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ABSTRACT 15 

Planning of drought relief and floods in developing countries is greatly hampered by lack of a 16 

sufficiently dense network of weather stations measuring precipitation. In this paper we test 17 

the utility of three satellite products to augment the ground based precipitation measurement 18 

to provide improved spatial estimates of rainfall. The three products are:  Tropical Rainfall 19 

Measuring Mission (TRMM) product (3B42), Multi-Sensor Precipitation Estimate-20 

Geostationary (MPEG) and Climate Forecast System Reanalysis (CFSR). The accuracy of 21 

three products is tested in the Lake Tana Basin in Ethiopia where 38 weather stations were 22 

available in 2010 with a full record of daily precipitation amounts.  Daily gridded satellite 23 

based rainfall estimates were compared to: (1) point observed ground rainfall and (2) areal 24 

rainfall in the major river sub-basins of Lake Tana. The result shows that the MPEG and 25 

CFSR satellite provided most accurate rainfall estimates. On average, for 38 stations 78 and 26 

86% of the observed rainfall variation is explained by MPEG and CFSR data, respectively, 27 

while TRMM explained only 17% of the variation. Similarly, the areal comparison indicated a 28 

better performance for both MPEG and CFSR data in capturing the pattern and amount of 29 

rainfall. MPEG and CFSR also have a lower RMSE compared to the TRMM 3B42 satellite 30 
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rainfall. The Bias indicated that TRMM 3B42 was, on average, unbiased, whereas MPEG 1 

consistently underestimated the observed rainfall. CFSR often produced large overestimates. 2 

Key words: MPEG, CFSR, TRMM 3B42, Precipitation, Lake Tana, Blue Nile, Abay.  3 

1. Introduction 4 

Precipitation is a major component of the water cycle and is responsible for depositing 5 

approximately 505,000 km
3
 (or on the average 990 mm) of the fresh water on the planet 6 

(Ramakrishna and Nasreen, 2013). It is one of the major water balance component of the 7 

global water budget. Although the spatial and temporal variability of precipitation is 8 

important, unless large numbers of rain gauge stations are available, capturing variability is 9 

difficult (Chaubey et al., 1999;Pardo-Igúzquiza, 1998). However, ground based rainfall 10 

observation station networks are often unevenly and sparsely distributed in developing 11 

countries (Kaba et al., 2014). For example Rahad, Dindir and Welaka Sub-basins in the Blue 12 

Nile Basins, Ethiopia had each only one rainfall station despite catchment area greater than 13 

5,000 km
2
. This situation is not likely to improve in the near future. This is far below the 14 

World Meteorological Organization (WMO) standard of one station for 100 to 250 km
2
 of 15 

area for mountainous region (WMO, 1994). The poor coverage introduces large uncertainties 16 

in rainfall distribution estimation and will evidently undermine the dependability of 17 

hydrologic models used in simulating flow (both low flows and floods), sediment load and 18 

nutrient fluxes (Kaba et al., 2014). Unavailability of good quality rainfall data render 19 

hydrologists reluctant to confidently deal with pressing and unprecedented societal questions 20 

vis-à-vis food deficits, global warming, climate change, water scarcity and water shortage 21 

issues (Baveye, 2013). 22 

The growing availability of high-resolution (and near real time) satellite rainfall products can 23 

help hydrologists to obtain more accurate precipitation data, particularly in developing 24 

countries and remote locations where weather radars are absent and conventional rain gauges 25 

are sparse (Creutin and Borga, 2003;Kidd, 2001). Satellite derived rainfall estimates have 26 

become a powerful tool to supplement the ground based rainfall estimates. Recently earth 27 

observation data for environmental or societal purposes has become readily available through 28 

earth observation (EO) satellites and data distribution systems. Some of the freely available 29 

spatially distributed rainfall estimates are Tropical Rainfall Measuring Mission (TRMM) 30 

(Simpson et al., 1988), EUMETSAT’s Meteorological Product Extraction Facility (MPEF) 31 
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Multi-Sensor Precipitation Estimate-Geostationary (MPEG), Climate Forecast System 1 

Reanalysis (CFSR), the NOAA/Climate Prediction Centre morphing technique (CMORPH), 2 

Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network 3 

(PERSIANN), the Naval Research Laboratory’s blended product (NRLB) and more.  4 

Passive Microwave (PM) and Thermal Infrared (TIR) sensors are the most widely used 5 

channels of the electromagnetic spectrum for satellite rainfall estimation (Huffman et al., 6 

2007;Negri et al., 1984;Joyce et al., 2004;Kidd et al., 2003). A TIR sensor provides useful 7 

information on storm clouds based on top cloud temperature. The assumption in the TIR is 8 

that relatively cold clouds are associated with thick and high clouds that tend to be associated 9 

with producing high rainfall rates (Haile et al., 2010). One of the limitations with a TIR sensor 10 

is that it only uses the top cloud temperature from which the depth of the cloud is inferred 11 

(Todd et al., 2001) and also underestimates warm rain and misidentifies cirrus clouds as 12 

raining (Dinku et al., 2011). Microwave sensors utilize a more direct way of retrieving 13 

precipitation from satellite; they gather information about the rain rather than the cloud (Todd 14 

et al., 2001). The absorption of microwave radiation by liquid water and its scattering by ice 15 

particles can be related to rainfall over ocean and over land (Ferraro, 1997). The disadvantage 16 

of PM sensors is that they are not available on geostationary satellites, which make them to 17 

have a longer latency (Heinemann et al., 2002). A combination of both, microwave (MW) 18 

data from polar orbiting satellites and IR data from geostationary systems, is an obvious 19 

approach to overcome some of the shortcomings in the estimation of precipitation. In this 20 

study, a satellite estimated rainfall by TRMM 3B42 (hereafter, simply “TRMM”), MPEG and 21 

CFSR are validated by comparing the estimates with the ground observation rainfall data in 22 

the Lake Tana Basin Ethiopia. 23 

Validation of satellite rainfall products in the Ethiopian highlands will give an insight into 24 

how the different products perform in this region. In general, three seasons exist in Ethiopia.  25 

The main rainfall season from June to September called "Kremt" season accounts a large 26 

proportion of the annual rainfall approximately 86%, the dry season extends from October to 27 

January called "Bega" followed by a small rainy season called "Belg”.  The most important 28 

weather systems that cause rain over the country includes Intertropical Convergence Zone 29 

(ITCZ), Read Sea Convergence Zone (RSCZ), Tropical Easterly Jet (TEJ) and Somalia Jet 30 

(NMSA, 1996;Seleshi and Zanke, 2004). The main rainy season were found to be 31 

significantly correlated to the El Niño-Southern Oscillation (ENSO) (Camberlin, 1997) and 32 
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most of the drought seasons in Ethiopia are more likely to occur during warm ENSO events  1 

(Seleshi and Demaree, 1995). 2 

A number of studies have been done to validate TRMM in the Ethiopian highlands (Dinku et 3 

al., 2010;Tsidu, 2012). These studies have focused on comparison of gridded satellite rainfall 4 

estimation to a ground rainfall observation data. This study validates satellite rainfall products 5 

in two ways: comparing satellite gridded rainfall data to point observation data and second by 6 

comparing satellite areal rainfall estimates to areal ground observed rainfall interpolated by 7 

Thiessen Polygon method for the major sub-basins of Lake Tana. Lake Tana Basin is selected 8 

to take the advantage of a relatively higher rainfall observation station density and availability 9 

of daily rainfall data.  These rainfall products are selected for comparison given the fact that 10 

the state of the art algorithms are used to generate them. They are also freely available for use 11 

in Africa. For example, Bahir Dar University in collaboration with Tana Sub-Basin Office and 12 

University of Twente the Netherlands have established a GEONETCast ground receiving 13 

station (Wale et al., 2011), that makes MPEG satellite rainfall product locally available. In 14 

addition, all three rainfall estimates (TRMM, CFSR and MPEG) have a relatively high spatial 15 

resolution, global coverage and high temporal resolution.  16 

The general objective of the study is to examine which of the three freely available satellite 17 

products give the best estimates of spatial distribution of rainfall in mountainous terrain of 18 

Ethiopia. The satellite estimates are compared with relatively dense network of ground rainfall 19 

observation stations distributed across the Lake Tana Basin for year 2010 for which we were 20 

able to obtain the most dense distribution of daily precipitation data. 21 

1.1. Description of Study Area 22 

The study is carried out in the Lake Tana Basin source of Blue Nile River in the North-West 23 

highlands of Ethiopia, with a total catchment area of 15,000 km
2
. The lake covers around 24 

3,060 km
2
 at an altitude of 1786 m.  The lake is located at 12

o
00’N, 37

o
15’E around 564 km 25 

from the capital Addis Ababa (Wale, 2008). The basin has a complex topography with a 26 

significant elevation variations ranging from 1786 to 4107 m The long-term annual average 27 

rainfall from 1994 to 2008 ranges from 2500 mm south of Lake Tana to 830 mm West of 28 

Lake Tana. Fig. 1 shows the spatial distribution of rain gauge stations network in and around 29 

Lake Tana Basin with TRMM and CFSR grid.  30 
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1.2.  Data availability  1 

The data required for this study, gauge observed rainfall data is collected from the Ethiopian 2 

National Meteorological Agency (ENMA). Long-term average annual rainfall from 1994 to 3 

2008, daily rainfall data for the year 2010 and station location and elevation for 51 stations in 4 

and around the Lake Tana Basin are obtained from ENMA. Some stations did not record the 5 

rainfall consistently on a daily basis or for other stations the location and the elevation were 6 

not known. Thirty eight stations remained that have continuous daily rainfall data for the 7 

selected study period (2010). Of these 38, there are seven stations classified as Class 1 8 

(synoptic stations) where all meteorological parameters are measured every one hour. 9 

Majority of the seventeen stations are Class 3 (Ordinary stations) where only rainfall, 10 

maximum and minimum temperature are collected on daily basis. The remaining fourteen 11 

stations are Class 4 only daily rainfall amounts are recorded.  12 

Part of the MPEG data, at 15 minutes temporal interval is acquired in near real time from the 13 

low-cost satellite image reception station established at Bahir Dar University, Institute of 14 

Technology (Wale et al., 2011). The daily aggregated MPEG data from 00:00 till 23:45 UTC, 15 

in mm/day, is available online at: ftp://ftp.itc.nl/pub/mpe/msg/. TRMM gridded rainfall 16 

estimates are collected from the ftp site, available at: 17 

ftp://disc2.nascom.nasa.gov/data/s4pa/TRMM_L3/TRMM_3B42_daily/. The daily gridded CFSR 18 

rainfall data can be collected from http://rda.ucar.edu/datasets/ds094.1/.  19 

2. Methods  20 

The predicted satellite rainfall estimate and observed gauged rainfall data have different 21 

spatial and temporal scales. The ground observation consists of a 38 daily observations of 22 

point rainfall amounts irregularly distributed across the Lake Tana Basin (Fig. 1). The MPEG, 23 

TRMM and CFSR rainfall consists of spatially distributed time series regular gridded data 24 

with a spatial resolution of 3 km, 0.25
o
 (≈27 km at the equator) and 38 km respectively. A 25 

detailed description of TRMM, MPEG and CFSR data is provided in the Appendix A. The 26 

average annual rainfall from 1994 to 2008 is plotted against the station elevation to see the 27 

stations likely affected by convective precipitation and those very much affected by a 28 

combination of orographic and convective precipitation.  Backwards elimination technique 29 

was used to obtain the linear trends with elevation in the long term average rainfall.  The 30 

backward elimination technique successively eliminates the weakest independent station 31 

(variable) after which the regression will be recalculated (Xu and Zhang, 2001). If removing 32 

ftp://ftp.itc.nl/pub/mpe/msg/
ftp://disc2.nascom.nasa.gov/data/s4pa/TRMM_L3/TRMM_3B42_daily/
http://rda.ucar.edu/datasets/ds094.1/
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the variable significantly weakens the linear model then the variable is re-entered otherwise it 1 

is deleted. This procedure is then repeated until only useful variables remain in the linear 2 

elevation-rainfall model. 3 

The gridded satellite rainfall estimation is linked to the ground rainfall observations in two 4 

ways: 5 

Point to grid comparison: The grids of satellite rainfall estimation (MPEG, TRMM and 6 

CFSR) are compared to the ground rainfall observation data within the satellite grid box. This 7 

means, a point ground observation data is compared against a satellite grid data of size of 3 by 8 

3 km, 0.25 by 0.25 degree and 38 by 38 km for MPEG, TRMM and CFSR respectively.   9 

Finally the comparison on monthly and annual basis is done applying standard statistics.  10 

Areal comparison: Satellite rainfall estimation is compared with the interpolated observed 11 

rainfall stations. The ground rainfall observations are interpolated adopting a Thiessen 12 

Polygon method and compared with the respective satellite rainfall estimation for the major 13 

gauged river basins of Lake Tana; the accuracy is measured using standard statistics. The 14 

major river basins in the Lake Tana used for this study are Gilgel Abay, Gumara, Ribb and 15 

Megech, according to (Kebede et al., 2006) these rivers contribute approximately 93% of the 16 

surface water inflow.  17 

2.1. Ground Rainfall Observation Station (GROS)  18 

There are 51 meteorological stations operated by ENMA in the study area. Some of them have 19 

no location information and/or the actual elevation provided is not considered reliable. For the 20 

38 selected stations daily rainfall is available in 2010 study period. Monthly rainfall amounts 21 

for selected stations are given in Fig. 2. Long-term annual average rainfall varies between 830 22 

mm to 2500 mm/year from 1994 to 2008. Approximately eighty six percent of the annual 23 

rainfall falls between June and September. 24 

2.2.   Statistical measures  25 

Three statistical measures were used to compare the satellite rainfall estimates with the ground 26 

rainfall observations consisting of the Coefficient of Determination (R-Squared), 27 

Multiplicative Bias (Bias) and Root Mean Square Error (RMSE).  28 
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The Coefficient of Determination (R-Squared): is used to evaluate the goodness of fit of the 1 

relation. R-Square address the question on how well the satellite rainfall estimates correspond 2 

to the ground rainfall observations, it is the degree of linear association between the two terms 3 

see Eq. (1). 4 

    
                   

       
        

        
        

  

 

 

    Eq. (1) 5 

Where: R
2
= coefficient of determination, Gi = ground rainfall measurements, Si = satellite 6 

rainfall estimates, and n = number of data pairs. 7 

Root Mean Square Error (RMSE) measures the difference between the distributions of the 8 

ground observed rainfall and the distribution of satellite rainfall estimation and calculates a 9 

weighted average error, weighted according to the square of the error. RMSE is useful when 10 

large errors are undesirable. The lower the RMSE score, the closer the satellite rainfall 11 

estimation represents the observed ground rainfall measurement see Eq. (2). 12 

      
        

 

 
       Eq. (2) 13 

Where: RMSE= root mean square error, Gi = ground rainfall measurements, Si = satellite 14 

rainfall estimates, and n = number of data pairs. 15 

Bias is a measure of how does the average satellite rainfall magnitude compared to the ground 16 

rainfall observation. It is simply the ratio of the mean satellite rainfall estimation value to the 17 

mean of ground rainfall observed value. A bias of 1.1 means the satellite rainfall is 10 percent 18 

higher than the average ground rainfall observations see Eq. (3).  19 

     
   

   
        Eq. (3) 20 

Where: Gi = ground rainfall measurements and Si = satellite rainfall estimates.   21 

3. Result and Discussion 22 

The long-term annual average rainfall from 1994 to 2008 is plotted against station elevation to 23 

see the rainfall-elevation relation (Fig. 3). Two clear relationships can be observed; the first 24 

one shows a 50 mm of rainfall increase for every 100 m elevation increase and the second 25 

trend observed was a 125 mm rainfall increase for every 100 m elevation increase. These two 26 

relations can be explained by stations likely affected by convective rainfall only (rectangles) 27 
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and those very much affected by a combination of orographic and convective precipitation (in 1 

circles) in Fig. 3.  2 

3.1. Point to grid comparison  3 

The satellite rainfall estimates are aggregated to monthly temporal intervals and the monthly 4 

satellite rainfall estimation was extracted for the 38 stations locations. The observed ground 5 

rainfall and the extracted satellite rainfall for all 38 stations is depicted for the three standard 6 

statistical techniques in Fig. 4 a, b and c.  7 

As shown in Fig. 4a, the monthly MPEG and CFSR have a strong correlation with the Ground 8 

Rainfall Observations Stations (GROS). For MPEG the coefficient of determination ranges 9 

from a maximum of 0.99 (Enfranz Station) to a minimum value of 0.63 (Yismala Station). On 10 

average 78% of the total observed rainfall variation is explained by the MPEG satellite 11 

rainfall estimate. The CFSR has a coefficient of determination ranging from 0.63 to 0.99 for 12 

Shembekit and Gassay respectively, on average 86% of the total observed rainfall variation is 13 

explained by CFSR rainfall data for the 38 stations. The correlation between TRMM and 14 

GROS on monthly basis is weak, with a maximum coefficient of determination of 0.29 (Addis 15 

Zemen Station) and a minimum value of 0.00. Multiple stations did not show a correlation 16 

with TRMM data. On average only 7% of the total observed rainfall variation is explained by 17 

the TRMM satellite rainfall estimates.  The root mean square error in Fig. 4b gives very much 18 

the same trends as in Fig. 4a. The MPEG and CFSR have a much better RMSE (ranging from 19 

0.63 to 9.5 mm/day) while TRMM has a RMSE ranging from 3.8 to 11.8 mm/day.   20 

Thus MPEG and CFSR rainfall estimate are clearly better related to gauged rainfall than 21 

TRMM.  This is in agreement with the findings of (Dinku et al., 2008), where on average 22 

TRMM-3B42 captures only 15% of the rainfall variability for the whole Ethiopia.  23 

Finally, if we look at the rainfall distribution throughout the year we found that the rainfall 24 

estimates of MPEG and CFSR agree with the ground based observation of 84 to 86 percent of 25 

the annual rainfall occurs in the rainy monsoon phase from June to September as exemplified 26 

in Fig. 5, for Addis Zemen and Agre Genet Stations. In contrast TRMM finds that only 30 27 

percent rainfall is during the rainy season. Fig. 6 shows the spatial distribution of total rainfall 28 

for year 2010 from MPEG, CFSR and TRMM. 29 

The Bias calculated (Fig. 4c logarithm of Bias) for MPEG, TRMM and CFSR ranging from 30 

0.2 to 0.9, 0.5 to 1.9 and 0.24 to 2.69 with an average value of 0.43, 1.0 and 1.3 respectively. 31 
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The MPEG is consistent in under-predicting the observed rainfall, on average it 1 

underestimates by 57 percent. The TRMM overestimates for 15 stations and it underestimates 2 

for the remaining. The CFSR also overestimates for 24 stations and it has the largest standard 3 

deviation of Bias indicating the spread of the Bias between stations.  4 

Stations likely affected by convective rainfall (22 stations, marked in rectangles in Fig. 3) 5 

have a better correlation coefficient and a smaller RMSE than the stations likely affected by a 6 

combination of orographic and convective precipitation (16 station, marked in circle in Fig. 7 

3). The Bias also indicated that, stations likely affected by both convective and orographic 8 

rainfall have a higher bias than the likely stations affected by convective rain only. This is 9 

quite reasonable, because orographic lifting of the moist air will lead to precipitation while the 10 

cloud top temperature is still relatively warm. Satellite rainfall products may not detect the 11 

rainfall from the warm clouds as the cloud-top temperature would be too warm for TIR 12 

thresholds (Dinku et al., 2008), and there will not be much ice aloft to be determined by PM 13 

sensors. But, both sensors can detect the rainfall from the deep convection (Tsidu, 2012).  14 

3.2. Areal comparison  15 

Stations likely affected by convective rainfall are interpolated using a Thiessen Polygon 16 

method and their weights on areal rainfall for the major watersheds is determined (Fig. 7). 17 

Gilgel Abay watershed has two stations likely affected by convective rainfall; Megech has 18 

three, Gumara six and Ribb seven stations. The areal observed rainfall is compared with the 19 

areal satellite rainfall estimation for the major gauged rivers basins in the Lake Tana. Fig. 8 20 

shows the correlation and RMSE of areal Ground Rainfall Observation Station (GROS) 21 

versus MPEG, areal GROS versus TRMM and areal GROS versus CFSR for the major river 22 

basins of Lake Tana. Fig. 9 shows the Bias of satellite rainfall estimation compared with the 23 

ground observation stations.  24 

The areal MPEG and CFSR satellite rainfall estimation have a very high coefficient of 25 

determination above 0.8, on average both MPEG and CFSR captured 93 percent of the areal 26 

observed rainfall variability on the major river sub-basins of lake Tana (Fig. 8). Overall, the 27 

areal satellite rainfall estimates for the major river basins have a smaller RMSE and a higher 28 

R-Squared compared to the result of point to grid comparison. This is because the stations 29 

used for areal observed rainfall estimations are the likely station affected by convective 30 

rainfall only and the satellite observation data is an average value over the grid area. The areal 31 
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Bias computed (Fig. 9) indicated that the MPEG rainfall consistently underestimates the 1 

observed rainfall by an average of 60 percent, while the areal CFSR overestimates for Gilgel 2 

Abay and Ribb (on average by 40%) and underestimates for Megech and Gumara (on average 3 

by 5%).  The areal RMSE of MPEG is smaller than areal CFSR estimation. The areal TRMM 4 

rainfall indicated a very small R-squared and a very high RMSE. The Bias for TRMM rainfall 5 

estimation is not constant; it overestimates for Gilgel Abay and Gumara by 40 and 10% 6 

respectively and underestimates for Ribb and Megech watersheds by 10%. Thus, the 7 

consistence Bias with an excellent correlation for MPEG rainfall estimate, there is a 8 

possibility to use scaling factors for the rainfall Bias correction.  9 

4. Conclusions  10 

This study evaluated EUMETSAT’s MPEF Multi-Sensor Precipitation Estimate-11 

Geostationary (MPEG), Tropical Rainfall Measuring Mission (TRMM) Multi-satellite 12 

Precipitation Analysis TRMM 3B42 data version 7 and Climate Forecast System Reanalysis 13 

(CFSR) rainfall estimation, using 38 ground rainfall observation stations in and around the 14 

Lake Tana Basin for  2010. Two approaches were used in the evaluation: the precipitation of 15 

the point gauged data was compared to satellite predicted rainfall for the grid in which the 16 

rainfall station was located; and all satellite grid based prediction was compared with the areal 17 

interpolated observed rainfall stations that were only influenced by convective rainfall. The 18 

performance of MPEG and CFSR satellite rainfall estimates both for point to grid and areal 19 

comparison was better than the TRMM satellite rainfall amounts. Although the MPEG 20 

satellite rainfall underestimated consistently the ground observed rainfall by an average of 21 

60%, it captured the rainfall pattern well.  CFSR satellite rainfall also captured the observed 22 

rainfall pattern but it overestimated for some and underestimated for the other stations. 23 

TRMM rainfall was not consistent in estimating the ground rainfall observation for both point 24 

to grid and areal comparison and didn’t capture the observed rainfall pattern at all.  25 

The ground observation data indicated 86% of the annual rainfall to occur from June to 26 

September and the MPEG and CFSR indicated approximately the same percentage. The 27 

TRMM indicated only 30% of the annual rainfall to occur during the rainy season June to 28 

September. Although TRMM 3B42 bias is adjusted with a monthly gauged rainfall data and 29 

has performed well in many parts of the world (Ouma et al., 2012;Javanmard et al., 2010), 30 

such an adjustment was not made for the Ethiopian highlands because observed rainfall data 31 

was not made available to TMPA research team (Haile et al., 2013). Based on the study period 32 
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for the study area, MPEG has performed better in capturing the spatial and temporal pattern of 1 

observed rainfall. The result suggested that there should be a further calibration for the 2 

TRMM 3B42 rainfall product to capture the temporal variation of rainfall and MPEG can be 3 

easily calibrated by a correction factor to capture the observed rainfall.    4 

  5 
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Appendix A:  1 

A.1  Multi-Sensor Precipitation Estimate-Geostationary (MPEG) 2 

MPEG is one of the products from MPEF as part of the Meteosat Second Generation (MSG) 3 

Ground Segment. The MPEF primary function is to generate meteorological products from 4 

the Level 1.5 image data supplied like those from the SEVIRI instrument on-board of the 5 

MSG series of geostationary satellites by the Image Processing Facility (IMPF) 6 

(EUMETSAT). Multi-sensor Precipitation Estimate (MPE) is an instantaneous rain rate 7 

product which is derived from the Infrared data (IR-data) of the geo-stationary EUMETSAT 8 

satellites by continuous re-calibration of the algorithm with rain-rate data derived from polar 9 

orbiting microwave sensors.  10 

The algorithm is based on a combination of MSG images from the Infrared IR10.8 micro m 11 

channel and passive microwave data from the Special Sensor Microwave/Imager (SSM/I) 12 

instrument on the United States Defence Meteorological Satellite Program (DMSP) polar 13 

satellites. The role model for the MPE algorithm was the algorithm developed by (Turk et al., 14 

1999). The product is most suitable for convective precipitation, and is intended mainly for 15 

areas with poor radar coverage (Heinemann and Kerényi, 2003). The MPEG data is available 16 

through the GEONETCast near real time, global network of satellite-based data dissemination 17 

systems designed to distribute space-based, air-borne and in-situ data. A ground 18 

GEONETCast reception station is established at the compound of Bahir Dar University, 19 

Engineering Faculty (Wale et al., 2011) in collaboration with Tana Sub-basin Organization 20 

(TaSBO) and with the University of Twente, Faculty ITC, the Netherlands. The MPEG data is 21 

available at a temporal resolution of 15 minutes with a spatial resolution of 3 km for the whole 22 

field of view of MSG. The 15 minute MPEG data is aggregated to daily, monthly and annual 23 

rainfall for the study area for 2010, using a daily aggregation time between 00:00 and 23:45 24 

UTC.  25 

A.2. Tropical Rainfall Measuring Mission (TRMM) 26 

TRMM, Tropical Rainfall Measuring Mission, was launched by the H-II rocket from 27 

Tanegashima Space Centre of The National Space Development Agency of Japan (NASDA), 28 

on November 28, 1997. This satellite has been developed as a joint project between Japan and 29 

US, which is the first space mission dedicated to measure rainfall (NASDA, 2001).  30 
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TRMM works by combining both TIR and MW sensors (Dinku et al., 2011). The MW 1 

channel carefully measures the minute amounts of microwave energy emitted and scattered by 2 

the Earth and its atmospheric constituents. TRMM also operates in active radar. TRMM 3 

satellite orbits the earth at a 35o inclination angle with respect to the equator.  TRMM covers 4 

an area of the earth's surface that extends well beyond the tropics, covering a swath between 5 

38°N to 38°S. TRMM makes these data available in both near-real time and delayed research-6 

quality formats. The TRMM rainfall product has a spatial resolution of 0.25 degree and a 7 

temporal resolution of 3 hours. For this study the TRMM product 3B42 version 7 is used. The 8 

TRMM-3B42 estimates are produced in four steps (Dinku et al., 2010): (i) the PM estimates 9 

are adjusted and combined, (ii) TIR precipitation estimates are created using the PM estimates 10 

for calibration, (iii) PM and TIR estimates are combined, and (iv) the data is rescaled to 11 

monthly totals where by gauge observations are used indirectly to adjust the satellite product. 12 

The major inputs into the 3B42 algorithm are IR data from geostationary satellites and PM 13 

data from the TRMM microwave imager (TMI), Special Sensor Microwave/Imager (SSM/I), 14 

Advanced Microwave Sounding Unit (AMSU), MHS (Microwave Humidity Sounder) and 15 

Advanced Microwave Sounding Radiometer-Earth Observing System (AMSR-E) (Ouma et 16 

al., 2012). The successor GPM is launched in February 2014, with advanced radar and passive 17 

microwave sensors and will provide continuous precipitation estimates for the next years to 18 

come. 19 

 20 

A.3. Climate Forecast System Reanalysis (CFSR) 21 

The CFSR was designed and executed as a global, high-resolution coupled atmosphere–22 

ocean–land surface–sea ice system to provide the best estimate of the state of these coupled 23 

domains for the study period (Saha et al., 2014). New features in the CFSR according to 24 

(Wang et al., 2011) include: (1) it is the first reanalysis system in which the guess fields are 25 

taken as the 6-h forecast from a coupled atmosphere–ocean climate system with an interactive 26 

sea ice component; and (2) it assimilates satellite radiances rather than the retrieved 27 

temperature and humidity values. In addition, the CFSR is forced with observed estimates of 28 

evolving greenhouse gas (GHG) concentrations, aerosols, and solar variations (Wang et al., 29 

2011). The CFSR global atmosphere data has a spatial resolution of approximately 38 km and 30 

the data is available from 1979. 31 
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 1 

Figure 1: Lake Tana watershed, showing the TRMM and CFSR Grids and the location of the 2 

available and selected rainfall stations (90 meter Digital Elevation Model as background).  3 
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 1 

Figure 2: Averaged monthly gauged rainfall distribution of selected stations in the Lake Tana 2 

Basin (from 1994 -2008).  3 
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 1 

 2 

  

(a.) (b.) 

Figure 3: (a.) Elevation verses long-term annual average rainfall relations in the Lake Tana 3 

Basin (38 stations from 1984 to 2008) and (b.) Two clear relationships: first one shows a 50 4 

mm of rainfall increase for every 100 m elevation increase and the second trend observed was 5 

a 125 mm rainfall increase for every 100 m elevation increase. 6 
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 1 

 2 

Figure 4a: R-Squared of MPEG, TRMM and CFSR compared with 38 Ground Rainfall 3 

Observation Stations (GROS) in the Lake Tana Basin sorted according to increasing stations 4 

elevation.  5 
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 1 

Figure 4b: RMSE of MPEG, TRMM and CFSR compared with the 38 Ground Rainfall 2 

Observation Stations (GROS) in the Lake Tana Basin sorted according to increasing stations 3 

elevation.  4 
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 1 

 2 

Figure 4c: Logarithm Bias of MPEG, TRMM and CFSR compared with 38 Ground Rainfall 3 

Observation Stations (GROS) in the Lake Tana Basin.  4 
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 1 

  

(A) Gorgara station (B) Agre Genet station 

 2 

Figure 5: Temporal distribution of gauged rainfall and satellite rainfall estimation from 3 

Tropical Rainfall Measuring Mission's (TRMM), Multi-Sensor Precipitation Estimate-4 

Geostationary (MPEG) and Climate Forecast System Reanalysis (CFSR) for Gorgara and 5 

Agre Genet stations (year 2010). 6 
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 1 

 2 

 3 

 4 

Figure 6: Spatial distribution of annual rainfall estimate for year 2010 from MPEG, CFSR and 5 

TRMM data.  6 
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 1 

Figure 7: Thiessen Polygon of stations likely affected by convective rainfall in the Lake Tana 2 

Basin. The green stars represent the rainfall stations likely affected by convective rainfall 3 

alone.   4 
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 1 

Figure 8: R-Squared and RMSE of areal ground observed rainfall versus satellite rainfall 2 

estimate for the major river basins in the Lake Tana. 3 

 4 

Figure 9: Bias of areal ground observed rainfall versus satellite rainfall estimate for the major 5 

river basins in the Lake Tana. 6 
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