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We would like to acknowledge the revision of our work entitled “Propagation of hydro-7 

meteorological uncertainty in a model cascade framework to inundation prediction”. Again, we 8 

thank you for your constructive comments. 9 

We have digested the main concern which relates to the consideration of the quality of the ensemble of 10 

meteorological inputs in our modelling framework. In consequence, we have added some new 11 

information that originally was not incorporated as the paper was already too long. However, we 12 

recognize the importance of this point, and made considerable changes to the meteorological model 13 

section. This now incorporates details with regards to results of all members of the multi-physics 14 

ensemble, and the selection criteria to narrow down the members to only 12 to be cascaded into the 15 

modelling framework.  16 

As you can see, we made an effort to incorporate this important change in the manuscript that 17 

acknowledged the raised point.  18 

In the following lines we explain how (i.e. by writing our reply in red) and where (i.e. by giving line 19 

numbers) this point has been addressed in the revised manuscript. We hope that this new version 20 

proves to be of interest to you and that it is worth to be considered for publication in HESS.  21 

 22 
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 24 

 25 

Dr. Adrián Pedrozo-Acuña on behalf of all authors 26 
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Editor Initial Decision: Reconsider after major revisions (16 Mar 2015) by Dr. Jim Freer 1 

Comments to the Author: 2 

Dear Authors, 3 

I appreciate the time that you have taken to revise your manuscript. The initial reviewers were in 4 

disagreement with your paper, one suggested rejection and the other accept with changes. I tried to 5 

reflect most of the concerns from the most critical reviewer because I believed they provided the more 6 

comprehensive review. 7 

But I cannot see how a manuscript can go forwards, with regards to cascading meteorology through to 8 

flood inundation extent, without considering the quality of the ensemble of meteorological inputs. At 9 

the moment the paper shows some WRF models have very poor skill and some are good compared to 10 

the observed data. This must be used in some way to weight (or at least reject) certain runs before 11 

cascading these inputs. It doesn't seem at all consistent with the general methodology if all these runs 12 

then drive the rest of the cascade. Please can this be addressed properly else I will have no excuse but 13 

to send this out to full review again (and may need to in any case). I hope you understand the point I 14 

am trying to make. Thanks again for all your time in making the changes you have done thus far, best 15 

wishes, Jim 16 

R: The main concern to the second version of our manuscript was related to the consideration of the 17 

quality of the ensemble of meteorological inputs in our modelling framework.  18 

In order to take into account this observation we have incorporated information with regards to a 19 

larger multi-physics ensemble that was defined to reproduce the event. This is comprised by 23 20 

meteorological members with different skill, these are reported in Table 1 were the error metrics NSC 21 

and Cor are also summarised. Indeed, a large discrepancy in the model skill is reported in all 23 22 

simulations. Error metrics are computed using information from all available stations within the 23 

numerical domain; which comprised stations that are outside the area of the catchment. Results in  24 

Table 1 demonstrate that only 13 of these model runs report a positive Nash-Sutcliff Coefficient 25 

(NSC), which indicates a better accuracy for those realisations. In contrast, model runs with negative 26 

NSC were dismissed for the numerical reproduction of the event.  27 

An explicit acknowledgement to this appears now at Page 8 Lines 1-23. 28 

Moreover, the cumulative precipitation curves at the four stations within the catchment is now 29 

reported in Figure 3 where model results from all 23 members of the multi-physics ensemble are 30 

illustrated. A disucussion of this is incorporated in Page 8 Lines 24- Page 9 Line 9. 31 

Last but not least the abstract has been modified accordingly to report that the multi-physics ensemble 32 

is created with variations in the specific setup options to determine a given precipitation event, instead 33 

of defining an arbitrary number  34 

As you can verify, we have made considerable changes to the meteorological model section. This now 35 

incorporates details with regards to results of all members of the multi-physics ensemble, and the 36 

selection criteria to narrow down the members to only 12 to be cascaded into the modelling 37 

framework.  38 
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Abstract 8 

The purpose of this investigation is to study the propagation of meteorological uncertainty 9 

within a cascade modelling approach to flood mapping. The methodology was comprised of a 10 

Numerical Weather Prediction Model (NWP), a distributed rainfall-runoff model and a 11 

standard 2D hydrodynamic model. The cascade of models is used to reproduce an extreme 12 

flood event that took place in the Southeast of Mexico, during November 2009. The event 13 

was selected as high quality field data (e.g. rain gauges; discharge) and satellite imagery are 14 

available. Uncertainty in the meteorological model (Weather Research and Forecasting 15 

model) was evaluated through the use of a multi-physics ensemble technique, which considers 16 

variations in the specific setup options twelve parameterization schemes to determine a given 17 

precipitation event. The resulting precipitation fields are used as input in a distributed 18 

hydrological model, enabling the determination of different hydrographs associated to this 19 

event. Lastly, by means of a standard 2D hydrodynamic model, flood hydrographs are used as 20 

forcing conditions to study the propagation of the meteorological uncertainty to an estimated 21 

inundation area. Results show the utility of the selected modelling approach to investigate 22 

error propagation within a cascade of models. Moreover, the evolution of skill within the 23 

model cascade shows a complex aggregation of errors between models, suggesting that in 24 

valley-filling events hydro-meteorological uncertainty affects inundation depths in a higher 25 

degree than that observed in estimated flood extents.  26 

 27 

  28 
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1 Introduction 1 

Hydro-meteorological hazards can have cascading effects and far-reaching implications on 2 

water security, with political, social, economic and environmental consequences. Millions of 3 

people worldwide are forcibly displaced as a result of natural disasters, creating political 4 

tensions and social needs to support them. These events observed in developed and 5 

developing nations alike, highlight the necessity to generate a better understanding on what 6 

causes them and how we can better manage and reduce the risk.  7 

The assessment of flood risk is an activity that has to be carried out under a framework full of 8 

uncertainty. The source of these uncertainties may be ascribed to the involvement of different, 9 

and often rather complex models and tools, in the context of environmental conditions that are 10 

at best, partially understood (Hall, 2014). In addition to this, flooding events are dynamic over 11 

a range of timescales, due to climate variability and socio-economic changes, among others, 12 

which further increases the uncertainty in the projections. Therefore, numerous types of 13 

uncertainties can arise when using formal models in the analysis of risks.  14 

Uncertainty is often categorised between aleatory and epistemic (Hacking, 2006): aleatory is 15 

an essential, unavoidable unpredictability, and epistemic uncertainty reflects lack of 16 

knowledge or the inadequacy of the models to represent reality.  In the context of any 17 

modelling framework, epistemic uncertainties may be ascribed to the definition of model 18 

parameters and to the model structure itself (limited knowledge).  19 

In a technological era characterised by the advent of computers, there is an increased ability 20 

of more detailed hydrological and hydraulic models. Their use and development has been 21 

motivated as they are based on equations that have (more or less) physical justification; and 22 

allow a more detailed spatial representation of the processes, parameters and predicted 23 

variables (Beven, 2014). However, there are also disadvantages, these numerical tools take 24 

more computer time and require the definition of initial, boundary conditions and parameter 25 

values in space and time. Generally, at a level of detail for which such information is not 26 

available even in research studies. Moreover, these models may be subjected to numerical 27 

problems such as numerical difussion and instability. All of these disadvantages can be 28 

interpreted as sources of uncertainty in the modelling process. 29 

Due to wide range of uncertainty sources in the flood risk assessment process, it is of great 30 

interest to investigate the propagation and behaviour of these different uncertainties from the 31 

start of the modelling framework to the result. The size of registered damages and losses in 32 
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recent events around the world, reveal the urgency of doing so, even under a context of 1 

limited predictability. 2 

In September 2013, severe floods were registered in Mexico as a result of the exceptional 3 

simultaneous incidence of two tropical storms, culminating in serious damage and widespread 4 

persistent flooding (Pedrozo-Acuña et al., 2014a). This unprecedented event is part of a recent 5 

set of extreme flood events over the last decade caused by record-breaking precipitation 6 

amounts across Central Europe (Becker and Grünewald, 2003), United Kingdom (Slingo et 7 

al., 2014), Pakistan (Webster et al., 2011), Australia (Ven den Honert and McAneney, 2011), 8 

Northeastern US (WMO, 2011), Japan (WMO, 2011) and Korea (WMO, 2011). In all cases, 9 

the immediate action of governments through the implementation of emergency and action 10 

plans was required. The main aim of these interventions was to reduce the duration and 11 

impact of floods. In addition, risk reduction measures were designed to ensure both a better 12 

flood management and an increase in infrastructure resilience.  13 

One key piece of information in preventing and reducing losses is given by reliable flood 14 

inundation maps that enable the dissemination of flood risk to the society and decision makers 15 

(Pedrozo-Acuña et al., 2013). Traditionally, this task requires the estimation of different 16 

return periods for discharge (Ward et al., 2011) and their propagation to the floodplain by 17 

means of a hydrodynamic model. There is currently a large range of models that can be used 18 

to develop flood hazard maps (Horrit and Bates, 2002; Horrit et al., 2006). 19 

The aforementioned accelerated progress of computers has given way to the development of 20 

model cascades to produce hydrological forecasts, which make use of rainfall predictions 21 

from regional climate models (RCMs) with sufficient resolution to capture meteorological 22 

events (Bartholomes and Todini, 2005; Demerrit et al., 2010). Within this approach, the 23 

coupling of different operational numerical models is carried out, using numerical weather 24 

prediction (NWP) with radar data for hydrologic forecast purposes (Liguori and Rico-25 

Ramirez, 2012; Liguori et al., 2012), or NWP with hydrological and hydrodynamic models to 26 

determine inundation extension (Pappenberger et al., 2012; Cloke et al., 2013; Ushiyama et 27 

al., 2014).   28 

The use of RCMs in climate impact studies on flooding has been reported by Teutschbein and 29 

Seibert (2010) and Beven (2011), noting that despite their usefulness, the spatial resolution of 30 

models (~25km) remains coarse to capture the spatial resolution of precipitation. This is 31 

particularly important, as higher resolution is needed to effectively model the hydrological 32 
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processes essential for determining flood risk. To overcome this limitation, the utilisation of 1 

dynamic downscaling in these models has been significantly growing (Fowler et al., 2007; 2 

Leung and Qian, 2009; Lo et al., 2008).  3 

Significant challenges remain in the foreseeable future, among these, the inherent 4 

uncertainties in the predictive models are likely to have an important role to play. For 5 

example, it is well known that the performance skill of NWPs deteriorates very rapidly with 6 

time (Lo et al., 2008). To overcome this, the long-term continuous integration of the 7 

prediction has been subdivided into short-simulations, involving the re-initialisation of the 8 

model to mitigate the problem of systematic error growth in long integrations (Giorgi, 1990; 9 

Giorgi, 2006; Qian et al., 2003). Moreover, the use of ensemble prediction systems to obtain 10 

rainfall predictions for hydrological forecasts at the catchment scale is becoming more 11 

common among the hydrological community as they enable the evaluation and quantification 12 

of some uncertainties in the results (Buizza 2008; Cloke and Pappenberger, 2009; Bartholmes 13 

et al. 2009). In these studies, an ensemble is a collection of forecasts made from almost, but 14 

not quite, identical initial conditions.   15 

A key question that arises when using a cascade modelling approach to flood prediction or 16 

mapping is: how uncertainties associated to meteorological predictions of precipitation 17 

propagate to a given flood inundation map? Previous work has been devoted to the 18 

examination of uncertainties in the results derived from different ensemble methods, which 19 

address differences in the initial conditions in the NWP or even differences in using a single 20 

model ensemble vs. multi-model ensemble (Pappenberger et al. 2008; Cloke et al., 2013; Ye 21 

et al., 2014). However, less attention has been paid to the behaviour of errors within a model 22 

chain that aims to represent a flood event occurring at several spatial scales.  In order to  23 

understand how errors propagate in a chain of models, this investigation evaluates the 24 

transmission of uncertainties from the meteorological model to a given flood map. For this, 25 

we utilize a cascade modelling approach comprised by a Numerical Weather Prediction 26 

Model (NWP), a rainfall-runoff model and a standard 2D hydrodynamic model. This 27 

numerical framework is applied to an observed extreme event registered in Mexico in 2009 28 

for which satellite imagery is available. The investigated uncertainty is limited to the model 29 

parameter definition in the NWP model, by means of a multi-physics ensemble technique 30 

considering several multi-physics parameterization schemes for the precipitation (Bukosvky 31 

and Karoly, 2009). The resulting precipitation fields are used to generate spaghetti plots by 32 
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means of a distributed hydrological model, enabling the propagation of meteorological 1 

uncertainties to the flood hydrograph. Hence, the resulting hydrographs represent the runoff 2 

associated to each precipitation field estimated with the NWP. In order to complete the 3 

propagation of the uncertainty through the cascade of models to the flood map, the 4 

hydrographs are used as forcing in a standard 2D hydrodynamic model. 5 

On the other hand, it is acknowledged that each of the other models (hydrological and 6 

hydrodynamic) within the model cascade, will introduce other epistemic and random 7 

uncertainties to the result. In order to reduce their influence, the numerical setup of both these 8 

models is constructed with the best available data (e.g. LiDAR for the topography) and 9 

following recent guidelines for the assessment of uncertainty in flood risk mapping (Beven et 10 

al. 2011). In this way, the uncertainty associated to the meteorological model outputs is 11 

propagated through the model cascade from the atmosphere to the flood plain. Thus, the aim 12 

of this investigation is to study the uncertainty propagation from the meteorological model 13 

(due to model parameters), to the determination of an affected area impacted by a well-14 

documented hydro-meteorological event.   15 

This work is organised as follows: Section 2 provides a description of both, the study area and 16 

the extreme hydro-meteorological event, which are employed to test our cascade modelling 17 

approach; Section 3 introduces the methodology, incorporating a brief description of the 18 

selected models setup. Additionally, we incorporate a description of the multi-physics 19 

ensemble technique used to quantify and limit the epistemic uncertainty in the NWP model. 20 

The resulting precipitation fields, hydrographs and flood maps are compared with available 21 

field data and satellite imagery for the event. In Section 4, a discussion of errors along the 22 

model cascade, is also presented with some conclusions and future work. 23 

 24 

2 Case Study 25 

The selected study area is within the Mexican state of Tabasco, which in recent years has been 26 

subjected to severe flooding as reported by Pedrozo-Acuña et al. (2011; 2012).  This region 27 

comprises the area of Mexico with the highest precipitation rate (2000-3000 mm/year), which 28 

mostly occurs during the wet season of the year between May and December. The rainfall 29 

climatology is also influenced by the incidence of hurricanes and tropical storms arriving 30 

from the North. 31 
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In this paper, the extreme hydro-meteorological event selected for the analysis corresponds to 1 

that registered in the early days of November 2009 in the Tonalá river. As it is shown in 2 

Fig.1, the river is located in the border of Tabasco and Veracruz and during the event, the 3 

substantial rainfall intensity provoked its overflowing leaving extensive inundated areas along 4 

its floodplain. Top panel of Fig. 1 shows the geographical location of the catchment, with an 5 

area of 5,021 km2, as well as the location of 18 weather stations installed within the region by 6 

the National Weather Service.  The event was the result of heavy rain induced by the cold 7 

front #9, which persisted for four days along Mexico's Gulf Coast, forcing more than 44,000 8 

people to evacuate their homes and affecting more than 90 communities.  High intensities in 9 

rainfall were recorded in rain gauges from the 31st October to 3rd November, with 10 

cumulative daily precipitation values reporting more than 270 mm.  The river is 11 

approximately 300 km long and before discharging into the Gulf of Mexico, the stream 12 

receives additional streamflow from other smaller streams such as Agua Dulcita in Veracruz, 13 

and Chicozapote in Tabasco. The bottom panel of the same Figure illustrates the lower Tonalá 14 

River, where severe flooding was registered as it is shown in the photographs on the right. 15 

The yellow, blue and red dots on the panel represent the location at which the photographs 16 

were taken.  17 

The hydrometric data in combination with the satellite imagery for the characterisation of the 18 

affected areas, enabled an accurate investigation of the causes and consequences that 19 

generated this flood event. The high quality of the available information, allowed the 20 

application of a cascade modelling approach comprised by state-of-the-art meteorological, 21 

hydrological and hydrodynamic models. This numerical approach is utilised with the intention 22 

to carry out an assessment of the modelling framework, with particular emphasis on the 23 

propagation of the epistemic uncertainty from the meteorological model to the spatial extent 24 

of an affected area. Such investigation paves the road towards a more honest knowledge 25 

transfer to decision-makers, whom consider the reliability of the model results.  26 

 27 

3 Methodology and Results 28 

The methodology is comprised of a Numerical Weather Prediction Model (NWP), a 29 

distributed rainfall-runoff model and a standard 2D hydrodynamic model. It is anticipated that 30 

the selected modelling approach will support the advance of the understanding of the 31 

connections among scales, intensities, causative factors, and impacts of extremes. This model 32 
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cascade with state-of-the-art numerical tools representing a hydrological system, enables the 1 

development of a framework by which an identification of the reliability of simulations can be 2 

undertaken. This framework is utilised to explore the propagation of epistemic uncertainties 3 

from the estimation of precipitation in the atmosphere to the identification of a flooded area. 4 

Therefore, the aim is not to reproduce an observed extreme event, but to investigate the 5 

effects of errors in rainfall prediction by a NWP on inundation areas.  6 

The proposed investigation is important as uncertainties are cascaded through the modelling 7 

framework, in order to provide better understanding on how errors propagate within models 8 

working at different temporal and spatial scales. It is acknowledged that this information 9 

would enhance better flood management strategies, which would be based on the honest and 10 

transparent communication of the results produced by a modelling system constrained by 11 

intrinsic errors and uncertainties.  12 

 13 

3.1 Meteorological model  14 

Simulated precipitation products from numerical weather prediction systems (NWPs) 15 

typically show differences in their spatial and temporal distribution. These differences can 16 

considerably influence the ability to predict hydrological responses. In this sense, in this study 17 

we utilise the advanced research core of the Weather Research and Forecasting (WRF) model 18 

Version 3.2. The WRF model is a fully compressible non-hydrostatic, primitive-equation 19 

model with multiple nesting capabilities (Skamarock et al., 2008).  20 

As it is shown in Fig. 2, the model setup is defined using an interactive nested domain inside 21 

the parent domain. This domain is selected in order to simulate more realistic rainfall, with 22 

the inner frame enclosing the Tonalá river catchment within a 4 km resolution. The 4 km 23 

horizontal resolution is considered good enough to compute a mesoscale cloud system 24 

associated to a cold front. It is shown that this finer grid covers the central region of Mexico, 25 

while in the vertical dimension, 28 unevenly spaced sigma levels were selected. The initial 26 

and boundary conditions were created from the NCEP Global Final Analysis (FNL) with a 27 

time interval of 6 hours for the initial and boundary conditions.  Each of the model 28 

simulations was reinitialised every two days at 1200 UTC, considering a total simulation time 29 

from the 27th October 2009 until the 13th November 2009. 30 
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Epistemic uncertainty is considered in the WRF model by means of the sensitivity of the 1 

results for precipitation, due to variations in the model setup. For this, we utilise a multi-2 

physics ensemble technique proposed by Bukovsky and Karoly (2009), where the sensitivity 3 

of simulated precipitation in the model results is examined through variations in the specific 4 

setup options by means of with twenty three twelve different combinations. parameterisation 5 

schemes. The comparison of computed precipitation fields against real measurements from 6 

weather stations within the catchment, enabled the quantification of uncertainty in the 7 

meteorological model for this event. Table 1 shows a summary of the different multi-physics 8 

parameters used in the WRF model to generate the physics ensemble. As it is shown on this 9 

table, there is a large discrepancy in the model skill results in all 23 simulations.  Error 10 

metrics reported in this table are computed using information from all available stations 11 

within the numerical domain; which comprised stations that are outside the area of the 12 

catchment. It is demonstrated that However, ononly 13 of these model runs reportof them 13 

have a positive Nash-Sutcliff Coefficient (NSC), which indicates a better accuracy for those 14 

realisationsmodel predictions. Those In contrast, mmodel runs with negative NSC were 15 

disregarded for the numerical reproduction of the event, as this condition is ese are a clear 16 

indicator that the observed mean is a better predictor than the model. 17 

Therefore, meteorological model runs that comply with a criteria defined by a NSCash-18 

Sutcliff Coefficient (NSC)>0.3 and a Correlation coefficient (Cor)>0.8 (for the whole 19 

numerical domain), are utilised to investigate the propagation of meteorological uncertainties 20 

through the modelling framework. This criteria narrows down the meteorological model runs 21 

to 12, which will be cascaded to the hydrological model stage to attain streamflow 22 

predictions. In this approach, the selected 12 multi-physics ensemble runs of the model 23 

represent a plausible and equally likely state of the system in the future.  24 

Fig. 3 illustrates the cumulative precipitation curvesfields computed for each of the 123 25 

selected model runs members of the multi-physics ensemble at four different stations located 26 

within the catchment. In this figure, where the differences in the spatial distribution and 27 

intensity of precipitation arewere evident between realisations. Moreover, On the other hand, 28 

thethe s selected 12 members by the criteria (NSC>0.3 and Cor>0.8) are illustrated by the 29 

blue solid lines, while the grey solid lines show those members that were disregarded by it.  30 

Notably, disregarded members tend to underestimate the amount of precipitation in all four 31 

locations that are presented in this figure. For completeness, the rainfall measurements at each 32 
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meteorological station are also shown by the black solid line, while the red dotted line depicts 1 

the mean value of the selected model runs to be propagated through the model cascade. If the 2 

12 selected members are considered in the estimation of ensemble metrics at each station, it is 3 

shown that at Station No. 27075, the spread of the estimated cumulative precipitation curves 4 

is limited and quantified by a NSC=0.917 and a NRMSE = 10.7%, indicating a good skill of 5 

the selected WRF precipitation estimates at this point. In contrast, at Station No. 27007 the 6 

spread of the cumulative precipitation is large and characterised by a NSC=0.766 and a 7 

NRMSE=19.4%, showing less skill in the model performance than that observed in the 8 

previous case. The observed differences of estimated precipitation for this event, highlight the 9 

importance of incorporating ensemble techniques in the reproduction of precipitation with this 10 

type of models.  11 

Fig. 4 illustrates the cumulative precipitation fields computed for each of the 12 selected 12 

members of the multi-physics ensemble, where differences in the spatial distribution and 13 

intensity of precipitation were evident. These results suggest that for this event, the 14 

precipitation field estimated with the WRF was highly sensitive to the selection of multi-15 

physics parameters. To revise in more detail the performance of the WRF in reproducing this 16 

hydro-meteorological event, the estimated cumulative precipitation by each of the selected 12 17 

members of the multi-physics ensemble was compared against measurements at the eighteen 18 

weather stations located within and close to the Tonalá catchment.  19 

These results suggested that for this event, the precipitation field estimated with the WRF was 20 

highly sensitive to the selection of multi-physics parameters. To revise in more detail the 21 

performance of the WRF in reproducing this hydro-meteorological event, the estimated 22 

cumulative precipitation by each the 12 selected members of the multi-physics ensemble was 23 

compared against measurements at the eighteen weather stations located within and close to 24 

the Tonalá catchment.  25 

Table 2 presents a summary of the most well-known error metrics calculated at each weather 26 

station and for each member of the ensemble. Among these are the: Normalised Root-Mean 27 

Square Error (NRMSE), BIAS, Nash-Sutcliffe Coefficient (NSC), and the Correlation 28 

coefficient (Cor). The columns show the local value of each coefficient for a given member of 29 

the ensemble (M1, …, M12). As shown in all columns (i.e. member runs), the error metrics 30 

have a great spatial variability, hence, indicating the regions of the study area where the 31 

model performs better.  To illustrate the performance of this ensemble technique at each 32 
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weather station, the ensemble average of these error metrics is introduced in the last column 1 

and indicated by <  >. Again, the spatial variability of the metrics is evident. The two bottom 2 

rows in each sub-table correspond to the average of the ensemble averages for the whole 3 

catchment and for the all the stations. It is shown, that when the average of all stations is 4 

taken into account, the skill decreases. However, in this investigation the error that is of 5 

interest is the one corresponding to the average of those weather stations located within the 6 

catchment, as these will be used as input in the hydrological model. This will enable the 7 

propagation of errors in the meteorological model within the model cascade. For clarity, in the 8 

same table the stations within the catchment are highlighted in blue.  9 

Additionally, results per station are also illustrated for four different cases and are presented 10 

in Fig. 4, and they confirmed that the range of spatial uncertainty in the WRF predictions is 11 

high and variable. To give an example, at Station No. 27075, the spread of the estimated 12 

cumulative precipitation curves is limited and quantified by a NSC=0.917 and a NRMSE = 13 

10.7%, indicating a good skill of the WRF precipitation estimates at this point. In contrast, at 14 

Station No. 27007 the spread of the cumulative precipitation is large and characterised by a 15 

NSC=0.766 and a NRMSE=19.4%, showing less skill in the model performance than that 16 

observed in the previous case. The observed differences of estimated precipitation for this 17 

event, highlight the importance of incorporating ensemble techniques in the reproduction of 18 

precipitation with this type of models.  19 

A question that has been seldom explored in the literature, is how the uncertainty in the 20 

prediction of the precipitation (i.e. errors described in this section), cascade into an estimated 21 

flood hydrograph determined by a distributed hydrological model. In this sense, the next step 22 

in this work, considers the non-linear transfer of rainfall to runoff using a distributed rainfall-23 

runoff model. For this, we employ each one of the selected 12 precipitation fields derived 24 

from the WRF as input to determine the associated river discharge with the hydrological 25 

model.  26 

 27 

3.2 Hydrological model  28 

The hydrological model used in this study was applied to the Tonalá River catchment in an 29 

early work presented by Rodríguez-Rincón et al. (2012). This numerical tool was developed 30 

by the Institute of Engineering – UNAM (Domínguez-Mora et al., 2008), and comprises a 31 
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simplified grid-based distributed rainfall–runoff model. The model has been previously 1 

applied with success in other catchments in Mexico (e.g. Pedrozo-Acuña et al., 2014b).  2 

The model is based on the method of the Soil Conservation Service (SCS) with a modification 3 

that allows the consideration of soil moisture accounting before and after rainfall events. The 4 

parameters that are needed for the definition of a runoff curve number within the catchment 5 

are the hydrological soil group, land use, pedology and the river drainage network.  Fig. 5 6 

shows for the Tonalá River catchment, the spatial definition of the river network (center 7 

panels) and the runoff curve (right panels). For the numerical setup of the hydrological model, 8 

we employ topographic information from a LiDAR data set, from which a 10m resolution 9 

Digital Elevation Model (DEM) is constructed.  10 

There are two main hypothesis that underpin the SCS curve number method. Firstly, it is 11 

assumed that for a single storm and after the start of the runoff, the ratio between actual soil 12 

retention and its maximum retention potential is equal to the ratio between direct runoff and 13 

available rainfall. Secondly, the initial infiltration is hypothesised to be a fraction of the 14 

retention potential. 15 

Thus, the water balance equation and corresponding assumptions are expressed as follows: 16 

e a aP P I F            (1) 17 

      (2) 18 

 19 

aI S             (3) 20 

Where P is rainfall, Pe effective rainfall, Ia is the initial abstraction, Fa is the cumulative 21 

abstraction, S is the potential maximum soil moisture retention after the start of the runoff and 22 

λ is the scale factor of initial loss. The value of λ is related to the maximum potential 23 

infiltration in the basin.  24 

Through the combination of equations (1) - (3) and expressing the initial abstraction (Ia) by 25 

0.2*S we have: 26 

 27 

           (4) 28 

where, the value of S [cm] is determined by: 29 

 30 
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           (5) 1 

CN is the runoff curve number, as defined by the Agriculture Department of the USA (USDA, 2 

1985). Values for this parameter vary from 30 to 100, where small numbers indicate low 3 

runoff potential while larger numbers indicate an increase in runoff potential. Thus, the 4 

permeability of the soil is inversely proportional to the selected curve number. Another 5 

parameter that allows the modification of the curve number is the soil water potential given 6 

by Fs, following S=S*Fs.   7 

The model includes a parameter to reproduce the effects of evaporation on the ground 8 

saturation (Fo). This parameter is useful when the event to be reproduced lasts for several 9 

days; however, due to the duration of this event it is assumed equal to 0.9 in all cases. The 10 

computation of the runoff in the basin is carried out through the addition of the runoff 11 

estimated in each cell to then construct a general hydrograph (See Rodríguez-Rincón et al. 12 

2012). With regards to the definition of values for the other two free parameters in the 13 

hydrological model (λ and Fs), a traditional calibration process is implemented. For this, we 14 

utilise flood hydrographs from past extreme events (2001, 2005, 2007, 2008, 2009 and 2011) 15 

observed in this river. Therefore, we determine six sets of free parameters that are good 16 

enough to represent the rainfall-runoff relationship in this catchment. The selected sets of  17 

values are illustrated in Table 3, where the correlation coefficient and NSC are also reported 18 

for each of the years. It is shown that in all the events, the selected set of parameters ensures a 19 

good correlation against the observed discharge which is given by Cor>0.7, as well as a 20 

positive NSC (accuracy).  21 

It is well known that both the amount and distribution of rainfall can significantly affect the 22 

final estimated river discharge (Ferraris et al. 2002; De Roo et al., 2003; Cluckie et al., 2004). 23 

In consequence, the propagation of meteorological uncertainty to the rainfall-runoff model is 24 

carried out using the 12 WRF rainfall precipitation ensembles as an input in the hydrological 25 

model, considering the six sets of free parameters reported in Table 3. This procedure enabled 26 

the generation of 72 hydrographs that could represent the 2009 event with different skill. 27 

Error metrics of all the computed hydrographs are reported in Table 4. 28 

For completeness, Fig. 6a illustrates the 72 computed hydrographs for the Tonalá River 29 

catchment in relation to the measured river discharge for the 2009 event (blue dashed line). It  30 

is shown that if all 72 hydrographs  are taken into account, uncertainty bounds are significant. 31 

Indeed, this illustrates the interaction of the meteorological uncertainty with that coming from 32 
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the setup of the hydrological model (definition of free parameters). However, the purpose of 1 

this study is to investigate in a model cascade framework, how errors in the meteorological 2 

prediction stage propagate down to a predicted inundation. In this sense, we narrow down the 3 

number of hydrographs shown in Fig. 6a, by selecting only those with a Cor>0.7 and 4 

NSC>0.6., as reported in Table 4 only 31 out of 72 (shown in bold) follow this condition. 5 

Fig. 6b displays the 31 selected hydrographs along with the measured discharge for the 2009 6 

event. Although there is a reduction in the uncertainty bounds, it tis shown that errors in the 7 

predicted rainfall are indeed propagated to the hydrological model, which employs a finer 8 

spatial resolution (1 km). It has been established that, in some cases, an error in the 9 

meteorological model can be compensated by an error in the hydrological model and vice-10 

versa. To illustrate this in more detail, average values of the calculated error metrics for the 31 11 

selected hydrographs are estimated and reported in Table 4, with NSC=0.79, Cor=0.96 and 12 

BIAS=1.11. Values of the NSC for selected hydrographs in Table 4 illustrate the resulting 13 

differences in skill resulting from the combination of different setups in the hydrological 14 

model with the multi-physics ensemble. For instance, in the rows corresponding to the 15 

parametes determined for the 2011 event, member M12 indicates a NSC=0.738 showing a 16 

poorer skill at reproducing the river discharge with the precipitation derived from this 17 

member, in comparison to that registered for member M2 with NSC=0.938. The change in the 18 

values of the NSC indicates that results from the regional weather model can be enhanced or 19 

weakened by the performance of the hydrological model. 20 

The utilisation of the 31 selected hydrographs in a 2D hydrodynamic model enables the study 21 

of the propagation of errors within the cascade of models. In particular, for estimating the 22 

flood extent during this extreme event.  23 

 24 

3.3 Flood inundation model  25 

Several 2D hydrodynamic models have been developed for simulating extreme flood events. 26 

However, any model is only as good as the data used to parameterise, calibrate and validate 27 

the model. 2D models have been regarded as suitable for simulating problems where 28 

inundation extent changes dynamically through time as they can easily represent moving 29 

boundary effects (e.g. Bates and Horritt, 2005). The use of these numerical tools has become 30 
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common place when flows produce a large areal extent, compared to their depth and where 1 

there are large lateral variations in the velocity field (Hunter et al., 2008).  2 

In this study, given the size of the study area the modelling system utilised is comprised by 3 

the flow model of MIKE 21 flexible mesh (FM). This numerical model solves the two 4 

dimensional Reynolds-averaged Navier–Stokes equations invoking the approximations of 5 

Boussinesq and hydrostatic pressure (for details see DHI, 2014). The equations are solved at 6 

the centre of each element in the model domain. 7 

The numerical setup is based on a previous work on the study area (Pedrozo-Acuña et al. 8 

2012), with selected resolutions for the elements of the mesh with a size that guarantees the 9 

proper assimilation of a 10 m DEM to characterise the elevation in the floodplain. The 10 

topographic data has been regarded as the most important factor in determining water surface 11 

elevations, base flood elevation, and the extent of flooding and, thus, the accuracy of flood 12 

maps in riverine areas (NRC, 2009). Therefore, the elevation data used in this study 13 

corresponds to LiDAR data set provided by INEGI (2008). The choice of a 10-m DEM is 14 

based on recommendations put forward by the Committee on Floodplain Mapping 15 

Technologies, NRC (2007) and Prinos et al. (2008), as such a DEM ensures both accuracy and 16 

detail of the ground surface. The model domain is illustrated in Fig. 7, along with the 17 

numerical mesh and elevation data, it comprises the lower basin of the Tonalá River and 18 

additional main water bodies. The colours represent the magnitude of the elevation and 19 

bathymetric data assimilated in the numerical mesh, where warm colours identify high ground 20 

areas and light blues represent bathymetric data. The integration of high quality topographic 21 

information in a 2D model with enough spatial resolution, enables the investigation of the 22 

propagation of the meteorological uncertainty to the determination of the flood extent. 23 

Moreover, as it is illustrated in Fig. 7 the numerical mesh considers three boundary 24 

conditions. These are input flow boundary where the hydrograph from the rainfall-runoff 25 

model is set (red dot); the Tonalá's river mouth, where the astronomical tide occurs for the 26 

period of the event (27th October – 12th November 2009) (yellow dot) and the Agua Dulcita 27 

river set where a constant discharge of 100 m3/s is introduced (blue dot). 28 

On the other hand, hydraulic roughness is a lumped term known as Manning’s coefficient that 29 

represents the sum of a number of effects, among which are skin friction, form drag and the 30 

impact of acceleration and deceleration of the flow. The precise effects represented by the 31 

friction coefficient for a particular model depend on the model’s dimensionality, as the 32 
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parameterisation compensates for energy losses due to unrepresented processes, and the grid 1 

resolution (Bates et al., 2014). The lack of a comprehensive theory of “effective roughness” 2 

have determined the need for calibration of friction parameters in hydraulic models. 3 

Furthermore, the determination of realistic spatial distributions of friction across a floodplain 4 

in other studies, have showed that only 1 or 2 floodplain roughness classes are required to 5 

match current data sources (Werner et al., 2005). Indeed, this suggests that application of 6 

complex formulae to establish roughness values for changed floodplain land use are 7 

inappropriate until model validation data are improved significantly. Therefore, in this study  8 

hydraulic roughness in the floodplain is assumed to be uniform and different from the main 9 

river channel, in this sense two values for the Manning number are used, one for the main 10 

river channel (M=32 m1/2s-1) and another for the floodplain (M=28 m1/2s-1).   11 

In order to assess whether the 2D model is able to reproduce the flood extent observed in 12 

2009, numerical results of flood extent are compared against the affected area determined 13 

from a SPOT image (resolution of 124m). This practice is widely used in the literature to 14 

evaluate the results from inundation models and to compare its performance (Di Baldassare et 15 

al, 2010b; Wright et al., 2008). 16 

Fig. 8a introduces the result of the hydrodynamic simulation for each of the 31 selected 17 

hydrographs, which resulted from the utilisation of the rainfall-runoff model using as input 18 

the WRF multi-physics ensemble output. The illustrated flood map summarises the 31 19 

different possibilities of the inundation area that could result from the characterisation of 20 

precipitation with the WRF model. Each of these flood maps can also be associated to a 21 

probability enabling the representation of a probabilistic flood map, shown in the figure. This 22 

allows the identification of the areas highly vulnerable to flooding from this event. 23 

Additionally, Fig. 8b introduces the infrared SPOT satellite image of the 12th of November 24 

2009, which is used for comparison against the produced flood maps derived from running 25 

the 31 hydrographs as inputs in the 2D model. Notably, in the numerical results, the blue area 26 

identifies the region of the domain that is most likely to be flooded (90%), the comparison of 27 

this area with the observed inundation in the satellite image, show a good skill of the model 28 

chain at reproducing the registered flood in the study area.  29 

Despite the variability in the estimated peak discharge utilised as input in the different 30 

hydrodynamic runs, inundation results show similar affected areas in all realisations (only 31 

with small differences in its size). This is verified in the results shown in Fig. 9a, where the 32 

a) b) 



 18 

relationship between peak discharge of the 31 hydrographs, is plotted against the size of the 1 

maximum-flooded area. The distribution of points in this graph clearly indicates that although 2 

there are differences in the estimated peak flow (see histogram in Fig. 9b), in most cases the 3 

resulting size of the inundated area is similar. Histogram plot shown in Fig. 9c indicates a 4 

clear concentration numerically derived flooded areas with a size larger than 130 km2. Indeed, 5 

the mean value of the maximum-flooded estimated area is 138.94 km2, while the standard 6 

deviation is 16.09 km2.  7 

These results support that the hydraulic behaviour in all hydrodynamic simulations was 8 

indeed very similar, regardless of the peak discharge of the hydrograph. It is reflected that this 9 

may be the result of induced hydrodynamics by a valley-filling flood event, which is 10 

identified with the relatively high floodplain area-to-channel-depth ratios in all simulations.  11 

Hence, all possible hydrographs generated with the hydrological model show similar levels of 12 

lateral momentum exchange between main channel and floodplain. For this reason, the 13 

predictive performance of all hydrodynamic simulations used to reproduce the inundation 14 

extent appears to be good (see Table 5).  15 

The estimation of several error metrics in these results was performed using binary flood 16 

extent maps, where the comparison is based on the generation of a contingency table, which 17 

reports the number of pixels correctly predicted as wet or dry. From this, measures of fit such 18 

as: BIAS, False Alarm Ratio (FAR), Probability of Detection (POD), Probability of False 19 

Detection (POFD), Critical Success Index (CSI) and the True Skill Statistics (TSS) are 20 

estimated. Table 5 introduces the results for all 31 members and error metrics. Clearly, there 21 

is little variability in the performance of the model for each of the runs, showing that there has 22 

been a small propagation of the error to the flood map.  The ensemble average of these 23 

quantities is also illustrated in the last column of the table, where values of BIAS=1.013, 24 

FAR=0.189, POD=0.819, POFD=0.180; CSI=0.686 and TSS=0.639 are reported. As noted 25 

before, these results indicate an apparent good skill of the model chain at reproducing the 26 

flood extension, due to the incidence of this extreme event. It should be borne in mind, 27 

however, that some misclassification errors may also be included in the observed flooded area 28 

due to specular reflections that may classify some wet vegetation as water or open water as 29 

dry land. In consequence, flood extent maps should be used with caution in assessing model 30 

performance (Di Baldassare, 2012). This is particularly true during high-magnitude events 31 
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where the valley is entirely inundated, such as the case study of this investigation where small 1 

changes in lateral flood extent may produce large changes in water levels.  2 

In this sense, it has been argued that flood extent maps are not useful for model assessment 3 

(Hunter et al., 2005) and high water marks are more useful to evaluate model performance. 4 

Unfortunately, for the case study information of inundation depths was not available. Despite 5 

this fact, a further revision of simulated inundation depths is also carried out. For this, 10 6 

points distributed within the numerical domain are selected. These are illustrated by the 7 

coloured dots in Fig. 10, along with the values of mean water depth in all the 31 simulations 8 

(red solid line). In all cases, a high variability in the estimated inundation depth on the 9 

floodplain is depicted (with values varying between 1.5 and 3m). This result supports that in 10 

the case of valley-filling flood events, there is a higher sensitivity to errors in the vertical 11 

dimension of the flood.  12 

In one hand, this demonstrates that the geomorphological characteristics of the site (e.g. low-13 

lying area, smooth slopes in the river channel and floodplain) are dominant in the accurate 14 

determination of the magnitude of an inundated area, regardless of the peak discharge. This 15 

implies that for this type of rivers and when predicting inundation extent, it may be more 16 

important to have a good characterisation of the river and floodplain (e.g. high quality field 17 

data and a LiDAR derived DEM), than a good characterisation of the rainfall-runoff 18 

relationship. 19 

Current approaches to flood mapping, have pointed out that in order to produce a 20 

scientifically justifiable flood map, the most physically-realistic model should be utilised (Di 21 

Baldassarre et al., 2010). Nevertheless, even with these models the amount of uncertainty 22 

involved in the determination of an affected area is important and should be quantified.  23 

 24 

4 Discussion and Conclusions 25 

Flood risk mapping and assessment are highly difficult tasks due to the inherent complexity of 26 

the relevant processes, which occur in several spatial and temporal scales. As pointed out by 27 

Aronica et al. (2013), the processes are subject to substantial uncertainties (epistemic and 28 

random), which emerge from different sources and assumptions, from the statistical analysis 29 

of extreme events and from the resolution and accuracy of the DEM used in a flood 30 

inundation model.  31 



 20 

By acknowledging that all models are an imperfect representation of the reality, it is 1 

important to quantify the impact of epistemic uncertainties on a given result. The numerical 2 

approach utilised in this investigation enabled an assessment of a state-of-the art modelling 3 

framework, comprised by meteorological, hydrological and hydrodynamic models. Emphasis 4 

was given to the effects of epistemic uncertainty propagation from the meteorological model 5 

to the definition of an affected area in a 2D domain. Ensemble climate simulations have 6 

become a common practice in order to provide a metric of the uncertainty associated with 7 

climate predictions. In this study, a multi-physics ensemble technique is utilised to evaluate 8 

the propagation of epistemic uncertainties within a model chain. Therefore, the assessment of 9 

hydro-meteorological model performance at the three stages is carried out through the 10 

estimation of skill scores.  11 

Fig. 11 presents a summary of the propagation of two well-known error metrics, BIAS (top 12 

panel) and NSC/TSS (bottom panel). These metrics were selected, as they enable a direct 13 

comparison of their values at each of the stages within the model cascade. In both metrics, the 14 

evolution of the confidence limits is illustrated by the size of the bars. Their evolution from 15 

the meteorological model to the hydrological model, show an aggregation of meteorological 16 

uncertainties with those originated from the rainfall-runoff model. However, the skill is 17 

considerably improved from a mean value of 0.65 in the meteorological model, to 0.793 in the 18 

hydrological model. In the last stage of the model chain (hydrodynamic model), the 19 

confidence limits of the results, show an apparent improvement in model skill. However, it 20 

should be noted that this may be ascribed to the complex aggregation of errors in valley-21 

filling events, which is verified in the observed sensitivity of the simulated inundation depths. 22 

The mean value of the skill is reduced to TSS=0.639. The results provide an useful way to 23 

evaluate the hydro-meteorological uncertainty propagation within the modelling cascade 24 

system.  25 

BIAS and NSC/TSS error metrics (Fig. 11) revealed discrepancies between observations and 26 

simulations throughout the model cascade. For instance, an increase in the NSC from the 27 

rainfall to the flood hydrograph it implies that the hydrological model is more sensitive (wider 28 

uncertainty bars) to its main input (precipitation) than the WRF model is to the set of micro-29 

physics parameterisations. On the other side, the uncertainty bounds in the hydrological 30 

model imply a high sensitivity of hydrographs to both, errors from the meteorological model 31 

and its numerical setup with free parameters (amplifying the uncertainty). This is observed in 32 
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the spaghetti plot shown in Fig. 6a, where large uncertainty bounds were identified. In order 1 

to reduce errors from the interaction of uncertainties coming from both models, these bounds 2 

were reduced with the selection of 31 hydrographs that comply with Cor>0.7 and NSC>0.6 3 

(see Fig.6b).  It is reflected that the estimated error in the meteorological model may reflect a 4 

spatial scaling issue (comparing observations from rain gauges to simulations at the meso-5 

scale). 6 

Results concerning predictions of inundation extent indicate an apparent good skill of the 7 

model chain at reproducing the flood extension. The propagation of uncertainty and error 8 

from the hydrological model to the inundation area revealed that is necessary to assess model 9 

performance not only for flood extension purposes, but also to estimate inundation depths, 10 

where results indicate a higher variability (e.g. increase in the error). This last modelling step 11 

is quite important given the consequences for issuing warning alerts to the population at risk. 12 

The similar magnitude in inundation extents of all numerical results indicated the 13 

predominance of a valley-filling flood event, which was characterised by a flooded area 14 

strongly insensitive to the input flood hydrograph. While this can be explained by the limited 15 

effect that the volume overflowing the riverbanks and reaching the floodplain will have on the 16 

maximum inundation area, the difference between the observed and the simulated flooded 17 

area remains important (TSS=0.639). 18 

It should be pointed out, that this methodology contains more uncertainties that were not 19 

considered or quantified in the generation of flood extent maps for this event. To quantify the 20 

epistemic uncertainty in the larger scale (i.e. atmosphere), a mesoscale numerical weather 21 

prediction system was used along with a multi-physics ensemble. The ensemble was designed 22 

to represent our limited knowledge of the processes generating precipitation in the lower 23 

troposphere. It was shown that a large amount of uncertainty exists in the NWP model, and 24 

such uncertainty is indeed propagated over the catchment and floodplain. Members of the 25 

ensemble were shown to differ significantly in terms of their cumulative precipitation, spatial 26 

distribution, river discharge, inundation depths and areas. Therefore, epistemic uncertainties 27 

from each step in this model cascade can be aggregated up to the final output.  28 

The evaluation of the skill in the model cascade shows further potential for improvements of 29 

the modelling system. Consequently, future work is planned to include the remaining 30 

uncertainties as adopted by, e.g. Pedrozo-Acuña et al. (2013). Special attention should be paid 31 

to the interaction between hydro-meteorological and hydrological uncertainty, as well as flood 32 
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extent estimation in catchments with different morphological setting. The assessment of the 1 

error propagation within the model cascade is seen as a good step forward, in the 2 

communication of uncertain results to the society. However, as shown in this work, an 3 

improvement in model prediction during the first cascade step (rainfall to runoff) can be 4 

reverted during the second cascade step (runoff to inundation area) with important 5 

consequences for early warning systems and operational forecasting purposes. Finally, the 6 

proposed numerical framework could be utilised as a robust alternative for the 7 

characterisation of extreme events in ungauged basins.  8 
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 1 

 2 

Table 1. Ensemble members defined for the multi-physics WRF ensemble 3 

Ensemble 

member

Micro-

Physics

surface 

layer 

physics

Cumulus 

physics

Feedback

/sst_upda

te

RMSE NSC Cor Bias

Criteria

NSC >0.3, 

Cor >0.8

1 WSM5 5-Layer TDM Kain-Fritsch Eta off/off 445.23 -0.25 0.94 0.44 disregard

2 WSM5 5-Layer TDM Kain-Fritsch Eta off/on 262.73 0.44 0.97 0.98 select

3 WSM5 5-Layer TDM Kain-Fritsch Eta on/off 250.51 0.49 0.97 1.01 select

4 WSM5 5-Layer TDM Kain-Fritsch Eta on/on 257.35 0.43 0.97 1.05 select

5 WSM5 5-Layer TDM Betts-Miller-Janjic off/on 502.47 -0.65 0.97 0.28 disregard

6 WSM5 5-Layer TDM Betts-Miller-Janjic on/on 520.58 -0.77 0.97 0.25 disregard

7 WSM5 Noah Kain-Fritsch Eta off/off 233.04 0.42 0.96 1.18 select

8 WSM5 Noah Kain-Fritsch Eta off/on 236.14 0.33 0.96 1.24 select

9 WSM5 Noah Kain-Fritsch Eta on/off 359.11 0.17 0.90 0.56 disregard

10 WSM5 Noah Kain-Fritsch Eta on/on 245.31 0.41 0.96 1.12 select

11 WSM5 Noah Betts-Miller-Janjic off/off 486.26 -0.49 0.98 0.33 disregard

12 WSM5 Noah Betts-Miller-Janjic off/on 486.02 -0.49 0.97 0.34 disregard

13 WSM5 Noah Betts-Miller-Janjic on/off 535.00 -0.82 0.97 0.23 disregard

14 WSM5 Noah Betts-Miller-Janjic on/on 543.78 -0.87 0.96 0.23 disregard

15 Thompson 5-Layer TDM Kain-Fritsch Eta off/off 216.70 0.60 0.97 1.09 select

16 Thompson 5-Layer TDM Kain-Fritsch Eta off/on 236.64 0.50 0.97 1.15 select

17 Thompson 5-Layer TDM Kain-Fritsch Eta on/off 238.89 0.57 0.96 0.97 select

18 Thompson 5-Layer TDM Kain-Fritsch Eta on/on 275.24 0.50 0.96 0.89 select

19 Thompson 5-Layer TDM Betts-Miller-Janjic off/on 571.49 -1.15 0.96 0.16 disregard

20 Thompson 5-Layer TDM Betts-Miller-Janjic on/off 572.27 -1.14 0.95 0.16 disregard

21 Thompson 5-Layer TDM Betts-Miller-Janjic on/on 502.47 -0.65 0.97 0.28 disregard

22 Thompson Noah Kain-Fritsch Eta off/off 238.06 0.38 0.96 1.25 select

23 Thompson Noah Kain-Fritsch Eta off/on 234.03 0.48 0.97 1.13 select  4 

Ensemble 
member 

Micro-Physics 
surface layer 

physics 
Cumulus physics Feedback/sst_update 

1 WSM5 5-Layer TDM Kain-Fritsch Eta off/on 

2 WSM5 5-Layer TDM Kain-Fritsch Eta on/off 

3 WSM5 5-Layer TDM Kain-Fritsch Eta on/on 

4 WSM5 Noah Kain-Fritsch Eta off/off 

5 WSM5 Noah Kain-Fritsch Eta off/on 

6 WSM5 Noah Kain-Fritsch Eta on/on 

7 Thompson 5-Layer TDM Kain-Fritsch Eta off/off 

8 Thompson 5-Layer TDM Kain-Fritsch Eta off/on 

9 Thompson 5-Layer TDM Kain-Fritsch Eta on/off 

10 Thompson 5-Layer TDM Kain-Fritsch Eta on/on 

11 Thompson Noah Kain-Fritsch Eta off/off 

12 Thompson Noah Kain-Fritsch Eta off/on 

 5 

 6 

 7 
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Table 2. Error Metrics in the estimation of precipitation by members of the multi-physics ensemble (blue rows 1 

indicate the stations located within the Tonalá catchment) 2 

Root-Mean Square Error (RMSE) and Normalised RMSE per Station considering Ensemble average  

Station 
No.  

Multi-physics ensemble member <Nor_RMSE>    
% M1  M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 

30167 210.26 96.56 144.62 104.42 106.84 76.31 160.48 129.88 101.03 210.95 164.85 86.80 13.96 

27003 544.34 578.19 564.46 474.81 427.30 516.95 458.25 484.05 568.20 572.30 385.17 479.47 35.13 

27007 234.90 246.00 198.01 135.27 129.43 207.93 126.51 197.32 246.90 328.28 132.09 191.81 19.44 

27015 96.68 129.89 151.02 194.33 235.76 179.69 152.06 152.60 118.97 116.87 260.49 188.20 24.01 

27074 173.37 211.87 191.22 197.46 78.94 148.88 174.92 247.65 187.98 207.39 123.09 157.21 17.19 

27073 227.47 201.91 228.62 256.39 281.38 245.68 186.21 219.36 159.34 147.79 247.69 223.88 46.46 

27075 87.04 119.26 104.10 100.82 151.17 64.92 76.45 147.30 85.75 105.68 52.14 68.67 10.72 

27076 140.53 160.28 141.95 124.03 108.33 130.53 191.75 162.59 226.04 236.09 129.78 150.84 17.14 

27077 89.10 113.42 83.60 225.48 252.24 207.73 254.20 282.40 110.77 83.93 203.01 192.86 30.57 

27039 333.50 204.36 197.48 295.84 302.19 261.39 264.08 321.66 172.86 152.14 257.59 430.63 73.28 

27054 123.18 30.77 45.28 113.16 119.18 77.41 106.84 112.68 118.83 127.43 110.06 106.67 34.75 

27060 70.69 56.23 59.51 33.42 40.13 30.04 78.07 93.80 88.46 80.36 56.73 66.31 19.88 

27024 160.33 137.81 140.76 120.58 127.54 73.57 148.27 136.47 145.12 167.79 153.26 151.87 85.04 

27084 68.72 71.32 54.58 53.56 106.93 65.65 61.06 72.31 61.46 62.96 50.14 50.92 19.02 

7365 172.91 117.44 103.02 252.03 139.79 163.49 301.52 216.38 179.67 129.71 271.88 210.11 24.52 

27011 143.70 162.77 143.61 107.82 77.55 86.15 128.03 143.69 106.59 116.49 86.81 81.27 106.83 

27036 81.46 60.69 27.36 61.69 19.14 35.64 23.58 45.89 22.13 40.23 39.22 55.55 12.04 

27008 158.85 72.82 74.96 131.34 134.94 100.16 102.82 149.97 66.67 79.36 97.87 254.33 19.68 

                    
Average {Rel_RMSE} 

catch. 23.14 

                    Average  {Rel_RMSE} all 33.87 

                            

BIAS per Station and Ensemble Average  

Station 
No.  

Multi-physics ensemble member 
<BIAS> 

M1  M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 

30167 0.71 0.90 0.81 1.07 1.12 0.99 0.80 0.85 0.91 0.71 1.23 1.06 0.93 
27003 0.51 0.48 0.50 0.58 0.62 0.54 0.59 0.57 0.49 0.49 0.66 0.58 0.55 
27007 0.72 0.71 0.79 0.91 0.91 0.78 1.13 1.26 0.73 0.61 0.90 0.80 0.85 
27015 1.21 1.32 1.40 1.50 1.61 1.46 1.37 1.37 1.24 1.21 1.68 1.48 1.40 
27074 0.82 0.76 0.79 0.78 1.08 0.86 0.81 0.71 0.80 0.77 0.88 0.83 0.82 
27073 1.74 1.65 1.74 1.83 1.91 1.80 1.58 1.70 1.47 1.44 1.80 1.72 1.70 
27075 0.92 0.85 0.88 0.88 1.20 0.96 0.90 0.80 0.89 0.86 0.98 0.93 0.92 
27076 0.86 0.82 0.86 0.91 0.95 0.89 0.79 0.84 0.73 0.71 0.89 0.85 0.84 
27077 1.12 1.17 1.10 1.48 1.54 1.44 1.54 1.60 1.20 1.14 1.42 1.40 1.35 
27039 2.41 1.87 1.84 2.26 2.29 2.11 2.13 2.36 1.73 1.64 2.09 2.84 2.13 
27054 1.89 1.08 1.24 1.82 1.87 1.54 1.76 1.81 1.84 1.91 1.79 1.77 1.69 
27060 1.42 1.33 0.72 1.08 1.20 1.05 1.47 1.57 1.54 1.49 1.32 1.39 1.30 
27024 3.34 2.96 3.03 2.76 2.88 2.07 3.16 2.98 3.11 3.45 3.17 3.17 3.01 
27084 1.32 1.35 1.17 1.23 1.61 0.78 1.27 1.36 1.27 1.29 1.07 1.01 1.23 
7365 1.43 1.20 1.09 1.63 1.32 0.72 1.78 1.55 1.43 1.26 1.68 1.51 1.38 

27011 3.57 3.91 3.55 2.93 2.33 2.49 3.33 3.58 2.91 3.09 2.56 2.45 3.06 
27036 1.36 1.25 1.09 1.28 0.97 1.15 0.95 1.20 1.06 1.16 1.15 1.24 1.15 
27008 1.37 1.07 1.05 1.29 1.31 1.20 1.21 1.35 0.99 0.93 1.19 1.62 1.22 

                    
Average {Rel_RMSE} 

catch. 0.94 

                    Average  {Rel_RMSE} all  1.42 

 3 

 4 

 5 

 6 
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Continuation of Table 2. Error Metrics in the estimation of precipitation by members of the multi-physics 1 

ensemble (blue rows indicate the stations located within the Tonalá catchment) 2 

 3 

Nash-Sutcliff Coefficient per Station and Ensemble average 

Station No.  
Multi-physics ensemble member 

<NSC> 
M1  M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 

30167 0.72 0.94 0.87 0.93 0.93 0.96 0.84 0.89 0.94 0.72 0.83 0.95 0.88 

27003 0.16 0.05 0.09 0.36 0.48 0.24 0.40 0.33 0.08 0.07 0.58 0.34 0.26 

27007 0.70 0.67 0.78 0.90 0.91 0.76 0.91 0.79 0.66 0.41 0.90 0.80 0.77 

27015 0.88 0.78 0.70 0.50 0.27 0.57 0.70 0.69 0.81 0.82 0.11 0.53 0.61 

27074 0.84 0.76 0.80 0.79 0.97 0.88 0.84 0.67 0.81 0.77 0.92 0.87 0.83 

27073 -0.27 0.00 -0.28 -0.61 -0.94 -0.48 0.15 -0.18 0.38 0.46 -0.50 -0.23 -0.21 

27075 0.94 0.89 0.91 0.92 0.82 0.97 0.95 0.83 0.94 0.91 0.98 0.96 0.92 

27076 0.87 0.83 0.86 0.90 0.92 0.88 0.75 0.82 0.65 0.62 0.89 0.85 0.82 

27077 0.82 0.70 0.84 -0.17 -0.46 0.01 -0.48 -0.83 0.72 0.84 0.05 0.15 0.18 

27039 -4.41 -1.03 -0.90 -3.26 -3.44 -2.32 -2.39 -4.03 -0.45 -0.13 -2.23 -8.02 -2.72 

27054 -0.46 0.91 0.80 -0.23 -0.36 0.42 -0.10 -0.22 -0.36 -0.56 -0.16 -0.09 -0.03 

27060 0.60 0.75 0.72 0.91 0.87 0.93 0.51 0.29 0.37 0.48 0.74 0.65 0.65 

27024 -7.99 -5.64 -5.93 -4.08 -4.69 -0.89 -6.68 -5.51 -6.36 -8.84 -7.21 -7.06 -5.91 

27084 0.67 0.64 0.79 0.80 0.20 0.70 0.74 0.63 0.73 0.72 0.82 0.82 0.69 

7365 0.50 0.77 0.82 -0.07 0.67 0.55 -0.54 0.21 0.45 0.72 -0.25 0.25 0.34 

27011 -16.74 -21.76 -16.72 -8.99 -4.17 -5.38 -13.08 -16.74 -8.76 -10.66 -5.47 -4.67 -11.09 

27036 0.61 0.78 0.96 0.78 0.98 0.93 0.97 0.88 0.97 0.91 0.91 0.82 0.87 

27008 0.60 0.92 0.91 0.72 0.71 0.84 0.83 0.64 0.93 0.90 0.85 -0.03 0.73 

                    
Average {Rel_RMSE} 

catch. 0.63 

                    Average  {Rel_RMSE} all  -0.63 

                            

Correlation Coefficient per Station and Ensemble average 

Station No.  
Multi-physics ensemble member 

<Cor> 
M1  M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 

30167 0.99 0.99 0.99 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.97 0.98 0.99 
27003 0.95 0.96 0.97 0.97 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.98 
27007 0.98 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.95 0.98 0.97 0.97 
27015 0.97 0.96 0.97 0.94 0.93 0.95 0.95 0.95 0.94 0.94 0.93 0.94 0.95 
27074 0.98 0.98 0.98 0.98 0.99 0.98 0.99 0.98 0.98 0.98 0.99 0.99 0.98 
27073 0.95 0.96 0.95 0.94 0.94 0.94 0.92 0.92 0.91 0.92 0.94 0.94 0.94 
27075 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 
27076 0.98 0.98 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.96 0.97 0.97 0.97 
27077 0.96 0.95 0.96 0.96 0.95 0.96 0.95 0.95 0.97 0.97 0.95 0.96 0.96 
27039 0.95 0.95 0.94 0.93 0.94 0.94 0.94 0.94 0.95 0.95 0.94 0.93 0.94 
27054 0.91 0.96 0.94 0.93 0.93 0.94 0.91 0.92 0.91 0.90 0.93 0.93 0.93 
27060 0.96 0.97 0.97 0.96 0.97 0.97 0.95 0.95 0.96 0.96 0.97 0.96 0.96 
27024 0.91 0.93 0.92 0.90 0.91 0.95 0.89 0.90 0.89 0.89 0.94 0.94 0.91 
27084 0.91 0.91 0.92 0.94 0.92 0.95 0.92 0.91 0.92 0.92 0.93 0.93 0.92 
7365 0.93 0.93 0.94 0.92 0.94 0.97 0.91 0.92 0.91 0.92 0.91 0.92 0.93 

27011 0.94 0.94 0.95 0.93 0.95 0.96 0.89 0.93 0.91 0.92 0.91 0.91 0.93 
27036 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 
27008 0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.96 0.96 0.96 0.96 

                    
Average {Rel_RMSE} 

catch. 0.97 

                    Average  {Rel_RMSE} all 0.95 
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Table 3. Flood events in the Tonala River used in the calibration process of free parameters in the hydrological 6 

model, along with computed error metrics. 7 

Event

Max Q 

(m3/s)

Obs.

ʎ Fs Fo

Max Q 

(m3/s)

Calc.

NSC Cor Bias

2001 577.98 0.2 0.1 0.9 584.79 0.529 0.764 1.112

2005 589.25 0.4 0.6 0.9 609.87 0.812 0.907 1.043

2007 538.50 0.2 1.8 0.9 543.87 0.483 0.780 0.902

2008 597.35 0.4 1.8 0.9 823.04 0.155 0.861 0.983

2009 1262.57 0.8 1.8 0.9 1424.56 0.910 0.962 0.942

2011 545.40 0.9 1.6 0.9 597.08 0.413 0.721 1.051  8 
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Table 4. Error metrics in the estimation of river discharge by the rainfall-runoff model using 6 parameter sets and 1 

12 members of the multi-physics ensemble (those selected are shown in bold with NSC>0.6 and Cor>0.7). 2 

Member No. WRF Member
Hydrological 

Parameters
NSC Cor Bias

1 M1 2001 0.733 0.884 0.852

2 M2 2001 0.074 0.973 1.529

3 M3 2001 -0.035 0.974 1.564

4 M4 2001 -0.511 0.975 1.686

5 M5 2001 -0.638 0.441 1.485

6 M6 2001 -0.223 0.961 1.593

7 M7 2001 -0.192 0.961 1.579

8 M8 2001 -0.043 0.959 1.537

9 M9 2001 0.064 0.958 1.504

10 M10 2001 0.245 0.971 0.525

11 M11 2001 -1.503 0.944 1.832

12 M12 2001 -0.752 0.954 1.710

13 M1 2005 0.639 0.901 0.742

14 M2 2005 0.404 0.977 1.414

15 M3 2005 0.318 0.978 1.449

16 M4 2005 -0.077 0.977 1.569

17 M5 2005 -0.545 0.366 1.368

18 M6 2005 0.181 0.968 1.478

19 M7 2005 0.200 0.968 1.465

20 M8 2005 0.321 0.966 1.422

21 M9 2005 0.408 0.966 1.389

22 M10 2005 -0.081 0.960 0.426

23 M11 2005 -0.909 0.951 1.717

24 M12 2005 -0.264 0.961 1.595

25 M1 2007 0.376 0.914 0.601

26 M2 2007 0.761 0.978 1.244

27 M3 2007 0.711 0.979 1.278

28 M4 2007 0.444 0.976 1.395

29 M5 2007 -0.440 0.261 1.191

30 M6 2007 0.633 0.974 1.306

31 M7 2007 0.647 0.974 1.293

32 M8 2007 0.722 0.973 1.251

33 M9 2007 0.771 0.972 1.219

34 M10 2007 -0.508 0.952 0.322

35 M11 2007 -0.129 0.959 1.539

36 M12 2007 0.340 0.969 1.420

37 M1 2008 0.240 0.922 0.547

38 M2 2008 0.837 0.978 1.186

39 M3 2008 0.797 0.978 1.220

40 M4 2008 0.570 0.974 1.337

41 M5 2008 -0.479 0.209 1.132

42 M6 2008 0.741 0.976 1.248

43 M7 2008 0.753 0.976 1.235

44 M8 2008 0.813 0.975 1.194

45 M9 2008 0.851 0.975 1.161

46 M10 2008 -0.720 0.945 0.276

47 M11 2008 0.079 0.962 1.481

48 M12 2008 0.495 0.972 1.361

49 M1 2009 -0.036 0.838 0.494

50 M2 2009 0.819 0.978 0.882

51 M3 2009 0.899 0.977 0.907

52 M4 2009 0.649 0.963 1.286

53 M5 2009 0.060 0.811 0.580

54 M6 2009 0.839 0.959 0.849

55 M7 2009 0.883 0.959 0.890

56 M8 2009 0.896 0.954 0.929

57 M9 2009 0.890 0.950 0.928

58 M10 2009 -1.233 0.972 0.209

59 M11 2009 0.638 0.938 1.236

60 M12 2009 0.885 0.946 1.042

61 M1 2011 -0.247 0.949 0.396

62 M2 2011 0.938 0.970 1.019

63 M3 2011 0.930 0.971 1.052

64 M4 2011 0.819 0.964 1.168

65 M5 2011 -0.662 0.055 0.955

66 M6 2011 0.890 0.978 1.133

67 M7 2011 0.899 0.979 1.120

68 M8 2011 0.931 0.979 1.079

69 M9 2011 0.945 0.978 1.047

70 M10 2011 -1.136 0.931 0.195

71 M11 2011 0.433 0.967 1.364

72 M12 2011 0.738 0.976 1.246

0.793 0.965 1.113
<Ensemble 

average of selected members>3 



 34 

 1 

 2 

Table 5. Error metrics in the estimation of river discharge by the hydrodynamic model using the 31 members of the multi-physics ensemble. 3 

M1 M13 M26 M27 M30 M31 M32 M33 M38 M39 M42 M43 M44 M45 M50 M51 M52 M54 M55 M56 M57 M59 M60 M62 M63 M64 M66 M67 M68 M69 M72

BIAS 0.903 0.838 1.084 1.099 1.119 1.120 1.094 1.078 1.056 1.021 1.092 1.089 1.096 1.051 0.902 0.915 0.891 0.820 1.020 0.982 0.872 1.056 1.004 0.982 0.995 1.047 1.040 1.028 1.016 1.005 1.092 1.013

FAR: False Alarm Ratio 0.148 0.120 0.215 0.217 0.283 0.210 0.216 0.212 0.209 0.217 0.216 0.215 0.152 0.207 0.148 0.154 0.139 0.137 0.193 0.155 0.133 0.206 0.187 0.178 0.182 0.204 0.201 0.225 0.192 0.187 0.216 0.189

POD: Probability of Detection 0.770 0.737 0.851 0.861 0.849 0.849 0.858 0.849 0.836 0.751 0.857 0.854 0.848 0.833 0.769 0.775 0.751 0.810 0.823 0.845 0.756 0.847 0.816 0.807 0.814 0.833 0.831 0.821 0.821 0.818 0.857 0.819

POFD:Probability of False Detection 0.124 0.094 0.217 0.222 0.187 0.187 0.220 0.214 0.205 0.186 0.220 0.219 0.186 0.203 0.124 0.131 0.185 0.185 0.184 0.066 0.108 0.266 0.175 0.163 0.168 0.199 0.195 0.186 0.182 0.175 0.220 0.180

CSI : Critical Succes Index 0.679 0.670 0.690 0.695 0.711 0.711 0.694 0.691 0.685 0.709 0.693 0.692 0.710 0.685 0.679 0.679 0.706 0.654 0.687 0.708 0.677 0.620 0.687 0.687 0.690 0.686 0.687 0.619 0.688 0.688 0.693 0.686

True Skill Statistics 0.645 0.643 0.634 0.639 0.621 0.662 0.638 0.636 0.631 0.660 0.637 0.636 0.661 0.631 0.645 0.643 0.615 0.601 0.639 0.659 0.648 0.660 0.641 0.644 0.640 0.634 0.636 0.610 0.640 0.642 0.637 0.639

Comparison of flooded areas between numerical results from running ensemble members vs. Observed

<Ensemble 

average>
Error metrics 

Ensemble Member

 4 

 5 
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Figure 1. Top panel: Location of the Tonala River basin in Mexico, blue line represents the 4 

boundary limits of the catchment; blue dots illustrate the location of weather stations; red dot: 5 

streamflow gauge. Bottom panel: zoom of the study area and photographs of observed 6 

impacts; yellow, blue and red dots represent the location at which photos were taken.   7 

8 
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Figure 2. Numerical setup of the WRF with a nested domain covering Mexico. Domain 1: 5 

25km resolution; Domain 2: 4km resolution; the orange region illustrates the Tonalá 6 

catchment.  7 
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Figure 3. Comparison of cumulative precipitation estimated by the 23 model runs of the 6 

WRF multi-physics ensemble. Blue solid line: selected members with NSC> 0.3; grey solid 7 

line: disregarded members with NSC <0.3; red dotted line: mean of the selected 12 members; 8 

black solid line: measurements at each of the four weather stations from 27th October 2009 to 9 

12th November 2009.10 
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Figure 43. Cumulative precipitation fields estimated by the WRF model using the selected 12 members of the multi-physics ensemble (27th 3 

October 2009 – 12th November 2009).  4 
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Figure 4. Comparison of cumulative precipitation estimated by the 12 members of the WRF 4 

model (blue  lines) and its mean (red line) vs. measurements (black solid line) at four weather 5 

stations from 27th October 2009 to 12th November 2009. 6 
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Figure 5. Input data parameters in the hydrological model; a) Land use; b) Pedology; c) River network, curve number and grid.5 

a) b) c) 
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Figure 6.  a) 72 hydrographs computed using the rainfall-runoff model with 6 sets of 4 

parameters and 12 WRF ensemble precipitation fields as input data; b) 31 selected 5 

hydrographs to serve as input in the hydrodynamic model; grey lines illustrate the ensemble 6 

members and the blue dashed line shows the measured river discharge for the event. 7 

8 
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Figure 7. Model domain along with the numerical mesh and elevation data in the study area; 4 

Boundary conditions are represented by blue dot: Agua Dulcita river; red dot: input 5 

hydrograph; yellow dot: river-mouth. 6 

7 
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Figure 8. Data vs. model comparison of flood extent; a) Probabilistic flood map derived from 8 

the ensemble runs with the hydrodynamic model; b) Infrared SPOT image corresponding to 9 

the 15th November 2009. 10 
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Figure 9. a) Maximum-flooded area vs. peak discharge estimated for all 31 hydrodynamic 4 

simulations of the 2009 flood event; b)Histogram of peak discharges; c) Histogram of 5 

estimated size of maximum-flooded area. 6 
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Figure 10. Estimated maxima inundation depths at different locations within the floodplain. 4 

Red line represents the median. Bars correspond to the standard deviation. Upper and lower 5 

limits of the box are the values of the 25th and 75th , respectively. Crosses depict outliers.  6 
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Figure 11. a) BIAS and b) Skill propagation within the model cascade (meteorological-5 

hydrological-hydrodynamic); diamonds: corresponding ensemble mean value. 6 


