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Abstract

This investigation aims to study the propagation of meteorological uncertainty within a
cascade modelling approach to flood prediction. The methodology was comprised of a
Numerical Weather Prediction Model (NWP), a distributed rainfall-runoff model and a 2D
hydrodynamic model. The uncertainty evaluation was carried out at the meteorological and
hydrological levels of the model chain, which enabled the investigation of how errors
originated in the rainfall prediction, interact at a catchment level and propagate to an
estimated inundation area and depth. For this, a hindcast scenario is utilised removing non-
behavioural ensemble members at each stage, based on the fit with observed data. At the
hydrodynamic level, an uncertainty assessment was not incorporated; instead, the model was
setup following guidelines for the best possible representation of the case study. The selected
extreme event corresponds to a flood that took place in the Southeast of Mexico during
November 2009, for which field data (e.g. rain gauges; discharge) and satellite imagery were
available. Uncertainty in the meteorological model was estimated by means of a multi-physics
ensemble technique, which is designed to represent errors from our limited knowledge of the
processes generating precipitation. In the hydrological model, a multi-response validation was
implemented through the definition of six sets of plausible parameters from past flood events.
Precipitation fields from the meteorological model were employed as input in a distributed
hydrological model, and resulting flood hydrographs were used as forcing conditions in the
2D hydrodynamic model. The evolution of skill within the model cascade shows a complex
aggregation of errors between models, suggesting that in valley-filling events hydro-
meteorological uncertainty has a larger effect on inundation depths than that observed in

estimated flood inundation extents.
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1 Introduction

Hydro-meteorological hazards can have cascading effects and far-reaching implications on
water security, with political, social, economic and environmental consequences. Millions of
people worldwide are forcibly displaced as a result of natural disasters, creating political
tensions and social needs to support them. These events observed in developed and
developing nations alike, highlight the necessity to generate a better understanding on what
causes them and how we can better manage and reduce the risk.

The assessment of flood risk is an activity that has to be carried out under a framework full of
uncertainty. The source of these uncertainties may be ascribed to the involvement of different,
and often rather complex models and tools, in the context of environmental conditions that are
at best, partially understood (Hall, 2014). In addition to this, flooding events are dynamic over
a range of timescales, due to climate variability and socio-economic changes, among others,
which further increases the uncertainty in the projections. Therefore, numerous types of

uncertainties can arise when using formal models in the analysis of risks.

Uncertainty is often categorised between aleatory and epistemic (Hacking, 2006): aleatory is
an essential, unavoidable unpredictability, and epistemic uncertainty reflects lack of
knowledge or the inadequacy of the models to represent reality. In the context of any
modelling framework, epistemic uncertainties may be ascribed to the definition of model
parameters and to the model structure itself (limited knowledge).

In a technological era characterised by the advent of computers, there is an increased ability
of more detailed hydrological and hydraulic models. Their use and development has been
motivated as they are based on equations that have (more or less) physical justification; and
allow a more detailed spatial representation of the processes, parameters and predicted
variables (Beven, 2014). However, there are also disadvantages, these numerical tools take
more computer time and require the definition of initial, boundary conditions and parameter
values in space and time. Generally, at a level of detail for which such information is not
available even in research studies. Moreover, these models may be subjected to numerical
problems such as numerical difussion and instability. All of these disadvantages can be

interpreted as sources of uncertainty in the modelling process.

Due to wide range of uncertainty sources in the flood risk assessment process, it is of great
interest to investigate the propagation and behaviour of these different uncertainties from the
start of the modelling framework to the result. The size of registered damages and losses in
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recent events around the world, reveal the urgency of doing so, even under a context of

limited predictability.

In September 2013, severe floods were registered in Mexico as a result of the exceptional
simultaneous incidence of two tropical storms, culminating in serious damage and widespread
persistent flooding (Pedrozo-Acuna et al., 2014a). This unprecedented event is part of a recent
set of extreme flood events over the last decade caused by record-breaking precipitation
amounts across Central Europe (Becker and Grunewald, 2003), United Kingdom (Slingo et
al., 2014), Pakistan (\Webster et al., 2011), Australia (\VVen den Honert and McAneney, 2011),
Northeastern US (WMO, 2011), Japan (WMO, 2011) and Korea (WMO, 2011). In all cases,
the immediate action of governments through the implementation of emergency and action
plans was required. The main aim of these interventions was to reduce the duration and
impact of floods. In addition, risk reduction measures were designed to ensure both a better

flood management and an increase in infrastructure resilience.

One key piece of information in preventing and reducing losses is given by reliable flood
inundation maps that enable the dissemination of flood risk to the society and decision makers
(Pedrozo-Acufna et al., 2013). Traditionally, this task requires the estimation of different
return periods for discharge (Ward et al., 2011) and their propagation to the floodplain by
means of a hydrodynamic model. There is currently a large range of models that can be used
to develop flood hazard maps (Horrit and Bates, 2002; Horrit et al., 2006).

The aforementioned accelerated progress of computers has given way to the development of
model cascades to produce hydrological forecasts, which make use of rainfall predictions
from regional climate models (RCMs) with sufficient resolution to capture meteorological
events (Bartholomes and Todini, 2005; Demerrit et al., 2010). Within this approach, the
coupling of different operational numerical models is carried out, using numerical weather
prediction (NWP) with radar data for hydrologic forecast purposes (Liguori and Rico-
Ramirez, 2012; Liguori et al., 2012), or NWP with hydrological and hydrodynamic models to
determine inundation extension (Pappenberger et al., 2012; Cloke et al., 2013; Ushiyama et
al., 2014).

The use of RCMs in climate impact studies on flooding has been reported by Teutschbein and
Seibert (2010) and Beven (2011), noting that despite their usefulness, the spatial resolution of
models (~25km) remains coarse to capture the spatial resolution of precipitation. This is

particularly important, as higher resolution is needed to effectively model the hydrological
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processes essential for determining flood risk. To overcome this limitation, the utilisation of
dynamic downscaling in these models has been significantly growing (Fowler et al., 2007,
Leung and Qian, 2009; Lo et al., 2008).

Significant challenges remain in the foreseeable future, among these, the inherent
uncertainties in the predictive models are likely to have an important role to play. For
example, it is well known that the performance skill of NWPs deteriorates very rapidly with
time (Lo et al., 2008). To overcome this, the long-term continuous integration of the
prediction has been subdivided into short-simulations, involving the re-initialisation of the
model to mitigate the problem of systematic error growth in long integrations (Giorgi, 1990;
Giorgi, 2006; Qian et al., 2003). Moreover, the use of ensemble prediction systems to obtain
rainfall predictions for hydrological forecasts at the catchment scale is becoming more
common among the hydrological community as they enable the evaluation and quantification
of some uncertainties in the results (Buizza 2008; Cloke and Pappenberger, 2009; Bartholmes
et al. 2009). In these studies, an ensemble is a collection of forecasts made from almost, but
not quite, identical initial conditions.

A key question that arises when using a cascade modelling approach to flood prediction or
mapping is: how uncertainties associated to meteorological predictions of precipitation
propagate to a given flood inundation map? Previous work has been devoted to the
examination of uncertainties in the results derived from different ensemble methods, which
address differences in the initial conditions in the NWP or even differences in using a single
model ensemble vs. multi-model ensemble (Pappenberger et al. 2008; Cloke et al., 2013; Ye
et al., 2014). However, less attention has been paid to the behaviour of errors within a model
chain that aims to represent a flood event occurring at several spatial scales. In order to
understand how errors propagate in a chain of models, this investigation evaluates the
transmission of uncertainties from the meteorological model to a given flood map. For this,
we utilize a cascade modelling approach comprised by a Numerical Weather Prediction
Model (NWP), a rainfall-runoff model and a standard 2D hydrodynamic model. This
numerical framework is applied to an observed extreme event registered in Mexico in 2009
for which satellite imagery is available. The investigated uncertainty is limited to the model
parameter definition in the NWP model, by means of a multi-physics ensemble technique
considering several multi-physics parameterization schemes for the precipitation (Bukosvky
and Karoly, 2009). The resulting precipitation fields are used to generate spaghetti plots by
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means of a distributed hydrological model, enabling the propagation of meteorological
uncertainties to the flood hydrograph. Hence, the resulting hydrographs represent the runoff
associated to each precipitation field estimated with the NWP. In order to complete the
propagation of the uncertainty through the cascade of models to the flood map, the

hydrographs are used as forcing in a standard 2D hydrodynamic model.

On the other hand, it is acknowledged that each of the other models (hydrological and
hydrodynamic) within the model cascade, will introduce other epistemic and random
uncertainties to the result. In order to reduce their influence, the numerical setup of both these
models is constructed with the best available data (e.g. LIDAR for the topography) and
following recent guidelines for the assessment of uncertainty in flood risk mapping (Beven et
al. 2011). In this way, the uncertainty associated to the meteorological model outputs is
propagated through the model cascade from the atmosphere to the flood plain. Thus, the aim
of this investigation is to study the uncertainty propagation from the meteorological model
(due to model parameters), to the determination of an affected area impacted by a well-
documented hydro-meteorological event.

This work is organised as follows: Section 2 provides a description of both, the study area and
the extreme hydro-meteorological event, which are employed to test our cascade modelling
approach; Section 3 introduces the methodology, incorporating a brief description of the
selected models setup. Additionally, we incorporate a description of the multi-physics
ensemble technigque used to quantify and limit the epistemic uncertainty in the NWP model.
The resulting precipitation fields, hydrographs and flood maps are compared with available
field data and satellite imagery for the event. In Section 4, a discussion of errors along the

model cascade, is also presented with some conclusions and future work.

2 Case Study

The selected study area is within the Mexican state of Tabasco, which in recent years has been
subjected to severe flooding as reported by Pedrozo-Acufa et al. (2011; 2012). This region
comprises the area of Mexico with the highest precipitation rate (2000-3000 mm/year), which
mostly occurs during the wet season of the year between May and December. The rainfall
climatology is also influenced by the incidence of hurricanes and tropical storms arriving
from the North.
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In this paper, the extreme hydro-meteorological event selected for the analysis corresponds to
that registered in the early days of November 2009 in the Tonald river. As it is shown in
Fig.1, the river is located in the border of Tabasco and Veracruz and during the event, the
substantial rainfall intensity provoked its overflowing leaving extensive inundated areas along
its floodplain. Top panel of Fig. 1 shows the geographical location of the catchment, with an
area of 5,021 km?, as well as the location of 18 weather stations installed within the region by
the National Weather Service. The event was the result of heavy rain induced by the cold
front #9, which persisted for four days along Mexico's Gulf Coast, forcing more than 44,000
people to evacuate their homes and affecting more than 90 communities. High intensities in
rainfall were recorded in rain gauges from the 31st October to 3rd November, with
cumulative daily precipitation values reporting more than 270 mm. The river is
approximately 300 km long and before discharging into the Gulf of Mexico, the stream
receives additional streamflow from other smaller streams such as Agua Dulcita in Veracruz,
and Chicozapote in Tabasco. The bottom panel of the same Figure illustrates the lower Tonalé
River, where severe flooding was registered as it is shown in the photographs on the right.
The yellow, blue and red dots on the panel represent the location at which the photographs

were taken.

The hydrometric data in combination with the satellite imagery for the characterisation of the
affected areas, enabled an accurate investigation of the causes and consequences that
generated this flood event. The high quality of the available information, allowed the
application of a cascade modelling approach comprised by state-of-the-art meteorological,
hydrological and hydrodynamic models. This numerical approach is utilised with the intention
to carry out an assessment of the modelling framework, with particular emphasis on the
propagation of the epistemic uncertainty from the meteorological model to the spatial extent
of an affected area. Such investigation paves the road towards a more honest knowledge

transfer to decision-makers, whom consider the reliability of the model results.

3 Methodology and Results

The methodology is comprised of a Numerical Weather Prediction Model (NWP), a
distributed rainfall-runoff model and a standard 2D hydrodynamic model. It is anticipated that
the selected modelling approach will support the advance of the understanding of the

connections among scales, intensities, causative factors, and impacts of extremes. This model
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cascade with state-of-the-art numerical tools representing a hydrological system enables the
development of a framework by which an identification of the reliability of simulations can be
undertaken. It should be noted that the model cascade contains several sources of uncertainty
at every level of the numerical framework (meteorological, hydrological and hydrodynamic).
However, the uncertainty evaluation is only carried out at the meteorological and hydrological
levels of the model chain. This enables the investigation of how errors originated in the
rainfall prediction interact at a catchment level, and propagate to determine a given inundation
area and depth. Therefore, the aim is not to reproduce an observed extreme event, but to use a

state of the art numerical framework to examine how errors aggregate in a hindcast scenario.

An uncertainty assessment is not carried out at the hydrodynamic level of the model cascade.
Instead, the 2D hydrodynamic model is setup following recommendations of published
guidelines for the best possible representation of the case study, more specifically with
regards to the selected spatial resolution, boundary conditions and roughness values (see
Asselman et al. 2008).

The proposed investigation is important as uncertainties are cascaded through the modelling
framework, in order to provide better understanding on how errors propagate within models
working at different temporal and spatial scales. It is acknowledged that this information
would enhance better flood management strategies, which would be based on the honest and
transparent communication of the results produced by a modelling system constrained by

intrinsic errors and uncertainties.

3.1 Meteorological model

Simulated precipitation products from numerical weather prediction systems (NWPs)
typically show differences in their spatial and temporal distribution. These differences can
considerably influence the ability to predict hydrological responses. In this sense, in this study
we utilise the advanced research core of the Weather Research and Forecasting (WRF) model
Version 3.2. The WRF model is a fully compressible non-hydrostatic, primitive-equation

model with multiple nesting capabilities (Skamarock et al., 2008).

As it is shown in Fig. 2, the model setup is defined using an interactive nested domain inside
the parent domain. This domain is selected in order to simulate more realistic rainfall, with

the inner frame enclosing the Tonala river catchment within a 4 km resolution. The 4 km

7
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horizontal resolution is considered good enough to compute a mesoscale cloud system
associated to a cold front. It is shown that this finer grid covers the central region of Mexico,
while in the vertical dimension, 28 unevenly spaced sigma levels were selected. The initial
and boundary conditions were created from the NCEP Global Final Analysis (FNL) with a
time interval of 6 hours for the initial and boundary conditions. Each of the model
simulations was reinitialised every two days at 1200 UTC, considering a total simulation time
from the 27" October 2009 until the 13" November 2009.

Epistemic uncertainty is considered in the WRF model by means of the sensitivity of the
results for precipitation, due to variations in the model setup. For this, we utilise a multi-
physics ensemble technique proposed by Bukovsky and Karoly (2009), where the sensitivity
of simulated precipitation in the model results is examined through variations in the specific
setup options by means of twenty three different combinations. The comparison of computed
precipitation fields against real measurements from weather stations within the catchment,
enabled the quantification of uncertainty in the meteorological model for this event. Table 1
shows a summary of the different multi-physics parameters used in the WRF model to
generate the physics ensemble. As it is shown on this table, there is a large discrepancy in the
model skill results in all 23 simulations Error metrics reported in this table are computed
using information from all available stations within the numerical domain; which comprised
stations that are outside the area of the catchment. It is demonstrated that only 13 of these
model runs report a positive Nash-Sutcliff Coefficient (NSC), which indicates a better
accuracy for those realisations. In contrast, model runs with negative NSC were dismissed for
the numerical reproduction of the event, as this condition is a clear indicator that the observed
mean is a better predictor than the model.

Therefore, meteorological model runs that comply with a criteria defined by a NSC>0.3 and a
Correlation coefficient (Cor)>0.8 (for the whole numerical domain) are utilised to investigate
the propagation of meteorological uncertainties through the modelling framework. This
criteria narrows down the meteorological model runs to 12, which will be cascaded to the
hydrological model stage to attain streamflow predictions. In this approach, the selected 12
multi-physics ensemble runs of the model represent a plausible and equally likely state of the

system in the future.

Fig. 3 illustrates the cumulative precipitation curves computed for each of the 23 model runs

of the multi-physics ensemble at four different stations located within the catchment. In this
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figure differences in the spatial distribution and intensity of precipitation are evident.
Moreover, the selected 12 members by the criteria (NSC>0.3 and Cor>0.8) are illustrated by
the blue solid lines, while the grey solid lines show those members that were rejected by it.
Notably, dismissed members tend to underestimate the amount of precipitation in all four
locations that are presented in this figure. For completeness, the rainfall measurements at each
meteorological station are also shown by the black solid line, while the red dotted line depicts
the mean value of the selected model runs to be propagated through the model cascade. If the
12 selected members are considered in the estimation of ensemble metrics at each station, it is
shown that at Station No. 27075, the spread of the estimated cumulative precipitation curves
is limited and quantified by a NSC=0.917 and a NRMSE = 10.7%, indicating a good skill of
the selected WRF precipitation estimates at this point. In contrast, at Station No. 27007 the
spread of the cumulative precipitation is large and characterised by a NSC=0.766 and a
NRMSE=19.4%, showing less skill in the model performance than that observed in the
previous case. The observed differences of estimated precipitation for this event, highlight the
importance of incorporating ensemble techniques in the reproduction of precipitation with this

type of models.

Fig. 4 illustrates the cumulative precipitation fields computed for each of the 12 selected
members of the multi-physics ensemble, where differences in the spatial distribution and
intensity of precipitation were evident. These results suggest that for this event, the
precipitation field estimated with the WRF was highly sensitive to the selection of multi-
physics parameters. To revise in more detail the performance of the WRF in reproducing this
hydro-meteorological event, the estimated cumulative precipitation by each of the selected 12
members of the multi-physics ensemble was compared against measurements at the eighteen

weather stations located within and close to the Tonala catchment.

Table 2 presents a summary of the most well-known error metrics calculated at each weather
station and for each member of the ensemble. Among these are the: Normalised Root-Mean
Square Error (NRMSE), BIAS, Nash-Sutcliffe Coefficient (NSC), and the Correlation
coefficient (Cor). The columns show the local value of each coefficient for a given member of
the ensemble (M1, ..., M12). As shown in all columns (i.e. member runs), the error metrics
have a great spatial variability, hence, indicating the regions of the study area where the
model performs better. To illustrate the performance of this ensemble technique at each

weather station, the ensemble average of these error metrics is introduced in the last column
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and indicated by < >. Again, the spatial variability of the metrics is evident. The two bottom
rows in each sub-table correspond to the average of the ensemble averages for the whole
catchment and for the all the stations. It is shown, that when the average of all stations is
taken into account, the skill decreases. However, in this investigation the error that is of
interest is the one corresponding to the average of those weather stations located within the
catchment, as these will be used as input in the hydrological model. This will enable the
propagation of errors in the meteorological model within the model cascade. For clarity, in the

same table the stations within the catchment are highlighted in blue.

A question that has been seldom explored in the literature, is how the uncertainty in the
prediction of the precipitation (i.e. errors described in this section), cascade into an estimated
flood hydrograph determined by a distributed hydrological model. In this sense, the next step
in this work, considers the non-linear transfer of rainfall to runoff using a distributed rainfall-
runoff model. For this, we employ each one of the selected 12 precipitation fields derived
from the WRF as input to determine the associated river discharge with the hydrological
model.

3.2 Hydrological model

The hydrological model used in this study was applied to the Tonald River catchment in an
early work presented by Rodriguez-Rincon et al. (2012). This numerical tool was developed
by the Institute of Engineering — UNAM (Dominguez-Mora et al., 2008), and comprises a
simplified grid-based distributed rainfall-runoff model. The model has been previously

applied with success in other catchments in Mexico (e.g. Pedrozo-Acuna et al., 2014b).

The model is based on the method of the Soil Conservation Service (SCS) with a modification
that allows the consideration of soil moisture accounting before and after rainfall events. The
parameters that are needed for the definition of a runoff curve number within the catchment
are the hydrological soil group, land use, pedology and the river drainage network. Fig. 5
shows for the Tonalad River catchment, the spatial definition of the river network (center
panels) and the runoff curve (right panels). For the numerical setup of the hydrological model,
we employ topographic information from a LIiDAR data set, from which a 10m resolution
Digital Elevation Model (DEM) is constructed.

10
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There are two main hypothesis that underpin the SCS curve number method. Firstly, it is
assumed that for a single storm and after the start of the runoff, the ratio between actual soil
retention and its maximum retention potential is equal to the ratio between direct runoff and
available rainfall. Secondly, the initial infiltration is hypothesised to be a fraction of the

retention potential.

Thus, the water balance equation and corresponding assumptions are expressed as follows:

P=P+I1,+F, (1)
P F
e _ ' 2
P.—1, S @
, =4S (3)

Where P is rainfall, Pe effective rainfall, 15 is the initial abstraction, Fa is the cumulative
abstraction, S is the potential maximum soil moisture retention after the start of the runoff and
A is the scale factor of initial loss. The value of A is related to the maximum potential
infiltration in the basin.

Through the combination of equations (1) - (3) and expressing the initial abstraction (la) by

0.2*S we have:

_(P-02s)
" P+08S (4)

where, the value of S [cm] is determined by:

S__2450—(25.4CN)
B CN (5)

CN is the runoff curve number, as defined by the Agriculture Department of the USA (USDA,
1985). Values for this parameter vary from 30 to 100, where small numbers indicate low
runoff potential while larger numbers indicate an increase in runoff potential. Thus, the
permeability of the soil is inversely proportional to the selected curve number. Another
parameter that allows the modification of the curve number is the soil water potential given

by Fs, following S=S*Fs.

The model includes a parameter to reproduce the effects of evaporation on the ground

saturation (Fo). This parameter is useful when the event to be reproduced lasts for several

11
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days; however, due to the duration of this event it is assumed equal to 0.9 in all cases. The
computation of the runoff in the basin is carried out through the addition of the runoff
estimated in each cell to then construct a general hydrograph (See Rodriguez-Rincon et al.
2012). With regards to the definition of values for the other two free parameters in the
hydrological model (1 and Fs), a traditional calibration process is implemented. For this, we
utilise flood hydrographs from past extreme events (2001, 2005, 2007, 2008, 2009 and 2011)
observed in this river. For these events, we employ as rainfall input the registered
precipitation at the same 4 weather stations that are within the river catchment, which location
is shown in the top panel of Figure 1. Therefore, we determine six sets of free parameters that
are good enough to represent the rainfall-runoff relationship in this catchment. The selected
sets of values are illustrated in Table 3, where the correlation coefficient and NSC are also
reported for each of the years. It is shown that in all the events, the selected set of parameters
ensures a good correlation against the observed discharge which is given by Cor>0.7, as well

as a positive NSC (accuracy).

It is well known that both the amount and distribution of rainfall can significantly affect the
final estimated river discharge (Ferraris et al. 2002; De Roo et al., 2003; Cluckie et al., 2004).
In consequence, the propagation of meteorological uncertainty to the rainfall-runoff model is
carried out using the 12 WREF rainfall precipitation ensembles as an input in the hydrological
model, considering the six sets of free parameters reported in Table 3. This procedure enabled
the generation of 72 hydrographs that could represent the 2009 event with different skill.

Error metrics of all the computed hydrographs are reported in Table 4,

For completeness, Fig. 6a illustrates the 72 computed hydrographs for the Tonald River
catchment in relation to the measured river discharge for the 2009 event (blue dashed line). It
is shown that if all 72 hydrographs are taken into account, uncertainty bounds are significant.
Indeed, this illustrates the interaction of the meteorological uncertainty with that coming from
the setup of the hydrological model (definition of free parameters). However, the purpose of
this study is to investigate in a model cascade framework, how errors in the meteorological
prediction stage propagate down to a predicted inundation. In this sense, we narrow down the
number of hydrographs shown in Fig. 6a, by selecting only those with a Cor>0.7 and
NSC>0.6., as reported in Table 4 only 31 out of 72 (shown in bold) follow this condition.
Fig. 6b displays the 31 selected hydrographs along with the measured discharge for the 2009

event. Although there is a reduction in the uncertainty bounds, it tis shown that errors in the

12
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predicted rainfall are indeed propagated to the hydrological model, which employs a finer
spatial resolution (1 km). It has been established that, in some cases, an error in the
meteorological model can be compensated by an error in the hydrological model and vice-
versa. To illustrate this in more detail, average values of the calculated error metrics for the 31
selected hydrographs are estimated and reported in Table 4, with NSC=0.79, Cor=0.96 and
BIAS=1.11. Values of the NSC for selected hydrographs in Table 4 illustrate the resulting
differences in skill resulting from the combination of different setups in the hydrological
model with the multi-physics ensemble. For instance, in the rows corresponding to the
parametes determined for the 2011 event, member M12 indicates a NSC=0.738 showing a
poorer skill at reproducing the river discharge with the precipitation derived from this
member, in comparison to that registered for member M2 with NSC=0.938. The change in the
values of the NSC indicates that results from the regional weather model can be enhanced or

weakened by the performance of the hydrological model.

The utilisation of the 31 selected hydrographs in a 2D hydrodynamic model enables the study
of the propagation of errors within the cascade of models. In particular, for estimating the

flood extent during this extreme event.

3.3 Flood inundation model

Several 2D hydrodynamic models have been developed for simulating extreme flood events.
However, any model is only as good as the data used to parameterise, calibrate and validate
the model. 2D models have been regarded as suitable for simulating problems where
inundation extent changes dynamically through time as they can easily represent moving
boundary effects (e.g. Bates and Horritt, 2005). The use of these numerical tools has become
common place when flows produce a large areal extent, compared to their depth and where

there are large lateral variations in the velocity field (Hunter et al., 2008).

In this study, given the size of the study area the modelling system utilised is comprised by
the flow model of MIKE 21 flexible mesh (FM). This numerical model solves the two
dimensional Reynolds-averaged Navier—Stokes equations invoking the approximations of
Boussinesg and hydrostatic pressure (for details see DHI, 2014). The equations are solved at

the centre of each element in the model domain.

13
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The numerical setup is based on a previous work on the study area (Pedrozo-Acufia et al.
2012), with selected resolutions for the elements of the mesh with a size that guarantees the
proper assimilation of a 10 m DEM to characterise the elevation in the floodplain. The
topographic data has been regarded as the most important factor in determining water surface
elevations, base flood elevation, and the extent of flooding and, thus, the accuracy of flood
maps in riverine areas (NRC, 2009). Therefore, the elevation data used in this study
corresponds to LIDAR data set provided by INEGI (2008). The choice of a 10-m DEM is
based on recommendations put forward by the Committee on Floodplain Mapping
Technologies, NRC (2007) and Prinos et al. (2008), as such a DEM ensures both accuracy and
detail of the ground surface. The model domain is illustrated in Fig. 7, along with the
numerical mesh and elevation data, it comprises the lower basin of the Tonald River and
additional main water bodies. The colours represent the magnitude of the elevation and
bathymetric data assimilated in the numerical mesh, where warm colours identify high ground
areas and light blues represent bathymetric data. The integration of high quality topographic
information in a 2D model with enough spatial resolution, enables the investigation of the
propagation of the meteorological uncertainty to the determination of the flood extent.
Moreover, as it is illustrated in Fig. 7 the numerical mesh considers three boundary
conditions. These are input flow boundary where the hydrograph from the rainfall-runoff
model is set (red dot); the Tonald's river mouth, where the astronomical tide occurs for the
period of the event (271" October — 12" November 2009) (yellow dot) and the Agua Dulcita
river set where a constant discharge of 100 m®/s is introduced (blue dot). The astronomical
tide (microtidal in nature with tidal range <1 m) is determined using the monthly tidal forecast
at a nearby point, which is published by CICESE (Centro de Investigacion Cientifica y de

Educacién Superior de Ensenada) and it is available at (http://predmar.cicese.mx/calmen.php).

On the other hand, hydraulic roughness is a lumped term known as Manning’s coefficient that
represents the sum of a number of effects, among which are skin friction, form drag and the
impact of acceleration and deceleration of the flow. The precise effects represented by the
friction coefficient for a particular model depend on the model’s dimensionality, as the
parameterisation compensates for energy losses due to unrepresented processes, and the grid
resolution (Bates et al., 2014). The lack of a comprehensive theory of “effective roughness”
have determined the need for calibration of friction parameters in hydraulic models.
Furthermore, the determination of realistic spatial distributions of friction across a floodplain

in other studies, have showed that only 1 or 2 floodplain roughness classes are required to
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match current data sources (\Werner et al., 2005). Indeed, this suggests that application of
complex formulae to establish roughness values for changed floodplain land use are
inappropriate until model validation data are improved significantly. Therefore, in this study
hydraulic roughness in the floodplain is assumed to be uniform and different from the main
river channel, in this sense two values for the Manning number are used, one for the main
river channel (M=32 m*?s!) and another for the floodplain (M=28 m*/?s™%).

It should be noted that several investigations confirm that there is significant uncertainty
associated with flood extent predictions using hydraulic models (e.g. Aronica et al., 1998,
2002; Bates et al. 2004; Pappenberger et al., 2005, 2006, 2007; Romanowicz and Beven,
2003). These uncertainties may be ascribed to differences in spatio-temporal resolutions or
the hydraulic roughness that is used in the hydraulic model. In this investigation, however, a
more detailed analysis of the different sources of uncertainty in the hydraulic model is not
implemented. The numerical setup of the hydraulic model is built following published
guidelines for an accurate representation of the case study (see Asselman et al. 2008), which
enables us to build the discussion on how an uncertainty generated at the meteorological stage

of the model chain propagates and influences a resulting flooded area and depth.

In order to assess whether the 2D model is able to reproduce the flood extent observed in
2009, numerical results of flood extent are compared against the affected area determined
from a SPOT image (resolution of 124m). This practice is widely used in the literature to
evaluate the results from inundation models and to compare its performance (Di Baldassare et
al, 2010b; Wright et al., 2008).

Fig. 8a introduces the result of the hydrodynamic simulation for each of the 31 selected
hydrographs, which resulted from the utilisation of the rainfall-runoff model using as input
the WRF multi-physics ensemble output. The illustrated flood map summarises the 31
different possibilities of the inundation area that could result from the characterisation of
precipitation with the WRF model. Each of these flood maps can also be associated to a
probability enabling the representation of a probabilistic flood map, shown in the figure. This
allows the identification of the areas highly vulnerable to flooding from this event.
Additionally, Fig. 8b introduces the infrared SPOT satellite image of the 12" of November
2009, which is used for comparison against the produced flood maps derived from running
the 31 hydrographs as inputs in the 2D model. Notably, in the numerical results, the blue area

identifies the region of the domain that is most likely to be flooded (90%), the comparison of
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this area with the observed inundation in the satellite image, show a good skill of the model

chain at reproducing the registered flood in the study area.

Despite the variability in the estimated peak discharge utilised as input in the different
hydrodynamic runs, inundation results show similar affected areas in all realisations (only
with small differences in its size). This is verified in the results shown in Fig. 9a, where the
relationship between peak discharge of the 31 hydrographs, is plotted against the size of the
maximum-flooded area. The distribution of points in this graph clearly indicates that although
there are differences in the estimated peak flow (see histogram in Fig. 9b), in most cases the
resulting size of the inundated area is similar. Histogram plot shown in Fig. 9c indicates a
clear concentration numerically derived flooded areas with a size larger than 130 km?. Indeed,
the mean value of the maximum-flooded estimated area is 138.94 km?, while the standard

deviation is 16.09 km?2,

These results support that the hydraulic behaviour in all hydrodynamic simulations was
indeed very similar, regardless of the peak discharge of the hydrograph. It is reflected that this
may be the result of induced hydrodynamics by a valley-filling flood event, which is
identified with the relatively high floodplain area-to-channel-depth ratios in all simulations.
Hence, all possible hydrographs generated with the hydrological model show similar levels of
lateral momentum exchange between main channel and floodplain. For this reason, the
predictive performance of all hydrodynamic simulations used to reproduce the inundation

extent appears to be good (see Table 5).

The estimation of several error metrics in these results was performed using binary flood
extent maps, where the comparison is based on the generation of a contingency table, which
reports the number of pixels correctly predicted as wet or dry. From this, measures of fit such
as: BIAS, False Alarm Ratio (FAR), Probability of Detection (POD), Probability of False
Detection (POFD), Critical Success Index (CSI) and the True Skill Statistics (TSS) are
estimated. Table 5 introduces the results for all 31 members and error metrics. Clearly, there
is little variability in the performance of the model for each of the runs, showing that there has
been a small propagation of the error to the flood map. The ensemble average of these
quantities is also illustrated in the last column of the table, where values of BIAS=1.013,
FAR=0.189, POD=0.819, POFD=0.180; CSI=0.686 and TSS=0.639 are reported. As noted
before, these results indicate an apparent good skill of the model chain at reproducing the

flood extension, due to the incidence of this extreme event. It should be borne in mind,
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however, that some misclassification errors may also be included in the observed flooded area
due to specular reflections that may classify some wet vegetation as water or open water as
dry land. In consequence, flood extent maps should be used with caution in assessing model
performance (Di Baldassare, 2012). This is particularly true during high-magnitude events
where the valley is entirely inundated, such as the case study of this investigation where small

changes in lateral flood extent may produce large changes in water levels.

In this sense, it has been argued that flood extent maps are not useful for model assessment
(Hunter et al., 2005) and high water marks are more useful to evaluate model performance.
Unfortunately, for the case study information of inundation depths was not available. Despite
this fact, a further revision of simulated inundation depths is also carried out. For this, 10
points distributed within the numerical domain are selected. These are illustrated by the
coloured dots in Fig. 10, along with the values of mean water depth in all the 31 simulations
(red solid line). In all cases, a high variability in the estimated inundation depth on the
floodplain is depicted (with values varying between 1.5 and 3m). This result supports that in
the case of valley-filling flood events, there is a higher sensitivity to errors in the vertical

dimension of the flood.

In one hand, this demonstrates that the geomorphological characteristics of the site (e.g. low-
lying area, smooth slopes in the river channel and floodplain) are dominant in the accurate
determination of the magnitude of an inundated area, regardless of the peak discharge. This
implies that for this type of rivers and when predicting inundation extent, it may be more
important to have a good characterisation of the river and floodplain (e.g. high quality field
data and a LiDAR derived DEM), than a good characterisation of the rainfall-runoff
relationship.

Current approaches to flood mapping, have pointed out that in order to produce a
scientifically justifiable flood map, the most physically-realistic model should be utilised (Di
Baldassarre et al., 2010). Nevertheless, even with these models the amount of uncertainty
involved in the determination of an affected area is important and should be quantified.

4 Discussion and Conclusions

Flood risk mapping and assessment are highly difficult tasks due to the inherent complexity of

the relevant processes, which occur in several spatial and temporal scales. As pointed out by
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Aronica et al. (2013), the processes are subject to substantial uncertainties (epistemic and
random), which emerge from different sources and assumptions, from the statistical analysis
of extreme events and from the resolution and accuracy of the DEM used in a flood
inundation model. By acknowledging that all models are an imperfect representation of the

reality, it is important to quantify the impact of epistemic uncertainties on a given result.

The utilised methodology was comprised of a Numerical Weather Prediction Model (NWP), a
distributed rainfall-runoff model and a 2D hydrodynamic model. Thus, the numerical
framework contains several sources of uncertainty at every level of the model cascade
(meteorological, hydrological and hydrodynamic). The quantification of uncertainty was only
carried out at the meteorological and hydrological levels of the model chain; from which non-
behavioural ensemble members were removed based on the fit with observed data. In
contrast, at the hydrodynamic level, the numerical model was setup in a deterministic way
following recommendations of published guidelines for a good representation of the case
study, more specifically with regards to the selected spatial resolution, boundary conditions
and roughness values (see Asselman et al. 2008). This was done as uncertainties at this level
have been mainly ascribed to issues with model implementations and definition of free
parameters (Beven et al. 2011). This enabled the assessment of uncertainty and its

propagation, from a modelled rainfall event to a predicted flooded area and depth.

At the meteorological level, a multi-physics ensemble technique was utilised to evaluate the
generation of epistemic uncertainties (designed to represent our limited knowledge of the
processes generating precipitation in the lower troposphere). While in the hydrological model
a multi-response validation was implemented by means of the definition of six sets of
plausible parameters from past flood events. This was done in order to reduce the
dimensionality of the parameter calibration problem (see Gupta et al., 2009). This procedure
was preferred over a GLUE analysis (e.g. Pedrozo-Acuia et al., 2015), as the investigation

was aimed to understand the propagation of uncertainty along the model chain.

It should be borne in mind that it is not easy to disaggregate the many sources of uncertainty
within the model cascade. Thus, it is necessary to make assumptions about how to represent
uncertainty. Therefore, the assessment of hydro-meteorological model performance at the

three levels is carried out through the estimation of skill scores.

Fig. 11 presents a summary of the propagation of two well-known error metrics, BIAS (top

panel) and NSC/TSS (bottom panel). These metrics were selected, as they enable a direct
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comparison of their values at each of the stages within the model cascade. In both metrics, the
evolution of the confidence limits is illustrated by the size of the bars. Their evolution from
the meteorological model to the hydrological model, show an aggregation of meteorological
uncertainties with those originated from the rainfall-runoff model. However, the skill is
considerably improved from a mean value of 0.65 in the meteorological model, to 0.793 in the
hydrological model. In the last stage of the model chain (hydrodynamic model), the
confidence limits of the results, show an apparent improvement in model skill. However, it
should be noted that this may be ascribed to the complex aggregation of errors in valley-
filling events, which is verified in the observed sensitivity of the simulated inundation depths.
The mean value of the skill is reduced to TSS=0.639. The results provide an useful way to
evaluate the hydro-meteorological uncertainty propagation within the modelling cascade

system.

BIAS and NSC/TSS error metrics (Fig. 11) revealed discrepancies between observations and
simulations throughout the model cascade. For instance, an increase in the NSC from the
rainfall to the flood hydrograph it implies that the hydrological model is more sensitive (wider
uncertainty bars) to its main input (precipitation) than the WRF model is to the set of micro-
physics parameterisations. On the other side, the uncertainty bounds in the hydrological
model imply a high sensitivity of hydrographs to both, errors from the meteorological model
and its numerical setup with free parameters (amplifying the uncertainty). This is observed in
the spaghetti plot shown in Fig. 6a, where large uncertainty bounds were identified. In order
to reduce errors from the interaction of uncertainties coming from both models, these bounds
were reduced with the selection of 31 hydrographs that comply with Cor>0.7 and NSC>0.6
(see Fig.6b). It is reflected that the estimated error in the meteorological model may reflect a
spatial scaling issue (comparing observations from rain gauges to simulations at the meso-

scale).

Results concerning predictions of inundation extent indicate an apparent good skill of the
model chain at reproducing the flood extension. The propagation of uncertainty and error
from the hydrological model to the inundation area revealed that is necessary to assess model
performance not only for flood extension purposes, but also to estimate inundation depths,
where results indicate a higher variability (e.g. increase in the error). This last modelling step

is quite important given the consequences for issuing warning alerts to the population at risk.
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The similar magnitude in inundation extents of all numerical results indicated the
predominance of a valley-filling flood event, which was characterised by a flooded area
strongly insensitive to the input flood hydrograph. While this can be explained by the limited
effect that the volume overflowing the riverbanks and reaching the floodplain will have on the
maximum inundation area, the difference between the observed and the simulated flooded

area remains important (TSS=0.639).

It should be pointed out, that this methodology contains more uncertainties that were not
considered or quantified in the generation of flood extent maps for this event. Results showed
that a large amount of uncertainty exists in the NWP model, and such uncertainty can
propagated and aggregated at the catchment level. Members of the ensemble were shown to
differ significantly in terms of their cumulative precipitation, spatial distribution, river
discharge, inundation depths and areas. The evolution of skill within the model cascade shows
a complex aggregation of errors between models, suggesting that in valley-filling events
hydro-meteorological uncertainty has a larger effect on inundation depths than that observed

in estimated flood inundation extents.

It is advised that in the future, attention should be given to the assessment of hydro-
meteorological uncertainty in a similar numerical framework applied to catchments with
different morphological setting. The assessment of the error propagation within the model
cascade is seen as a good step forward, in the communication of uncertain results to the
society. However, as shown in this work, an improvement in model prediction during the first
cascade step (rainfall to runoff) can be reverted during the second cascade step (runoff to
inundation area) with important consequences for early warning systems and operational
forecasting purposes. Finally, the proposed numerical framework could be utilised as a robust

alternative for the characterisation of extreme events in ungauged basins.
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Table 1. Ensemble members defined for the multi-physics WRF ensemble

Ensemble Micro- surface Cumulus Feedback . Criteria
. layer ) /sst_upda RMSE NSC Cor Bias NSC >0.3,
member Physics ;i physics
physics te Cor >0.8
1 WSM5 S5-Layer TDM  Kain-Fritsch Eta off/off 445.23 -0.25 0.94 0.44 reject
2 WSM5 5-Layer TDM Kain-Fritsch Eta off/on 262.73 0.44 0.97 0.98 select
3 WSM5 5-Layer TDM Kain-Fritsch Eta on/off 250.51 0.49 0.97 1.01 select
4 WSM5 5-Layer TDM Kain-Fritsch Eta on/on 257.35 043 0.97 1.05 select
5 WSM5 5-Layer TDM Betts-Miller-Janjic off/on 502.47 -0.65 0.97 0.28 reject
6 WSM5 5-Layer TDM Betts-Miller-Janjic on/on 520.58 -0.77 0.97 0.25 reject
7 WSM5 Noah Kain-Fritsch Eta off/off 233.04 0.42 0.96 1.18 select
8 WSM5 Noah Kain-Fritsch Eta off/on 236.14 0.33 0.96 1.24 select
9 WSM5 Noah Kain-Fritsch Eta on/off 359.11 0.17 0.90 0.56 reject
10 WSM5 Noah Kain-Fritsch Eta on/on 24531 0.41 0.96 1.12 select
11 WSM5 Noah Betts-Miller-Janjic off/off 486.26 -0.49 0.98 0.33 reject
12 WSM5 Noah Betts-Miller-Janjic off/on 486.02 -0.49 0.97 0.34 reject
13 WSM5 Noah Betts-Miller-Janjic on/off 535.00 -0.82 0.97 0.23 reject
14 WSMS5 Noah Betts-Miller-Janjic on/on 543.78 -0.87 0.96 0.23 reject
15 Thompson 5-lLayer TDM  Kain-Fritsch Eta off/off 216.70 0.60 0.97 1.09 select
16 Thompson S-Layer TDM  Kain-Fritsch Eta off/on 236.64 0.50 0.97 1.15 select
17 Thompson 5-Layer TDM  Kain-Fritsch Eta on/off 238.89 0.57 0.96 0.97 select
18 Thompson 5-Layer TDM  Kain-Fritsch Eta on/on 275.24 0.50 0.96 0.89 select
19 Thompson 5-Layer TDM Betts-Miller-Janjic off/on 571.49 -1.15 0.96 0.16 reject
20 Thompson 5-Layer TDM Betts-Miller-Janjic on/off 572.27 -1.14 0.95 0.16 reject
21 Thompson 5-Layer TDM Betts-Miller-Janjic on/on 502.47 -0.65 0.97 0.28 reject
22 Thompson Noah Kain-Fritsch Eta off/off 238.06 0.38 0.96 1.25 select
23 Thompson Noah Kain-Fritsch Eta off/on 234.03 0.48 0.97 1.13 select
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Table 2. Error Metrics in the estimation of precipitation by members of the multi-physics ensemble (blue rows

indicate the stations located within the Tonala catchment)

Root-Mean Square Error (RMSE) and Normalised RMSE per Station considering Ensemble average

Station Multi-physics ensemble member <Nor_RMSE>
No. mi [ m2 [ m3 | ma | ms | me | m7 | ms | mo | mio [ mu [ mi2 %
30167 210.26 96.56 144.62 104.42 106.84 76.31 160.48 129.88 101.03 210.95 164.85 86.80 13.96
27003 544.34 578.19 564.46 474.81 427.30 516.95 458.25 484.05 568.20 572.30 385.17 479.47 35.13
27007 234.90 246.00 198.01 135.27 129.43 207.93 126.51 197.32 246.90 328.28 132.09 191.81 19.44
27015 96.68 129.89 151.02 194.33 235.76 179.69 152.06 152.60 118.97 116.87 260.49 188.20 24.01
27074  173.37 211.87 191.22 197.46 78.94 148.88 174.92 247.65 187.98 207.39 123.09 157.21 17.19
27073  227.47 201.91 228.62 256.39 281.38 245.68 186.21 219.36 159.34 147.79 247.69 223.88 46.46
27075 87.04 119.26 104.10 100.82 151.17 64.92 76.45 147.30 85.75 105.68 52.14 68.67 10.72
27076 140.53 160.28 141.95 124.03 108.33 130.53 191.75 162.59 226.04 236.09 129.78 150.84 17.14
27077 89.10 113.42 83.60 225.48 252.24 207.73 254.20 282.40 110.77 83.93 203.01 192.86 30.57
27039  333.50 204.36 197.48 295.84 302.19 261.39 264.08 321.66 172.86 152.14 257.59 430.63 73.28
27054  123.18 30.77 45.28 113.16 119.18 77.41 106.84 112.68 118.83 127.43 110.06 106.67 34.75
27060 70.69 56.23 59.51 3342 40.13 30.04 78.07 93.80 8846 80.36 56.73 66.31 19.88
27024  160.33 137.81 140.76 120.58 127.54 73.57 148.27 136.47 145.12 167.79 153.26 151.87 85.04
27084 68.72 7132 5458 53.56 106.93 6565 61.06 7231 6146 62.96 50.14 50.92 19.02
7365 172.91 117.44 103.02 252.03 139.79 163.49 301.52 216.38 179.67 129.71 271.88 210.11 24.52
27011 143.70 162.77 143.61 107.82 77.55 86.15 128.03 143.69 106.59 116.49 86.81 81.27 106.83
27036 81.46 60.69 2736 61.69 19.14 3564 23,58 4589 22.13 40.23 39.22  55.55 12.04
27008 158.85 72.82 7496 131.34 13494 100.16 102.82 149.97 66.67 79.36 97.87 254.33 19.68

Average {Rel_RMSE}
catch. 23.14
Average {Rel_RMSE} all 33.87
BIAS per Station and Ensemble Average
Station Multi-physics ensemble member <BIAS>
o. M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

N | m2 | w3 [ wma | ws [ ws | w7 [ ws | wo [ wao| wus| i
30167 0.71 0.90 0.81 1.07 1.12 0.99 0.80 0.85 0.91 0.71 1.23 1.06 0.93
27003 0.51 0.48 0.50 0.58 0.62 0.54 0.59 0.57 0.49 0.49 0.66 0.58 0.55
27007 0.72 0.71 0.79 0.91 0.91 0.78 1.13 1.26 0.73 0.61 0.90 0.80 0.85
27015 1.21 1.32 1.40 1.50 1.61 1.46 1.37 1.37 1.24 1.21 1.68 1.48 1.40
27074 0.82 0.76 0.79 0.78 1.08 0.86 0.81 0.71 0.80 0.77 0.88 0.83 0.82
27073 1.74 1.65 1.74 1.83 1.91 1.80 1.58 1.70 1.47 1.44 1.80 1.72 1.70
27075 0.92 0.85 0.88 0.88 1.20 0.96 0.90 0.80 0.89 0.86 0.98 0.93 0.92
27076 0.86 0.82 0.86 0.91 0.95 0.89 0.79 0.84 0.73 0.71 0.89 0.85 0.84
27077 1.12 1.17 1.10 1.48 1.54 1.44 1.54 1.60 1.20 1.14 1.42 1.40 1.35
27039 2.41 1.87 1.84 2.26 2.29 2.11 2.13 2.36 1.73 1.64 2.09 2.84 2.13
27054 1.89 1.08 1.24 1.82 1.87 1.54 1.76 1.81 1.84 1.91 1.79 1.77 1.69
27060 1.42 1.33 0.72 1.08 1.20 1.05 1.47 1.57 1.54 1.49 1.32 1.39 1.30
27024 3.34 2.96 3.03 2.76 2.88 2.07 3.16 2.98 3.11 3.45 3.17 3.17 3.01
27084 1.32 1.35 1.17 1.23 1.61 0.78 1.27 1.36 1.27 1.29 1.07 1.01 1.23
7365 1.43 1.20 1.09 1.63 1.32 0.72 1.78 1.55 1.43 1.26 1.68 1.51 1.38
27011 3.57 391 3.55 2.93 2.33 2.49 3.33 3.58 291 3.09 2.56 2.45 3.06
27036 1.36 1.25 1.09 1.28 0.97 1.15 0.95 1.20 1.06 1.16 1.15 1.24 1.15
27008 1.37 1.07 1.05 1.29 1.31 1.20 1.21 1.35 0.99 0.93 1.19 1.62 1.22

Average {Rel_RMSE}

catch. 0.94
Average {Rel_RMSE} all 1.42
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Continuation of Table 2. Error Metrics in the estimation of precipitation by members of the multi-physics

ensemble (blue rows indicate the stations located within the Tonala catchment)

Nash-Sutcliff Coefficient per Station and Ensemble average

. Multi-physics ensemble member
Station No. <NSC>
M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | M10 | M11 | M12
30167 0.72 0.94 0.87 0.93 0.93 0.96 0.84 0.89 0.94 0.72 0.83 0.95 0.88
27003 0.16 0.05 0.09 0.36 0.48 0.24 0.40 0.33 0.08 0.07 0.58 0.34 0.26
27007 0.70 0.67 0.78 0.90 0.91 0.76 0.91 0.79 0.66 0.41 0.90 0.80 0.77
27015 0.88 0.78 0.70 0.50 0.27 0.57 0.70 0.69 0.81 0.82 0.11 0.53 0.61
27074 0.84 0.76 0.80 0.79 0.97 0.88 0.84 0.67 0.81 0.77 0.92 0.87 0.83
27073 -0.27 0.00 -0.28 -0.61 -0.94 -0.48 0.15 -0.18 0.38 0.46 -0.50 -0.23 -0.21
27075 0.94 0.89 0.91 0.92 0.82 0.97 0.95 0.83 0.94 0.91 0.98 0.96 0.92
27076 0.87 0.83 0.86 0.90 0.92 0.88 0.75 0.82 0.65 0.62 0.89 0.85 0.82
27077 0.82 0.70 0.84 -0.17 -0.46 0.01 -0.48 -0.83 0.72 0.84 0.05 0.15 0.18
27039 -4.41 -1.03 -0.90 -3.26 -3.44 -2.32 -2.39 -4.03 -0.45 -0.13 -2.23 -8.02 -2.72
27054 -0.46 0.91 0.80 -0.23 -0.36 0.42 -0.10 -0.22 -0.36 -0.56 -0.16 -0.09 -0.03
27060 0.60 0.75 0.72 0.91 0.87 0.93 0.51 0.29 0.37 0.48 0.74 0.65 0.65
27024 -7.99 -5.64 -5.93 -4.08 -4.69 -0.89 -6.68 -5.51 -6.36 -8.84 -7.21 -7.06 -5.91
27084 0.67 0.64 0.79 0.80 0.20 0.70 0.74 0.63 0.73 0.72 0.82 0.82 0.69
7365 0.50 0.77 0.82 -0.07 0.67 0.55 -0.54 0.21 0.45 0.72 -0.25 0.25 0.34
27011 -16.74 -21.76 -16.72 -8.99 -4.17 -5.38 -13.08 -16.74 -8.76 -10.66 -5.47 -4.67 -11.09
27036 0.61 0.78 0.96 0.78 0.98 0.93 0.97 0.88 0.97 0.91 0.91 0.82 0.87
27008 0.60 0.92 0.91 0.72 0.71 0.84 0.83 0.64 0.93 0.90 0.85 -0.03 0.73
Average {Rel_RMSE}
catch. 0.63
Average {Rel_RMSE} all -0.63
Correlation Coefficient per Station and Ensemble average
Station No. Multi-physics ensemble member <Cors
M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | M10 | M11 | M12
30167 0.99 0.99 0.99 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.97 0.98 0.99
27003 0.95 0.96 0.97 0.97 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.98
27007 0.98 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.95 0.98 0.97 0.97
27015 0.97 0.96 0.97 0.94 0.93 0.95 0.95 0.95 0.94 0.94 0.93 0.94 0.95
27074 0.98 0.98 0.98 0.98 0.99 0.98 0.99 0.98 0.98 0.98 0.99 0.99 0.98
27073 0.95 0.96 0.95 0.94 0.94 0.94 0.92 0.92 0.91 0.92 0.94 0.94 0.94
27075 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
27076 0.98 0.98 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.96 0.97 0.97 0.97
27077 0.96 0.95 0.96 0.96 0.95 0.96 0.95 0.95 0.97 0.97 0.95 0.96 0.96
27039 0.95 0.95 0.94 0.93 0.94 0.94 0.94 0.94 0.95 0.95 0.94 0.93 0.94
27054 0.91 0.96 0.94 0.93 0.93 0.94 0.91 0.92 0.91 0.90 0.93 0.93 0.93
27060 0.96 0.97 0.97 0.96 0.97 0.97 0.95 0.95 0.96 0.96 0.97 0.96 0.96
27024 0.91 0.93 0.92 0.90 0.91 0.95 0.89 0.90 0.89 0.89 0.94 0.94 0.91
27084 0.91 0.91 0.92 0.94 0.92 0.95 0.92 0.91 0.92 0.92 0.93 0.93 0.92
7365 0.93 0.93 0.94 0.92 0.94 0.97 0.91 0.92 0.91 0.92 0.91 0.92 0.93
27011 0.94 0.94 0.95 0.93 0.95 0.96 0.89 0.93 0.91 0.92 0.91 0.91 0.93
27036 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
27008 0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.96 0.96 0.96 0.96
Average {Rel_RMSE}
catch. 0.97
Average {Rel_RMSE} all 0.95

30



~N o o B ow N

Table 3. Flood events in the Tonala River used in the calibration process of free parameters in the hydrological

model, along with computed error metrics.

Max Q Max Q
Event (m3/s) A Fs Fo (m3/s) NSC Cor Bias
Obs. Calc.
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Table 4. Error metrics in the estimation of river discharge by the rainfall-runoff model using 6 parameter sets and

12 members of the multi-physics ensemble (those selected are shown in bold with NSC>0.6 and Cor>0.7).

Member No. | WRF Member| e NSC | Cor | Bias
Parameters
1 M1 2001 0.733 0.884 0.852
M2 2001 0.074 0.973 1.529
3 M3 2001 -0.035 0.974 1.564
4 M4 2001 -0.511 0.975 1.686)
5 M5 2001 -0.638 0.441 1.485
6 M6 2001 -0.223 0.961 1.593
7 M7 2001 -0.192 0.961 1.579
8 M8 2001 -0.043 0.959 1.537,
9 M9 2001 0.064 0.958 1.504]
10 M10 2001 0.245 0.971 0.525
11 M11 2001 -1.503 0.944 1.832]
12 M12 2001 -0.752 0.954 1.710,
13 M1 2005 0.639 0.901 0.742
14 M2 2005 0.404 0.977 1.414
15 M3 2005 0.318 0.978 1.449
16 M4 2005 -0.077 0.977 1.569)
17 M5 2005 -0.545 0.366 1.368
18 M6 2005 0.181 0.968 1.478|
19 M7 2005 0.200 0.968 1.465)
20 M8 2005 0.321 0.966 1.422]
21 M9 2005 0.408 0.966 1.389
22 M10 2005 -0.081 0.960 0.426
23 M11 2005 -0.909 0.951 1.717|
24 M12 2005 -0.264 0.961 1.595)
25 M1 2007 0.376 0.914 0.601]
26 M2 2007 0.761 0.978 1.244
27 M3 2007 0.711 0.979 1.278]
28 M4 2007 0.444 0.976 1.395)
29 M5 2007 -0.440 0.261 1.191
30 M6 2007 0.633 0.974 1.306)
31 M7 2007 0.647 0.974 1.293|
32 M8 2007 0.722 0.973 1.251
33 M9 2007 0.771 0.972 1.219)
34 M10 2007 -0.508 0.952 0.322
35 M11 2007 -0.129 0.959 1.539
36 M12 2007 0.340 0.969 1.420,
37 M1 2008 0.240 0.922 0.547
38 M2 2008 0.837 0.978 1.186
39 M3 2008 0.797 0.978 1.220]
40 M4 2008 0.570 0.974 1.337,
41 M5 2008 -0.479 0.209 1.132
42 M6 2008 0.741 0.976 1.248)
43 M7 2008 0.753 0.976 1.235
44 M8 2008 0.813 0.975 1.194]
45 M9 2008 0.851 0.975 1.161,
46 M10 2008 -0.720 0.945 0.276
47 M11 2008 0.079 0.962 1.481
48 M12 2008 0.495 0.972 1.361,
49 M1 2009 -0.036 0.838 0.494
50 M2 2009 0.819 0.978 0.882
51 M3 2009 0.899 0.977 0.907|
52 M4 2009 0.649 0.963 1.286
53 M5 2009 0.060 0.811 0.580)
54 Mé 2009 0.839 0.959 0.849
55 M7 2009 0.883 0.959 0.890)
56 M8 2009 0.896 0.954 0.929
57 M9 2009 0.890 0.950 0.928
58 M10 2009 -1.233 0.972 0.209
59 Mm11 2009 0.638 0.938 1.236
60 M12 2009 0.885 0.946 1.042
61 M1 2011 -0.247 0.949 0.396
62 M2 2011 0.938 0.970 1.019
63 M3 2011 0.930 0.971 1.052
64 M4 2011 0.819 0.964 1.168]
65 M5 2011 -0.662 0.055 0.955]
66 M6 2011 0.890 0.978 1.133
67 M7 2011 0.899 0.979 1.120]
68 M8 2011 0.931 0.979 1.079,
69 M9 2011 0.945 0.978 1.047
70 M10 2011 -1.136 0.931 0.195
71 M11 2011 0.433 0.967 1.364
72 M12 2011 0.738 0.976 1.246]
<Ensemble | | |
0.793 0.965 1.113
average of selected members>
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Table 5. Error metrics in the estimation of river discharge by the hydrodynamic model using the 31 members of the multi-physics ensemble.

Comparison of flooded areas between numerical results from running ensemble members vs. Observed

Ensemble Member

Error metrics <:::famg:|>e
M1 | M13 | M26| M27 | M30| M31 | M32 | M33 | M38| M39| M4z| M43| M44| M45| M50| M51| M52| M54| M55 | M56| M57 | M59| M60| M62 | M63 | M54| M66 | M67 | M68 | M69 | M72
BIAS 0.903 0.838 1084 1099 1119 1120 1.094 1.078 1.056 1.021 1.092 1.089 1.096 1.051 0.902 0.915 0.891 0.820 1.020 0.982 0.872 1.056 1.004 0.982 0.995 1.047 1.040 1.028 1.016 1.005 1.092 1.013
FAR: False Alarm Ratio 0.148 0.120 0215 0217 0283 0210 0216 0212 0209 0217 0216 0215 0.152 0.207 0.148 0.154 0.139 0.137 0.193 0.155 0.133 0.206 0.187 0.178 0.182 0.204 0.201 0.225 0.192 0.187 0.216 0.189
POD: Probability of Detection 0770 0.737 0.851 0.861 0.849 0.849 0.858 0.849 0.836 0.751 0.857 0.854 0.848 0.833 0.769 0.775 0.751 0.810 0.823 0.845 0.756 0.847 0.816 0.807 0.814 0.833 0.831 0.821 0.821 0.818 0.857 0.819
POFD:Probability of False Detection 0.124 0.094 0217 0222 0.187 0.187 0220 0214 0205 0.186 0.220 0.219 0.186 0.203 0.124 0.131 0.185 0.185 0.184 0.066 0.108 0.266 0.175 0.163 0.168 0.199 0.195 0.186 0.182 0.175 0.220 0.180
CSI : critical Succes Index 0.679 0.670 0.690 0.695 0.711 0.711 0.694 0.691 0.685 0.709 0.693 0.692 0.710 0.685 0.679 0.679 0.706 0.654 0.687 0.708 0.677 0.620 0.687 0.687 0.690 0.686 0.687 0.619 0.688 0.688 0.693 0.686
True Skill Statistics 0.645 0.643 0.634 0.639 0.621 0.662 0.638 0.636 0.631 0.660 0.637 0.636 0.661 0.631 0.645 0.643 0.615 0.601 0.639 0.659 0.648 0.660 0.641 0.644 0.640 0.634 0.636 0.610 0.640 0.642 0.637 0.639
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Gulf of

Mexico

Figure 1. Top panel: Location of the Tonala River basin in Mexico, blue line represents the
boundary limits of the catchment; blue dots illustrate the location of weather stations; red dot:
streamflow gauge. Bottom panel: zoom of the study area and photographs of observed
impacts; yellow, blue and red dots represent the location at which photos were taken.
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Figure 2. Numerical setup of the WRF with a nested domain covering Mexico. Domain 1:

25km resolution; Domain 2: 4km resolution; the orange region illustrates the Tonala
catchment.
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Figure 3. Comparison of cumulative precipitation estimated by the 23 model runs of the
WRF multi-physics ensemble. Blue solid line: selected members with NSC> 0.3; grey solid
line: disregarded members with NSC <0.3; red dotted line: mean of the selected 12 members;
black solid line: measurements at each of the four weather stations from 27" October 2009 to
12" November 2009.
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Figure 4. Cumulative precipitation fields estimated by the WRF model using the selected 12 members of the multi-physics ensemble (27"
October 2009 — 121" November 2009).
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Figure 5. Input data parameters in the hydrological model; a) Land use; b) Pedology; ¢) River network, curve number and grid.

38



0 NOoO o1k~ W

2500

2000¢

1500¢

1000¢

500¢

(m°/s)

18/25

1115 1122 11/29

2500

Discharge
q

Q

2000

1500

1000

500

b)

10/25

11/08 11/15 11/22

Day

11/01 11/29

Figure 6. a) 72 hydrographs computed using the rainfall-runoff model with 6 sets of
parameters and 12 WRF ensemble precipitation fields as input data; b) 31 selected

hydrographs to serve as input in the hydrodynamic model; grey lines illustrate the ensemble

members and the blue dashed line shows the measured river discharge for the event.
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Figure 7. Model domain along with the numerical mesh and elevation data in the study area;

Boundary conditions are represented by blue dot: Agua Dulcita river; red dot: input

hydrograph; yellow dot: river-mouth.
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Figure 8. Data vs. model comparison of flood extent; a) Probabilistic flood map derived from
the ensemble runs with the hydrodynamic model; b) Infrared SPOT image corresponding to
the 15" November 2009.

41



© 0 N ouoh~h w

10
11

count no.

Flooded area (km?)

160

150p

140}

—_
w
(=)

—_
N
(=]

—_
-
o
®

100p ®

90F

80- L

70

1000 1200 1400 1600 1800 10 5 0
(m3 /S) count no.

Qpeak

Figure 9. a) Maximum-flooded area vs. peak discharge estimated for all 31 hydrodynamic
simulations of the 2009 flood event; b)Histogram of peak discharges; ¢) Histogram of

estimated size of maximum-flooded area.
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Figure 10. Estimated maxima inundation depths at different locations within the floodplain.
Red line represents the median. Bars correspond to the standard deviation. Upper and lower
limits of the box are the values of the 25th and 75th , respectively. Crosses depict outliers.

43



BIAS propagation within the model cascade

T T
1

1.2F 1

1.1} ¢ — .

BIAS
<

0.9} ;

0.8f b

Meteorological model Hydrolo'gical model 2D Hydro‘dynamic model

Skill evolution within the model cascade

1
b)
0.9F
0.8F
7
P o ¢
-~ 07 5 |
T) |
2
_‘_ %
osf T — g
0.5F t

Meteorological model Hydrological model 2D Hydrodynamic model

Figure 11. a) BIAS and b) Skill propagation within the model cascade (meteorological-
hydrological-hydrodynamic); diamonds: corresponding ensemble mean value.
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