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We would like to acknowledge the revision of our work entitled “Propagation of hydro-8 

meteorological uncertainty in a model cascade framework to inundation prediction”. Again, we 9 

thank you for your constructive comments. 10 

We have digested the concerns from the reviewer and added some new information to clarify these 11 

points. We believe that this new version of our manuscript is indeed better and thank the reviewers and 12 

yourself for your effort and time in this revision. In the following lines we explain how (i.e. by writing 13 

our reply in red) and where (i.e. by giving line numbers) the raised points have been addressed in the 14 

revised manuscript. We hope that this new version proves to be worth for publication in HESS.  15 

 16 
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 18 
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Dr. Adrián Pedrozo-Acuña on behalf of all authors 20 
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Editor Decision: Publish subject to minor revisions (Editor review) 1 

Comments to the Author: The paper is now getting close to be acceptable for publication. However the 2 

2nd reviewer has identified some omissions and also some inconsistencies which need to be addressed 3 

before this happens. These should not add too much to the paper length but the justification for 4 

differences in model skill has to be scientifically justified and the overall aims of the uncertainty 5 

cascade and what it does and doesn't do. So if the authors can address these points, respond and 6 

complete the modifications necessary we should be able to move to publication, best wishes, Jim 7 

_______________________________________________________ 8 

Reviewer 3: Propagation of hydro-meteorological uncertainty in a model cascade framework to 9 

inundation prediction – REVIEW 10 

This paper considers the propagation of uncertainty through a cascading model system, linking a 11 

Numerical Weather Prediction model with hydrological and 2D hydrodynamic models. The paper is 12 

well written and the topic will be of interest to a wide ranging audience, although I am not entirely 13 

sure what specifically this work contributes to scientific progress. This should be more clearly 14 

specified by the authors.  15 

R: In order to provide a clearer specification of the contribution of our work, we have modified the 16 

abstract and conclusions to highlight its overall purpose. 17 

In the abstract, we have acknowledged this fact in the following manner, at Page 1 in particular adding 18 

the sentences shown here in bold: 19 

“This investigation aims to study the propagation of meteorological uncertainty within a cascade 20 

modelling approach to flood prediction. The methodology was comprised of a Numerical Weather 21 

Prediction Model (NWP), a distributed rainfall-runoff model and a 2D hydrodynamic model. The 22 

quantification of uncertainty was carried out in a hindcast scenario, removing non-behavioural 23 

ensemble members at each stage, based on the fit with observed data. The selected extreme event 24 

corresponds to a flood that took place in the Southeast of Mexico during November 2009, for which 25 

field data (e.g. rain gauges; discharge) and satellite imagery were available. Uncertainty in the 26 

meteorological model was estimated by means of a multi-physics ensemble technique, which 27 

considers variations in the specific setup options to determine a given precipitation. Precipitation fields 28 

from the meteorological model were employed as input in a distributed hydrological model, and 29 

resulting flood hydrographs were used as forcing conditions in the 2D hydrodynamic model. This 30 

enabled the assessment of uncertainty and its propagation, from a modelled rainfall event to a 31 

predicted flooded area and depth. Moreover, the evolution of skill within the model cascade shows 32 

a complex aggregation of errors between models, suggesting that in valley-filling events hydro-33 

meteorological uncertainty has a larger effect on inundation depths than that observed in estimated 34 

flood inundation extents.” 35 

 36 

In this resubmission, the paper has been substantially improved and the authors have addressed many 37 

of the previous reviewers’ comments adequately, although I do have some questions: 38 

 39 



The research aims to quantify uncertainty in a hindcast scenario, removing non-behavioural ensemble 1 

members at each stage based on the fit with observed data. In the first instance (NWP predictions), a 2 

Nash Sutcliffe (NS) value of >0.3 is accepted as behavioural, while the hydrographs were rejected if 3 

the score fell below 0.6. How were these limits defined? Justification should be given, particularly as 4 

the choices that are made will have a significant influence on the perceived uncertainty in the model 5 

chain. 6 

R: We thank the reviewer for this comment. It should be noted that the change in the spatial scale from 7 

the meteorological model to the distributed hydrological model, involves some sort of downscaling 8 

issue. Transferring information from a large scale (atmospheric domain) to a smaller scale 9 

(catchment), involves downscaling and in this sense, we modified the model performance criteria for 10 

the hydrologic model to consider only the members with NSC>0.6. The more relaxed criteria used at 11 

the NWP stage is thought in order to incorporate predictions with a wide range of skill, from which the 12 

error may be propagated to both the hydrologic and hydrodynamic scale of the model chain. 13 

The uncertainty in the hydrological model parameters are defined by calibrating the model to a series 14 

of past events. Some more information would be useful. For instance, what rainfall input was used 15 

during this calibration?  16 

R: The utilised rainfall input corresponds to that recorded for those events at the same 4 weather 17 

stations that are within the river catchment, which location is shown in the top panel of Figure 1. This 18 

has been acknowledged in Page 11 Line 30 to Page 12 Line 2.  19 

Also, what was the advantage in defining 6 sets of parameter values from various events rather than 20 

simply using the 2009 event and accepting any parameter sets that provided hydrographs that lay 21 

within the specified threshold? This is particularly relevant as some of the calibrated NS scores were 22 

very poor (e.g. 0.155), while also the 2009 event was significantly larger than any of the others. 23 

R: In the hydrological model, the definition of six sets of plausible parameters from past flood events 24 

(Table 3) is thought to reduce the dimensionality of the parameter calibration problem (see Gupta et 25 

al., 2009). This procedure was preferred over a GLUE analysis, as the investigation was aimed to the 26 

understanding of the propagation of uncertainty along the model chain. In other words, to evaluate 27 

how an error originated in the meteorological model propagates to the definition of an inundated area 28 

and depth.  Although simplistic, it is important to report on how an error originated in the first model 29 

of the chain is propagated to a result of interest to decision-makers (flood map).  30 

On the other hand, it is reflected that the use of six sets of parameters from past flood events enable a 31 

multi-response validation, which in due course allow the assessment of the overall modelling 32 

performance. Additionally, it should be borne in mind that there are too many sources of uncertainty in 33 

the modelling process within a cascade of models that cannot easily be disaggregated. Thus, it is 34 

necessary to make assumptions about how to represent uncertainty, and there are sufficient degrees of 35 

freedom in doing so, such that different methods based on different types of assumptions (including 36 

purely qualitative evaluations) cannot easily be accepted or rejected.  37 

 38 

There is no representation of uncertainty in the hydrodynamic model. This feels like a fairly major 39 

omission given the attempt to establish a framework for quantifying uncertainty in extreme events. 40 

There are many sources of uncertainty in hydrodynamic models, and I feel the exclusion of all of them 41 



needs some further justification. Alternatively, could sensible parameter ranges be estimated using a 1 

Monte Carlo approach, rejecting parameter ranges based on NS scores as done for the other model 2 

components? 3 

R: As the reviewer points out, there are many sources of uncertainty that arise in producing fluvial 4 

flood risk maps. Some of these have to do with the natural variability in the occurrence of floods; 5 

others have more to do with the limited knowledge available about the nature of flood runoff and flood 6 

wave propagation including the geometry and infrastructure of flood plains. 7 

Indeed, several investigations confirm that there is significant uncertainty associated with flood extent 8 

predictions using hydraulic models (e.g. Aronica et al., 1998, 2002; Bates et al. 2004; Pappenberger et 9 

al., 2005, 2006, 2007; Romanowicz and Beven, 2003). These uncertainties may be ascribed to 10 

differences in spatio-temporal resolutions used in the numerical model, or the hydraulic roughness that 11 

is determined for the river and flood plain; and little guidance exists on the magnitude of such effects. 12 

This opens the door to complex questions of scaling and dimensionality. However, in our study, a 13 

more detailed consideration of the different sources of uncertainty in the hydraulic model was not 14 

pursued, this is due to the fact that the numerical setup of the hydraulic model is built following 15 

published guidelines for an accurate representation of our problem (see Asselman et al. 2008). 16 

For instance, high quality topographic and bathymetric data were employed (LiDAR derived DEM 17 

and field survey) for the construction of the numerical representation of both, the river and the 18 

floodplain. It is reflected that this enables us to build the discussion on how an uncertainty generated at 19 

the meteorological stage of the model chain propagates and influences a resulting flooded area and 20 

depth. 21 

This justification has been included in the manuscript at Page 15 Line 1 – Line 10. 22 

Complementary references that have been included: 23 

Aronica, G, Hankin, B.G., Beven, K.J., 1998, Uncertainty and equifinality in calibrating distributed 24 

roughness coefficients in a flood propagation model with limited data, Advances in Water Resources, 25 

22(4), 349-365 26 

Aronica, G., Bates, P.D. and Horritt, M.S., 2002. Assessing the uncertainty in distributed model 27 

predictions using observed binary pattern information within GLUE. Hydrological Processes, 16, 28 

2001- 2016. 29 

Asselman, N., Bates P., Woodhead S., Fewtrell T., Soares-Frazão S., Zech Y., Velickovic M., de Wit 30 

A., ter Maat J., Verhoeven G., Lhomme J. 2008. Flood Inundation Modelling – Model Choice and 31 

Proper Application, Report T08-09-03, FLOODsite Project. 32 

Bates, P. D., Horritt, M. S., Aronica, G. and Beven, K J, 2004, Bayesian updating of flood inundation 33 

likelihoods conditioned on flood extent data, Hydrological Processes, 18, 3347-3370 34 

Pappenberger, F., Beven, K.J., Hunter N., Gouweleeuw, B., Bates, P., de Roo, A., Thielen, J., 2005, 35 

Cascading model uncertainty from medium range weather forecasts (10 days) through a rainfallrunoff 36 

model to flood inundation predictions within the European Flood Forecasting System (EFFS). 37 

Hydrology and Earth System Science, 9(4), 381-393. 38 



Pappenberger, F, Matgen, P, Beven, K J, Henry J-B, Pfister, L and de Fraipont, P, 2006, Influence of 1 

uncertain boundary conditions and model structure on flood inundation predictions, Advances in 2 

Water Resources, 29(10), 1430-1449,doi:10.1016/j.advwatres.2005.11.012 3 

Pappenberger, F., Beven, K.J., Frodsham, K., Romanovicz, R. and Matgen, P., 2007. Grasping the 4 

unavoidable subjectivity in calibration of flood inundation models: a vulnerability weighted approach. 5 

Journal of Hydrology, 333, 275-287. 6 

Romanowicz, R. and Beven, K. J., 2003, Bayesian estimation of flood inundation probabilities as 7 

conditioned on event inundation maps, Water Resources Research, 39(3), W01073, 8 

10.1029/2001WR001056. 9 

 10 

A tidal boundary is mentioned briefly in the site description, however, no further information is 11 

provided. Is this boundary condition influential to the model? How was this boundary calculated? 12 

R: The astronomical tide (microtidal in nature with tidal range <1 m ) is determined using the monthly 13 

tidal forecast at a nearby point, published by CICESE (Centro de Investigación Científica y de 14 

Educación Superior de Ensenada) for those dates (http://predmar.cicese.mx/calmen.php).  15 

This information has been included in the manuscript at Page 14 Line 13 – Line 16 16 
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Abstract 8 

The purpose of thisThis investigation isaims to study the propagation of meteorological 9 

uncertainty within a cascade modelling approach to flood mappingprediction. The methodology 10 

was comprised of a Numerical Weather Prediction Model (NWP), a distributed rainfall-runoff 11 

model and a standard 2D hydrodynamic model. The cascadequantification of models is used to 12 

reproduce an uncertainty was carried out in a hindcast scenario, removing non-behavioural 13 

ensemble members at each stage, based on the fit with observed data. The selected extreme 14 

event corresponds to a flood event that took place in the Southeast of Mexico, during November 15 

2009. The event was selected as high quality, for which field data (e.g. rain gauges; discharge) 16 

and satellite imagery arewere available. Uncertainty in the meteorological model (Weather 17 

Research and Forecasting model) was evaluated through the useestimated by means of a multi-18 

physics ensemble technique, which considers variations in the specific setup options to 19 

determine a given precipitation event. The resulting precipitation. Precipitation fields are 20 

usedfrom the meteorological model were employed as input in a distributed hydrological 21 

model, enabling the determination of different hydrographs associated to this event. Lastly, by 22 

means of a standard 2D hydrodynamic model, and resulting flood hydrographs arewere used as 23 

forcing conditions to studyin the propagation of the meteorological 2D hydrodynamic model. 24 

This enabled the assessment of uncertainty to an estimated inundationand its propagation, from 25 

a modelled rainfall event to a predicted flooded area. Results show the utility of the selected 26 

modelling approach to investigate error propagation within a cascade of models and depth. 27 

Moreover, the evolution of skill within the model cascade shows a complex aggregation of 28 

errors between models, suggesting that in valley-filling events hydro-meteorological 29 



 

 2 

uncertainty affectshas a larger effect on inundation depths in a higher degree than that observed 1 

in estimated flood inundation extents.  2 

 3 

  4 

1 Introduction 5 

Hydro-meteorological hazards can have cascading effects and far-reaching implications on 6 

water security, with political, social, economic and environmental consequences. Millions of 7 

people worldwide are forcibly displaced as a result of natural disasters, creating political 8 

tensions and social needs to support them. These events observed in developed and developing 9 

nations alike, highlight the necessity to generate a better understanding on what causes them 10 

and how we can better manage and reduce the risk.  11 

The assessment of flood risk is an activity that has to be carried out under a framework full of 12 

uncertainty. The source of these uncertainties may be ascribed to the involvement of different, 13 

and often rather complex models and tools, in the context of environmental conditions that are 14 

at best, partially understood (Hall, 2014). In addition to this, flooding events are dynamic over 15 

a range of timescales, due to climate variability and socio-economic changes, among others, 16 

which further increases the uncertainty in the projections. Therefore, numerous types of 17 

uncertainties can arise when using formal models in the analysis of risks.  18 

Uncertainty is often categorised between aleatory and epistemic (Hacking, 2006): aleatory is 19 

an essential, unavoidable unpredictability, and epistemic uncertainty reflects lack of knowledge 20 

or the inadequacy of the models to represent reality.  In the context of any modelling framework, 21 

epistemic uncertainties may be ascribed to the definition of model parameters and to the model 22 

structure itself (limited knowledge).  23 

In a technological era characterised by the advent of computers, there is an increased ability of 24 

more detailed hydrological and hydraulic models. Their use and development has been 25 

motivated as they are based on equations that have (more or less) physical justification; and 26 

allow a more detailed spatial representation of the processes, parameters and predicted variables 27 

(Beven, 2014). However, there are also disadvantages, these numerical tools take more 28 

computer time and require the definition of initial, boundary conditions and parameter values 29 

in space and time. Generally, at a level of detail for which such information is not available 30 

even in research studies. Moreover, these models may be subjected to numerical problems such 31 



 

 3 

as numerical difussion and instability. All of these disadvantages can be interpreted as sources 1 

of uncertainty in the modelling process. 2 

Due to wide range of uncertainty sources in the flood risk assessment process, it is of great 3 

interest to investigate the propagation and behaviour of these different uncertainties from the 4 

start of the modelling framework to the result. The size of registered damages and losses in 5 

recent events around the world, reveal the urgency of doing so, even under a context of limited 6 

predictability. 7 

In September 2013, severe floods were registered in Mexico as a result of the exceptional 8 

simultaneous incidence of two tropical storms, culminating in serious damage and widespread 9 

persistent flooding (Pedrozo-Acuña et al., 2014a). This unprecedented event is part of a recent 10 

set of extreme flood events over the last decade caused by record-breaking precipitation 11 

amounts across Central Europe (Becker and Grünewald, 2003), United Kingdom (Slingo et al., 12 

2014), Pakistan (Webster et al., 2011), Australia (Ven den Honert and McAneney, 2011), 13 

Northeastern US (WMO, 2011), Japan (WMO, 2011) and Korea (WMO, 2011). In all cases, 14 

the immediate action of governments through the implementation of emergency and action 15 

plans was required. The main aim of these interventions was to reduce the duration and impact 16 

of floods. In addition, risk reduction measures were designed to ensure both a better flood 17 

management and an increase in infrastructure resilience.  18 

One key piece of information in preventing and reducing losses is given by reliable flood 19 

inundation maps that enable the dissemination of flood risk to the society and decision makers 20 

(Pedrozo-Acuña et al., 2013). Traditionally, this task requires the estimation of different return 21 

periods for discharge (Ward et al., 2011) and their propagation to the floodplain by means of a 22 

hydrodynamic model. There is currently a large range of models that can be used to develop 23 

flood hazard maps (Horrit and Bates, 2002; Horrit et al., 2006). 24 

The aforementioned accelerated progress of computers has given way to the development of 25 

model cascades to produce hydrological forecasts, which make use of rainfall predictions from 26 

regional climate models (RCMs) with sufficient resolution to capture meteorological events 27 

(Bartholomes and Todini, 2005; Demerrit et al., 2010). Within this approach, the coupling of 28 

different operational numerical models is carried out, using numerical weather prediction 29 

(NWP) with radar data for hydrologic forecast purposes (Liguori and Rico-Ramirez, 2012; 30 

Liguori et al., 2012), or NWP with hydrological and hydrodynamic models to determine 31 

inundation extension (Pappenberger et al., 2012; Cloke et al., 2013; Ushiyama et al., 2014).   32 
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The use of RCMs in climate impact studies on flooding has been reported by Teutschbein and 1 

Seibert (2010) and Beven (2011), noting that despite their usefulness, the spatial resolution of 2 

models (~25km) remains coarse to capture the spatial resolution of precipitation. This is 3 

particularly important, as higher resolution is needed to effectively model the hydrological 4 

processes essential for determining flood risk. To overcome this limitation, the utilisation of 5 

dynamic downscaling in these models has been significantly growing (Fowler et al., 2007; 6 

Leung and Qian, 2009; Lo et al., 2008).  7 

Significant challenges remain in the foreseeable future, among these, the inherent uncertainties 8 

in the predictive models are likely to have an important role to play. For example, it is well 9 

known that the performance skill of NWPs deteriorates very rapidly with time (Lo et al., 2008). 10 

To overcome this, the long-term continuous integration of the prediction has been subdivided 11 

into short-simulations, involving the re-initialisation of the model to mitigate the problem of 12 

systematic error growth in long integrations (Giorgi, 1990; Giorgi, 2006; Qian et al., 2003). 13 

Moreover, the use of ensemble prediction systems to obtain rainfall predictions for hydrological 14 

forecasts at the catchment scale is becoming more common among the hydrological community 15 

as they enable the evaluation and quantification of some uncertainties in the results (Buizza 16 

2008; Cloke and Pappenberger, 2009; Bartholmes et al. 2009). In these studies, an ensemble is 17 

a collection of forecasts made from almost, but not quite, identical initial conditions.   18 

A key question that arises when using a cascade modelling approach to flood prediction or 19 

mapping is: how uncertainties associated to meteorological predictions of precipitation 20 

propagate to a given flood inundation map? Previous work has been devoted to the examination 21 

of uncertainties in the results derived from different ensemble methods, which address 22 

differences in the initial conditions in the NWP or even differences in using a single model 23 

ensemble vs. multi-model ensemble (Pappenberger et al. 2008; Cloke et al., 2013; Ye et al., 24 

2014). However, less attention has been paid to the behaviour of errors within a model chain 25 

that aims to represent a flood event occurring at several spatial scales.  In order to  understand 26 

how errors propagate in a chain of models, this investigation evaluates the transmission of 27 

uncertainties from the meteorological model to a given flood map. For this, we utilize a cascade 28 

modelling approach comprised by a Numerical Weather Prediction Model (NWP), a rainfall-29 

runoff model and a standard 2D hydrodynamic model. This numerical framework is applied to 30 

an observed extreme event registered in Mexico in 2009 for which satellite imagery is available. 31 

The investigated uncertainty is limited to the model parameter definition in the NWP model, 32 
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by means of a multi-physics ensemble technique considering several multi-physics 1 

parameterization schemes for the precipitation (Bukosvky and Karoly, 2009). The resulting 2 

precipitation fields are used to generate spaghetti plots by means of a distributed hydrological 3 

model, enabling the propagation of meteorological uncertainties to the flood hydrograph. 4 

Hence, the resulting hydrographs represent the runoff associated to each precipitation field 5 

estimated with the NWP. In order to complete the propagation of the uncertainty through the 6 

cascade of models to the flood map, the hydrographs are used as forcing in a standard 2D 7 

hydrodynamic model. 8 

On the other hand, it is acknowledged that each of the other models (hydrological and 9 

hydrodynamic) within the model cascade, will introduce other epistemic and random 10 

uncertainties to the result. In order to reduce their influence, the numerical setup of both these 11 

models is constructed with the best available data (e.g. LiDAR for the topography) and 12 

following recent guidelines for the assessment of uncertainty in flood risk mapping (Beven et 13 

al. 2011). In this way, the uncertainty associated to the meteorological model outputs is 14 

propagated through the model cascade from the atmosphere to the flood plain. Thus, the aim of 15 

this investigation is to study the uncertainty propagation from the meteorological model (due 16 

to model parameters), to the determination of an affected area impacted by a well-documented 17 

hydro-meteorological event.   18 

This work is organised as follows: Section 2 provides a description of both, the study area and 19 

the extreme hydro-meteorological event, which are employed to test our cascade modelling 20 

approach; Section 3 introduces the methodology, incorporating a brief description of the 21 

selected models setup. Additionally, we incorporate a description of the multi-physics ensemble 22 

technique used to quantify and limit the epistemic uncertainty in the NWP model. The resulting 23 

precipitation fields, hydrographs and flood maps are compared with available field data and 24 

satellite imagery for the event. In Section 4, a discussion of errors along the model cascade, is 25 

also presented with some conclusions and future work. 26 

 27 

2 Case Study 28 

The selected study area is within the Mexican state of Tabasco, which in recent years has been 29 

subjected to severe flooding as reported by Pedrozo-Acuña et al. (2011; 2012).  This region 30 

comprises the area of Mexico with the highest precipitation rate (2000-3000 mm/year), which 31 

mostly occurs during the wet season of the year between May and December. The rainfall 32 
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climatology is also influenced by the incidence of hurricanes and tropical storms arriving from 1 

the North. 2 

In this paper, the extreme hydro-meteorological event selected for the analysis corresponds to 3 

that registered in the early days of November 2009 in the Tonalá river. As it is shown in Fig.1, 4 

the river is located in the border of Tabasco and Veracruz and during the event, the substantial 5 

rainfall intensity provoked its overflowing leaving extensive inundated areas along its 6 

floodplain. Top panel of Fig. 1 shows the geographical location of the catchment, with an area 7 

of 5,021 km2, as well as the location of 18 weather stations installed within the region by the 8 

National Weather Service.  The event was the result of heavy rain induced by the cold front #9, 9 

which persisted for four days along Mexico's Gulf Coast, forcing more than 44,000 people to 10 

evacuate their homes and affecting more than 90 communities.  High intensities in rainfall were 11 

recorded in rain gauges from the 31st October to 3rd November, with cumulative daily 12 

precipitation values reporting more than 270 mm.  The river is approximately 300 km long and 13 

before discharging into the Gulf of Mexico, the stream receives additional streamflow from 14 

other smaller streams such as Agua Dulcita in Veracruz, and Chicozapote in Tabasco. The 15 

bottom panel of the same Figure illustrates the lower Tonalá River, where severe flooding was 16 

registered as it is shown in the photographs on the right. The yellow, blue and red dots on the 17 

panel represent the location at which the photographs were taken.  18 

The hydrometric data in combination with the satellite imagery for the characterisation of the 19 

affected areas, enabled an accurate investigation of the causes and consequences that generated 20 

this flood event. The high quality of the available information, allowed the application of a 21 

cascade modelling approach comprised by state-of-the-art meteorological, hydrological and 22 

hydrodynamic models. This numerical approach is utilised with the intention to carry out an 23 

assessment of the modelling framework, with particular emphasis on the propagation of the 24 

epistemic uncertainty from the meteorological model to the spatial extent of an affected area. 25 

Such investigation paves the road towards a more honest knowledge transfer to decision-26 

makers, whom consider the reliability of the model results.  27 

 28 

3 Methodology and Results 29 

The methodology is comprised of a Numerical Weather Prediction Model (NWP), a distributed 30 

rainfall-runoff model and a standard 2D hydrodynamic model. It is anticipated that the selected 31 

modelling approach will support the advance of the understanding of the connections among 32 
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scales, intensities, causative factors, and impacts of extremes. This model cascade with state-1 

of-the-art numerical tools representing a hydrological system, enables the development of a 2 

framework by which an identification of the reliability of simulations can be undertaken. This 3 

framework is utilised to explore the propagation of epistemic uncertainties from the estimation 4 

of precipitation in the atmosphere to the identification of a flooded area. Therefore, the aim is 5 

not to reproduce an observed extreme event, but to investigate the effects of errors in rainfall 6 

prediction by a NWP on inundation areas.  7 

The proposed investigation is important as uncertainties are cascaded through the modelling 8 

framework, in order to provide better understanding on how errors propagate within models 9 

working at different temporal and spatial scales. It is acknowledged that this information would 10 

enhance better flood management strategies, which would be based on the honest and 11 

transparent communication of the results produced by a modelling system constrained by 12 

intrinsic errors and uncertainties.  13 

 14 

3.1 Meteorological model  15 

Simulated precipitation products from numerical weather prediction systems (NWPs) typically 16 

show differences in their spatial and temporal distribution. These differences can considerably 17 

influence the ability to predict hydrological responses. In this sense, in this study we utilise the 18 

advanced research core of the Weather Research and Forecasting (WRF) model Version 3.2. 19 

The WRF model is a fully compressible non-hydrostatic, primitive-equation model with 20 

multiple nesting capabilities (Skamarock et al., 2008).  21 

As it is shown in Fig. 2, the model setup is defined using an interactive nested domain inside 22 

the parent domain. This domain is selected in order to simulate more realistic rainfall, with the 23 

inner frame enclosing the Tonalá river catchment within a 4 km resolution. The 4 km horizontal 24 

resolution is considered good enough to compute a mesoscale cloud system associated to a cold 25 

front. It is shown that this finer grid covers the central region of Mexico, while in the vertical 26 

dimension, 28 unevenly spaced sigma levels were selected. The initial and boundary conditions 27 

were created from the NCEP Global Final Analysis (FNL) with a time interval of 6 hours for 28 

the initial and boundary conditions.  Each of the model simulations was reinitialised every two 29 

days at 1200 UTC, considering a total simulation time from the 27th October 2009 until the 13th 30 

November 2009. 31 
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Epistemic uncertainty is considered in the WRF model by means of the sensitivity of the results 1 

for precipitation, due to variations in the model setup. For this, we utilise a multi-physics 2 

ensemble technique proposed by Bukovsky and Karoly (2009), where the sensitivity of 3 

simulated precipitation in the model results is examined through variations in the specific setup 4 

options by means of twenty three  different combinations.  The comparison of computed 5 

precipitation fields against real measurements from weather stations within the catchment, 6 

enabled the quantification of uncertainty in the meteorological model for this event. Table 1 7 

shows a summary of the different multi-physics parameters used in the WRF model to generate 8 

the physics ensemble. As it is shown on this table, there is a large discrepancy in the model skill 9 

results in all 23 simulations Error metrics reported in this table are computed using information 10 

from all available stations within the numerical domain; which comprised stations that are 11 

outside the area of the catchment. It is demonstrated that only 13 of these model runs report a 12 

positive Nash-Sutcliff Coefficient (NSC), which indicates a better accuracy for those 13 

realisations. In contrast, model runs with negative NSC were dismissed for the numerical 14 

reproduction of the event, as this condition is a clear indicator that the observed mean is a better 15 

predictor than the model. 16 

Therefore, meteorological model runs that comply with a criteria defined by a NSC>0.3 and a 17 

Correlation coefficient (Cor)>0.8 (for the whole numerical domain) are utilised to investigate 18 

the propagation of meteorological uncertainties through the modelling framework. This criteria 19 

narrows down the meteorological model runs to 12, which will be cascaded to the hydrological 20 

model stage to attain streamflow predictions. In this approach, the selected 12 multi-physics 21 

ensemble runs of the model represent a plausible and equally likely state of the system in the 22 

future.  23 

Fig. 3 illustrates the cumulative precipitation curves computed for each of the 23 model runs of 24 

the multi-physics ensemble at four different stations located within the catchment. In this figure 25 

differences in the spatial distribution and intensity of precipitation are evident. Moreover, the 26 

selected 12 members by the criteria (NSC>0.3 and Cor>0.8) are illustrated by the blue solid 27 

lines, while the grey solid lines show those members that were rejected by it.  Notably, 28 

dismissed members tend to underestimate the amount of precipitation in all four locations that 29 

are presented in this figure. For completeness, the rainfall measurements at each meteorological 30 

station are also shown by the black solid line, while the red dotted line depicts the mean value 31 

of the selected model runs to be propagated through the model cascade. If the 12 selected 32 
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members are considered in the estimation of ensemble metrics at each station, it is shown that 1 

at Station No. 27075, the spread of the estimated cumulative precipitation curves is limited and 2 

quantified by a NSC=0.917 and a NRMSE = 10.7%, indicating a good skill of the selected WRF 3 

precipitation estimates at this point. In contrast, at Station No. 27007 the spread of the 4 

cumulative precipitation is large and characterised by a NSC=0.766 and a NRMSE=19.4%, 5 

showing less skill in the model performance than that observed in the previous case. The 6 

observed differences of estimated precipitation for this event, highlight the importance of 7 

incorporating ensemble techniques in the reproduction of precipitation with this type of models.  8 

Fig. 4 illustrates the cumulative precipitation fields computed for each of the 12 selected 9 

members of the multi-physics ensemble, where differences in the spatial distribution and 10 

intensity of precipitation were evident. These results suggest that for this event, the precipitation 11 

field estimated with the WRF was highly sensitive to the selection of multi-physics parameters. 12 

To revise in more detail the performance of the WRF in reproducing this hydro-meteorological 13 

event, the estimated cumulative precipitation by each of the selected 12 members of the multi-14 

physics ensemble was compared against measurements at the eighteen weather stations located 15 

within and close to the Tonalá catchment.  16 

Table 2 presents a summary of the most well-known error metrics calculated at each weather 17 

station and for each member of the ensemble. Among these are the: Normalised Root-Mean 18 

Square Error (NRMSE), BIAS, Nash-Sutcliffe Coefficient (NSC), and the Correlation 19 

coefficient (Cor). The columns show the local value of each coefficient for a given member of 20 

the ensemble (M1, …, M12). As shown in all columns (i.e. member runs), the error metrics 21 

have a great spatial variability, hence, indicating the regions of the study area where the model 22 

performs better.  To illustrate the performance of this ensemble technique at each weather 23 

station, the ensemble average of these error metrics is introduced in the last column and 24 

indicated by <  >. Again, the spatial variability of the metrics is evident. The two bottom rows 25 

in each sub-table correspond to the average of the ensemble averages for the whole catchment 26 

and for the all the stations. It is shown, that when the average of all stations is taken into account, 27 

the skill decreases. However, in this investigation the error that is of interest is the one 28 

corresponding to the average of those weather stations located within the catchment, as these 29 

will be used as input in the hydrological model. This will enable the propagation of errors in 30 

the meteorological model within the model cascade. For clarity, in the same table the stations 31 

within the catchment are highlighted in blue.  32 
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A question that has been seldom explored in the literature, is how the uncertainty in the 1 

prediction of the precipitation (i.e. errors described in this section), cascade into an estimated 2 

flood hydrograph determined by a distributed hydrological model. In this sense, the next step 3 

in this work, considers the non-linear transfer of rainfall to runoff using a distributed rainfall-4 

runoff model. For this, we employ each one of the selected 12 precipitation fields derived from 5 

the WRF as input to determine the associated river discharge with the hydrological model.  6 

 7 

3.2 Hydrological model  8 

The hydrological model used in this study was applied to the Tonalá River catchment in an 9 

early work presented by Rodríguez-Rincón et al. (2012). This numerical tool was developed by 10 

the Institute of Engineering – UNAM (Domínguez-Mora et al., 2008), and comprises a 11 

simplified grid-based distributed rainfall–runoff model. The model has been previously applied 12 

with success in other catchments in Mexico (e.g. Pedrozo-Acuña et al., 2014b).  13 

The model is based on the method of the Soil Conservation Service (SCS) with a modification 14 

that allows the consideration of soil moisture accounting before and after rainfall events. The 15 

parameters that are needed for the definition of a runoff curve number within the catchment are 16 

the hydrological soil group, land use, pedology and the river drainage network.  Fig. 5 shows 17 

for the Tonalá River catchment, the spatial definition of the river network (center panels) and 18 

the runoff curve (right panels). For the numerical setup of the hydrological model, we employ 19 

topographic information from a LiDAR data set, from which a 10m resolution Digital Elevation 20 

Model (DEM) is constructed.  21 

There are two main hypothesis that underpin the SCS curve number method. Firstly, it is 22 

assumed that for a single storm and after the start of the runoff, the ratio between actual soil 23 

retention and its maximum retention potential is equal to the ratio between direct runoff and 24 

available rainfall. Secondly, the initial infiltration is hypothesised to be a fraction of the 25 

retention potential. 26 

Thus, the water balance equation and corresponding assumptions are expressed as follows: 27 
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      (2) 29 
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aI S             (3) 1 

Where P is rainfall, Pe effective rainfall, Ia is the initial abstraction, Fa is the cumulative 2 

abstraction, S is the potential maximum soil moisture retention after the start of the runoff and 3 

λ is the scale factor of initial loss. The value of λ is related to the maximum potential infiltration 4 

in the basin.  5 

Through the combination of equations (1) - (3) and expressing the initial abstraction (Ia) by 6 

0.2*S we have: 7 

 8 

           (4) 9 

where, the value of S [cm] is determined by: 10 

 11 

           (5) 12 

CN is the runoff curve number, as defined by the Agriculture Department of the USA (USDA, 13 

1985). Values for this parameter vary from 30 to 100, where small numbers indicate low runoff 14 

potential while larger numbers indicate an increase in runoff potential. Thus, the permeability 15 

of the soil is inversely proportional to the selected curve number. Another parameter that allows 16 

the modification of the curve number is the soil water potential given by Fs, following S=S*Fs.   17 

The model includes a parameter to reproduce the effects of evaporation on the ground saturation 18 

(Fo). This parameter is useful when the event to be reproduced lasts for several days; however, 19 

due to the duration of this event it is assumed equal to 0.9 in all cases. The computation of the 20 

runoff in the basin is carried out through the addition of the runoff estimated in each cell to then 21 

construct a general hydrograph (See Rodríguez-Rincón et al. 2012). With regards to the 22 

definition of values for the other two free parameters in the hydrological model (λ and Fs), a 23 

traditional calibration process is implemented. For this, we utilise flood hydrographs from past 24 

extreme events (2001, 2005, 2007, 2008, 2009 and 2011) observed in this river. For these 25 

events, we employ as rainfall input the registered precipitation at the same 4 weather stations 26 

that are within the river catchment, which location is shown in the top panel of Figure 1. 27 

Therefore, we determine six sets of free parameters that are good enough to represent the 28 

rainfall-runoff relationship in this catchment. The selected sets of  values are illustrated in Table 29 

3, where the correlation coefficient and NSC are also reported for each of the years. It is shown 30 
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that in all the events, the selected set of parameters ensures a good correlation against the 1 

observed discharge which is given by Cor>0.7, as well as a positive NSC (accuracy).  2 

It is well known that both the amount and distribution of rainfall can significantly affect the 3 

final estimated river discharge (Ferraris et al. 2002; De Roo et al., 2003; Cluckie et al., 2004). 4 

In consequence, the propagation of meteorological uncertainty to the rainfall-runoff model is 5 

carried out using the 12 WRF rainfall precipitation ensembles as an input in the hydrological 6 

model, considering the six sets of free parameters reported in Table 3. This procedure enabled 7 

the generation of 72 hydrographs that could represent the 2009 event with different skill. Error 8 

metrics of all the computed hydrographs are reported in Table 4. 9 

For completeness, Fig. 6a illustrates the 72 computed hydrographs for the Tonalá River 10 

catchment in relation to the measured river discharge for the 2009 event (blue dashed line). It  11 

is shown that if all 72 hydrographs  are taken into account, uncertainty bounds are significant. 12 

Indeed, this illustrates the interaction of the meteorological uncertainty with that coming from 13 

the setup of the hydrological model (definition of free parameters). However, the purpose of 14 

this study is to investigate in a model cascade framework, how errors in the meteorological 15 

prediction stage propagate down to a predicted inundation. In this sense, we narrow down the 16 

number of hydrographs shown in Fig. 6a, by selecting only those with a Cor>0.7 and NSC>0.6., 17 

as reported in Table 4 only 31 out of 72 (shown in bold) follow this condition. Fig. 6b displays 18 

the 31 selected hydrographs along with the measured discharge for the 2009 event. Although 19 

there is a reduction in the uncertainty bounds, it tis shown that errors in the predicted rainfall 20 

are indeed propagated to the hydrological model, which employs a finer spatial resolution (1 21 

km). It has been established that, in some cases, an error in the meteorological model can be 22 

compensated by an error in the hydrological model and vice-versa. To illustrate this in more 23 

detail, average values of the calculated error metrics for the 31 selected hydrographs are 24 

estimated and reported in Table 4, with NSC=0.79, Cor=0.96 and BIAS=1.11. Values of the 25 

NSC for selected hydrographs in Table 4 illustrate the resulting differences in skill resulting 26 

from the combination of different setups in the hydrological model with the multi-physics 27 

ensemble. For instance, in the rows corresponding to the parametes determined for the 2011 28 

event, member M12 indicates a NSC=0.738 showing a poorer skill at reproducing the river 29 

discharge with the precipitation derived from this member, in comparison to that registered for 30 

member M2 with NSC=0.938. The change in the values of the NSC indicates that results from 31 
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the regional weather model can be enhanced or weakened by the performance of the 1 

hydrological model. 2 

The utilisation of the 31 selected hydrographs in a 2D hydrodynamic model enables the study 3 

of the propagation of errors within the cascade of models. In particular, for estimating the flood 4 

extent during this extreme event.  5 

 6 

3.3 Flood inundation model  7 

Several 2D hydrodynamic models have been developed for simulating extreme flood events. 8 

However, any model is only as good as the data used to parameterise, calibrate and validate the 9 

model. 2D models have been regarded as suitable for simulating problems where inundation 10 

extent changes dynamically through time as they can easily represent moving boundary effects 11 

(e.g. Bates and Horritt, 2005). The use of these numerical tools has become common place 12 

when flows produce a large areal extent, compared to their depth and where there are large 13 

lateral variations in the velocity field (Hunter et al., 2008).  14 

In this study, given the size of the study area the modelling system utilised is comprised by the 15 

flow model of MIKE 21 flexible mesh (FM). This numerical model solves the two dimensional 16 

Reynolds-averaged Navier–Stokes equations invoking the approximations of Boussinesq and 17 

hydrostatic pressure (for details see DHI, 2014). The equations are solved at the centre of each 18 

element in the model domain. 19 

The numerical setup is based on a previous work on the study area (Pedrozo-Acuña et al. 2012), 20 

with selected resolutions for the elements of the mesh with a size that guarantees the proper 21 

assimilation of a 10 m DEM to characterise the elevation in the floodplain. The topographic 22 

data has been regarded as the most important factor in determining water surface elevations, 23 

base flood elevation, and the extent of flooding and, thus, the accuracy of flood maps in riverine 24 

areas (NRC, 2009). Therefore, the elevation data used in this study corresponds to LiDAR data 25 

set provided by INEGI (2008). The choice of a 10-m DEM is based on recommendations put 26 

forward by the Committee on Floodplain Mapping Technologies, NRC (2007) and Prinos et al. 27 

(2008), as such a DEM ensures both accuracy and detail of the ground surface. The model 28 

domain is illustrated in Fig. 7, along with the numerical mesh and elevation data, it comprises 29 

the lower basin of the Tonalá River and additional main water bodies. The colours represent 30 

the magnitude of the elevation and bathymetric data assimilated in the numerical mesh, where 31 
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warm colours identify high ground areas and light blues represent bathymetric data. The 1 

integration of high quality topographic information in a 2D model with enough spatial 2 

resolution, enables the investigation of the propagation of the meteorological uncertainty to the 3 

determination of the flood extent. Moreover, as it is illustrated in Fig. 7 the numerical mesh 4 

considers three boundary conditions. These are input flow boundary where the hydrograph from 5 

the rainfall-runoff model is set (red dot); the Tonalá's river mouth, where the astronomical tide 6 

occurs for the period of the event (27th October – 12th November 2009) (yellow dot) and the 7 

Agua Dulcita river set where a constant discharge of 100 m3/s is introduced (blue dot). The 8 

astronomical tide (microtidal in nature with tidal range <1 m) is determined using the monthly 9 

tidal forecast at a nearby point, which is published by CICESE (Centro de Investigación 10 

Científica y de Educación Superior de Ensenada) and it is available at 11 

(http://predmar.cicese.mx/calmen.php).  12 

On the other hand, hydraulic roughness is a lumped term known as Manning’s coefficient that 13 

represents the sum of a number of effects, among which are skin friction, form drag and the 14 

impact of acceleration and deceleration of the flow. The precise effects represented by the 15 

friction coefficient for a particular model depend on the model’s dimensionality, as the 16 

parameterisation compensates for energy losses due to unrepresented processes, and the grid 17 

resolution (Bates et al., 2014). The lack of a comprehensive theory of “effective roughness” 18 

have determined the need for calibration of friction parameters in hydraulic models. 19 

Furthermore, the determination of realistic spatial distributions of friction across a floodplain 20 

in other studies, have showed that only 1 or 2 floodplain roughness classes are required to match 21 

current data sources (Werner et al., 2005). Indeed, this suggests that application of complex 22 

formulae to establish roughness values for changed floodplain land use are inappropriate until 23 

model validation data are improved significantly. Therefore, in this study  hydraulic roughness 24 

in the floodplain is assumed to be uniform and different from the main river channel, in this 25 

sense two values for the Manning number are used, one for the main river channel (M=32 m1/2s-26 

1) and another for the floodplain (M=28 m1/2s-1).   27 

It should be noted that several investigations confirm that there is significant uncertainty 28 

associated with flood extent predictions using hydraulic models (e.g. Aronica et al., 1998, 2002; 29 

Bates et al. 2004; Pappenberger et al., 2005, 2006, 2007; Romanowicz and Beven, 2003). These 30 

uncertainties may be ascribed to differences in spatio-temporal resolutions or the hydraulic 31 

roughness that is used in the hydraulic model. In this investigation, however, a more detailed 32 

http://predmar.cicese.mx/calmen.php
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analysis of the different sources of uncertainty in the hydraulic model is not implemented. The 1 

numerical setup of the hydraulic model is built following published guidelines for an accurate 2 

representation of the case study (see Asselman et al. 2008), which enables us to build the 3 

discussion on how an uncertainty generated at the meteorological stage of the model chain 4 

propagates and influences a resulting flooded area and depth. 5 

In order to assess whether the 2D model is able to reproduce the flood extent observed in 2009, 6 

numerical results of flood extent are compared against the affected area determined from a 7 

SPOT image (resolution of 124m). This practice is widely used in the literature to evaluate the 8 

results from inundation models and to compare its performance (Di Baldassare et al, 2010b; 9 

Wright et al., 2008). 10 

Fig. 8a introduces the result of the hydrodynamic simulation for each of the 31 selected 11 

hydrographs, which resulted from the utilisation of the rainfall-runoff model using as input the 12 

WRF multi-physics ensemble output. The illustrated flood map summarises the 31 different 13 

possibilities of the inundation area that could result from the characterisation of precipitation 14 

with the WRF model. Each of these flood maps can also be associated to a probability enabling 15 

the representation of a probabilistic flood map, shown in the figure. This allows the 16 

identification of the areas highly vulnerable to flooding from this event. Additionally, Fig. 8b 17 

introduces the infrared SPOT satellite image of the 12th of November 2009, which is used for 18 

comparison against the produced flood maps derived from running the 31 hydrographs as inputs 19 

in the 2D model. Notably, in the numerical results, the blue area identifies the region of the 20 

domain that is most likely to be flooded (90%), the comparison of this area with the observed 21 

inundation in the satellite image, show a good skill of the model chain at reproducing the 22 

registered flood in the study area.  23 

Despite the variability in the estimated peak discharge utilised as input in the different 24 

hydrodynamic runs, inundation results show similar affected areas in all realisations (only with 25 

small differences in its size). This is verified in the results shown in Fig. 9a, where the 26 

relationship between peak discharge of the 31 hydrographs, is plotted against the size of the 27 

maximum-flooded area. The distribution of points in this graph clearly indicates that although 28 

there are differences in the estimated peak flow (see histogram in Fig. 9b), in most cases the 29 

resulting size of the inundated area is similar. Histogram plot shown in Fig. 9c indicates a clear 30 

concentration numerically derived flooded areas with a size larger than 130 km2. Indeed, the 31 

a) b) 
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mean value of the maximum-flooded estimated area is 138.94 km2, while the standard deviation 1 

is 16.09 km2.  2 

These results support that the hydraulic behaviour in all hydrodynamic simulations was indeed 3 

very similar, regardless of the peak discharge of the hydrograph. It is reflected that this may be 4 

the result of induced hydrodynamics by a valley-filling flood event, which is identified with the 5 

relatively high floodplain area-to-channel-depth ratios in all simulations.  Hence, all possible 6 

hydrographs generated with the hydrological model show similar levels of lateral momentum 7 

exchange between main channel and floodplain. For this reason, the predictive performance of 8 

all hydrodynamic simulations used to reproduce the inundation extent appears to be good (see 9 

Table 5).  10 

The estimation of several error metrics in these results was performed using binary flood extent 11 

maps, where the comparison is based on the generation of a contingency table, which reports 12 

the number of pixels correctly predicted as wet or dry. From this, measures of fit such as: BIAS, 13 

False Alarm Ratio (FAR), Probability of Detection (POD), Probability of False Detection 14 

(POFD), Critical Success Index (CSI) and the True Skill Statistics (TSS) are estimated. Table 15 

5 introduces the results for all 31 members and error metrics. Clearly, there is little variability 16 

in the performance of the model for each of the runs, showing that there has been a small 17 

propagation of the error to the flood map.  The ensemble average of these quantities is also 18 

illustrated in the last column of the table, where values of BIAS=1.013, FAR=0.189, 19 

POD=0.819, POFD=0.180; CSI=0.686 and TSS=0.639 are reported. As noted before, these 20 

results indicate an apparent good skill of the model chain at reproducing the flood extension, 21 

due to the incidence of this extreme event. It should be borne in mind, however, that some 22 

misclassification errors may also be included in the observed flooded area due to specular 23 

reflections that may classify some wet vegetation as water or open water as dry land. In 24 

consequence, flood extent maps should be used with caution in assessing model performance 25 

(Di Baldassare, 2012). This is particularly true during high-magnitude events where the valley 26 

is entirely inundated, such as the case study of this investigation where small changes in lateral 27 

flood extent may produce large changes in water levels.  28 

In this sense, it has been argued that flood extent maps are not useful for model assessment 29 

(Hunter et al., 2005) and high water marks are more useful to evaluate model performance. 30 

Unfortunately, for the case study information of inundation depths was not available. Despite 31 

this fact, a further revision of simulated inundation depths is also carried out. For this, 10 points 32 
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distributed within the numerical domain are selected. These are illustrated by the coloured dots 1 

in Fig. 10, along with the values of mean water depth in all the 31 simulations (red solid line). 2 

In all cases, a high variability in the estimated inundation depth on the floodplain is depicted 3 

(with values varying between 1.5 and 3m). This result supports that in the case of valley-filling 4 

flood events, there is a higher sensitivity to errors in the vertical dimension of the flood.  5 

In one hand, this demonstrates that the geomorphological characteristics of the site (e.g. low-6 

lying area, smooth slopes in the river channel and floodplain) are dominant in the accurate 7 

determination of the magnitude of an inundated area, regardless of the peak discharge. This 8 

implies that for this type of rivers and when predicting inundation extent, it may be more 9 

important to have a good characterisation of the river and floodplain (e.g. high quality field data 10 

and a LiDAR derived DEM), than a good characterisation of the rainfall-runoff relationship. 11 

Current approaches to flood mapping, have pointed out that in order to produce a scientifically 12 

justifiable flood map, the most physically-realistic model should be utilised (Di Baldassarre et 13 

al., 2010). Nevertheless, even with these models the amount of uncertainty involved in the 14 

determination of an affected area is important and should be quantified.  15 

 16 

4 Discussion and Conclusions 17 

Flood risk mapping and assessment are highly difficult tasks due to the inherent complexity of 18 

the relevant processes, which occur in several spatial and temporal scales. As pointed out by 19 

Aronica et al. (2013), the processes are subject to substantial uncertainties (epistemic and 20 

random), which emerge from different sources and assumptions, from the statistical analysis of 21 

extreme events and from the resolution and accuracy of the DEM used in a flood inundation 22 

model.  23 

By acknowledging that all models are an imperfect representation of the reality, it is important 24 

to quantify the impact of epistemic uncertainties on a given result. The numerical approach 25 

utilised in this investigation enabled an assessment of a state-of-the art modelling framework, 26 

comprised by meteorological, hydrological and hydrodynamic models. Emphasis was given to 27 

the effects of epistemic uncertainty propagation from the meteorological model to the definition 28 

of an affected area in a 2D domain. Ensemble climate simulations have become a common 29 

practice in order to provide a metric of the uncertainty associated with climate predictions. In 30 

this study, a multi-physics ensemble technique is utilised to evaluate the propagation of 31 
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epistemic uncertainties within a model chain. Therefore, the assessment of hydro-1 

meteorological model performance at the three stages is carried out through the estimation of 2 

skill scores.  3 

Fig. 11 presents a summary of the propagation of two well-known error metrics, BIAS (top 4 

panel) and NSC/TSS (bottom panel). These metrics were selected, as they enable a direct 5 

comparison of their values at each of the stages within the model cascade. In both metrics, the 6 

evolution of the confidence limits is illustrated by the size of the bars. Their evolution from the 7 

meteorological model to the hydrological model, show an aggregation of meteorological 8 

uncertainties with those originated from the rainfall-runoff model. However, the skill is 9 

considerably improved from a mean value of 0.65 in the meteorological model, to 0.793 in the 10 

hydrological model. In the last stage of the model chain (hydrodynamic model), the confidence 11 

limits of the results, show an apparent improvement in model skill. However, it should be noted 12 

that this may be ascribed to the complex aggregation of errors in valley-filling events, which is 13 

verified in the observed sensitivity of the simulated inundation depths. The mean value of the 14 

skill is reduced to TSS=0.639. The results provide an useful way to evaluate the hydro-15 

meteorological uncertainty propagation within the modelling cascade system.  16 

BIAS and NSC/TSS error metrics (Fig. 11) revealed discrepancies between observations and 17 

simulations throughout the model cascade. For instance, an increase in the NSC from the 18 

rainfall to the flood hydrograph it implies that the hydrological model is more sensitive (wider 19 

uncertainty bars) to its main input (precipitation) than the WRF model is to the set of micro-20 

physics parameterisations. On the other side, the uncertainty bounds in the hydrological model 21 

imply a high sensitivity of hydrographs to both, errors from the meteorological model and its 22 

numerical setup with free parameters (amplifying the uncertainty). This is observed in the 23 

spaghetti plot shown in Fig. 6a, where large uncertainty bounds were identified. In order to 24 

reduce errors from the interaction of uncertainties coming from both models, these bounds were 25 

reduced with the selection of 31 hydrographs that comply with Cor>0.7 and NSC>0.6 (see 26 

Fig.6b).  It is reflected that the estimated error in the meteorological model may reflect a spatial 27 

scaling issue (comparing observations from rain gauges to simulations at the meso-scale). 28 

Results concerning predictions of inundation extent indicate an apparent good skill of the model 29 

chain at reproducing the flood extension. The propagation of uncertainty and error from the 30 

hydrological model to the inundation area revealed that is necessary to assess model 31 

performance not only for flood extension purposes, but also to estimate inundation depths, 32 
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where results indicate a higher variability (e.g. increase in the error). This last modelling step 1 

is quite important given the consequences for issuing warning alerts to the population at risk. 2 

The similar magnitude in inundation extents of all numerical results indicated the predominance 3 

of a valley-filling flood event, which was characterised by a flooded area strongly insensitive 4 

to the input flood hydrograph. While this can be explained by the limited effect that the volume 5 

overflowing the riverbanks and reaching the floodplain will have on the maximum inundation 6 

area, the difference between the observed and the simulated flooded area remains important 7 

(TSS=0.639). 8 

It should be pointed out, that this methodology contains more uncertainties that were not 9 

considered or quantified in the generation of flood extent maps for this event. To quantify the 10 

epistemic uncertainty in the larger scale (i.e. atmosphere), a mesoscale numerical weather 11 

prediction system was used along with a multi-physics ensemble. The ensemble was designed 12 

to represent our limited knowledge of the processes generating precipitation in the lower 13 

troposphere. It was shown that a large amount of uncertainty exists in the NWP model, and 14 

such uncertainty is indeed propagated over the catchment and floodplain. Members of the 15 

ensemble were shown to differ significantly in terms of their cumulative precipitation, spatial 16 

distribution, river discharge, inundation depths and areas. Therefore, epistemic uncertainties 17 

from each step in this model cascade can be aggregated up to the final output.  18 

The evaluation of the skill in the model cascade shows further potential for improvements of 19 

the modelling system. Consequently, future work is planned to include the remaining 20 

uncertainties as adopted by, e.g. Pedrozo-Acuña et al. (2013). Special attention should be paid 21 

to the interaction between hydro-meteorological and hydrological uncertainty, as well as flood 22 

extent estimation in catchments with different morphological setting. The assessment of the 23 

error propagation within the model cascade is seen as a good step forward, in the 24 

communication of uncertain results to the society. However, as shown in this work, an 25 

improvement in model prediction during the first cascade step (rainfall to runoff) can be 26 

reverted during the second cascade step (runoff to inundation area) with important 27 

consequences for early warning systems and operational forecasting purposes. Finally, the 28 

proposed numerical framework could be utilised as a robust alternative for the characterisation 29 

of extreme events in ungauged basins.  30 
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 1 

Table 1. Ensemble members defined for the multi-physics WRF ensemble 2 

 3 

 4 

 5 

 6 

Ensemble 

member

Micro-

Physics

surface 

layer 

physics

Cumulus 

physics

Feedback

/sst_upda

te

RMSE NSC Cor Bias

Criteria

NSC >0.3, 

Cor >0.8

1 WSM5 5-Layer TDM Kain-Fritsch Eta off/off 445.23 -0.25 0.94 0.44 reject

2 WSM5 5-Layer TDM Kain-Fritsch Eta off/on 262.73 0.44 0.97 0.98 select

3 WSM5 5-Layer TDM Kain-Fritsch Eta on/off 250.51 0.49 0.97 1.01 select

4 WSM5 5-Layer TDM Kain-Fritsch Eta on/on 257.35 0.43 0.97 1.05 select

5 WSM5 5-Layer TDM Betts-Miller-Janjic off/on 502.47 -0.65 0.97 0.28 reject

6 WSM5 5-Layer TDM Betts-Miller-Janjic on/on 520.58 -0.77 0.97 0.25 reject

7 WSM5 Noah Kain-Fritsch Eta off/off 233.04 0.42 0.96 1.18 select

8 WSM5 Noah Kain-Fritsch Eta off/on 236.14 0.33 0.96 1.24 select

9 WSM5 Noah Kain-Fritsch Eta on/off 359.11 0.17 0.90 0.56 reject

10 WSM5 Noah Kain-Fritsch Eta on/on 245.31 0.41 0.96 1.12 select

11 WSM5 Noah Betts-Miller-Janjic off/off 486.26 -0.49 0.98 0.33 reject

12 WSM5 Noah Betts-Miller-Janjic off/on 486.02 -0.49 0.97 0.34 reject

13 WSM5 Noah Betts-Miller-Janjic on/off 535.00 -0.82 0.97 0.23 reject

14 WSM5 Noah Betts-Miller-Janjic on/on 543.78 -0.87 0.96 0.23 reject

15 Thompson 5-Layer TDM Kain-Fritsch Eta off/off 216.70 0.60 0.97 1.09 select

16 Thompson 5-Layer TDM Kain-Fritsch Eta off/on 236.64 0.50 0.97 1.15 select

17 Thompson 5-Layer TDM Kain-Fritsch Eta on/off 238.89 0.57 0.96 0.97 select

18 Thompson 5-Layer TDM Kain-Fritsch Eta on/on 275.24 0.50 0.96 0.89 select

19 Thompson 5-Layer TDM Betts-Miller-Janjic off/on 571.49 -1.15 0.96 0.16 reject

20 Thompson 5-Layer TDM Betts-Miller-Janjic on/off 572.27 -1.14 0.95 0.16 reject

21 Thompson 5-Layer TDM Betts-Miller-Janjic on/on 502.47 -0.65 0.97 0.28 reject

22 Thompson Noah Kain-Fritsch Eta off/off 238.06 0.38 0.96 1.25 select

23 Thompson Noah Kain-Fritsch Eta off/on 234.03 0.48 0.97 1.13 select



 

 28 

Table 2. Error Metrics in the estimation of precipitation by members of the multi-physics ensemble (blue rows 1 

indicate the stations located within the Tonalá catchment) 2 

Root-Mean Square Error (RMSE) and Normalised RMSE per Station considering Ensemble average  

Station 
No.  

Multi-physics ensemble member <Nor_RMSE>    
% M1  M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 

30167 210.26 96.56 144.62 104.42 106.84 76.31 160.48 129.88 101.03 210.95 164.85 86.80 13.96 

27003 544.34 578.19 564.46 474.81 427.30 516.95 458.25 484.05 568.20 572.30 385.17 479.47 35.13 

27007 234.90 246.00 198.01 135.27 129.43 207.93 126.51 197.32 246.90 328.28 132.09 191.81 19.44 

27015 96.68 129.89 151.02 194.33 235.76 179.69 152.06 152.60 118.97 116.87 260.49 188.20 24.01 

27074 173.37 211.87 191.22 197.46 78.94 148.88 174.92 247.65 187.98 207.39 123.09 157.21 17.19 

27073 227.47 201.91 228.62 256.39 281.38 245.68 186.21 219.36 159.34 147.79 247.69 223.88 46.46 

27075 87.04 119.26 104.10 100.82 151.17 64.92 76.45 147.30 85.75 105.68 52.14 68.67 10.72 

27076 140.53 160.28 141.95 124.03 108.33 130.53 191.75 162.59 226.04 236.09 129.78 150.84 17.14 

27077 89.10 113.42 83.60 225.48 252.24 207.73 254.20 282.40 110.77 83.93 203.01 192.86 30.57 

27039 333.50 204.36 197.48 295.84 302.19 261.39 264.08 321.66 172.86 152.14 257.59 430.63 73.28 

27054 123.18 30.77 45.28 113.16 119.18 77.41 106.84 112.68 118.83 127.43 110.06 106.67 34.75 

27060 70.69 56.23 59.51 33.42 40.13 30.04 78.07 93.80 88.46 80.36 56.73 66.31 19.88 

27024 160.33 137.81 140.76 120.58 127.54 73.57 148.27 136.47 145.12 167.79 153.26 151.87 85.04 

27084 68.72 71.32 54.58 53.56 106.93 65.65 61.06 72.31 61.46 62.96 50.14 50.92 19.02 

7365 172.91 117.44 103.02 252.03 139.79 163.49 301.52 216.38 179.67 129.71 271.88 210.11 24.52 

27011 143.70 162.77 143.61 107.82 77.55 86.15 128.03 143.69 106.59 116.49 86.81 81.27 106.83 

27036 81.46 60.69 27.36 61.69 19.14 35.64 23.58 45.89 22.13 40.23 39.22 55.55 12.04 

27008 158.85 72.82 74.96 131.34 134.94 100.16 102.82 149.97 66.67 79.36 97.87 254.33 19.68 

                    
Average {Rel_RMSE} 

catch. 23.14 

                    Average  {Rel_RMSE} all 33.87 

                            

BIAS per Station and Ensemble Average  

Station 
No.  

Multi-physics ensemble member 
<BIAS> 

M1  M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 

30167 0.71 0.90 0.81 1.07 1.12 0.99 0.80 0.85 0.91 0.71 1.23 1.06 0.93 
27003 0.51 0.48 0.50 0.58 0.62 0.54 0.59 0.57 0.49 0.49 0.66 0.58 0.55 
27007 0.72 0.71 0.79 0.91 0.91 0.78 1.13 1.26 0.73 0.61 0.90 0.80 0.85 
27015 1.21 1.32 1.40 1.50 1.61 1.46 1.37 1.37 1.24 1.21 1.68 1.48 1.40 
27074 0.82 0.76 0.79 0.78 1.08 0.86 0.81 0.71 0.80 0.77 0.88 0.83 0.82 
27073 1.74 1.65 1.74 1.83 1.91 1.80 1.58 1.70 1.47 1.44 1.80 1.72 1.70 
27075 0.92 0.85 0.88 0.88 1.20 0.96 0.90 0.80 0.89 0.86 0.98 0.93 0.92 
27076 0.86 0.82 0.86 0.91 0.95 0.89 0.79 0.84 0.73 0.71 0.89 0.85 0.84 
27077 1.12 1.17 1.10 1.48 1.54 1.44 1.54 1.60 1.20 1.14 1.42 1.40 1.35 
27039 2.41 1.87 1.84 2.26 2.29 2.11 2.13 2.36 1.73 1.64 2.09 2.84 2.13 
27054 1.89 1.08 1.24 1.82 1.87 1.54 1.76 1.81 1.84 1.91 1.79 1.77 1.69 
27060 1.42 1.33 0.72 1.08 1.20 1.05 1.47 1.57 1.54 1.49 1.32 1.39 1.30 
27024 3.34 2.96 3.03 2.76 2.88 2.07 3.16 2.98 3.11 3.45 3.17 3.17 3.01 
27084 1.32 1.35 1.17 1.23 1.61 0.78 1.27 1.36 1.27 1.29 1.07 1.01 1.23 
7365 1.43 1.20 1.09 1.63 1.32 0.72 1.78 1.55 1.43 1.26 1.68 1.51 1.38 

27011 3.57 3.91 3.55 2.93 2.33 2.49 3.33 3.58 2.91 3.09 2.56 2.45 3.06 
27036 1.36 1.25 1.09 1.28 0.97 1.15 0.95 1.20 1.06 1.16 1.15 1.24 1.15 
27008 1.37 1.07 1.05 1.29 1.31 1.20 1.21 1.35 0.99 0.93 1.19 1.62 1.22 

                    
Average {Rel_RMSE} 

catch. 0.94 

                    Average  {Rel_RMSE} all  1.42 

 3 

 4 

 5 

 6 
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Continuation of Table 2. Error Metrics in the estimation of precipitation by members of the multi-physics 1 

ensemble (blue rows indicate the stations located within the Tonalá catchment) 2 

 3 

Nash-Sutcliff Coefficient per Station and Ensemble average 

Station No.  
Multi-physics ensemble member 

<NSC> 
M1  M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 

30167 0.72 0.94 0.87 0.93 0.93 0.96 0.84 0.89 0.94 0.72 0.83 0.95 0.88 

27003 0.16 0.05 0.09 0.36 0.48 0.24 0.40 0.33 0.08 0.07 0.58 0.34 0.26 

27007 0.70 0.67 0.78 0.90 0.91 0.76 0.91 0.79 0.66 0.41 0.90 0.80 0.77 

27015 0.88 0.78 0.70 0.50 0.27 0.57 0.70 0.69 0.81 0.82 0.11 0.53 0.61 

27074 0.84 0.76 0.80 0.79 0.97 0.88 0.84 0.67 0.81 0.77 0.92 0.87 0.83 

27073 -0.27 0.00 -0.28 -0.61 -0.94 -0.48 0.15 -0.18 0.38 0.46 -0.50 -0.23 -0.21 

27075 0.94 0.89 0.91 0.92 0.82 0.97 0.95 0.83 0.94 0.91 0.98 0.96 0.92 

27076 0.87 0.83 0.86 0.90 0.92 0.88 0.75 0.82 0.65 0.62 0.89 0.85 0.82 

27077 0.82 0.70 0.84 -0.17 -0.46 0.01 -0.48 -0.83 0.72 0.84 0.05 0.15 0.18 

27039 -4.41 -1.03 -0.90 -3.26 -3.44 -2.32 -2.39 -4.03 -0.45 -0.13 -2.23 -8.02 -2.72 

27054 -0.46 0.91 0.80 -0.23 -0.36 0.42 -0.10 -0.22 -0.36 -0.56 -0.16 -0.09 -0.03 

27060 0.60 0.75 0.72 0.91 0.87 0.93 0.51 0.29 0.37 0.48 0.74 0.65 0.65 

27024 -7.99 -5.64 -5.93 -4.08 -4.69 -0.89 -6.68 -5.51 -6.36 -8.84 -7.21 -7.06 -5.91 

27084 0.67 0.64 0.79 0.80 0.20 0.70 0.74 0.63 0.73 0.72 0.82 0.82 0.69 

7365 0.50 0.77 0.82 -0.07 0.67 0.55 -0.54 0.21 0.45 0.72 -0.25 0.25 0.34 

27011 -16.74 -21.76 -16.72 -8.99 -4.17 -5.38 -13.08 -16.74 -8.76 -10.66 -5.47 -4.67 -11.09 

27036 0.61 0.78 0.96 0.78 0.98 0.93 0.97 0.88 0.97 0.91 0.91 0.82 0.87 

27008 0.60 0.92 0.91 0.72 0.71 0.84 0.83 0.64 0.93 0.90 0.85 -0.03 0.73 

                    
Average {Rel_RMSE} 

catch. 0.63 

                    Average  {Rel_RMSE} all  -0.63 

                            

Correlation Coefficient per Station and Ensemble average 

Station No.  
Multi-physics ensemble member 

<Cor> 
M1  M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 

30167 0.99 0.99 0.99 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.97 0.98 0.99 
27003 0.95 0.96 0.97 0.97 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.98 
27007 0.98 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.95 0.98 0.97 0.97 
27015 0.97 0.96 0.97 0.94 0.93 0.95 0.95 0.95 0.94 0.94 0.93 0.94 0.95 
27074 0.98 0.98 0.98 0.98 0.99 0.98 0.99 0.98 0.98 0.98 0.99 0.99 0.98 
27073 0.95 0.96 0.95 0.94 0.94 0.94 0.92 0.92 0.91 0.92 0.94 0.94 0.94 
27075 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 
27076 0.98 0.98 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.96 0.97 0.97 0.97 
27077 0.96 0.95 0.96 0.96 0.95 0.96 0.95 0.95 0.97 0.97 0.95 0.96 0.96 
27039 0.95 0.95 0.94 0.93 0.94 0.94 0.94 0.94 0.95 0.95 0.94 0.93 0.94 
27054 0.91 0.96 0.94 0.93 0.93 0.94 0.91 0.92 0.91 0.90 0.93 0.93 0.93 
27060 0.96 0.97 0.97 0.96 0.97 0.97 0.95 0.95 0.96 0.96 0.97 0.96 0.96 
27024 0.91 0.93 0.92 0.90 0.91 0.95 0.89 0.90 0.89 0.89 0.94 0.94 0.91 
27084 0.91 0.91 0.92 0.94 0.92 0.95 0.92 0.91 0.92 0.92 0.93 0.93 0.92 
7365 0.93 0.93 0.94 0.92 0.94 0.97 0.91 0.92 0.91 0.92 0.91 0.92 0.93 

27011 0.94 0.94 0.95 0.93 0.95 0.96 0.89 0.93 0.91 0.92 0.91 0.91 0.93 
27036 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 
27008 0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.96 0.96 0.96 0.96 

                    
Average {Rel_RMSE} 

catch. 0.97 

                    Average  {Rel_RMSE} all 0.95 
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Table 3. Flood events in the Tonala River used in the calibration process of free parameters in the hydrological 6 

model, along with computed error metrics. 7 

 8 

Event

Max Q 

(m3/s)

Obs.

ʎ Fs Fo

Max Q 

(m3/s)

Calc.

NSC Cor Bias

2001 577.98 0.2 0.1 0.9 584.79 0.529 0.764 1.112

2005 589.25 0.4 0.6 0.9 609.87 0.812 0.907 1.043

2007 538.50 0.2 1.8 0.9 543.87 0.483 0.780 0.902

2008 597.35 0.4 1.8 0.9 823.04 0.155 0.861 0.983

2009 1262.57 0.8 1.8 0.9 1424.56 0.910 0.962 0.942

2011 545.40 0.9 1.6 0.9 597.08 0.413 0.721 1.051
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Table 4. Error metrics in the estimation of river discharge by the rainfall-runoff model using 6 parameter sets and 1 

12 members of the multi-physics ensemble (those selected are shown in bold with NSC>0.6 and Cor>0.7). 2 

3 

Member No. WRF Member
Hydrological 

Parameters
NSC Cor Bias

1 M1 2001 0.733 0.884 0.852

2 M2 2001 0.074 0.973 1.529

3 M3 2001 -0.035 0.974 1.564

4 M4 2001 -0.511 0.975 1.686

5 M5 2001 -0.638 0.441 1.485

6 M6 2001 -0.223 0.961 1.593

7 M7 2001 -0.192 0.961 1.579

8 M8 2001 -0.043 0.959 1.537

9 M9 2001 0.064 0.958 1.504

10 M10 2001 0.245 0.971 0.525

11 M11 2001 -1.503 0.944 1.832

12 M12 2001 -0.752 0.954 1.710

13 M1 2005 0.639 0.901 0.742

14 M2 2005 0.404 0.977 1.414

15 M3 2005 0.318 0.978 1.449

16 M4 2005 -0.077 0.977 1.569

17 M5 2005 -0.545 0.366 1.368

18 M6 2005 0.181 0.968 1.478

19 M7 2005 0.200 0.968 1.465

20 M8 2005 0.321 0.966 1.422

21 M9 2005 0.408 0.966 1.389

22 M10 2005 -0.081 0.960 0.426

23 M11 2005 -0.909 0.951 1.717

24 M12 2005 -0.264 0.961 1.595

25 M1 2007 0.376 0.914 0.601

26 M2 2007 0.761 0.978 1.244

27 M3 2007 0.711 0.979 1.278

28 M4 2007 0.444 0.976 1.395

29 M5 2007 -0.440 0.261 1.191

30 M6 2007 0.633 0.974 1.306

31 M7 2007 0.647 0.974 1.293

32 M8 2007 0.722 0.973 1.251

33 M9 2007 0.771 0.972 1.219

34 M10 2007 -0.508 0.952 0.322

35 M11 2007 -0.129 0.959 1.539

36 M12 2007 0.340 0.969 1.420

37 M1 2008 0.240 0.922 0.547

38 M2 2008 0.837 0.978 1.186

39 M3 2008 0.797 0.978 1.220

40 M4 2008 0.570 0.974 1.337

41 M5 2008 -0.479 0.209 1.132

42 M6 2008 0.741 0.976 1.248

43 M7 2008 0.753 0.976 1.235

44 M8 2008 0.813 0.975 1.194

45 M9 2008 0.851 0.975 1.161

46 M10 2008 -0.720 0.945 0.276

47 M11 2008 0.079 0.962 1.481

48 M12 2008 0.495 0.972 1.361

49 M1 2009 -0.036 0.838 0.494

50 M2 2009 0.819 0.978 0.882

51 M3 2009 0.899 0.977 0.907

52 M4 2009 0.649 0.963 1.286

53 M5 2009 0.060 0.811 0.580

54 M6 2009 0.839 0.959 0.849

55 M7 2009 0.883 0.959 0.890

56 M8 2009 0.896 0.954 0.929

57 M9 2009 0.890 0.950 0.928

58 M10 2009 -1.233 0.972 0.209

59 M11 2009 0.638 0.938 1.236

60 M12 2009 0.885 0.946 1.042

61 M1 2011 -0.247 0.949 0.396

62 M2 2011 0.938 0.970 1.019

63 M3 2011 0.930 0.971 1.052

64 M4 2011 0.819 0.964 1.168

65 M5 2011 -0.662 0.055 0.955

66 M6 2011 0.890 0.978 1.133

67 M7 2011 0.899 0.979 1.120

68 M8 2011 0.931 0.979 1.079

69 M9 2011 0.945 0.978 1.047

70 M10 2011 -1.136 0.931 0.195

71 M11 2011 0.433 0.967 1.364

72 M12 2011 0.738 0.976 1.246

0.793 0.965 1.113
<Ensemble 

average of selected members>
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Table 5. Error metrics in the estimation of river discharge by the hydrodynamic model using the 31 members of the multi-physics ensemble. 3 

 4 

 5 

M1 M13 M26 M27 M30 M31 M32 M33 M38 M39 M42 M43 M44 M45 M50 M51 M52 M54 M55 M56 M57 M59 M60 M62 M63 M64 M66 M67 M68 M69 M72

BIAS 0.903 0.838 1.084 1.099 1.119 1.120 1.094 1.078 1.056 1.021 1.092 1.089 1.096 1.051 0.902 0.915 0.891 0.820 1.020 0.982 0.872 1.056 1.004 0.982 0.995 1.047 1.040 1.028 1.016 1.005 1.092 1.013

FAR: False Alarm Ratio 0.148 0.120 0.215 0.217 0.283 0.210 0.216 0.212 0.209 0.217 0.216 0.215 0.152 0.207 0.148 0.154 0.139 0.137 0.193 0.155 0.133 0.206 0.187 0.178 0.182 0.204 0.201 0.225 0.192 0.187 0.216 0.189

POD: Probability of Detection 0.770 0.737 0.851 0.861 0.849 0.849 0.858 0.849 0.836 0.751 0.857 0.854 0.848 0.833 0.769 0.775 0.751 0.810 0.823 0.845 0.756 0.847 0.816 0.807 0.814 0.833 0.831 0.821 0.821 0.818 0.857 0.819

POFD:Probability of False Detection 0.124 0.094 0.217 0.222 0.187 0.187 0.220 0.214 0.205 0.186 0.220 0.219 0.186 0.203 0.124 0.131 0.185 0.185 0.184 0.066 0.108 0.266 0.175 0.163 0.168 0.199 0.195 0.186 0.182 0.175 0.220 0.180

CSI : Critical Succes Index 0.679 0.670 0.690 0.695 0.711 0.711 0.694 0.691 0.685 0.709 0.693 0.692 0.710 0.685 0.679 0.679 0.706 0.654 0.687 0.708 0.677 0.620 0.687 0.687 0.690 0.686 0.687 0.619 0.688 0.688 0.693 0.686

True Skill Statistics 0.645 0.643 0.634 0.639 0.621 0.662 0.638 0.636 0.631 0.660 0.637 0.636 0.661 0.631 0.645 0.643 0.615 0.601 0.639 0.659 0.648 0.660 0.641 0.644 0.640 0.634 0.636 0.610 0.640 0.642 0.637 0.639

Comparison of flooded areas between numerical results from running ensemble members vs. Observed

<Ensemble 

average>
Error metrics 

Ensemble Member
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Figure 1. Top panel: Location of the Tonala River basin in Mexico, blue line represents the 4 

boundary limits of the catchment; blue dots illustrate the location of weather stations; red dot: 5 

streamflow gauge. Bottom panel: zoom of the study area and photographs of observed 6 

impacts; yellow, blue and red dots represent the location at which photos were taken.   7 

  8 
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Figure 2. Numerical setup of the WRF with a nested domain covering Mexico. Domain 1: 4 

25km resolution; Domain 2: 4km resolution; the orange region illustrates the Tonalá 5 

catchment.  6 

 7 
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Figure 3. Comparison of cumulative precipitation estimated by the 23 model runs of the 4 

WRF multi-physics ensemble. Blue solid line: selected members with NSC> 0.3; grey solid 5 

line: disregarded members with NSC <0.3; red dotted line: mean of the selected 12 members; 6 

black solid line: measurements at each of the four weather stations from 27th October 2009 to 7 

12th November 2009.8 
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Figure 4. Cumulative precipitation fields estimated by the WRF model using the selected 12 members of the multi-physics ensemble (27th 3 

October 2009 – 12th November 2009).  4 

 5 



 

 37 

 1 

 2 

 3 

Figure 5. Input data parameters in the hydrological model; a) Land use; b) Pedology; c) River network, curve number and grid.4 

a) b) c) 
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Figure 6.  a) 72 hydrographs computed using the rainfall-runoff model with 6 sets of 4 

parameters and 12 WRF ensemble precipitation fields as input data; b) 31 selected 5 

hydrographs to serve as input in the hydrodynamic model; grey lines illustrate the ensemble 6 

members and the blue dashed line shows the measured river discharge for the event. 7 

  8 
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Figure 7. Model domain along with the numerical mesh and elevation data in the study area; 3 

Boundary conditions are represented by blue dot: Agua Dulcita river; red dot: input 4 

hydrograph; yellow dot: river-mouth. 5 

  6 
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 5 

 6 

Figure 8. Data vs. model comparison of flood extent; a) Probabilistic flood map derived from 7 

the ensemble runs with the hydrodynamic model; b) Infrared SPOT image corresponding to 8 

the 15th November 2009. 9 
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Figure 9. a) Maximum-flooded area vs. peak discharge estimated for all 31 hydrodynamic 3 

simulations of the 2009 flood event; b)Histogram of peak discharges; c) Histogram of 4 

estimated size of maximum-flooded area. 5 

 6 
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 9 
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Figure 10. Estimated maxima inundation depths at different locations within the floodplain. 3 

Red line represents the median. Bars correspond to the standard deviation. Upper and lower 4 

limits of the box are the values of the 25th and 75th , respectively. Crosses depict outliers.  5 
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Figure 11. a) BIAS and b) Skill propagation within the model cascade (meteorological-4 

hydrological-hydrodynamic); diamonds: corresponding ensemble mean value. 5 
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