocations. Thus, other strategies are needed to estimate the parameters of hydro-
logical models for prediction in ungauged catchments.

Oudin et al. (2008) assessed the relative performance of three classical regionalisa-
tion schemes over a set of French catchments: spatial proximity, physical similarity and
regression. Several options within each regionalisation approach were tested and com-
pared. Based on their results, the following choices were made here for the regionalisation
approach, as they offered the best regionalisation solution:

– Poorly modelled catchments were discarded as potential donors: only catchments with
a performance criterion NSVQ in calibration above 0.7 were used as possible donors.

– The spatial proximity approach was used. It consists of transferring parameter sets
from neighbouring catchments to the target ungauged catchment. Proximity of the
ungauged catchments to the gauged ones was quantified by the distances between
catchments centroids.

– The output averaging option was chosen. It consists of computing the mean of the
streamflow simulations obtained on the ungauged catchment with the set of parame-
ters of the donor catchments.

– The number of neighbours was set to 4 and 7 catchments for GR4J and TOPMO
respectively, following the work by Oudin et al. (2008) .

3 Proposed approach: transfer of relative errors by flow groups

3.1 Description of the method

Transferring calibrated model parameters from gauged catchments to ungauged catchment
is a well established approach when parameters cannot be inferred from available data.
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The method presented here extends the parameter transfer approach to the domain of
uncertainty estimation.

The main idea underlying the proposed approach is (i) to treat each donor as if it was
ungauged (simulating flow though the above described regionalisation approach), (ii) char-
acterize the empirical distribution of relative errors for each of these donors, and (iii) transfer
model global uncertainty estimates to the ungauged catchment.

The methodology used to transfer model global uncertainty estimates can be described
by the following steps, illustrated by FigsFig. 1to ??:

1. Selection of catchments
Here we consider a target catchment as ungauged, called TUCungaged catch-
ment (TUC). This catchment has n neighbouring gauged catchments, called
NGC

1

, NGC
2

, . . . ,NGC
n

. If the NGC
i

catchment was now considered ungauged,
one could also consider For the ith catchment NGC

i

, there are n neighbour-
ing catchments, called NGC1

i

, NGC2

i

, . . . ,NGCn

i

catchment with the notation: NGC
i1

,
NGC

i2

, . . . ,NGC
in

. Obviously, the TUC catchment would be excluded from this set of
second order donor catchments.

2. Application of the parameter regionalisation scheme to the donor catchments NGC
i

a. Apply the parameter regionalisation scheme to obtain a simulated discharge time
series for each NGC

i

using neighbours NGCj

i

NGC
ij

(with j between 1 and n).
b. Compute the relative errors of streamflow reconstitution discharge reconstitution

by comparing simulated and observed discharge series for catchment NGC
i

, and
create 10 groups of relative errors according to the magnitude of the simulated
discharge. The groups are based on the quantiles of the simulated discharges,
so that each group is equally populated. The subdivision into To ensure that
each group contains the same number of points, the simulated discharge vari-
able is cut into quantile groups. Using several flow groups allows accounting for
the heteroscedasticity taking into account the possible variability of model errors
characteristics.
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3. Computation of the multiplicative coefficients

a. Put together the relative errors from the donors according to the group they be-
long to., i.e. for a group k, all relative errors of groups k of the n donors are
assembled.

b. Compute the empirical quantiles of the relative errors error distribution within
each group. Each quantile of relative error can be considered a multiplicative
coefficient. These multiplicative coefficients will be used to obtain the prediction
bounds.

4. Computation of the uncertainty bounds for the target ungaged catchment TUC

a. Apply the parameter regionalisation scheme to obtain a simulated discharge
time series for the target ungaged catchment TUC using the parameter sets of
the neighbouring catchments NGC

i

n neighbouring gauged catchments NGC
1

,
NGC

2

, . . . ,NGC
n

.

b. Multiply the simulated discharge by the set of multiplicative coefficients obtained
at Step 3b to obtain the uncertainty bounds. The coefficients calculated for the
group k are used when the simulated discharge belongs to the group k.

Some of the methodological choices made here will be further discussed in Sect.
Note that we based our approach on multiplicative errors and not on additive errors be-

cause using multiplicative coefficients yield prediction bounds for discharge that are always
positive, whereas this might not always be the case with additive errors.

Finally, we mention that the choice to use 10 groups reflects a trade-off between the num-
ber of points available to obtain reasonable estimates of empirical quantiles computed for
each group and an adequate treatment of the variability of the characteristics of errors with
the magnitude of simulated discharge. A larger (lower) number of groups could obviously
be used if more (less) data are available.
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3.2 Why donors should be considered as ungaged?

The first step deserves a brief explanation. The choice to treat donors as ungaged is
related to the well-known fact that the performance of rainfall–runoff models decrease
when they are applied at ungaged locations with a regionalisation scheme, compared
to the case where local data are available for parameter estimation. The quadratic effi-
ciency criterion used here is the C2M (Mathevet et al., 2006) , a bounded version of the
Nash and Sutcliffe (1970) efficiency (NSE) criterion. The criterion is solely based on the
simulated discharges of the deterministic rainfall–runoff and is completely independent of
the application of the uncertainty method. The equations are:

C2M =
NSE

2�NSE
(1)

NSE = 1�
P

T

t=1

�
Qobs

t

�Qsim

t

�
2

P
T

t=1

�
Qobs

t

�µ
o

�
2

(2)

where T is the total number of time-steps, Qobs

t

and Qsim

t

are the observed and simulated
discharge respectively at time-step t, and µ

o

is the mean of the observed discharges. The
advantage of this bounded version is to avoid large negative values which are difficult to
interpret.

Figure 3 illustrates the general decrease of performance for both models on our catch-
ment set when a regionalisation scheme is used instead of a parameter estimation based
on local data. As a consequence we should expect predictive uncertainty at ungauged loca-
tions to be larger than predictive uncertainty at gauged location, i.e., when the rainfall–runoff
model is calibrated with observed discharge data. That is why it is necessary to consider
donors as ungaged. We will come back to this important point in Section 5.
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4 Quantitative evaluation of uncertainty bounds

We assessed the relevance of the 90% uncertainty bounds by focusing on three character-
istics: reliability, sharpness and overall skill. A general introduction to probabilistic evaluation
can be found in Gneiting et al. (2007) and Wilks (2011) , and in Franz and Hogue (2011) for
a more hydrological perspective.

Reliability refers to the statistical consistency of the uncertainty estimation with the ob-
servation, i.e., a 90% prediction interval is expected to contain approximately 90% of the
observations if prediction errors are adequately characterized by the uncertainty estima-
tion. To estimate the reliability, we used the coverage ratio (CR) index, computed as the
percentage of observations contained in the prediction intervals.

Sharpness refers to the concentration of predictive uncertainty. We used a quantitative
index based on the average width The average width (AW) of the uncertainty bounds . is
widely used to quantify sharpness,

AW =
1

T

TX

t=1

⇣
Qu

t

�Ql

t

⌘
(3)

where Ql

t

and Qu

t

are respectively the lower and upper bounds of the prediction interval
[Ql

t

,Qu

t

] at time-step t.
To ease comparison between catchments, we used the width of the 90% intervals of

historical flows interval [Q5, Q95],

AWclim = Q95�Q5 (4)

where Q5 and Q95 are the 5th and 95th percentiles of the flow duration curve, as
a benchmark. The ratio (R) between these two values provides information about the
reduction of uncertainty obtained by the application of the rainfall–runoff and . This value
characterizes the natural variability of the methodology presented here, compared to the
climatology. The value 1�R indicates the percentage of reduction of the average width.
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We call this criterion the average width flows for a given catchment and has the same unit
as the average width of the uncertainty bounds. It can be viewed as the average width
of the uncertainty bounds of a climatological prediction, where the uncertainty bounds are
constant in time and defined by the interval [Q5, Q95]. A graphical illustration is given in
Fig.2.

Comparing the two values AW and AWclim leads to the following dimensionless criterion
called the average with index (AWI) .

AWI = 1� AW
AWclim (5)

It is positive if the average width is reduced uncertainty obtained by the application of the
rainfall–runoff model and the methodology presented here is reduced compared to the cli-
matology, and negative otherwise.

Uncertainty bounds that are as sharp as possible and reasonably reliable are sought: in-
deed sharp intervals that would consistently miss the target would be misleading, while
overly large intervals that would successfully cover the observations at the expense of
sharpness would be of limited value for decision making.

To complete the assessment of the prediction bounds, we used the interval score (Gneit-
ing and Raftery, 2007). The interval score (IS) accounts for both reliability and sharpness
and provides an overall assessment of the quality of the prediction boundsthe width of
an uncertainty bound and the position of the observed value compared to the uncertainty
bound. The scoring rule of the interval score at time-step t is defined as

S
t

=

8
><

>:

�
Qu

t

�Ql

t

�
if Ql

t

Qobs

t

Qu

t�
Qu

t

�Ql

t

�
+ 2

1��

�
Ql

t

�Qobs

t

�
if Qobs

t

<Ql

t�
Qu

t

�Ql

t

�
+ 2

1��

�
Qobs

t

�Qu

t

�
if Qobs

t

>Qu

t

(6)

where Qobs

t

is the observed value at time-step t and � is equal to 90% since a 90% interval
is sought here. See Fig.2 for an illustration of how S is computed.
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IS is the average value of S S
t

over the time series .

IS =
1

T

TX

t=1

S
t

(7)

To ease comparison between catchments and evaluate the skill of the prediction bounds,
we used the unconditional climatology 90% interval [Q5, Q95] as a benchmark, similarly to
what we did for the sharpness index. The climatological prediction gives uncertainty bounds
that are constant in time and defined by the interval [Q5, Q95], where Q5 and Q95 are the
5th and 95th percentiles of the flow duration curve. Thus we computed the interval skill
score

ISS = 1� IS
ISclim (8)

where ISclim is the interval score obtained with the 90% climatological interval
[Q5, Q95](Q5 and Q95 are the 5th and 95th percentiles of the flow duration curve)
. Using skill scores is a very common approach in probabilistic forecasting. It al-
lows to obtain dimensionless scores, similarly to the computation of the well-known
Nash and Sutcliffe (1970) efficiency (NSE) criterion for assessing deterministic perfor-
mance.

The skill score interval skill score ISS is positive when the prediction bounds are more
skillfull than the climatological intervalskilful than climatology, and negative otherwise. The
best value that can be achieved is egal to 1.

5 Results and discussion

5.1 Reliability, sharpness and overall skill

Figure 4 shows the distributions of the three criteria used to evaluate the uncertainty bounds
on the 907 catchments. Boxplots (5th, 25th, 50th, 75th and 95th percentiles) are used to
synthesize the variety of scores over the 907 catchments of the data set.
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5.1.1 Reliability

For both models, half of the catchments (from the lower quartile to the upper quartile) have
CR values between 80 and 95%. The median values are equal to 89 and 90% for GR4J and
TOPMO respectively. Since a value of 90% is expected for 90% prediction bounds, these
results suggest that the prediction bounds are , in most in a majority of cases, able to reflect
the magnitude of errors when predicting runoff hydrographs in ungauged catchments. , even
though it is clear that the perfect value of 90% is not reached in most cases.

The CR values fall below 0.7 70% for around 14% of the catchments with GR4J, and
13% with TOPMO, which indicates cases where the proposed approach yields predictive
bounds that might be are clearly too narrow or biased (i.e., not well centered centred on
the observations). Note that we did not find in the literature any guidance about how to
properly evaluate the CR values. The results presented here may be used as a benchmark
to comparatively assess the ranges of values that would be obtained in future studies.

5.1.2 Sharpness

Regarding sharpness, it can be seen that for GR4J, half of the catchments (from the lower
quartile to the upper quartile) have AWI values between 39 and 67%, while for TOPMO
corresponding values are equal to 38 and 65%. The median values are equal to 57 and
55% for GR4J and TOPMO respectively. The higher the AWI values, the lower the pre-
dictive uncertainty is. Since it would be utopic to expect that no errors will be made when
predicting runoff hydrographs for ungauged catchments, we considered could consider here
uncertainty reduction values between 30 and 80% as quite satisfactory. , even though we
recognize that this statement is arbitrary since there is no widely agreed values to base our
analysis on.

Note that negative values are seen for 7% of the catchments with both GR4J and
TOPMO, which indicates cases where the approach yield yields prediction intervals whose
average width is larger than the width of the historical [Q5, Q95] interval (Q5 and Q95 are
the 5th and 95th percentiles of the flow duration curve).
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5.1.3 Overall skill

Finally, Fig. 4c shows that the predictive skill for both models is positive for most catch-
ments(around 92) for both models. For both models, half of the catchments (from the lower
quartile to the upper quartile) have ISS values between 40 and 70%. The median values
are equal to 61 and 59% for GR4J and TOPMO respectively. While it might be argued that
the unconditional climatology is not a very challenging benchmark, we consider that it is still
a positive and reassuring result.

5.2 Do we need to treat the donor catchments as ungauged?

AAs mentioned earlier, a critical step of the proposed approach is to apply the region-
alisation scheme to obtain a simulated discharge time series for each donor catchment
(Step 2a). This is done because we expect that predictive uncertainty at ungauged locations
is larger than predictive uncertainty at gauged location, i.e., when the rainfall–runoff is
calibrated with observed discharge data. To assess the impact of this methodological
choice, we applied the methodology described earlier to transfer uncertainty estimates,
but this time the donor catchments are treated as gauged.

Similarly to Fig. 4, Fig. 5 shows the distributions of the three criteria obtained in the two
cases: whether or not the donor catchments are treated as ungauged. We can observe for
both models a drop in reliability, whereas sharpness increases. This is because the relative
errors are smaller when the donor catchments are treated as gauged, yielding narrower
but less reliable prediction bounds for the target catchment. Interestingly, this results in skill
scores that are quite similar: improvements in terms of sharpness compensate decreases
in terms of reliability.

Note that reliability is generally considered as a prevailing characteristic over sharpness,
since it reflects the ability of the uncertainty method to adequately reflect the magnitude
of errors we might expect at locations for which prediction is done. Therefore, the benefit
of treating the donor catchments as ungauged clearly appears in Fig. 5a, illustrating the
theoretical argument presented in the methodological section.
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5.3 Do we need to use groups of relative errors?

Another critical step of the proposed approach is to use 10 groups of relative errors. The
groups are defined according to the magnitude of the simulated discharge (Step 2b). This
was done to take into account the fact that the characteristics of errors usually change ac-
cording to the magnitude of the simulated discharge. To assess the impact of this method-
ological choice, we again applied the methodology described earlier to transfer model global
uncertainty estimates, but this time using only one group is used instead of 10.

Figure 6 shows the distributions of the three criteria obtained in the following two cases:
whether 10 groups or only one group of relative errors are used. For both models, reliability
slightly increaseincreases, whereas both sharpness and skill decrease. It appears that im-
provements in terms of reliability are not sufficient to compensate for decreases in terms of
sharpness when overall skill is considered.

While it could be argued that using only one group is the preferable option because of the
slight improvement in terms of reliability, in our opinion, the improvement is not sufficiently
important to compensate for the decrease in terms of uncertainty reduction and skill. We
definitely prefer to maintain different flow groups.

5.4 How do the performances of the rainfall–runoff models relate to the
characteristics of uncertainty bounds?

To gain insights into the possible relationships between the performance of the determin-
istic rainfall–runoff simulations and characteristics of the uncertainty bounds at ungauged
locations, the three criteria used to characterize the uncertainty bounds are plotted in Fig. 7
as function of a quadratic efficiency criteria criterion for the 907 catchments. The quadratic
efficiency criterion is , the C2M defined in Eq. 1.

A trend appears between deterministic performance and characteristics of the prediction
bounds at ungauged locations, for the two rainfall–runoff models. The reliability index ex-
hibits larger variability compared to the sharpness index, and the stronger link is seen for
the skill score. Reliability is relatively less affected by the poor deterministic performance of
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the simulation at ungauged location because there are cases where poor performance at
neighbour neighbouring locations leads (though the transfer of relative errors) to wide pre-
diction bounds that are able to cover the observed values. We can also observe that skill
scores and C2M scores are strongly related, which indicates that when the transfer of model
parameters performs well, the transfer of model global uncertainty estimates performs well
too.

5.5 How does the method perform in data-sparse conditions?

The results presented so far were obtained with a dense network of gauging stations. To
investigate the impact of the network density on our results, we applied a demanding test
called the hydrometrical desert. It consists in excluding potential donors that are closer to
the target ungaged catchment than a given threshold. For example, a threshold distance
of 100 km means that the closest donor catchment must be at least 100 km far from the
ungaged target catchment. This test results in a notable decrease of deterministic perfor-
mance, as shown in Table 2, where the mean of the C2M efficiency criterion over the 907
catchments is reported, for both models. Note that this is a more demanding test than a
decrease of network density, because catchments keeps the possibility to still have close
donors.

Figure 6 shows the distributions of the three criteria obtained by applying the hydro-
metrical desert with threshold values of 10, 20, 50, 100 and 200 km, respectively. A clear
decrease appears with increasing distances. While we should expect that the sharpness of
the uncertainty bounds decreases because of larger errors, and that this situation leads to
a decrease of skill, the results in terms of reliability reveal the limitation of the method. With
increasing distances, the method becomes less able to transfer the appropriate magnitude
of the larger errors.

17



D
i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|

6 Conclusions

Runoff hydrograph prediction in ungauged catchments is notoriously difficult, and attempt-
ing to estimate the predictive uncertainty in that context is a further challenge. We proposed
a method allowing the transfer of model global uncertainty estimates from gauged to un-
gauged catchments. The method extends the parameter transfer approach to the domain
of global uncertainty estimation.

We evaluated the approach over a large set of 907 catchments by assessing three ex-
pected qualities of uncertainty estimates, reliability, sharpness and overall skill. We applied
two different rainfall–runoff models (GR4J and TOPMO) to ensure that the presented re-
sults are not model-specific. Our results demonstrate that the method is generally able
to reflect model errors at ungauged locations and provide reasonable reliability. We applied
two different rainfall- runoff models (GR4J and TOPMO) to ensure that the presented results
are not model-specific.

Although Nonetheless, the following limitations of our study can be mentioned:

1. Although the approach seems promising on average on the large catchment set we
used, it is not able to adequately quantify the predictive uncertainty for some catch-
ments and it failed in some cases.

2. The method might not perform well in in regions with sparser gauging networks than
the one used here, as revealed by the application of a demanding test called the
hydrometrical desert.

3. We only tested the 90 % prediction intervals, whereas the method could be applied to
obtain other prediction intervals. We made this choice to keep the article as simple as
possible, but further work could be done in that direction.

It is worth stressing that although we used a transfer based on spatial proximity, the ap-
proach is presented in this article is not only independent of the rainfall-runoff model but
also of the regionalisation scheme used to obtain deterministic prediction at ungauged lo-
cations, and any . Any other similarity measure could be a basis for transferring residual
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errors. , including physical-based similarity measures. Accordingly, the regionalisation set-
tings, including the output averaging option, could be adapted if deemed more appropriate.

Since we believe that uncertainty quantification has to be considered in any modelling
study, further work should be devoted to the search for similarity measures that do not only
perform well in allowing the transfer of parameter sets from donor to target catchments, but
also allow transferring modelling error characteristics.

Last, we would like to stress that the results presented in this study are expressed in
terms of dimensionless measures. As such, they can provide a basis for future comparisons
when prediction in ungauged catchments with uncertainty estimates is performed.
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Table 1. Characteristics of the 907 catchments. P – precipitation, PE – potential evapotranspiration,
Q – discharge.

Percentiles
0.05 0.25 0.50 0.75 0.95

Catchment area (km2) 27 73 149 356 1788
Mean annual precipitation (mm yr�1) 753 853 978 1176 1665
Mean annual potential evapotranspiration (mm yr�1) 549 631 659 700 772
Mean annual runoff (mm yr�1) 133 233 344 526 1041
Q/P ratio 0.17 0.27 0.34 0.45 0.68
P/PE ratio 1.06 1.25 1.47 1.83 2.9
Median elevation (m) 76 149 314 645 1183
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Table 2. Mean C2M over the 907 catchments of the data set, with calibration (CAL), regionalisation
(REGIO), and with the hydrometrical desert (HD) defined by increasing distance 10, 20, 50, 100 and
200 km.

CAL REGIO HD-10 HD-20 HD-50 HD-100 HD-200

GR4J 0,67 0,51 0,49 0,46 0,43 0,41 0,35
TOPM 0,59 0,47 0,46 0,44 0,41 0,39 0,34

Illustration of the proposed approach – Step 1: in (A), a target catchment (grey) is
considered as ungauged; this catchment has n neighbouring gauged catchments (red).
In (B), if one of the neighbouring catchment is now considered ungauged (green), we also
consider n neighbouring catchments (yellow). Note that the target catchment is excluded
from this set of second order donor catchments.

Illustration of the proposed approach – Step 2a: simulated (green, dashed) and observed
(black) discharge time series for four donor catchments treated as ungauged, i.e., in which
model parameters must be estimated from a regionalisation approach.
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Figure 1. Illustration of the proposed approach– Step 2b: relative errors by flow groups; groups , in
the case of relative errors n= 4 donors. Red catchments are defined according to first-level donors
while green catchments are second-level donors. See the magnitude text for the description of the
simulated dischargefour steps.
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Figure 2. Illustration of the proposed approach – Stepsevaluation of the uncertainty bounds. Q5
and 3a Q95 are the 5th and b: aggregating 95th percentiles of the relative errors observed flow
duration curve. S is the interval score defined at one time-step for the donors catchments; white
dots correspond to situation where the empirical quantiles (5 and 95) observed value is above the
upper limit of the relative errors distribution within each groupuncertainty bound. See the text for
further details.
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Figure 3. Illustration Impact of the proposed approach – Steps 4a and b: simulated
(redregionalisation scheme on deterministic performance, dashed) and observed (black) discharge
time series for as quantified by the ungauged catchments; 90uncertainty bounds bounded C2M
efficiency criterion. Note that in greya very few cases, the performance obtained with the regionali-
sation scheme is better than the performance obtained with calibration. This is possible because of
the output averaging option used by the regionalisation scheme.
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Figure 4. Distributions of the three performance criteria. Boxplots (5th, 25th, 50th, 75th and 95th
percentiles) synthesize the variety of scores over the 907 catchments of the data set.
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Figure 5. Distributions of the three performance criteria, obtained in two cases, (i) when the donor
catchments are treated as ungauged (continous continuous lines) and (ii) when the donor catch-
ments are treated as gauged (dashed lines). Boxplots (5th, 25th, 50th, 75th and 95th percentiles)
synthesize the variety of scores over the 907 catchments of the data set.
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Figure 6. Distributions of the three performance criteria, obtained in two cases, (i) when 10 groups of
relatives errors are used (continous continuous lines) and (ii) when only one group is used (dashed
lines). Boxplots (5th, 25th, 50th, 75th and 95th percentiles) synthesize the variety of scores over the
907 catchments of the data set.
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Figure 7. Impact of deterministic performance, as quantified by the bounded C2M quadratic crite-
rion, on the three performance criteria for the 907 catchments. Note that for easing visualisation, the
lower limits of AWI (b) and ISS (c) values are set to �100% but lower values of AWI are obtained in
7 cases for both models, and lower values are obtained in 18 and 22 cases for GR4J and TOPMO
respectively.
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Figure 8. Impact of the hydrometrical desert on the distributions of the three performance criteria.
Potential donors catchments are not retained as donors when their distance to the target catchment
is below 10, 20, 50, 100 and 200 km. Boxplots (5th, 25th, 50th, 75th and 95th percentiles) synthesize
the variety of scores over the 907 catchments of the data set.
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