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Abstract 7 

This investigation aims to study the propagation of meteorological uncertainty within a 8 

cascade modelling approach to flood prediction. The methodology was comprised of a 9 

Numerical Weather Prediction Model (NWP), a distributed rainfall-runoff model and a 2D 10 

hydrodynamic model. The uncertainty evaluation was carried out at the meteorological and 11 

hydrological levels of the model chain, which enabled the investigation of how errors 12 

originated in the rainfall prediction, interact at a catchment level and propagate to an 13 

estimated inundation area and depth. For this, a hindcast scenario is utilised removing non-14 

behavioural ensemble members at each stage, based on the fit with observed data. At the 15 

hydrodynamic level, an uncertainty assessment was not incorporated; instead, the model was 16 

setup following guidelines for the best possible representation of the case study. The selected 17 

extreme event corresponds to a flood that took place in the Southeast of Mexico during 18 

November 2009, for which field data (e.g. rain gauges; discharge) and satellite imagery were 19 

available. Uncertainty in the meteorological model was estimated by means of a multi-physics 20 

ensemble technique, which is designed to represent errors from our limited knowledge of the 21 

processes generating precipitation. In the hydrological model, a multi-response validation was 22 

implemented through the definition of six sets of plausible parameters from past flood events. 23 

Precipitation fields from the meteorological model were employed as input in a distributed 24 

hydrological model, and resulting flood hydrographs were used as forcing conditions in the 25 

2D hydrodynamic model. The evolution of skill within the model cascade shows a complex 26 

aggregation of errors between models, suggesting that in valley-filling events hydro-27 

meteorological uncertainty has a larger effect on inundation depths than that observed in 28 

estimated flood inundation extents.  29 
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1 Introduction 1 

Hydro-meteorological hazards can have cascading effects and far-reaching implications on 2 

water security, with political, social, economic and environmental consequences. Millions of 3 

people worldwide are forcibly displaced as a result of natural disasters, creating political 4 

tensions and social needs to support them. These events observed in developed and 5 

developing nations alike, highlight the necessity to generate a better understanding on what 6 

causes them and how we can better manage and reduce the risk.  7 

The assessment of flood risk is an activity that has to be carried out under a framework full of 8 

uncertainty. The source of these uncertainties may be ascribed to the involvement of different, 9 

and often rather complex models and tools, in the context of environmental conditions that are 10 

at best, partially understood (Hall, 2014). In addition to this, flooding events are dynamic over 11 

a range of timescales, due to climate variability and socio-economic changes, among others, 12 

which further increases the uncertainty in the projections. Therefore, numerous types of 13 

uncertainties can arise when using formal models in the analysis of risks.  14 

Uncertainty is often categorised between aleatory and epistemic (Hacking, 2006): aleatory is 15 

an essential, unavoidable unpredictability, and epistemic uncertainty reflects lack of 16 

knowledge or the inadequacy of the models to represent reality.  In the context of any 17 

modelling framework, epistemic uncertainties may be ascribed to the definition of model 18 

parameters and to the model structure itself (limited knowledge).  19 

In a technological era characterised by the advent of computers, there is an increased ability 20 

of more detailed hydrological and hydraulic models. Their use and development has been 21 

motivated as they are based on equations that have (more or less) physical justification; and 22 

allow a more detailed spatial representation of the processes, parameters and predicted 23 

variables (Beven, 2014). However, there are also disadvantages, these numerical tools take 24 

more computer time and require the definition of initial, boundary conditions and parameter 25 

values in space and time. Generally, at a level of detail for which such information is not 26 

available even in research studies. Moreover, these models may be subjected to numerical 27 

problems such as numerical difussion and instability. All of these disadvantages can be 28 

interpreted as sources of uncertainty in the modelling process. 29 

Due to wide range of uncertainty sources in the flood risk assessment process, it is of great 30 

interest to investigate the propagation and behaviour of these different uncertainties from the 31 

start of the modelling framework to the result. The size of registered damages and losses in 32 
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recent events around the world, reveal the urgency of doing so, even under a context of 1 

limited predictability. 2 

In September 2013, severe floods were registered in Mexico as a result of the exceptional 3 

simultaneous incidence of two tropical storms, culminating in serious damage and widespread 4 

persistent flooding (Pedrozo-Acuña et al., 2014a). This unprecedented event is part of a recent 5 

set of extreme flood events over the last decade caused by record-breaking precipitation 6 

amounts across Central Europe (Becker and Grünewald, 2003), United Kingdom (Slingo et 7 

al., 2014), Pakistan (Webster et al., 2011), Australia (Ven den Honert and McAneney, 2011), 8 

Northeastern US (WMO, 2011), Japan (WMO, 2011) and Korea (WMO, 2011). In all cases, 9 

the immediate action of governments through the implementation of emergency and action 10 

plans was required. The main aim of these interventions was to reduce the duration and 11 

impact of floods. In addition, risk reduction measures were designed to ensure both a better 12 

flood management and an increase in infrastructure resilience.  13 

One key piece of information in preventing and reducing losses is given by reliable flood 14 

inundation maps that enable the dissemination of flood risk to the society and decision makers 15 

(Pedrozo-Acuña et al., 2013). Traditionally, this task requires the estimation of different 16 

return periods for discharge (Ward et al., 2011) and their propagation to the floodplain by 17 

means of a hydrodynamic model. There is currently a large range of models that can be used 18 

to develop flood hazard maps (Horrit and Bates, 2002; Horrit et al., 2006). 19 

The aforementioned accelerated progress of computers has given way to the development of 20 

model cascades to produce hydrological forecasts, which make use of rainfall predictions 21 

from regional climate models (RCMs) with sufficient resolution to capture meteorological 22 

events (Bartholomes and Todini, 2005; Demerrit et al., 2010). Within this approach, the 23 

coupling of different operational numerical models is carried out, using numerical weather 24 

prediction (NWP) with radar data for hydrologic forecast purposes (Liguori and Rico-25 

Ramirez, 2012; Liguori et al., 2012), or NWP with hydrological and hydrodynamic models to 26 

determine inundation extension (Pappenberger et al., 2012; Cloke et al., 2013; Ushiyama et 27 

al., 2014).   28 

The use of RCMs in climate impact studies on flooding has been reported by Teutschbein and 29 

Seibert (2010) and Beven (2011), noting that despite their usefulness, the spatial resolution of 30 

models (~25km) remains coarse to capture the spatial resolution of precipitation. This is 31 

particularly important, as higher resolution is needed to effectively model the hydrological 32 
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processes essential for determining flood risk. To overcome this limitation, the utilisation of 1 

dynamic downscaling in these models has been significantly growing (Fowler et al., 2007; 2 

Leung and Qian, 2009; Lo et al., 2008).  3 

Significant challenges remain in the foreseeable future, among these, the inherent 4 

uncertainties in the predictive models are likely to have an important role to play. For 5 

example, it is well known that the performance skill of NWPs deteriorates very rapidly with 6 

time (Lo et al., 2008). To overcome this, the long-term continuous integration of the 7 

prediction has been subdivided into short-simulations, involving the re-initialisation of the 8 

model to mitigate the problem of systematic error growth in long integrations (Giorgi, 1990; 9 

Giorgi, 2006; Qian et al., 2003). Moreover, the use of ensemble prediction systems to obtain 10 

rainfall predictions for hydrological forecasts at the catchment scale is becoming more 11 

common among the hydrological community as they enable the evaluation and quantification 12 

of some uncertainties in the results (Buizza 2008; Cloke and Pappenberger, 2009; Bartholmes 13 

et al. 2009). In these studies, an ensemble is a collection of forecasts made from almost, but 14 

not quite, identical initial conditions.   15 

A key question that arises when using a cascade modelling approach to flood prediction or 16 

mapping is: how uncertainties associated to meteorological predictions of precipitation 17 

propagate to a given flood inundation map? Previous work has been devoted to the 18 

examination of uncertainties in the results derived from different ensemble methods, which 19 

address differences in the initial conditions in the NWP or even differences in using a single 20 

model ensemble vs. multi-model ensemble (Pappenberger et al. 2008; Cloke et al., 2013; Ye 21 

et al., 2014). However, less attention has been paid to the behaviour of errors within a model 22 

chain that aims to represent a flood event occurring at several spatial scales.  In order to  23 

understand how errors propagate in a chain of models, this investigation evaluates the 24 

transmission of uncertainties from the meteorological model to a given flood map. For this, 25 

we utilize a cascade modelling approach comprised by a Numerical Weather Prediction 26 

Model (NWP), a rainfall-runoff model and a standard 2D hydrodynamic model. This 27 

numerical framework is applied to an observed extreme event registered in Mexico in 2009 28 

for which satellite imagery is available. The investigated uncertainty is limited to the model 29 

parameter definition in the NWP model, by means of a multi-physics ensemble technique 30 

considering several multi-physics parameterization schemes for the precipitation (Bukosvky 31 

and Karoly, 2009). The resulting precipitation fields are used to generate spaghetti plots by 32 
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means of a distributed hydrological model, enabling the propagation of meteorological 1 

uncertainties to the flood hydrograph. Hence, the resulting hydrographs represent the runoff 2 

associated to each precipitation field estimated with the NWP. In order to complete the 3 

propagation of the uncertainty through the cascade of models to the flood map, the 4 

hydrographs are used as forcing in a standard 2D hydrodynamic model. 5 

On the other hand, it is acknowledged that each of the other models (hydrological and 6 

hydrodynamic) within the model cascade, will introduce other epistemic and random 7 

uncertainties to the result. In order to reduce their influence, the numerical setup of both these 8 

models is constructed with the best available data (e.g. LiDAR for the topography) and 9 

following recent guidelines for the assessment of uncertainty in flood risk mapping (Beven et 10 

al. 2011). In this way, the uncertainty associated to the meteorological model outputs is 11 

propagated through the model cascade from the atmosphere to the flood plain. Thus, the aim 12 

of this investigation is to study the uncertainty propagation from the meteorological model 13 

(due to model parameters), to the determination of an affected area impacted by a well-14 

documented hydro-meteorological event.   15 

This work is organised as follows: Section 2 provides a description of both, the study area and 16 

the extreme hydro-meteorological event, which are employed to test our cascade modelling 17 

approach; Section 3 introduces the methodology, incorporating a brief description of the 18 

selected models setup. Additionally, we incorporate a description of the multi-physics 19 

ensemble technique used to quantify and limit the epistemic uncertainty in the NWP model. 20 

The resulting precipitation fields, hydrographs and flood maps are compared with available 21 

field data and satellite imagery for the event. In Section 4, a discussion of errors along the 22 

model cascade, is also presented with some conclusions and future work. 23 

 24 

2 Case Study 25 

The selected study area is within the Mexican state of Tabasco, which in recent years has been 26 

subjected to severe flooding as reported by Pedrozo-Acuña et al. (2011; 2012).  This region 27 

comprises the area of Mexico with the highest precipitation rate (2000-3000 mm/year), which 28 

mostly occurs during the wet season of the year between May and December. The rainfall 29 

climatology is also influenced by the incidence of hurricanes and tropical storms arriving 30 

from the North. 31 
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In this paper, the extreme hydro-meteorological event selected for the analysis corresponds to 1 

that registered in the early days of November 2009 in the Tonalá river. As it is shown in 2 

Fig.1, the river is located in the border of Tabasco and Veracruz and during the event, the 3 

substantial rainfall intensity provoked its overflowing leaving extensive inundated areas along 4 

its floodplain. Top panel of Fig. 1 shows the geographical location of the catchment, with an 5 

area of 5,021 km2, as well as the location of 18 weather stations installed within the region by 6 

the National Weather Service.  The event was the result of heavy rain induced by the cold 7 

front #9, which persisted for four days along Mexico's Gulf Coast, forcing more than 44,000 8 

people to evacuate their homes and affecting more than 90 communities.  High intensities in 9 

rainfall were recorded in rain gauges from the 31st October to 3rd November, with 10 

cumulative daily precipitation values reporting more than 270 mm.  The river is 11 

approximately 300 km long and before discharging into the Gulf of Mexico, the stream 12 

receives additional streamflow from other smaller streams such as Agua Dulcita in Veracruz, 13 

and Chicozapote in Tabasco. The bottom panel of the same Figure illustrates the lower Tonalá 14 

River, where severe flooding was registered as it is shown in the photographs on the right. 15 

The yellow, blue and red dots on the panel represent the location at which the photographs 16 

were taken.  17 

The hydrometric data in combination with the satellite imagery for the characterisation of the 18 

affected areas, enabled an accurate investigation of the causes and consequences that 19 

generated this flood event. The high quality of the available information, allowed the 20 

application of a cascade modelling approach comprised by state-of-the-art meteorological, 21 

hydrological and hydrodynamic models. This numerical approach is utilised with the intention 22 

to carry out an assessment of the modelling framework, with particular emphasis on the 23 

propagation of the epistemic uncertainty from the meteorological model to the spatial extent 24 

of an affected area. Such investigation paves the road towards a more honest knowledge 25 

transfer to decision-makers, whom consider the reliability of the model results.  26 

 27 

3 Methodology and Results 28 

The methodology is comprised of a Numerical Weather Prediction Model (NWP), a 29 

distributed rainfall-runoff model and a standard 2D hydrodynamic model. It is anticipated that 30 

the selected modelling approach will support the advance of the understanding of the 31 

connections among scales, intensities, causative factors, and impacts of extremes. This model 32 
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cascade with state-of-the-art numerical tools representing a hydrological system enables the 1 

development of a framework by which an identification of the reliability of simulations can be 2 

undertaken. It should be noted that the model cascade contains several sources of uncertainty 3 

at every level of the numerical framework (meteorological, hydrological and hydrodynamic). 4 

However, the uncertainty evaluation is only carried out at the meteorological and hydrological 5 

levels of the model chain. This enables the investigation of how errors originated in the 6 

rainfall prediction interact at a catchment level, and propagate to determine a given inundation 7 

area and depth. Therefore, the aim is not to reproduce an observed extreme event, but to use a 8 

state of the art numerical framework to examine how errors aggregate in a hindcast scenario. 9 

An uncertainty assessment is not carried out at the hydrodynamic level of the model cascade. 10 

Instead, the 2D hydrodynamic model is setup following recommendations of published 11 

guidelines for the best possible representation of the case study, more specifically with 12 

regards to the selected spatial resolution, boundary conditions and roughness values (see 13 

Asselman et al. 2008).  14 

The proposed investigation is important as uncertainties are cascaded through the modelling 15 

framework, in order to provide better understanding on how errors propagate within models 16 

working at different temporal and spatial scales. It is acknowledged that this information 17 

would enhance better flood management strategies, which would be based on the honest and 18 

transparent communication of the results produced by a modelling system constrained by 19 

intrinsic errors and uncertainties.  20 

 21 

3.1 Meteorological model  22 

Simulated precipitation products from numerical weather prediction systems (NWPs) 23 

typically show differences in their spatial and temporal distribution. These differences can 24 

considerably influence the ability to predict hydrological responses. In this sense, in this study 25 

we utilise the advanced research core of the Weather Research and Forecasting (WRF) model 26 

Version 3.2. The WRF model is a fully compressible non-hydrostatic, primitive-equation 27 

model with multiple nesting capabilities (Skamarock et al., 2008).  28 

As it is shown in Fig. 2, the model setup is defined using an interactive nested domain inside 29 

the parent domain. This domain is selected in order to simulate more realistic rainfall, with 30 

the inner frame enclosing the Tonalá river catchment within a 4 km resolution. The 4 km 31 
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horizontal resolution is considered good enough to compute a mesoscale cloud system 1 

associated to a cold front. It is shown that this finer grid covers the central region of Mexico, 2 

while in the vertical dimension, 28 unevenly spaced sigma levels were selected. The initial 3 

and boundary conditions were created from the NCEP Global Final Analysis (FNL) with a 4 

time interval of 6 hours for the initial and boundary conditions.  Each of the model 5 

simulations was reinitialised every two days at 1200 UTC, considering a total simulation time 6 

from the 27th October 2009 until the 13th November 2009. 7 

Epistemic uncertainty is considered in the WRF model by means of the sensitivity of the 8 

results for precipitation, due to variations in the model setup. For this, we utilise a multi-9 

physics ensemble technique proposed by Bukovsky and Karoly (2009), where the sensitivity 10 

of simulated precipitation in the model results is examined through variations in the specific 11 

setup options by means of twenty three  different combinations.  The comparison of computed 12 

precipitation fields against real measurements from weather stations within the catchment, 13 

enabled the quantification of uncertainty in the meteorological model for this event. Table 1 14 

shows a summary of the different multi-physics parameters used in the WRF model to 15 

generate the physics ensemble. As it is shown on this table, there is a large discrepancy in the 16 

model skill results in all 23 simulations Error metrics reported in this table are computed 17 

using information from all available stations within the numerical domain; which comprised 18 

stations that are outside the area of the catchment. It is demonstrated that only 13 of these 19 

model runs report a positive Nash-Sutcliff Coefficient (NSC), which indicates a better 20 

accuracy for those realisations. In contrast, model runs with negative NSC were dismissed for 21 

the numerical reproduction of the event, as this condition is a clear indicator that the observed 22 

mean is a better predictor than the model. 23 

Therefore, meteorological model runs that comply with a criteria defined by a NSC>0.3 and a 24 

Correlation coefficient (Cor)>0.8 (for the whole numerical domain) are utilised to investigate 25 

the propagation of meteorological uncertainties through the modelling framework. This 26 

criteria narrows down the meteorological model runs to 12, which will be cascaded to the 27 

hydrological model stage to attain streamflow predictions. In this approach, the selected 12 28 

multi-physics ensemble runs of the model represent a plausible and equally likely state of the 29 

system in the future.  30 

Fig. 3 illustrates the cumulative precipitation curves computed for each of the 23 model runs 31 

of the multi-physics ensemble at four different stations located within the catchment. In this 32 
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figure differences in the spatial distribution and intensity of precipitation are evident. 1 

Moreover, the selected 12 members by the criteria (NSC>0.3 and Cor>0.8) are illustrated by 2 

the blue solid lines, while the grey solid lines show those members that were rejected by it.  3 

Notably, dismissed members tend to underestimate the amount of precipitation in all four 4 

locations that are presented in this figure. For completeness, the rainfall measurements at each 5 

meteorological station are also shown by the black solid line, while the red dotted line depicts 6 

the mean value of the selected model runs to be propagated through the model cascade. If the 7 

12 selected members are considered in the estimation of ensemble metrics at each station, it is 8 

shown that at Station No. 27075, the spread of the estimated cumulative precipitation curves 9 

is limited and quantified by a NSC=0.917 and a NRMSE = 10.7%, indicating a good skill of 10 

the selected WRF precipitation estimates at this point. In contrast, at Station No. 27007 the 11 

spread of the cumulative precipitation is large and characterised by a NSC=0.766 and a 12 

NRMSE=19.4%, showing less skill in the model performance than that observed in the 13 

previous case. The observed differences of estimated precipitation for this event, highlight the 14 

importance of incorporating ensemble techniques in the reproduction of precipitation with this 15 

type of models.  16 

Fig. 4 illustrates the cumulative precipitation fields computed for each of the 12 selected 17 

members of the multi-physics ensemble, where differences in the spatial distribution and 18 

intensity of precipitation were evident. These results suggest that for this event, the 19 

precipitation field estimated with the WRF was highly sensitive to the selection of multi-20 

physics parameters. To revise in more detail the performance of the WRF in reproducing this 21 

hydro-meteorological event, the estimated cumulative precipitation by each of the selected 12 22 

members of the multi-physics ensemble was compared against measurements at the eighteen 23 

weather stations located within and close to the Tonalá catchment.  24 

Table 2 presents a summary of the most well-known error metrics calculated at each weather 25 

station and for each member of the ensemble. Among these are the: Normalised Root-Mean 26 

Square Error (NRMSE), BIAS, Nash-Sutcliffe Coefficient (NSC), and the Correlation 27 

coefficient (Cor). The columns show the local value of each coefficient for a given member of 28 

the ensemble (M1, …, M12). As shown in all columns (i.e. member runs), the error metrics 29 

have a great spatial variability, hence, indicating the regions of the study area where the 30 

model performs better.  To illustrate the performance of this ensemble technique at each 31 

weather station, the ensemble average of these error metrics is introduced in the last column 32 
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and indicated by <  >. Again, the spatial variability of the metrics is evident. The two bottom 1 

rows in each sub-table correspond to the average of the ensemble averages for the whole 2 

catchment and for the all the stations. It is shown, that when the average of all stations is 3 

taken into account, the skill decreases. However, in this investigation the error that is of 4 

interest is the one corresponding to the average of those weather stations located within the 5 

catchment, as these will be used as input in the hydrological model. This will enable the 6 

propagation of errors in the meteorological model within the model cascade. For clarity, in the 7 

same table the stations within the catchment are highlighted in blue.  8 

A question that has been seldom explored in the literature, is how the uncertainty in the 9 

prediction of the precipitation (i.e. errors described in this section), cascade into an estimated 10 

flood hydrograph determined by a distributed hydrological model. In this sense, the next step 11 

in this work, considers the non-linear transfer of rainfall to runoff using a distributed rainfall-12 

runoff model. For this, we employ each one of the selected 12 precipitation fields derived 13 

from the WRF as input to determine the associated river discharge with the hydrological 14 

model.  15 

 16 

3.2 Hydrological model  17 

The hydrological model used in this study was applied to the Tonalá River catchment in an 18 

early work presented by Rodríguez-Rincón et al. (2012). This numerical tool was developed 19 

by the Institute of Engineering – UNAM (Domínguez-Mora et al., 2008), and comprises a 20 

simplified grid-based distributed rainfall–runoff model. The model has been previously 21 

applied with success in other catchments in Mexico (e.g. Pedrozo-Acuña et al., 2014b).  22 

The model is based on the method of the Soil Conservation Service (SCS) with a modification 23 

that allows the consideration of soil moisture accounting before and after rainfall events. The 24 

parameters that are needed for the definition of a runoff curve number within the catchment 25 

are the hydrological soil group, land use, pedology and the river drainage network.  Fig. 5 26 

shows for the Tonalá River catchment, the spatial definition of the river network (center 27 

panels) and the runoff curve (right panels). For the numerical setup of the hydrological model, 28 

we employ topographic information from a LiDAR data set, from which a 10m resolution 29 

Digital Elevation Model (DEM) is constructed.  30 
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There are two main hypothesis that underpin the SCS curve number method. Firstly, it is 1 

assumed that for a single storm and after the start of the runoff, the ratio between actual soil 2 

retention and its maximum retention potential is equal to the ratio between direct runoff and 3 

available rainfall. Secondly, the initial infiltration is hypothesised to be a fraction of the 4 

retention potential. 5 

Thus, the water balance equation and corresponding assumptions are expressed as follows: 6 

e a aP P I F            (1) 7 

      (2) 8 

 9 

aI S             (3) 10 

Where P is rainfall, Pe effective rainfall, Ia is the initial abstraction, Fa is the cumulative 11 

abstraction, S is the potential maximum soil moisture retention after the start of the runoff and 12 

λ is the scale factor of initial loss. The value of λ is related to the maximum potential 13 

infiltration in the basin.  14 

Through the combination of equations (1) - (3) and expressing the initial abstraction (Ia) by 15 

0.2*S we have: 16 

 17 

           (4) 18 

where, the value of S [cm] is determined by: 19 

 20 

           (5) 21 

CN is the runoff curve number, as defined by the Agriculture Department of the USA (USDA, 22 

1985). Values for this parameter vary from 30 to 100, where small numbers indicate low 23 

runoff potential while larger numbers indicate an increase in runoff potential. Thus, the 24 

permeability of the soil is inversely proportional to the selected curve number. Another 25 

parameter that allows the modification of the curve number is the soil water potential given 26 

by Fs, following S=S*Fs.   27 

The model includes a parameter to reproduce the effects of evaporation on the ground 28 

saturation (Fo). This parameter is useful when the event to be reproduced lasts for several 29 
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days; however, due to the duration of this event it is assumed equal to 0.9 in all cases. The 1 

computation of the runoff in the basin is carried out through the addition of the runoff 2 

estimated in each cell to then construct a general hydrograph (See Rodríguez-Rincón et al. 3 

2012). With regards to the definition of values for the other two free parameters in the 4 

hydrological model (λ and Fs), a traditional calibration process is implemented. For this, we 5 

utilise flood hydrographs from past extreme events (2001, 2005, 2007, 2008, 2009 and 2011) 6 

observed in this river. For these events, we employ as rainfall input the registered 7 

precipitation at the same 4 weather stations that are within the river catchment, which location 8 

is shown in the top panel of Figure 1. Therefore, we determine six sets of free parameters that 9 

are good enough to represent the rainfall-runoff relationship in this catchment. The selected 10 

sets of values are illustrated in Table 3, where the correlation coefficient and NSC are also 11 

reported for each of the years. It is shown that in all the events, the selected set of parameters 12 

ensures a good correlation against the observed discharge which is given by Cor>0.7, as well 13 

as a positive NSC (accuracy).  14 

It is well known that both the amount and distribution of rainfall can significantly affect the 15 

final estimated river discharge (Ferraris et al. 2002; De Roo et al., 2003; Cluckie et al., 2004). 16 

In consequence, the propagation of meteorological uncertainty to the rainfall-runoff model is 17 

carried out using the 12 WRF rainfall precipitation ensembles as an input in the hydrological 18 

model, considering the six sets of free parameters reported in Table 3. This procedure enabled 19 

the generation of 72 hydrographs that could represent the 2009 event with different skill. 20 

Error metrics of all the computed hydrographs are reported in Table 4. 21 

For completeness, Fig. 6a illustrates the 72 computed hydrographs for the Tonalá River 22 

catchment in relation to the measured river discharge for the 2009 event (blue dashed line). It  23 

is shown that if all 72 hydrographs  are taken into account, uncertainty bounds are significant. 24 

Indeed, this illustrates the interaction of the meteorological uncertainty with that coming from 25 

the setup of the hydrological model (definition of free parameters). However, the purpose of 26 

this study is to investigate in a model cascade framework, how errors in the meteorological 27 

prediction stage propagate down to a predicted inundation. In this sense, we narrow down the 28 

number of hydrographs shown in Fig. 6a, by selecting only those with a Cor>0.7 and 29 

NSC>0.6., as reported in Table 4 only 31 out of 72 (shown in bold) follow this condition. 30 

Fig. 6b displays the 31 selected hydrographs along with the measured discharge for the 2009 31 

event. Although there is a reduction in the uncertainty bounds, it tis shown that errors in the 32 
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predicted rainfall are indeed propagated to the hydrological model, which employs a finer 1 

spatial resolution (1 km). It has been established that, in some cases, an error in the 2 

meteorological model can be compensated by an error in the hydrological model and vice-3 

versa. To illustrate this in more detail, average values of the calculated error metrics for the 31 4 

selected hydrographs are estimated and reported in Table 4, with NSC=0.79, Cor=0.96 and 5 

BIAS=1.11. Values of the NSC for selected hydrographs in Table 4 illustrate the resulting 6 

differences in skill resulting from the combination of different setups in the hydrological 7 

model with the multi-physics ensemble. For instance, in the rows corresponding to the 8 

parametes determined for the 2011 event, member M12 indicates a NSC=0.738 showing a 9 

poorer skill at reproducing the river discharge with the precipitation derived from this 10 

member, in comparison to that registered for member M2 with NSC=0.938. The change in the 11 

values of the NSC indicates that results from the regional weather model can be enhanced or 12 

weakened by the performance of the hydrological model. 13 

The utilisation of the 31 selected hydrographs in a 2D hydrodynamic model enables the study 14 

of the propagation of errors within the cascade of models. In particular, for estimating the 15 

flood extent during this extreme event.  16 

 17 

3.3 Flood inundation model  18 

Several 2D hydrodynamic models have been developed for simulating extreme flood events. 19 

However, any model is only as good as the data used to parameterise, calibrate and validate 20 

the model. 2D models have been regarded as suitable for simulating problems where 21 

inundation extent changes dynamically through time as they can easily represent moving 22 

boundary effects (e.g. Bates and Horritt, 2005). The use of these numerical tools has become 23 

common place when flows produce a large areal extent, compared to their depth and where 24 

there are large lateral variations in the velocity field (Hunter et al., 2008).  25 

In this study, given the size of the study area the modelling system utilised is comprised by 26 

the flow model of MIKE 21 flexible mesh (FM). This numerical model solves the two 27 

dimensional Reynolds-averaged Navier–Stokes equations invoking the approximations of 28 

Boussinesq and hydrostatic pressure (for details see DHI, 2014). The equations are solved at 29 

the centre of each element in the model domain. 30 
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The numerical setup is based on a previous work on the study area (Pedrozo-Acuña et al. 1 

2012), with selected resolutions for the elements of the mesh with a size that guarantees the 2 

proper assimilation of a 10 m DEM to characterise the elevation in the floodplain. The 3 

topographic data has been regarded as the most important factor in determining water surface 4 

elevations, base flood elevation, and the extent of flooding and, thus, the accuracy of flood 5 

maps in riverine areas (NRC, 2009). Therefore, the elevation data used in this study 6 

corresponds to LiDAR data set provided by INEGI (2008). The choice of a 10-m DEM is 7 

based on recommendations put forward by the Committee on Floodplain Mapping 8 

Technologies, NRC (2007) and Prinos et al. (2008), as such a DEM ensures both accuracy and 9 

detail of the ground surface. The model domain is illustrated in Fig. 7, along with the 10 

numerical mesh and elevation data, it comprises the lower basin of the Tonalá River and 11 

additional main water bodies. The colours represent the magnitude of the elevation and 12 

bathymetric data assimilated in the numerical mesh, where warm colours identify high ground 13 

areas and light blues represent bathymetric data. The integration of high quality topographic 14 

information in a 2D model with enough spatial resolution, enables the investigation of the 15 

propagation of the meteorological uncertainty to the determination of the flood extent. 16 

Moreover, as it is illustrated in Fig. 7 the numerical mesh considers three boundary 17 

conditions. These are input flow boundary where the hydrograph from the rainfall-runoff 18 

model is set (red dot); the Tonalá's river mouth, where the astronomical tide occurs for the 19 

period of the event (27th October – 12th November 2009) (yellow dot) and the Agua Dulcita 20 

river set where a constant discharge of 100 m3/s is introduced (blue dot). The astronomical 21 

tide (microtidal in nature with tidal range <1 m) is determined using the monthly tidal forecast 22 

at a nearby point, which is published by CICESE (Centro de Investigación Científica y de 23 

Educación Superior de Ensenada) and it is available at (http://predmar.cicese.mx/calmen.php).  24 

On the other hand, hydraulic roughness is a lumped term known as Manning’s coefficient that 25 

represents the sum of a number of effects, among which are skin friction, form drag and the 26 

impact of acceleration and deceleration of the flow. The precise effects represented by the 27 

friction coefficient for a particular model depend on the model’s dimensionality, as the 28 

parameterisation compensates for energy losses due to unrepresented processes, and the grid 29 

resolution (Bates et al., 2014). The lack of a comprehensive theory of “effective roughness” 30 

have determined the need for calibration of friction parameters in hydraulic models. 31 

Furthermore, the determination of realistic spatial distributions of friction across a floodplain 32 

in other studies, have showed that only 1 or 2 floodplain roughness classes are required to 33 

http://predmar.cicese.mx/calmen.php
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match current data sources (Werner et al., 2005). Indeed, this suggests that application of 1 

complex formulae to establish roughness values for changed floodplain land use are 2 

inappropriate until model validation data are improved significantly. Therefore, in this study  3 

hydraulic roughness in the floodplain is assumed to be uniform and different from the main 4 

river channel, in this sense two values for the Manning number are used, one for the main 5 

river channel (M=32 m1/2s-1) and another for the floodplain (M=28 m1/2s-1).   6 

It should be noted that several investigations confirm that there is significant uncertainty 7 

associated with flood extent predictions using hydraulic models (e.g. Aronica et al., 1998, 8 

2002; Bates et al. 2004; Pappenberger et al., 2005, 2006, 2007; Romanowicz and Beven, 9 

2003). These uncertainties may be ascribed to differences in spatio-temporal resolutions or 10 

the hydraulic roughness that is used in the hydraulic model. In this investigation, however, a 11 

more detailed analysis of the different sources of uncertainty in the hydraulic model is not 12 

implemented. The numerical setup of the hydraulic model is built following published 13 

guidelines for an accurate representation of the case study (see Asselman et al. 2008), which 14 

enables us to build the discussion on how an uncertainty generated at the meteorological stage 15 

of the model chain propagates and influences a resulting flooded area and depth. 16 

In order to assess whether the 2D model is able to reproduce the flood extent observed in 17 

2009, numerical results of flood extent are compared against the affected area determined 18 

from a SPOT image (resolution of 124m). This practice is widely used in the literature to 19 

evaluate the results from inundation models and to compare its performance (Di Baldassare et 20 

al, 2010b; Wright et al., 2008). 21 

Fig. 8a introduces the result of the hydrodynamic simulation for each of the 31 selected 22 

hydrographs, which resulted from the utilisation of the rainfall-runoff model using as input 23 

the WRF multi-physics ensemble output. The illustrated flood map summarises the 31 24 

different possibilities of the inundation area that could result from the characterisation of 25 

precipitation with the WRF model. Each of these flood maps can also be associated to a 26 

probability enabling the representation of a probabilistic flood map, shown in the figure. This 27 

allows the identification of the areas highly vulnerable to flooding from this event. 28 

Additionally, Fig. 8b introduces the infrared SPOT satellite image of the 12th of November 29 

2009, which is used for comparison against the produced flood maps derived from running 30 

the 31 hydrographs as inputs in the 2D model. Notably, in the numerical results, the blue area 31 

identifies the region of the domain that is most likely to be flooded (90%), the comparison of 32 

a) b) 
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this area with the observed inundation in the satellite image, show a good skill of the model 1 

chain at reproducing the registered flood in the study area.  2 

Despite the variability in the estimated peak discharge utilised as input in the different 3 

hydrodynamic runs, inundation results show similar affected areas in all realisations (only 4 

with small differences in its size). This is verified in the results shown in Fig. 9a, where the 5 

relationship between peak discharge of the 31 hydrographs, is plotted against the size of the 6 

maximum-flooded area. The distribution of points in this graph clearly indicates that although 7 

there are differences in the estimated peak flow (see histogram in Fig. 9b), in most cases the 8 

resulting size of the inundated area is similar. Histogram plot shown in Fig. 9c indicates a 9 

clear concentration numerically derived flooded areas with a size larger than 130 km2. Indeed, 10 

the mean value of the maximum-flooded estimated area is 138.94 km2, while the standard 11 

deviation is 16.09 km2.  12 

These results support that the hydraulic behaviour in all hydrodynamic simulations was 13 

indeed very similar, regardless of the peak discharge of the hydrograph. It is reflected that this 14 

may be the result of induced hydrodynamics by a valley-filling flood event, which is 15 

identified with the relatively high floodplain area-to-channel-depth ratios in all simulations.  16 

Hence, all possible hydrographs generated with the hydrological model show similar levels of 17 

lateral momentum exchange between main channel and floodplain. For this reason, the 18 

predictive performance of all hydrodynamic simulations used to reproduce the inundation 19 

extent appears to be good (see Table 5).  20 

The estimation of several error metrics in these results was performed using binary flood 21 

extent maps, where the comparison is based on the generation of a contingency table, which 22 

reports the number of pixels correctly predicted as wet or dry. From this, measures of fit such 23 

as: BIAS, False Alarm Ratio (FAR), Probability of Detection (POD), Probability of False 24 

Detection (POFD), Critical Success Index (CSI) and the True Skill Statistics (TSS) are 25 

estimated. Table 5 introduces the results for all 31 members and error metrics. Clearly, there 26 

is little variability in the performance of the model for each of the runs, showing that there has 27 

been a small propagation of the error to the flood map.  The ensemble average of these 28 

quantities is also illustrated in the last column of the table, where values of BIAS=1.013, 29 

FAR=0.189, POD=0.819, POFD=0.180; CSI=0.686 and TSS=0.639 are reported. As noted 30 

before, these results indicate an apparent good skill of the model chain at reproducing the 31 

flood extension, due to the incidence of this extreme event. It should be borne in mind, 32 
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however, that some misclassification errors may also be included in the observed flooded area 1 

due to specular reflections that may classify some wet vegetation as water or open water as 2 

dry land. In consequence, flood extent maps should be used with caution in assessing model 3 

performance (Di Baldassare, 2012). This is particularly true during high-magnitude events 4 

where the valley is entirely inundated, such as the case study of this investigation where small 5 

changes in lateral flood extent may produce large changes in water levels.  6 

In this sense, it has been argued that flood extent maps are not useful for model assessment 7 

(Hunter et al., 2005) and high water marks are more useful to evaluate model performance. 8 

Unfortunately, for the case study information of inundation depths was not available. Despite 9 

this fact, a further revision of simulated inundation depths is also carried out. For this, 10 10 

points distributed within the numerical domain are selected. These are illustrated by the 11 

coloured dots in Fig. 10, along with the values of mean water depth in all the 31 simulations 12 

(red solid line). In all cases, a high variability in the estimated inundation depth on the 13 

floodplain is depicted (with values varying between 1.5 and 3m). This result supports that in 14 

the case of valley-filling flood events, there is a higher sensitivity to errors in the vertical 15 

dimension of the flood.  16 

In one hand, this demonstrates that the geomorphological characteristics of the site (e.g. low-17 

lying area, smooth slopes in the river channel and floodplain) are dominant in the accurate 18 

determination of the magnitude of an inundated area, regardless of the peak discharge. This 19 

implies that for this type of rivers and when predicting inundation extent, it may be more 20 

important to have a good characterisation of the river and floodplain (e.g. high quality field 21 

data and a LiDAR derived DEM), than a good characterisation of the rainfall-runoff 22 

relationship. 23 

Current approaches to flood mapping, have pointed out that in order to produce a 24 

scientifically justifiable flood map, the most physically-realistic model should be utilised (Di 25 

Baldassarre et al., 2010). Nevertheless, even with these models the amount of uncertainty 26 

involved in the determination of an affected area is important and should be quantified.  27 

 28 

4 Discussion and Conclusions 29 

Flood risk mapping and assessment are highly difficult tasks due to the inherent complexity of 30 

the relevant processes, which occur in several spatial and temporal scales. As pointed out by 31 



 18 

Aronica et al. (2013), the processes are subject to substantial uncertainties (epistemic and 1 

random), which emerge from different sources and assumptions, from the statistical analysis 2 

of extreme events and from the resolution and accuracy of the DEM used in a flood 3 

inundation model. By acknowledging that all models are an imperfect representation of the 4 

reality, it is important to quantify the impact of epistemic uncertainties on a given result.  5 

The utilised methodology was comprised of a Numerical Weather Prediction Model (NWP), a 6 

distributed rainfall-runoff model and a 2D hydrodynamic model. Thus, the numerical 7 

framework contains several sources of uncertainty at every level of the model cascade 8 

(meteorological, hydrological and hydrodynamic). The quantification of uncertainty was only 9 

carried out at the meteorological and hydrological levels of the model chain; from which non-10 

behavioural ensemble members were removed based on the fit with observed data. In 11 

contrast, at the hydrodynamic level, the numerical model was setup in a deterministic way 12 

following recommendations of published guidelines for a good representation of the case 13 

study, more specifically with regards to the selected spatial resolution, boundary conditions 14 

and roughness values (see Asselman et al. 2008). This was done as uncertainties at this level 15 

have been mainly ascribed to issues with model implementations and definition of free 16 

parameters (Beven et al. 2011). This enabled the assessment of uncertainty and its 17 

propagation, from a modelled rainfall event to a predicted flooded area and depth.  18 

At the meteorological level, a multi-physics ensemble technique was utilised to evaluate the 19 

generation of epistemic uncertainties (designed to represent our limited knowledge of the 20 

processes generating precipitation in the lower troposphere). While in the hydrological model 21 

a multi-response validation was implemented by means of the definition of six sets of 22 

plausible parameters from past flood events. This was done in order to reduce the 23 

dimensionality of the parameter calibration problem (see Gupta et al., 2009). This procedure 24 

was preferred over a GLUE analysis (e.g. Pedrozo-Acuña et al., 2015), as the investigation 25 

was aimed to understand the propagation of uncertainty along the model chain. 26 

It should be borne in mind that it is not easy to disaggregate the many sources of uncertainty 27 

within the model cascade. Thus, it is necessary to make assumptions about how to represent 28 

uncertainty. Therefore, the assessment of hydro-meteorological model performance at the 29 

three levels is carried out through the estimation of skill scores.  30 

Fig. 11 presents a summary of the propagation of two well-known error metrics, BIAS (top 31 

panel) and NSC/TSS (bottom panel). These metrics were selected, as they enable a direct 32 
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comparison of their values at each of the stages within the model cascade. In both metrics, the 1 

evolution of the confidence limits is illustrated by the size of the bars. Their evolution from 2 

the meteorological model to the hydrological model, show an aggregation of meteorological 3 

uncertainties with those originated from the rainfall-runoff model. However, the skill is 4 

considerably improved from a mean value of 0.65 in the meteorological model, to 0.793 in the 5 

hydrological model. In the last stage of the model chain (hydrodynamic model), the 6 

confidence limits of the results, show an apparent improvement in model skill. However, it 7 

should be noted that this may be ascribed to the complex aggregation of errors in valley-8 

filling events, which is verified in the observed sensitivity of the simulated inundation depths. 9 

The mean value of the skill is reduced to TSS=0.639. The results provide an useful way to 10 

evaluate the hydro-meteorological uncertainty propagation within the modelling cascade 11 

system.  12 

BIAS and NSC/TSS error metrics (Fig. 11) revealed discrepancies between observations and 13 

simulations throughout the model cascade. For instance, an increase in the NSC from the 14 

rainfall to the flood hydrograph it implies that the hydrological model is more sensitive (wider 15 

uncertainty bars) to its main input (precipitation) than the WRF model is to the set of micro-16 

physics parameterisations. On the other side, the uncertainty bounds in the hydrological 17 

model imply a high sensitivity of hydrographs to both, errors from the meteorological model 18 

and its numerical setup with free parameters (amplifying the uncertainty). This is observed in 19 

the spaghetti plot shown in Fig. 6a, where large uncertainty bounds were identified. In order 20 

to reduce errors from the interaction of uncertainties coming from both models, these bounds 21 

were reduced with the selection of 31 hydrographs that comply with Cor>0.7 and NSC>0.6 22 

(see Fig.6b).  It is reflected that the estimated error in the meteorological model may reflect a 23 

spatial scaling issue (comparing observations from rain gauges to simulations at the meso-24 

scale). 25 

Results concerning predictions of inundation extent indicate an apparent good skill of the 26 

model chain at reproducing the flood extension. The propagation of uncertainty and error 27 

from the hydrological model to the inundation area revealed that is necessary to assess model 28 

performance not only for flood extension purposes, but also to estimate inundation depths, 29 

where results indicate a higher variability (e.g. increase in the error). This last modelling step 30 

is quite important given the consequences for issuing warning alerts to the population at risk. 31 



 20 

The similar magnitude in inundation extents of all numerical results indicated the 1 

predominance of a valley-filling flood event, which was characterised by a flooded area 2 

strongly insensitive to the input flood hydrograph. While this can be explained by the limited 3 

effect that the volume overflowing the riverbanks and reaching the floodplain will have on the 4 

maximum inundation area, the difference between the observed and the simulated flooded 5 

area remains important (TSS=0.639). 6 

It should be pointed out, that this methodology contains more uncertainties that were not 7 

considered or quantified in the generation of flood extent maps for this event. Results showed 8 

that a large amount of uncertainty exists in the NWP model, and such uncertainty can 9 

propagated and aggregated at the catchment level. Members of the ensemble were shown to 10 

differ significantly in terms of their cumulative precipitation, spatial distribution, river 11 

discharge, inundation depths and areas. The evolution of skill within the model cascade shows 12 

a complex aggregation of errors between models, suggesting that in valley-filling events 13 

hydro-meteorological uncertainty has a larger effect on inundation depths than that observed 14 

in estimated flood inundation extents. 15 

It is advised that in the future, attention should be given to the assessment of hydro-16 

meteorological uncertainty in a similar numerical framework applied to catchments with 17 

different morphological setting. The assessment of the error propagation within the model 18 

cascade is seen as a good step forward, in the communication of uncertain results to the 19 

society. However, as shown in this work, an improvement in model prediction during the first 20 

cascade step (rainfall to runoff) can be reverted during the second cascade step (runoff to 21 

inundation area) with important consequences for early warning systems and operational 22 

forecasting purposes. Finally, the proposed numerical framework could be utilised as a robust 23 

alternative for the characterisation of extreme events in ungauged basins.  24 
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 1 

 2 

Table 1. Ensemble members defined for the multi-physics WRF ensemble 3 

Ensemble 

member

Micro-

Physics

surface 

layer 

physics

Cumulus 

physics

Feedback

/sst_upda

te

RMSE NSC Cor Bias

Criteria

NSC >0.3, 

Cor >0.8

1 WSM5 5-Layer TDM Kain-Fritsch Eta off/off 445.23 -0.25 0.94 0.44 reject

2 WSM5 5-Layer TDM Kain-Fritsch Eta off/on 262.73 0.44 0.97 0.98 select

3 WSM5 5-Layer TDM Kain-Fritsch Eta on/off 250.51 0.49 0.97 1.01 select

4 WSM5 5-Layer TDM Kain-Fritsch Eta on/on 257.35 0.43 0.97 1.05 select

5 WSM5 5-Layer TDM Betts-Miller-Janjic off/on 502.47 -0.65 0.97 0.28 reject

6 WSM5 5-Layer TDM Betts-Miller-Janjic on/on 520.58 -0.77 0.97 0.25 reject

7 WSM5 Noah Kain-Fritsch Eta off/off 233.04 0.42 0.96 1.18 select

8 WSM5 Noah Kain-Fritsch Eta off/on 236.14 0.33 0.96 1.24 select

9 WSM5 Noah Kain-Fritsch Eta on/off 359.11 0.17 0.90 0.56 reject

10 WSM5 Noah Kain-Fritsch Eta on/on 245.31 0.41 0.96 1.12 select

11 WSM5 Noah Betts-Miller-Janjic off/off 486.26 -0.49 0.98 0.33 reject

12 WSM5 Noah Betts-Miller-Janjic off/on 486.02 -0.49 0.97 0.34 reject

13 WSM5 Noah Betts-Miller-Janjic on/off 535.00 -0.82 0.97 0.23 reject

14 WSM5 Noah Betts-Miller-Janjic on/on 543.78 -0.87 0.96 0.23 reject

15 Thompson 5-Layer TDM Kain-Fritsch Eta off/off 216.70 0.60 0.97 1.09 select

16 Thompson 5-Layer TDM Kain-Fritsch Eta off/on 236.64 0.50 0.97 1.15 select

17 Thompson 5-Layer TDM Kain-Fritsch Eta on/off 238.89 0.57 0.96 0.97 select

18 Thompson 5-Layer TDM Kain-Fritsch Eta on/on 275.24 0.50 0.96 0.89 select

19 Thompson 5-Layer TDM Betts-Miller-Janjic off/on 571.49 -1.15 0.96 0.16 reject

20 Thompson 5-Layer TDM Betts-Miller-Janjic on/off 572.27 -1.14 0.95 0.16 reject

21 Thompson 5-Layer TDM Betts-Miller-Janjic on/on 502.47 -0.65 0.97 0.28 reject

22 Thompson Noah Kain-Fritsch Eta off/off 238.06 0.38 0.96 1.25 select

23 Thompson Noah Kain-Fritsch Eta off/on 234.03 0.48 0.97 1.13 select  4 

 5 

 6 

 7 
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Table 2. Error Metrics in the estimation of precipitation by members of the multi-physics ensemble (blue rows 1 

indicate the stations located within the Tonalá catchment) 2 

Root-Mean Square Error (RMSE) and Normalised RMSE per Station considering Ensemble average  

Station 
No.  

Multi-physics ensemble member <Nor_RMSE>    
% M1  M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 

30167 210.26 96.56 144.62 104.42 106.84 76.31 160.48 129.88 101.03 210.95 164.85 86.80 13.96 

27003 544.34 578.19 564.46 474.81 427.30 516.95 458.25 484.05 568.20 572.30 385.17 479.47 35.13 

27007 234.90 246.00 198.01 135.27 129.43 207.93 126.51 197.32 246.90 328.28 132.09 191.81 19.44 

27015 96.68 129.89 151.02 194.33 235.76 179.69 152.06 152.60 118.97 116.87 260.49 188.20 24.01 

27074 173.37 211.87 191.22 197.46 78.94 148.88 174.92 247.65 187.98 207.39 123.09 157.21 17.19 

27073 227.47 201.91 228.62 256.39 281.38 245.68 186.21 219.36 159.34 147.79 247.69 223.88 46.46 

27075 87.04 119.26 104.10 100.82 151.17 64.92 76.45 147.30 85.75 105.68 52.14 68.67 10.72 

27076 140.53 160.28 141.95 124.03 108.33 130.53 191.75 162.59 226.04 236.09 129.78 150.84 17.14 

27077 89.10 113.42 83.60 225.48 252.24 207.73 254.20 282.40 110.77 83.93 203.01 192.86 30.57 

27039 333.50 204.36 197.48 295.84 302.19 261.39 264.08 321.66 172.86 152.14 257.59 430.63 73.28 

27054 123.18 30.77 45.28 113.16 119.18 77.41 106.84 112.68 118.83 127.43 110.06 106.67 34.75 

27060 70.69 56.23 59.51 33.42 40.13 30.04 78.07 93.80 88.46 80.36 56.73 66.31 19.88 

27024 160.33 137.81 140.76 120.58 127.54 73.57 148.27 136.47 145.12 167.79 153.26 151.87 85.04 

27084 68.72 71.32 54.58 53.56 106.93 65.65 61.06 72.31 61.46 62.96 50.14 50.92 19.02 

7365 172.91 117.44 103.02 252.03 139.79 163.49 301.52 216.38 179.67 129.71 271.88 210.11 24.52 

27011 143.70 162.77 143.61 107.82 77.55 86.15 128.03 143.69 106.59 116.49 86.81 81.27 106.83 

27036 81.46 60.69 27.36 61.69 19.14 35.64 23.58 45.89 22.13 40.23 39.22 55.55 12.04 

27008 158.85 72.82 74.96 131.34 134.94 100.16 102.82 149.97 66.67 79.36 97.87 254.33 19.68 

                    
Average {Rel_RMSE} 

catch. 23.14 

                    Average  {Rel_RMSE} all 33.87 

                            

BIAS per Station and Ensemble Average  

Station 
No.  

Multi-physics ensemble member 
<BIAS> 

M1  M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 

30167 0.71 0.90 0.81 1.07 1.12 0.99 0.80 0.85 0.91 0.71 1.23 1.06 0.93 
27003 0.51 0.48 0.50 0.58 0.62 0.54 0.59 0.57 0.49 0.49 0.66 0.58 0.55 
27007 0.72 0.71 0.79 0.91 0.91 0.78 1.13 1.26 0.73 0.61 0.90 0.80 0.85 
27015 1.21 1.32 1.40 1.50 1.61 1.46 1.37 1.37 1.24 1.21 1.68 1.48 1.40 
27074 0.82 0.76 0.79 0.78 1.08 0.86 0.81 0.71 0.80 0.77 0.88 0.83 0.82 
27073 1.74 1.65 1.74 1.83 1.91 1.80 1.58 1.70 1.47 1.44 1.80 1.72 1.70 
27075 0.92 0.85 0.88 0.88 1.20 0.96 0.90 0.80 0.89 0.86 0.98 0.93 0.92 
27076 0.86 0.82 0.86 0.91 0.95 0.89 0.79 0.84 0.73 0.71 0.89 0.85 0.84 
27077 1.12 1.17 1.10 1.48 1.54 1.44 1.54 1.60 1.20 1.14 1.42 1.40 1.35 
27039 2.41 1.87 1.84 2.26 2.29 2.11 2.13 2.36 1.73 1.64 2.09 2.84 2.13 
27054 1.89 1.08 1.24 1.82 1.87 1.54 1.76 1.81 1.84 1.91 1.79 1.77 1.69 
27060 1.42 1.33 0.72 1.08 1.20 1.05 1.47 1.57 1.54 1.49 1.32 1.39 1.30 
27024 3.34 2.96 3.03 2.76 2.88 2.07 3.16 2.98 3.11 3.45 3.17 3.17 3.01 
27084 1.32 1.35 1.17 1.23 1.61 0.78 1.27 1.36 1.27 1.29 1.07 1.01 1.23 
7365 1.43 1.20 1.09 1.63 1.32 0.72 1.78 1.55 1.43 1.26 1.68 1.51 1.38 

27011 3.57 3.91 3.55 2.93 2.33 2.49 3.33 3.58 2.91 3.09 2.56 2.45 3.06 
27036 1.36 1.25 1.09 1.28 0.97 1.15 0.95 1.20 1.06 1.16 1.15 1.24 1.15 
27008 1.37 1.07 1.05 1.29 1.31 1.20 1.21 1.35 0.99 0.93 1.19 1.62 1.22 

                    
Average {Rel_RMSE} 

catch. 0.94 

                    Average  {Rel_RMSE} all  1.42 

 3 

 4 

 5 

 6 
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Continuation of Table 2. Error Metrics in the estimation of precipitation by members of the multi-physics 1 

ensemble (blue rows indicate the stations located within the Tonalá catchment) 2 

 3 

Nash-Sutcliff Coefficient per Station and Ensemble average 

Station No.  
Multi-physics ensemble member 

<NSC> 
M1  M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 

30167 0.72 0.94 0.87 0.93 0.93 0.96 0.84 0.89 0.94 0.72 0.83 0.95 0.88 

27003 0.16 0.05 0.09 0.36 0.48 0.24 0.40 0.33 0.08 0.07 0.58 0.34 0.26 

27007 0.70 0.67 0.78 0.90 0.91 0.76 0.91 0.79 0.66 0.41 0.90 0.80 0.77 

27015 0.88 0.78 0.70 0.50 0.27 0.57 0.70 0.69 0.81 0.82 0.11 0.53 0.61 

27074 0.84 0.76 0.80 0.79 0.97 0.88 0.84 0.67 0.81 0.77 0.92 0.87 0.83 

27073 -0.27 0.00 -0.28 -0.61 -0.94 -0.48 0.15 -0.18 0.38 0.46 -0.50 -0.23 -0.21 

27075 0.94 0.89 0.91 0.92 0.82 0.97 0.95 0.83 0.94 0.91 0.98 0.96 0.92 

27076 0.87 0.83 0.86 0.90 0.92 0.88 0.75 0.82 0.65 0.62 0.89 0.85 0.82 

27077 0.82 0.70 0.84 -0.17 -0.46 0.01 -0.48 -0.83 0.72 0.84 0.05 0.15 0.18 

27039 -4.41 -1.03 -0.90 -3.26 -3.44 -2.32 -2.39 -4.03 -0.45 -0.13 -2.23 -8.02 -2.72 

27054 -0.46 0.91 0.80 -0.23 -0.36 0.42 -0.10 -0.22 -0.36 -0.56 -0.16 -0.09 -0.03 

27060 0.60 0.75 0.72 0.91 0.87 0.93 0.51 0.29 0.37 0.48 0.74 0.65 0.65 

27024 -7.99 -5.64 -5.93 -4.08 -4.69 -0.89 -6.68 -5.51 -6.36 -8.84 -7.21 -7.06 -5.91 

27084 0.67 0.64 0.79 0.80 0.20 0.70 0.74 0.63 0.73 0.72 0.82 0.82 0.69 

7365 0.50 0.77 0.82 -0.07 0.67 0.55 -0.54 0.21 0.45 0.72 -0.25 0.25 0.34 

27011 -16.74 -21.76 -16.72 -8.99 -4.17 -5.38 -13.08 -16.74 -8.76 -10.66 -5.47 -4.67 -11.09 

27036 0.61 0.78 0.96 0.78 0.98 0.93 0.97 0.88 0.97 0.91 0.91 0.82 0.87 

27008 0.60 0.92 0.91 0.72 0.71 0.84 0.83 0.64 0.93 0.90 0.85 -0.03 0.73 

                    
Average {Rel_RMSE} 

catch. 0.63 

                    Average  {Rel_RMSE} all  -0.63 

                            

Correlation Coefficient per Station and Ensemble average 

Station No.  
Multi-physics ensemble member 

<Cor> 
M1  M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 

30167 0.99 0.99 0.99 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.97 0.98 0.99 
27003 0.95 0.96 0.97 0.97 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.98 
27007 0.98 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.95 0.98 0.97 0.97 
27015 0.97 0.96 0.97 0.94 0.93 0.95 0.95 0.95 0.94 0.94 0.93 0.94 0.95 
27074 0.98 0.98 0.98 0.98 0.99 0.98 0.99 0.98 0.98 0.98 0.99 0.99 0.98 
27073 0.95 0.96 0.95 0.94 0.94 0.94 0.92 0.92 0.91 0.92 0.94 0.94 0.94 
27075 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 
27076 0.98 0.98 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.96 0.97 0.97 0.97 
27077 0.96 0.95 0.96 0.96 0.95 0.96 0.95 0.95 0.97 0.97 0.95 0.96 0.96 
27039 0.95 0.95 0.94 0.93 0.94 0.94 0.94 0.94 0.95 0.95 0.94 0.93 0.94 
27054 0.91 0.96 0.94 0.93 0.93 0.94 0.91 0.92 0.91 0.90 0.93 0.93 0.93 
27060 0.96 0.97 0.97 0.96 0.97 0.97 0.95 0.95 0.96 0.96 0.97 0.96 0.96 
27024 0.91 0.93 0.92 0.90 0.91 0.95 0.89 0.90 0.89 0.89 0.94 0.94 0.91 
27084 0.91 0.91 0.92 0.94 0.92 0.95 0.92 0.91 0.92 0.92 0.93 0.93 0.92 
7365 0.93 0.93 0.94 0.92 0.94 0.97 0.91 0.92 0.91 0.92 0.91 0.92 0.93 

27011 0.94 0.94 0.95 0.93 0.95 0.96 0.89 0.93 0.91 0.92 0.91 0.91 0.93 
27036 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 
27008 0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.96 0.96 0.96 0.96 

                    
Average {Rel_RMSE} 

catch. 0.97 

                    Average  {Rel_RMSE} all 0.95 
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Table 3. Flood events in the Tonala River used in the calibration process of free parameters in the hydrological 6 

model, along with computed error metrics. 7 

Event

Max Q 

(m3/s)

Obs.

ʎ Fs Fo

Max Q 

(m3/s)

Calc.

NSC Cor Bias

2001 577.98 0.2 0.1 0.9 584.79 0.529 0.764 1.112

2005 589.25 0.4 0.6 0.9 609.87 0.812 0.907 1.043

2007 538.50 0.2 1.8 0.9 543.87 0.483 0.780 0.902

2008 597.35 0.4 1.8 0.9 823.04 0.155 0.861 0.983

2009 1262.57 0.8 1.8 0.9 1424.56 0.910 0.962 0.942

2011 545.40 0.9 1.6 0.9 597.08 0.413 0.721 1.051  8 
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Table 4. Error metrics in the estimation of river discharge by the rainfall-runoff model using 6 parameter sets and 1 

12 members of the multi-physics ensemble (those selected are shown in bold with NSC>0.6 and Cor>0.7). 2 

Member No. WRF Member
Hydrological 

Parameters
NSC Cor Bias

1 M1 2001 0.733 0.884 0.852

2 M2 2001 0.074 0.973 1.529

3 M3 2001 -0.035 0.974 1.564

4 M4 2001 -0.511 0.975 1.686

5 M5 2001 -0.638 0.441 1.485

6 M6 2001 -0.223 0.961 1.593

7 M7 2001 -0.192 0.961 1.579

8 M8 2001 -0.043 0.959 1.537

9 M9 2001 0.064 0.958 1.504

10 M10 2001 0.245 0.971 0.525

11 M11 2001 -1.503 0.944 1.832

12 M12 2001 -0.752 0.954 1.710

13 M1 2005 0.639 0.901 0.742

14 M2 2005 0.404 0.977 1.414

15 M3 2005 0.318 0.978 1.449

16 M4 2005 -0.077 0.977 1.569

17 M5 2005 -0.545 0.366 1.368

18 M6 2005 0.181 0.968 1.478

19 M7 2005 0.200 0.968 1.465

20 M8 2005 0.321 0.966 1.422

21 M9 2005 0.408 0.966 1.389

22 M10 2005 -0.081 0.960 0.426

23 M11 2005 -0.909 0.951 1.717

24 M12 2005 -0.264 0.961 1.595

25 M1 2007 0.376 0.914 0.601

26 M2 2007 0.761 0.978 1.244

27 M3 2007 0.711 0.979 1.278

28 M4 2007 0.444 0.976 1.395

29 M5 2007 -0.440 0.261 1.191

30 M6 2007 0.633 0.974 1.306

31 M7 2007 0.647 0.974 1.293

32 M8 2007 0.722 0.973 1.251

33 M9 2007 0.771 0.972 1.219

34 M10 2007 -0.508 0.952 0.322

35 M11 2007 -0.129 0.959 1.539

36 M12 2007 0.340 0.969 1.420

37 M1 2008 0.240 0.922 0.547

38 M2 2008 0.837 0.978 1.186

39 M3 2008 0.797 0.978 1.220

40 M4 2008 0.570 0.974 1.337

41 M5 2008 -0.479 0.209 1.132

42 M6 2008 0.741 0.976 1.248

43 M7 2008 0.753 0.976 1.235

44 M8 2008 0.813 0.975 1.194

45 M9 2008 0.851 0.975 1.161

46 M10 2008 -0.720 0.945 0.276

47 M11 2008 0.079 0.962 1.481

48 M12 2008 0.495 0.972 1.361

49 M1 2009 -0.036 0.838 0.494

50 M2 2009 0.819 0.978 0.882

51 M3 2009 0.899 0.977 0.907

52 M4 2009 0.649 0.963 1.286

53 M5 2009 0.060 0.811 0.580

54 M6 2009 0.839 0.959 0.849

55 M7 2009 0.883 0.959 0.890

56 M8 2009 0.896 0.954 0.929

57 M9 2009 0.890 0.950 0.928

58 M10 2009 -1.233 0.972 0.209

59 M11 2009 0.638 0.938 1.236

60 M12 2009 0.885 0.946 1.042

61 M1 2011 -0.247 0.949 0.396

62 M2 2011 0.938 0.970 1.019

63 M3 2011 0.930 0.971 1.052

64 M4 2011 0.819 0.964 1.168

65 M5 2011 -0.662 0.055 0.955

66 M6 2011 0.890 0.978 1.133

67 M7 2011 0.899 0.979 1.120

68 M8 2011 0.931 0.979 1.079

69 M9 2011 0.945 0.978 1.047

70 M10 2011 -1.136 0.931 0.195

71 M11 2011 0.433 0.967 1.364

72 M12 2011 0.738 0.976 1.246

0.793 0.965 1.113
<Ensemble 

average of selected members>3 
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Table 5. Error metrics in the estimation of river discharge by the hydrodynamic model using the 31 members of the multi-physics ensemble. 3 

M1 M13 M26 M27 M30 M31 M32 M33 M38 M39 M42 M43 M44 M45 M50 M51 M52 M54 M55 M56 M57 M59 M60 M62 M63 M64 M66 M67 M68 M69 M72

BIAS 0.903 0.838 1.084 1.099 1.119 1.120 1.094 1.078 1.056 1.021 1.092 1.089 1.096 1.051 0.902 0.915 0.891 0.820 1.020 0.982 0.872 1.056 1.004 0.982 0.995 1.047 1.040 1.028 1.016 1.005 1.092 1.013

FAR: False Alarm Ratio 0.148 0.120 0.215 0.217 0.283 0.210 0.216 0.212 0.209 0.217 0.216 0.215 0.152 0.207 0.148 0.154 0.139 0.137 0.193 0.155 0.133 0.206 0.187 0.178 0.182 0.204 0.201 0.225 0.192 0.187 0.216 0.189

POD: Probability of Detection 0.770 0.737 0.851 0.861 0.849 0.849 0.858 0.849 0.836 0.751 0.857 0.854 0.848 0.833 0.769 0.775 0.751 0.810 0.823 0.845 0.756 0.847 0.816 0.807 0.814 0.833 0.831 0.821 0.821 0.818 0.857 0.819

POFD:Probability of False Detection 0.124 0.094 0.217 0.222 0.187 0.187 0.220 0.214 0.205 0.186 0.220 0.219 0.186 0.203 0.124 0.131 0.185 0.185 0.184 0.066 0.108 0.266 0.175 0.163 0.168 0.199 0.195 0.186 0.182 0.175 0.220 0.180

CSI : Critical Succes Index 0.679 0.670 0.690 0.695 0.711 0.711 0.694 0.691 0.685 0.709 0.693 0.692 0.710 0.685 0.679 0.679 0.706 0.654 0.687 0.708 0.677 0.620 0.687 0.687 0.690 0.686 0.687 0.619 0.688 0.688 0.693 0.686

True Skill Statistics 0.645 0.643 0.634 0.639 0.621 0.662 0.638 0.636 0.631 0.660 0.637 0.636 0.661 0.631 0.645 0.643 0.615 0.601 0.639 0.659 0.648 0.660 0.641 0.644 0.640 0.634 0.636 0.610 0.640 0.642 0.637 0.639

Comparison of flooded areas between numerical results from running ensemble members vs. Observed

<Ensemble 

average>
Error metrics 

Ensemble Member

 4 

 5 
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Figure 1. Top panel: Location of the Tonala River basin in Mexico, blue line represents the 4 

boundary limits of the catchment; blue dots illustrate the location of weather stations; red dot: 5 

streamflow gauge. Bottom panel: zoom of the study area and photographs of observed 6 

impacts; yellow, blue and red dots represent the location at which photos were taken.   7 

8 
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Figure 2. Numerical setup of the WRF with a nested domain covering Mexico. Domain 1: 5 

25km resolution; Domain 2: 4km resolution; the orange region illustrates the Tonalá 6 

catchment.  7 
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Figure 3. Comparison of cumulative precipitation estimated by the 23 model runs of the 6 

WRF multi-physics ensemble. Blue solid line: selected members with NSC> 0.3; grey solid 7 

line: disregarded members with NSC <0.3; red dotted line: mean of the selected 12 members; 8 

black solid line: measurements at each of the four weather stations from 27th October 2009 to 9 

12th November 2009.10 
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Figure 4. Cumulative precipitation fields estimated by the WRF model using the selected 12 members of the multi-physics ensemble (27th 3 

October 2009 – 12th November 2009).  4 

 5 
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Figure 5. Input data parameters in the hydrological model; a) Land use; b) Pedology; c) River network, curve number and grid.4 

a) b) c) 
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Figure 6.  a) 72 hydrographs computed using the rainfall-runoff model with 6 sets of 4 

parameters and 12 WRF ensemble precipitation fields as input data; b) 31 selected 5 

hydrographs to serve as input in the hydrodynamic model; grey lines illustrate the ensemble 6 

members and the blue dashed line shows the measured river discharge for the event. 7 

8 
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Figure 7. Model domain along with the numerical mesh and elevation data in the study area; 4 

Boundary conditions are represented by blue dot: Agua Dulcita river; red dot: input 5 

hydrograph; yellow dot: river-mouth. 6 

7 
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 7 

Figure 8. Data vs. model comparison of flood extent; a) Probabilistic flood map derived from 8 

the ensemble runs with the hydrodynamic model; b) Infrared SPOT image corresponding to 9 

the 15th November 2009. 10 
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Figure 9. a) Maximum-flooded area vs. peak discharge estimated for all 31 hydrodynamic 4 

simulations of the 2009 flood event; b)Histogram of peak discharges; c) Histogram of 5 

estimated size of maximum-flooded area. 6 
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Figure 10. Estimated maxima inundation depths at different locations within the floodplain. 4 

Red line represents the median. Bars correspond to the standard deviation. Upper and lower 5 

limits of the box are the values of the 25th and 75th , respectively. Crosses depict outliers.  6 
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Figure 11. a) BIAS and b) Skill propagation within the model cascade (meteorological-5 

hydrological-hydrodynamic); diamonds: corresponding ensemble mean value. 6 


