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Abstract

Predicting streamflow hydrographs in ungauged catchments is challenging, and accom-
panying the estimates with realistic uncertainty bounds is an even more complex task. In
this paper, we present a method to transfer global uncertainty estimates from gauged to
ungauged catchments and we test it over a set of 907 catchments located in France, us-
ing two rainfall-runoff models. We evaluate the quality of the uncertainty estimates based
on three expected qualities: reliability, sharpness, and overall skill. The robustness of the
method to the availability of information on gauged catchments was also evaluated using a
hydrometrical desert approach. Our results show that the method presents advantageous
perspectives, providing reliable and sharp uncertainty bounds at ungauged locations in a
maijority of cases.

1 Introduction
1.1 Predicting streamflow in ungauged catchments with uncertainty estimates

Predicting the entire runoff hydrograph in ungauged catchments is a challenge that has
attracted much attention during the last decade. In this context, the use of suitable con-
ceptual rainfall-runoff models has proved to be useful, and because traditional calibration
approaches based on observed discharge data cannot be applied to ungauged catchments,
other approaches are required. Various methods have been proposed for the estimation of
rainfall-runoff model parameters in ungauged catchments, as reported by the recent sum-
mary of the Prediction in Ungauged Basins (PUB) decade (Bloschl et al., 2013; Hrachowitz
et al., 2013; Parajka et al., |2013).

The estimation of predictive uncertainty is deemed good practice in any environmental
modelling activity (Refsgaard et al., 2007). In hydrological modelling, the topic has been
widely discussed for years, and no general agreement has yet been reached on how to
adequately quantify uncertainty. In practice, various methodologies are currently used.
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For gauged catchments, the methodologies include Bayesian approaches (see e.g., the
review by [Liu and Guptal, 2007), informal methods related to the GLUE framework (Beven
and Freer, 2001), multi-model approaches (Duan et al., 2007} \Velazquez et al., [2010) and
other global uncertainty quantification methods (Montanari and Brath, [2004; |[Solomatine
and Shresthal, 2009} Weerts et al., 2011}, [Ewen and O’Donnell, 2012). A comprehensive
review of the topic can be found in [Matott et al.| (2009) and |Montanari (2011).

While many methods have been proposed for gauged catchments, only a few have been
proposed for the estimation of predictive uncertainty on ungauged catchments. Mclintyre
et al.| (2005) presented a GLUE-type approach consisting of transferring ensembles of pa-
rameter sets obtained on donor (gauged) catchments to target (ungauged) catchments.
More recently, a framework based on constrained parameter sets was applied in several
studies (Yadav et al.,[2007};|Zhang et al., 2008}, Winsemius et al., [2009; |[Kapangaziwiri et al.,
2012). It is a two-step procedure. The first step consists in estimating with uncertainty var-
ious summary metrics of the hydrograph, also called “signatures” of the catchments, or
gathering other “soft” or “hard” information at the target ungauged catchment. The second
step is the selection of an ensemble of model parameter sets: “acceptable” or “behavioural”
parameter sets are those that yield sufficiently close simulated summary metrics compared
to the regionalised metrics obtained during the first step. A Bayesian approach can also
be used (Bulygina et al., [2011, [2012). The parameter sets are given a relative weight de-
pending on the proximity of their summary metrics compared to regionalised metrics and
depending on a priori information. The reader can refer to Wagener and Montanaril (2011)
for a comprehensive description of both formal and informal methods belonging to this
framework.

One difficulty of the above-mentioned approaches lies in the interpretation of the uncer-
tainty bounds obtained from the parameter ensemble predictions. As noted by [Mcintyre
et al.| (2005) and |Winsemius et al.| (2009), the uncertainty bounds cannot easily be inter-
preted as confidence intervals, and therefore it remains difficult to use them in practice. In
addition, relying solely on an ensemble of model parameter sets to quantify total predictive
uncertainty is often insufficient when imperfect rainfall-runoff models are used.

3

IodeJ UOISSNoSI(]

JodeJ UOISSNoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]



A pragmatic alternative consists in addressing the parameter estimation and the global
uncertainty estimation issues separately. It has been argued by several authors (Montanari
and Brath, 2004; Andreassian et al., |2007; [Ewen and O’Donnell, 2012) that a posteriori
characterisation of modelling errors of a “best” or “optimal” simulation can yield valid uncer-
tainty bounds at gauged locations. In earlier studies, the terms “total uncertainty”, “global
uncertainty” and “post-processing” approach have been used interchangeably to refer to
this approach. The various sources of uncertainty are indeed lumped into a unique error
term with the goal to estimating uncertainty bounds for model outputs.

As stated by |Solomatine and Shresthal (2009),

The historical model residuals (errors) between the model prediction 3 and the
observed data y are the best available quantitative indicators of the discrepancy
between the model and the real-world system or process, and they provide valu-
able information that can be used to assess the predictive uncertainty.

Similarly, one could argue that the model residuals between the model’s prediction and
the observed data at neighbouring gauged locations are, perhaps, the best available in-
dicators of the discrepancy between the model and the real-world system at the target
ungauged location, under the condition that the increased uncertainty introduced by the
regionalisation step compared to the calibration step is adequately taken into account.

The only attempt to apply a global uncertainty estimation approach at ungauged location
that we are aware of is the one presented by |Roscoe et al.| (2012). They quantified uncer-
tainty for river stage prediction at ungauged locations by first estimating the residual errors
at ungauged locations based on residual errors at gauged locations, and then applying
quantile regression to these estimated errors.

1.2 Scope of the paper

The aim of this paper is to provide an estimation of the global uncertainty affecting runoff
prediction at ungauged locations when a rainfall-runoff model and a regionalisation scheme
are used.
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To our knowledge, a framework based on residual errors and global uncertainty quantifi-
cation has not yet been extensively tested in the context of prediction in ungauged catch-
ments. This paper contributes to the search for methods able to provide uncertainty esti-
mates when runoff predictions in ungauged catchments are sought.

2 Data and methods

Our objective is not to develop a new parameter regionalisation approach. Therefore, we
purposely chose to use ready-to-use materials and methods and only focus on the un-
certainty quantification issue. This study can be considered as a follow-up of the work by
Oudin et al.| (2008) on the comparison of regionalisation approaches. We only provide here
an overview of the data set, the rainfall-runoff models and the parameter calibration and
regionalisation approach, since the details can be found in|Oudin et al.| (2008).

2.1 Data set

A database of 907 French catchments was used. They represent various hydrological
conditions, given the variability in climate, topography and geology in France. This set
includes fast-responding Mediterranean catchments with intense precipitation as well as
larger, groundwater-dominated catchments. Some characteristics of the data set are given
in Table |1} Catchments were selected to have limited snow influence, since no snowmelt
module was used in the hydrological modelling. Daily rainfall, runoff, and potential evap-
otranspiration (PE) data series over the 1995-2005 period were available. Meteorological
inputs originate from Météo-France SAFRAN reanalysis (Vidal et al., [2010). PE was esti-
mated using the temperature-based formula proposed by |Oudin et al.| (2005). Hydrological
data were extracted from the HYDRO national archive (www.hydro.eaufrance.fr).

2.2 Rainfall-runoff models

Two daily, continuous lumped rainfall-runoff models were used:
5
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www.hydro.eaufrance.fr

— The GR4J rainfall-runoff model, an efficient and parsimonious daily lumped continu-
ous rainfall-runoff model described by |Perrin et al.[(2003).

— The TOPMO rainfall-runoff model, inspired by TOPMODEL (Beven and Kirkby, [1979).
This version was tested on large data sets and showed performance comparable to
that of the GR4J model, while being quite different (Michel et al., |2003; |Oudin et al.,
2008, 2010).

Using these two models rather than a single one makes it possible to draw more general
conclusions. The two models use a soil moisture accounting procedure as well as routing
stores. However, they differ markedly in the formulation of their functions. While the GR4J
model uses two non-linear stores and a unit-hydrograph, the TOPMO model uses a linear
and an exponential store, and a pure time delay.

The GR4J and TOPMO models have four and six free parameters, respectively. On
gauged catchments, parameter estimation is performed using a local gradient search pro-
cedure, applied in combination with pre-screening of the parameter space (Mathevet, 2005|;
Perrin et al., 2008). This optimisation procedure has proved to be efficient in past applica-
tions for the conceptual models used here. As an objective function, we used the [Nash and
Sutcliffe| (1970) criterion computed on root square transformed flows (NSVQ). This criterion
was shown to yield a good compromise between different objectives (Oudin et al., [2006).

2.3 Regionalisation approach

By definition, no discharge data are available for calibrating parameter sets at ungauged
locations. Therefore, other strategies are needed to estimate the parameters of hydrological
models for prediction in ungauged catchments.

Oudin et al.| (2008) assessed the relative performance of three classical regionalisa-
tion schemes over a set of French catchments: spatial proximity, physical similarity and
regression. Several options within each regionalisation approach were tested and com-
pared. Based on their results, the following choices were made here for the regionalisation
approach, as they offered the best regionalisation solution:
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— Poorly modelled catchments were discarded as potential donors: only catchments with
a performance criterion NSVQ in calibration above 0.7 were used as possible donors.

— The spatial proximity approach was used. It consists of transferring parameter sets
from neighbouring catchments to the target ungauged catchment. The proximity of
the catchments to the gauged catchments was quantified by the distances between
catchment centroids.

— The output averaging option was chosen. It consists of computing the mean of the
streamflow simulations obtained on the ungauged catchment with the set of parame-
ters of the donor catchments.

— The number of neighbours was set to four and seven catchments for GR4J and
TOPMO, respectively, following the work reported by |Oudin et al.| (2008).

3 Proposed approach: transfer of relative errors by flow groups
3.1 Description of the method

Transferring calibrated model parameters from gauged catchments to ungauged catch-
ments is a well-established approach when parameters cannot be inferred from available
data. The method presented here extends the parameter transfer approach to the domain
of uncertainty estimation.

The main ideas underlying the proposed approach are to (i) treat each donor as if it
was ungauged (simulating flow through the above described regionalisation approach), (ii)
characterise the empirical distribution of relative errors (understood as the ratio between
observed and simulated flows, i.e. considering a multiplicative model error) for each of these
donors and (iii) transfer global uncertainty estimates to the ungauged catchment.

The methodology used to transfer global uncertainty estimates can be described by the
following steps, illustrated in Fig. [T}
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1. Selection of catchments
Here we consider a target ungauged catchment (TUC). This catchment has n neigh-
bouring gauged catchments, called NGC1, NGC,, ...,NGC,,, which will be considered
as donors for the TUC. For the ith catchment NGC;, one can also select n neighbour-
ing catchments with the notation: NGC;1, NGC;», ...,NGC;,,, which can be considered
as donors for NGC;. Obviously, the TUC catchment would be excluded from this set
of second-order donor catchments.

2. Application of the parameter regionalisation scheme to the donor catchments NGC;

a. Apply the parameter regionalisation scheme to obtain a simulated discharge time
series for each NGC; using neighbours NGC;; (with j between 1 and n).

b. Compute the relative errors of discharge reconstitution (i.e. the ratio between
observed and simulated discharges) by comparing simulated and observed dis-
charge series for catchment NGC;, and create 10 groups of relative errors ac-
cording to the magnitude of the simulated discharge. To ensure that each group
contains the same number of points, we split the simulated discharge range into
10 sub-groups of equal size, using the deciles of the simulated discharge distribu-
tion. Using several flow groups allows taking into account the possible variability
of model error characteristics.

3. Computation of the multiplicative coefficients applicable to simulated discharge

a. Put together all the relative errors from the donors NGC;; (with j between 1 and
n) according to the group they belong to, i.e. all relative errors of groups k of the
n donors are assembled into a master group k. This is done for k£ between 1 and
10.

b. Compute the empirical quantiles of the relative error distribution within each mas-
ter group k (with k£ between 1 and 10). Since relative errors were computed (i.e.
ratio of simulated to observed discharge values), each quantile of relative er-
rors can be considered a multiplicative coefficient applicable to the simulated

8

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]



discharge. These multiplicative coefficients will be used to obtain the prediction
bounds.

4. Computation of the uncertainty bounds for the target ungauged catchment TUC

a. Apply the parameter regionalisation scheme to obtain a simulated discharge time
series for the target ungauged catchment TUC using the parameter sets of the n
neighbouring gauged catchments NGC;1, NGC,,...,NGC,,.

b. Multiply the simulated discharge by the set of multiplicative coefficients obtained
at Step 3b to obtain the uncertainty bounds. The coefficients calculated for the
group k are used when the simulated discharge belongs to the group k.

Note that we based our approach on multiplicative errors and not on additive errors be-
cause using multiplicative coefficients yields prediction bounds for discharge that are always
positive, whereas this might not always be the case with additive errors.

Finally, we mention that the choice to use 10 groups reflects a trade-off between the num-
ber of points available to obtain reasonable estimates of empirical quantiles computed for
each group and an adequate treatment of the variability of the characteristics of errors with
the magnitude of simulated discharge. A larger (lower) number of groups could obviously
be used if more (fewer) data are available (see discussion in section 5.3) or based on the
analysis of the statistical properties of errors.

3.2 Why should donors be considered as ungauged?

The first step deserves a brief explanation. The choice to treat donors as ungauged is
related to the well-known fact that the performance of rainfall-runoff models decreases
when they are applied at ungauged locations with a regionalisation scheme, compared to
when local data are available for parameter estimation. The quadratic efficiency criterion
used here is the C2M (Mathevet et al., 2006), a bounded version of the [Nash and Sutcliffe
(1970) efficiency (NSE) criterion. The criterion is based solely on the simulated discharges
of the deterministic rainfall-runoff and is completely independent of the application of the
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uncertainty method. The equations are:

NSE
CZM_72—NSE (1)
T obs __ nsim 2
NSE =1 — Zt:l ( t Qt ) (2)

Zthl ( ?bs - :“0)2

where T is the total number of time-steps, Q9*° and Q™ are the observed and simulated
discharge, respectively, at time-step ¢, and u, is the mean of the observed discharges. This
bounded version has the advantage of avoiding large negative values which are difficult to
interpret.

Figure [Q]illustrates the general performance decrease for both models on our catchment
set when a regionalisation scheme is used instead of a parameter estimation based on local
data. As a consequence, predictive uncertainty at ungauged locations we should expect
to be larger than predictive uncertainty at gauged locations, i.e. when the rainfall-runoff
model is calibrated with observed discharge data. That is why donors must be considered
as ungauged. We will come back to this important point in Section

4 Quantitative evaluation of uncertainty bounds

We assessed the relevance of the 90 % uncertainty bounds by focusing on three character-
istics: reliability, sharpness and overall skill. A general introduction to probabilistic evaluation
can be found in|Gneiting et al.| (2007)) and \Wilks| (2011), and in[Franz and Hogue| (2011) for
a more hydrological perspective.

Reliability refers to the statistical consistency of the uncertainty estimation with the ob-
servation, i.e. a 90 % prediction interval is expected to contain approximately 90 % of the
observations if prediction errors are adequately characterised by the uncertainty estimation.
To estimate reliability, we used the coverage ratio (CR) index, computed as the percentage
of observations contained in the prediction intervals.
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Sharpness refers to the concentration of predictive uncertainty. The average width (AW)
of the uncertainty bounds is widely used to quantify sharpness:

1 a4 U l
AW = =5 (@ - @) )

t=1

where Q! and Q¥ are, respectively, the lower and upper bounds of the prediction interval
[QL, Q%] at time-step .

To ease comparison between catchments, we used the width of the 90 % interval [Q5,
Q95],

AWCI™ — Q95 — Q5 (4)

where Q5 and Q95 are the 5th and 95th percentiles of the flow duration curve. This value
characterises the natural variability of the flows for a given catchment and has the same
unit as the average width of the uncertainty bounds. It can be viewed as the average width
of the uncertainty bounds of a climatological prediction, where the uncertainty bounds are
constant over time and defined by the interval [Q5, Q95]. A graphical illustration is given in
Figl2l

Comparing the two values AW and AW®™ |eads to the following dimensionless criterion
called the average with index (AWI):
AWI=1-— % (5)
It is positive if the uncertainty obtained by applying the rainfall-runoff model and the method-
ology presented here is reduced compared to the climatology, and negative otherwise.

Uncertainty bounds that are as sharp as possible and reasonably reliable are sought:
sharp intervals that would consistently miss the target would be misleading, while overly
large intervals that would successfully cover the observations at the expense of sharpness
would be of limited value for decision making.
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To complete the assessment of the prediction bounds, we used the interval score (Gneit-
ing and Raftery, [2007). The interval score (IS) accounts for both the width of an uncertainty
bound and the position of the observed value compared to the uncertainty bound. The
scoring rule of the interval score at time-step t is defined as:

(Qr-aQ}) if QF < Q¢ < Q¥
Se=19 (QF — Q1) + 25 (@1 — Q) i Q™ < Q) (6)
(@ — Qi)+ 125 (@ — Q) QP >Qy

where Q;’bs is the value observed at time-step ¢t and 3 is equal to 90 % since a 90 % interval
is sought here. See Fig[2]for an illustration of how S is computed.
IS is the average value of S; over the time series:

1 T
IS:T;;& (7)

To ease comparison between catchments and evaluate the skill of the prediction bounds,
we used the 90 % interval [Q5, Q95] as a benchmark, similar to what we did for the sharp-
ness index. The climatological prediction gives uncertainty bounds that are constant in time
and defined by the interval [Q5, Q95], where Q5 and Q95 are the 5th and 95th percentiles
of the flow duration curve. Thus we computed the interval skill score:

IS
|sclim
where ISM is the interval score obtained with the 90 % interval [Q5, Q95]. Using skill scores
is a very common approach in probabilistic forecasting. Dimensionless scores can thus be
obtained, in much the same way as the computation of the well-known |Nash and Sutcliffe
(1970) efficiency (NSE) criterion for assessing deterministic performance.

The interval skill score (ISS) is positive when the prediction bounds are more skilful than
climatology, and negative otherwise. The best value that can be achieved is equal to 1.
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5 Results and discussion
5.1 Reliability, sharpness and overall skill

Figure 4] shows the distributions of the three criteria used to evaluate the uncertainty bounds
on the 907 catchments. Boxplots (5th, 25th, 50th, 75th and 95th percentiles) are used to
summarise the variety of scores over the 907 catchments of the data set.

5.1.1 Reliability

For both models, half of the catchments (from the lower quartile to the upper quartile) have
CR values between 80 and 95 %. The median values are equal to 89 and 90 % for GR4J
and TOPMO, respectively. Since a value of 90 % is expected for 90 % prediction bounds,
these results suggest that the prediction bounds are in a majority of cases able to reflect
the magnitude of errors when predicting runoff hydrographs in ungauged catchments, even
though it is clear that the perfect value of 90 % is not reached in most cases.

The CR values fall below 70 % for around 14 % of the catchments with GR4J and 13 %
with TOPMO, which indicates cases where the proposed approach yields predictive bounds
that are clearly too narrow or biased (i.e. not well centred on the observations). Note that we
did not find any guidance on how to properly evaluate the CR values in the literature. The
results presented here may be used as a benchmark to comparatively assess the ranges
of values that would be obtained in future studies.

5.1.2 Sharpness

Regarding sharpness, it can be seen that for GR4J, half of the catchments (from the lower
quartile to the upper quartile) have AWI values between 39 and 67 %, while for TOPMO cor-
responding values are equal to 38 and 65 %. The median values are equal to 57 and 55 %
for GR4J and TOPMO respectively. The higher the AWI values, the lower the predictive un-
certainty is. Since it would be utopic to expect that no errors will be made when predicting
runoff hydrographs for ungauged catchments, we could consider here uncertainty reduc-
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tion values between 30 and 80 % as quite satisfactory, even though we recognise that this
statement is arbitrary since there are no widely agreed values to base our analysis on.

Note that negative values are seen for 7% of the catchments with both GR4J and
TOPMO, which indicates cases where the approach yields prediction intervals whose av-
erage width is larger than the width of the [Q5, Q95] interval (Q5 and Q95 are the 5th and
95th percentiles of the flow duration curve).

5.1.3 Overall skill

Finally, Fig. 4t shows that the predictive skill for both models is positive for most catchments.
For both models, half of the catchments (from the lower quartile to the upper quartile) have
ISS values between 40 and 70 %. The median values are equal to 61 and 59 % for GR4J
and TOPMO, respectively. While it might be argued that the unconditional climatology is not
a very challenging benchmark, we consider that it is still a positive and reassuring result.

5.2 Do we need to treat the donor catchments as ungauged?

As mentioned earlier, a critical step of the proposed approach is to apply the regionalisation
scheme to obtain a simulated discharge time series for each donor catchment (Step 2a).
To assess the impact of this methodological choice, we applied the methodology described
earlier to transfer uncertainty estimates, but this time the donor catchments are treated as
gauged.

Similar to Fig. [4] Fig. [5] shows the distributions of the three criteria obtained in the two
cases: whether or not the donor catchments are treated as ungauged. We can observe
a drop in reliability for both models, whereas sharpness increases. This is because the rela-
tive errors are smaller when the donor catchments are treated as gauged, yielding narrower
but less reliable prediction bounds for the target catchment. Interestingly, this results in skill
scores that are quite similar: improvements in terms of sharpness compensate decreases
in terms of reliability.
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Note that reliability is generally considered as a prevailing characteristic over sharpness,
since it reflects the ability of the uncertainty method to adequately reflect the magnitude
of errors we might expect at locations for which prediction is done. Therefore, the benefit
of treating the donor catchments as ungauged clearly appears in Fig. [B, illustrating the
theoretical argument presented in the methodological section.

5.3 Do we need to use groups of relative errors?

Another critical step of the proposed approach is to use 10 groups of relative errors. The
groups are defined according to the magnitude of the simulated discharge (Step 2b). This
was done to take into account the fact that the characteristics of errors usually change ac-
cording to the magnitude of the simulated discharge. To assess the impact of this method-
ological choice, we again applied the methodology described earlier to transfer global un-
certainty estimates, but this time using only one group instead of 10.

Figure [6] shows the distributions of the three criteria obtained in the following two cases:
whether 10 groups or only one group of relative errors are used. For both models, reliability
slightly increases when going from 10 groups to a single group, whereas both sharpness
and skill decrease. It appears that improvements in terms of reliability are not sufficient to
compensate for decreases in terms of sharpness when overall skill is considered. This can
be understood by the fact that considering a single group instead of a few groups widens
the uncertainty bounds on average, since the errors are generally heteroscedastic.

Obviously, although it appears that a single group is not enough to account for the vari-
ability of properties of relative errors, 10 groups may not provide significant performance
gains and a compromise may be sought. The visual inspection of scatter plots between rel-
ative errors and simulated discharge reveals that the shapes can be very different between
catchments, hence potentially requiring different numbers of groups. Besides, the simula-
tion objectives, e.g. simulating intermediate or extreme flows, may also be considered when
choosing the number of flow groups. Hence it appears that the number of groups may need
further trial-and-error tests in specific applications to obtain the best compromise.
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Although our tests reveal that the number of groups is a sensitive setting of the method,
further research would be needed to evaluate whether different numbers of groups can be
advised for specific objectives or conditions.

5.4 How does the performance of the rainfall-runoff models relate to the
characteristics of uncertainty bounds?

To gain insights into the possible relationships between the performance of the deterministic
rainfall-runoff simulations and the characteristics of the uncertainty bounds at ungauged
locations, the three criteria used to characterise the uncertainty bounds are plotted in Fig.[7]
as a function of a quadratic efficiency criterion for the 907 catchments, the C2M defined in
Eq.[1]

A trend appears between deterministic performance and characteristics of the prediction
bounds at ungauged locations, for the two rainfall-runoff models. The reliability index ex-
hibits greater variability compared to the sharpness index, and the stronger link is seen for
the skill score. Reliability is relatively less affected by the poor deterministic performance of
the simulation at an ungauged location because there are cases where poor performance
at neighbouring locations leads (though the transfer of relative errors) to wide prediction
bounds that are able to cover the observed values. We can also observe that skill scores
and C2M scores are strongly related, which indicates that when the transfer of model pa-
rameters performs well, the transfer of global uncertainty estimates also performs well.

5.5 How does the method perform in data-sparse conditions?

The results presented so far were obtained with a dense network of gauging stations. To
investigate the impact of the network density on our results, we applied a demanding test
called the hydrometrical desert. It consists in excluding potential donors that are closer to
the target ungauged catchment than a given threshold. For example, a threshold distance of
100 km means that the closest donor catchment must be at least 100 km from the ungauged
target catchment. This test results in a notable decrease of deterministic performance, as

16

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]



shown in Table [2] where the mean of the C2M efficiency criterion over the 907 catchments
is reported for both models. Note that this is a more demanding test than a decrease of
network density, because catchments retain the possibility of still having close donors.

Figure [8| shows the distributions of the three criteria obtained by applying the hydro-
metrical desert with threshold values of 10, 20, 50, 100 and 200 km, respectively. A clear
decrease appears with increasing distances. While we should expect that the sharpness of
the uncertainty bounds decreases because of larger errors, and that this situation leads to
a decrease of skill, the results in terms of reliability reveal the limitation of the method. With
increasing distances, the method becomes less able to transfer the appropriate magnitude
of the larger errors.

6 Conclusions

Runoff hydrograph prediction in ungauged catchments is notoriously difficult, and attempt-
ing to estimate the predictive uncertainty in that context is a further challenge. We have
proposed a method allowing the transfer of global uncertainty estimates from gauged to un-
gauged catchments. The method extends the parameter transfer approach to the domain
of global uncertainty estimation.

We evaluated the approach over a large set of 907 catchments by assessing three ex-
pected qualities of uncertainty estimate: reliability, sharpness and overall skill. We applied
two different rainfall-runoff models (GR4J and TOPMO) to ensure that the results presented
are not model-specific. These results demonstrate that the method is generally able to re-
flect model errors at ungauged locations and provide reasonable reliability.

Nonetheless, the following limitations to the study can be mentioned:

1. Although the approach seems promising on average on the large catchment set we
used, it is not able to adequately quantify the predictive uncertainty for some catch-
ments and it failed in some cases.
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2. The method might not perform well in in regions with sparser gauging networks than
the one used here, as revealed by the application of a demanding test called the
hydrometrical desert.

3. We only tested the 90 % prediction intervals, whereas the method could be applied to
obtain other prediction intervals. We made this choice to keep the article as simple as
possible, but further work could be done in that direction.

4. We also noted that the number of flow groups used in the approach may be a sen-
sitive setting of the method, and further research would be needed to provide more
detailed guidance on this point depending on the structure of the model errors and the
modelling objectives.

It is worth stressing that although we used a transfer based on spatial proximity, the ap-
proach presented in this article is not only independent of the rainfall-runoff model but also
of the regionalisation scheme used to obtain deterministic prediction at ungauged loca-
tions. Any other similarity measure could be a basis for transferring residual errors, includ-
ing physical-based similarity measures. Accordingly, the regionalisation settings, including
the output averaging option, could be adapted if deemed more appropriate.

Since we believe that uncertainty quantification has to be considered in any modelling
study, further work should be devoted to the search for similarity measures that not only
perform well in allowing the transfer of parameter sets from donor to target catchments, but
also allow transferring modelling error characteristics.

Last, we would like to stress that the results presented in this study are expressed in
terms of dimensionless measures. As such, they can provide a basis for future comparisons
when prediction in ungauged catchments with uncertainty estimates is performed.
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Table 1. Characteristics of the 907 catchments. P — precipitation, PE — potential evapotranspiration,

Q — discharge.
Percentiles

0.05 025 050 0.75 0.95
Catchment area (km?) 27 73 149 356 1788
Mean annual precipitation (mmyr—1) 753 853 978 1176 1665
Mean annual potential evapotranspiration (mmyr—!) 549 631 659 700 772
Mean annual runoff (mmyr—1) 133 233 344 526 1041
Q/ P ratio 0.17 027 0.34 045 0.68
P/PE ratio 1.06 125 147 183 29
Median elevation (m) 76 149 314 645 1183
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Table 2. Mean C2M over the 907 catchments of the data set, with calibration (CAL), regionalisation
(REGIO), and with the hydrometrical desert (HD) defined by increasing distance 10, 20, 50, 100 and
200 km.

CAL REGIO HD-10 HD-20 HD-50 HD-100 HD-200

GR4J 0.67 0.51 0.49 0.46 0.43 0.41 0.35
TOPMO 0.59 0.47 0.46 0.44 0.41 0.39 0.34
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Figure 1. lllustration of the proposed approach, in the case of n =4 donors. Red catchments are
first-level donors while green catchments are second-level donors. For Step 2b, the simulated dis-
charge variable (x axis) is split into 10 equal-size groups. In Step 3, white dots represent the values
of the upper and lower multiplicative coefficients for each group. See the text for the description of
the four steps.
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Figure 2. lllustration of the evaluation of the uncertainty bounds. Q5 and Q95 are the 5th and 95th
percentiles of the flow duration curve. S is the interval score defined at one time-step for the situation
where the observed value is above the upper limit of the uncertainty bound. See the text for further
details.

27

JodeJ UOISSnoSI(]



GR4J TOPMO

REGIONAL - UNGAGED
o o
< b

|

o

o
|

-1.04

1o 05 0.0 05 10 -1.0 05 0.0 05 10
LOCAL - GAUGED

Figure 3. Impact of the regionalisation scheme on deterministic performance, as quantified by the
bounded C2M efficiency criterion. Note that in a very few cases, the performance obtained with the
regionalisation scheme is better than the performance obtained with calibration. This is possible
because of the output averaging option used by the regionalisation scheme.
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Figure 4. Distributions of the three performance criteria. Boxplots (5th, 25th, 50th, 75th and 95th

percentiles) summarise the variety of scores over the 907 catchments of the data set.
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Figure 6. Distributions of the three performance criteria, obtained in two cases, (i) when 10 groups
of relative errors are used (solid lines) and (ii) when only one group is used (dashed lines). Boxplots
(5th, 25th, 50th, 75th and 95th percentiles) summarise the variety of scores over the 907 catchments
of the data set.
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Figure 7. Impact of deterministic performance, as quantified by the bounded C2M quadratic crite-
rion, on the three performance criteria for the 907 catchments. Note that for easier visualisation, the
lower limits of the AWI (b) and ISS (c) values are set to —100 % but lower AWI values are obtained
in seven cases for both models, and lower ISS values are obtained in 18 and 22 cases for GR4J and
TOPMO, respectively.
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Figure 8. Impact of the hydrometrical desert on the distributions of the three performance criteria.
Potential donor catchments are not retained as donors when their distance to the target catchment is
below 10, 20, 50, 100 and 200 km. Boxplots (5th, 25th, 50th, 75th and 95th percentiles) summarise
the variety of scores over the 907 catchments of the data set.
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