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Abstract: 18 

The growing availability of high resolution satellite image series offers new opportunities in agro-19 

hydrological research and modeling. We investigated the possibilities offered for improving crop-20 

growth dynamic simulation with the distributed agro-hydrological model: Topography based 21 

Nitrogen transfer and Transformation (TNT2). We used an LAI map series derived from 105 22 

Formosat-2 (F2) images covering the period 2006-2010. The TNT2 model (Beaujouan et al., 2002), 23 

calibrated against discharge and in-stream nitrate fluxes for the period 1985-2001, was tested on the 24 

2005-2010 dataset (climate, land use, agricultural practices, and discharge and nitrate fluxes at the 25 

outlet). Data from the first year (2005) were used to initialize the hydrological model. A priori 26 

agricultural practices obtained from an extensive field survey, such as seeding date, crop cultivar, and 27 

amount of fertilizer, were used as input variables. Continuous values of LAI as a function of 28 

cumulative daily temperature were obtained at the crop-field level by fitting a double logistic 29 

equation against discrete satellite-derived LAI. Model predictions of LAI dynamics using the a priori 30 

input parameters displayed temporal shifts from observed LAI profiles which are irregularly  31 

distributed in space (between field crops) and time (between years). By resetting the seeding date at 32 

the crop-field level, we have developed an optimization method designed to efficiently minimize this 33 

temporal shift and better fit the crop growth against the spatial observations and against crop 34 
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production. This optimization of simulated LAI has a negligible impact on water budgets at the 1 

catchment scale (1 mm/yr on average) but a noticeable impact on in-stream nitrogen fluxes (around 2 

12 %) which is of interest when considering nitrate stream contamination issues and the objectives of 3 

TNT2 modeling. This study demonstrates the potential contribution of the forthcoming high spatial 4 

and temporal resolution products from the Sentinel-2 satellite mission for improving agro-5 

hydrological modeling by constraining the spatial representation of crop productivity.  6 

 7 

1. Introduction 8 

Agro-hydrological modeling was first developed and applied to study the qualitative and quantitative 9 

impacts of agriculture on water resources in cropped land areas (Arnold et al., 1993; Arnold et al., 10 

1998; Breuer et al., 2008; Engel et al., 1993; Galloway et al., 2003; Leonard et al., 1987; Refsgaard et 11 

al., 1999; Whitehead et al., 1998). Hydrology and crop models were coupled to take into account the 12 

influences of both hydrological settings and agricultural practices on the water and nutrient cycle at 13 

the agricultural catchment scale: CWSS (Reiche, 1994), DAISY/MIKE-SHE (Refsgaard et al., 1999), NMS 14 

(Lunn et al., 1996), SWAT (Arnold et al., 1998), INCA (Whitehead et al., 1998), SHETRAN (Birkinshaw 15 

and Ewen, 2000), TNT2 (Beaujouan et al., 2002), DNMT (Liu et al., 2005), STICS-MODCOU-NEWSAM 16 

(Ledoux et al., 2007). Subsequently these approaches have become widely used: hundreds of 17 

publications, among which the SWAT model is probably the most popular, report their use in 18 

studying the impact of (1) agriculture in term of stream-water quality, e.g., nitrate contamination 19 

(Durand, 2004; Ferrant et al., 2011); (2) agricultural land-use scenarios in assessing agricultural policy 20 

efficiency in terms of achievement of environmental objectives (Volk et al., 2009); (3) best 21 

agricultural practices in terms of stream-water quality (Ferrant et al., 2013; Laurent et al., 2007); (4) 22 

climate-change impacts on surface water (Franczyk and Chang, 2009) or groundwater and irrigation 23 

withdrawal (Ferrant et al., 2014); and (5) hydrologic impoundments and wetlands on water resources 24 

(Bosch, 2008; Perrin et al., 2012).  25 

Spatially explicit modeling 26 

Most of these applications require spatially distributed models, where information on soil-crop 27 

location within slopes as well as hydrological settings (topography, groundwater storage, reservoir 28 

location and irrigation pumping) is included, to provide spatially explicit information on water uses 29 

(Ferrant et al., 2014; Perrin et al., 2012) and nutrient transfer and transformation within the 30 

catchment (Arnold et al., 1998; Beaujouan et al., 2002; Ferrant et al., 2011). These modeling 31 

approaches enable study of the interactions between upland and bottomland fields, groundwater 32 

table fluctuation, and nitrogen cycle in the soil-plant system. They are especially relevant for 33 

localizing the sources and sinks of nitrogen within landscapes:  areas prone to nitrogen leaching 34 

versus areas favorable to nitrogen retention which are dynamically changing, depending on the 35 

cropping patterns and hydrological conditions. The spatial resolution of the simulated processes is 36 

linked to the resolution of the available input data (land use, soil, aquifer and topographic maps).  37 

High resolution data may eventually be required to accurately assess the impact of agricultural 38 

practices on water resources. Perrin (Perrin et al., 2012) used the SWAT model to simulate 39 

groundwater storage under intense agricultural pumping rates in South India. They used high-40 

resolution optical satellite images (between 5 and 10 meters) to derive the spatial groundwater 41 
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extraction from the extent of the irrigated area. This high spatial resolution of pumping rates coupled 1 

with hydrogeological setting maps are used within SWAT to identify areas prone to the exhaustion of 2 

groundwater resources under current usage, for present and future climates (Ferrant et al., 2014). 3 

Limitations of current distributed modeling 4 

In complex distributed agro-hydrological models that simulate numerous processes, with numerous 5 

parameters to represent spatially the temporal dynamics of water and nutrient cycle and crop 6 

growth, conventional stream-flow calibration may lead to equifinality problems, e.g., more than one 7 

parameter leading to similar results (Beven, 2001), or compensation between processes leading to 8 

similar stream water fluxes (Ferrant et al., 2011). Uncertainties raised by these modeling approaches 9 

at the watershed level are mainly related to (1) the lack of agronomic observations corresponding to 10 

all the soil-climatic situations encountered within the catchment, i.e., crop biomass production and 11 

the partition between export by harvest or incorporation within soil organic matter by straw burial; 12 

and (2) the lack of a-priori spatial knowledge, such as the soil’s organic matter transformations, 13 

saturated conditions within slopes, and their feedback on crop productivity. The calibration process 14 

is limited to optimizing integrative variables at the watershed scale: discharge and nutrient fluxes at 15 

the outlet, occasionally average crop yield (Ferrant, 2009; Ferrant et al., 2011; Moreau, 2012), or 16 

more rarely aquifer recharge  (Perrin et al., 2012). Another important aspect of the uncertainty 17 

raised by these modeling approaches is that agricultural operations are imperfectly known. 18 

Hutchings (2012) has demonstrated the importance of the timing of field operations in complex 19 

dynamic carbon and nitrogen models. For instance, winter crop growth in Europe is highly sensitive 20 

to the time of the first fertilization as well as the seeding date. 21 

Expectations from remote-sensing technology 22 

The above description suggests that spatially explicit process modeling requires a better spatial and 23 

temporal calibration in order to strengthen the spatial representation of the C, N, and water cycles at 24 

the catchment scale. Products derived from remote sensing (RS) are promising tools for better 25 

constraining and spatially calibrating the agro-hydrological models. Land cover, and sometimes land 26 

use (temporal cropping patterns) derived from RS are generally introduced as input variables. 27 

However, RS products have been little used in calibration processes. (Wagner et al., 2009) have 28 

reviewed the RS techniques used in hydrological models to force RS-derived variables such as soil 29 

moisture, evaporation, snow cover, vegetation structure, and hydrodynamic roughness. Many of 30 

these studies used low spatial resolution imagery such as the Moderate Resolution Imaging 31 

Spectroradiometer (MODIS), scatterometer data, or microwave and radiometer data (Brocca et al., 32 

2009; Brocca et al., 2012; Laguardia and Niemeyer, 2008; Liu et al., 2009).  (Nagler, 2011) has 33 

reviewed the recent advances in our knowledge of evaporation on an environmental scale over 34 

recent decades by using remote sensing. For instance, (Chen et al., 2005) have calibrated a 35 

TopModel-derived (Beven, 1997) hydrological model in a small forested catchment using RS Leaf 36 

Area Index (LAI, area of vegetation cover in m 2 for a given ground surface in m2) and Actual 37 

EvapoTranspiration (AET) obtained from an Eddy covariance tower measurement, in order to assess 38 

the impact of topography on AET. 39 

More specifically, some studies have demonstrated the potential interest of using RS-derived AET 40 

and LAI in agro-hydrological models to quantify the water balance components in irrigated areas 41 
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(Taghvaeian and Neale, 2011). AET derived from satellite products has been used to spatially 1 

calibrate SWAT in short-period studies (Cheema et al., 2014; Immerzeel and Droogers, 2008; 2 

Immerzeel et al., 2008). (Cheema et al., 2014) combined global extraterrestrial radiation with 3 

atmospheric transmissivity derived from 1-km pixel resolution MODIS data to compute a local net 4 

radiation at the scale of the Indus catchment. The latter is used to compute the evapotranspiration 5 

with the Penman-Monteith algorithm. The SWAT model is then calibrated against this spatial 6 

representation of evapotranspiration fluxes for all the hydrological response units. The spatial 7 

calibration method presented in this recent study is still limited by the resolution gap between 8 

evapotranspiration products at a moderate resolution and the patchy pattern of irrigated areas that 9 

need to be described at a high spatial resolution. Another promising example of RS products used in 10 

crop model calibration is reported by (Jégo et al., 2012). These authors used Leaf Area Index (LAI) 11 

retrieved from RS data to reset selected crop management input parameters (seeding date and 12 

density) and soil input parameters (field capacity) in the functional crop model STICS (Brisson, 1998). 13 

They demonstrated that the predicted yield and biomass were improved, especially in the case of 14 

water-stress conditions.  15 

Turning to the distributed agro-hydrological model TNT2, which is based on STICS spatially coupled 16 

with a hydrological model TNT derived from the TopModel hypothesis, a calibration of crop input 17 

parameters could be performed by matching simulated and observed LAIs at the crop-field level. The 18 

question is whether the spatial calibration of the LAI dynamics using an LAI map series derived from 19 

high resolution RS data may have a positive impact on the calculation of water and nutrient fluxes as 20 

compared with a standard calibration using discharge. This calibration method would require high 21 

spatial resolution images with a 4-5 day revisiting period, which will be provided by two satellite 22 

missions: Venμs (Dedieu et al., 2007) and Sentinel-2. Sentinel-2 type time series have previously been 23 

used to constrain crop models such as SAFY (Duchemin et al., 2008) for monitoring crop growth and 24 

estimating crop production (Claverie, 2012). SAFY is a semi-empirical model, based on the light-use 25 

efficiency theory, with a limited number of input parameters and formalisms. It describes the main 26 

biophysical processes, driven by climatic data and using empirical parameterizations. Accordingly, 27 

this simplified model is efficient for operational crop growth diagnosis and studies over large areas, 28 

but at this stage it cannot be used to project differing climatic and environmental scenarios. Contrary 29 

to these models, agro-hydrological models, e.g., TNT2 or SWAT, are designed to take into account 30 

the impacts of climate change on crop growth and hydrological variables, for the purpose of 31 

prospective research. Provided that large amounts of input data are available within the areas of 32 

interest, physical knowledge-based base functional agro-hydrological models can benefit from the 33 

use of High Temporal and Spatial Resolution (HTSR) RS products to better simulate the spatial 34 

distribution of complex and detailed agro-hydrological processes. 35 

Objectives 36 

The aim of the present study is therefore to explore the advantage of using Leaf Area Index map 37 

series derived from high resolution RS products for the spatial representation of the water and 38 

nutrient fluxes in an agro-hydrological model. The study focuses on an experimental catchment 39 

where intensive monitoring of stream water discharge and nitrate concentration has already been 40 

used to calibrate a distributed agro-hydrological model (TNT2) for the period 1985-2001 (Ferrant et 41 

al., 2011) by taking into account climatic variables, crop rotation and agricultural practices. From this 42 
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starting point, the calibrated model TNT2 was run on a new agricultural and climatic data set for the 1 

2005-2010 period. A set of 105 LAI maps derived from Formosat-2 images (8m resolution) has been 2 

used to optimize LAI temporal growth by iteratively resetting the seeding dates at the crop-field 3 

level. Since this input is commonly not reported; missing values were estimated using existing 4 

records of seeding dates. Resetting the seeding date is a way to shift crop growth in time. We explore 5 

the impact of this spatial optimization using LAI maps derived from optical RS in terms of the water 6 

and nitrogen budgets at the catchment level. 7 

2. Resources and Method 8 

  9 

a. Description  of the Study Site  10 

The Montoussé catchment at Auradé (Gers, France) is an experimental research site monitored since 11 

1983 to investigate the impact of fertilizers on stream-water quality. In 1985 the fertilizer 12 

manufacturer GPN-TOTAL began nitrate measurements in the stream in order to assess the impacts 13 

of agricultural practices and landscape management on nitrate concentrations in stream water. This 14 

catchment was selected for intensive survey because of its rapid hydrological response in an 15 

intensive agricultural context. The crop rotation system consists primarily of a sunflower and winter 16 

wheat rotation, fertilized only with mineral fertilizers. Figure 1 illustrates the agronomical and 17 

hydrological situation of the study site. As a tributary channel of the Save River, itself a left tributary 18 

of the Garonne, the catchment area is representative of a wider agricultural area embedded within 19 

the Gascogne region in southwestern France where a number of similar agricultural and 20 

geomorphologic settings are found (Ferrant, 2009). This small catchment (3.35 km2) is hilly and 21 

88.5% of its surface is cultivated. The substratum consists of impervious Miocene molasse deposits; a 22 

shallow aquifer overlies this argillaceous layer, which is strongly heterogeneous in composition. 23 

Groundwater, sparsely distributed within sand lenses located at mid-slope and within deep alluvial 24 

soils bordering the stream network, is the main source of the river’s discharge during low-flow 25 

periods.  26 

The catchment’s soils were mapped in 2006 by Sol-Conseil and EcoLab; the map is presented in 27 

(Ferrant et al., 2011). Twelve soil types were identified along a topographic sequence, from deepest 28 

soil (around 2 meters) in the bottomland to shallowest soils from middle slope to top of slope (30 cm 29 

to 1 m). These agricultural soils exhibit low organic carbon (from 1.1 to 2% in the first cm to 0.4 % in 30 

deep horizons) and high clay contents (25 to 40 % in the first cm to 50% in deep horizons). Each soil 31 

map unit represents an area in which a specific soil type is dominant. Although the delineations are 32 

based on only 200 auger boreholes in 325 ha, this map is nevertheless a reliable proxy for the fine 33 

variability of soil characteristics observed in the field. 34 

The climate is influenced by both the Oceanic and Mediterranean climates. Mean annual rainfall 35 

recorded on the study site for the 1985-2001 period was 656 mm, with a minimum of 399 and a 36 

maximum of 844 mm.yr-1. The maximum daily rainfall observed during this period was 90 mm; these 37 

intense rainfall events are seen during spring and autumn and generate large runoff events lasting 38 

less than one day. Average daily temperature was 14.5 °C, ranging from 0-1°C in winter and 29-30°C 39 

in summer, giving an average potential evapotranspiration (PET) of 1020 mm.yr-1. The period 2006-40 

2010 was marked by similar annual precipitations: the mean was 664mm.yr-1, ranging from 628 to 41 
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737 mm.yr-1, but hot springs and summers produced a higher PET (1039 mm.yr-1). The annual 1 

discharge at the outlet is highly variable (from 6% to 33% of the rainfall during the 1985-2001 period) 2 

and represents 4 to 15 % of the rainfall during the 2006-2010 study period. This period is drier in 3 

terms of hydrological conditions than the historical period used to calibrate the TNT2 model. 4 

A hydrochemical database containing daily discharges and high-frequency nitrate concentration 5 

measurements was created and maintained by the AZF company from 1985 to 2001 and has been 6 

used to study nitrate contamination of the stream water at the catchment scale (Ferrant et al., 2011, 7 

2013). Using this nitrate-oriented monitoring protocol, many more recent systematic observations 8 

and measurements were implemented to improve our understanding of the main processes that 9 

drive water, nutrient, and carbon fluxes in the agro-ecosystem and that are likely to be impacted by 10 

global changes. 11 

b. Study Period (2005-2010) and Field Data 12 

Hydrochemistry: 13 

Stream-water nitrate concentrations and discharge were continuously monitored at the outlet of the 14 

catchment during the 2005-2012 period (measurement protocol and data are fully described in 15 

(Ferrant et al., 2012). From the continuous recorded signal, nitrate and water fluxes at the outlet of 16 

the catchment are aggregated to a daily time step to match the modeling time step.  17 

Survey of Agricultural practices: 18 

Annual enquiries about agricultural land cover and practices are collected from volunteer farmers 19 

within the framework of the farmers’ association ‘Association des agriculteurs d’Auradé’. Seeding 20 

dates, tillage operations, fertilizer applications and crop harvest dates, and the amount of fertilizer 21 

applied, constitute the basic agricultural practices reported by the farmers for each crop field. This 22 

cooperative survey never reaches 100% participation, so many crop-field operations remain 23 

unknown. For a given year, the missing seeding dates, fertilization amounts and dates are deduced 24 

from existing recorded practices. “A priori” seeding dates were selected on the basis of the farmers’ 25 

annual reports. Only crop fields owned by a member of this association and located within the area 26 

of the municipality are included. Yields are also collected but frequently correspond to an average 27 

yield from several unidentified crop fields. This database is not exhaustive: for example in 2006 only 28 

a third of the seeding dates are recorded for the whole municipal area, but none of the 29 

corresponding crop fields are included in the experimental catchment. In 2007, the seeding dates of 30 

only 18 crop fields among the hundred composing the catchment area were recorded. Expert opinion 31 

rules were used to fill the gaps in the database. For a given year, each missing seeding date is 32 

estimated by using the average seeding date recorded for the crop fields owned by a farmer. If no 33 

seeding date is recorded for a crop field belonging to the farmer, the average of recorded seeding 34 

dates, computed for the crop type (wheat or sunflower) and for the year, is used. In this area, 35 

recorded winter wheat seeding dates may vary from the beginning of September to the end of 36 

November and sometimes even into December. Sunflower seeding dates vary from the middle of 37 

March to the end of April. This data reconstruction based on expert opinion rules was designed to 38 

find appropriate seeding dates based on farmer behavior and climatic years. 39 
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On the other hand, the crop rotation is known for the entire area during the study period. We 1 

compared the land cover information contained in the ‘Registre Parcellaire Graphique’ (RPG) 2 

database with crop cover mapping using supervised classification of Formosat-2 and SPOT images. 3 

The RPG is based on annual farmer declarations of the land cover for crop field blocks, a statement 4 

which is mandated by the European Common Agricultural Policy (CAP). However, both sources of 5 

information give the crop type (wheat, sunflower, rapeseed, barley), but no indication of the cultivar 6 

used. The main uncertainty in this agricultural database is linked to the seeding and fertilization 7 

dates, as well as to the amounts of fertilization. We will refer to these agricultural practices data as ‘a 8 

priori’ because they were compiled using non-exhaustive enquiries and used for a first run of the 9 

TNT2 model. 10 

 Turbulent Atmospheric fluxes: 11 

Atmospheric flux instruments were set up in March 2005, located in an experimental crop plot 800 12 

meters bneyond the eastern margin of the catchment (Figure 1). Turbulent fluxes of CO2, water 13 

vapor (actual Evapotranspiration and latent heat), sensible heat and momentum are continuously 14 

measured by the Eddy Covariance method (Baldocchi et al., 1988). Field vegetation measurements 15 

were also performed to study the carbon balance and crop-water use efficiencies of the cropping 16 

pattern (Béziat et al., 2009; Tallec et al., 2013). The daily actual evapotranspiration (AET) 17 

measurements derived from this equipment will be compared with the AET simulated by the model 18 

for a similar crop location located inside the catchment. 19 

Measurements of Vegetation Dynamics: 20 

Destructive measurements of vegetation dynamics were carried out on the experimental plot during 21 

each crop season of the study period. They consisted of estimating Leaf Area Index and Green Area 22 

Index (LAI and GAI) from aerial biomass measurements at the main development stages (Béziat et al., 23 

2009). Ten and thirty plants were collected on two diagonals across the fields for wheat and 24 

sunflower respectively. Sampling frequency was adapted to the vegetation development, from one 25 

month during the slow vegetation development period to two weeks during the fast development 26 

period. LAI and GAI were measured by means of a LI-COR planimeter (LI3100, LI-COR, Nebraska, 27 

USA). Between each destructive measurement date, several randomly distributed hemispherical 28 

photographs were taken to capture the leaf development dynamics. The camera used for these 29 

measurements, a Nikon COOLPIX 8400 equipped with an FC-E8 fisheye lens, was placed on top of a 30 

pole to keep the viewing direction (downward-looking) and canopy-to-sensor distance (1.5m) 31 

constant throughout the growing season. The hemispherical photographs were processed using CAN-32 

EYE V5 (http://www4.paca.inra.fr/can-eye), which provides an effective GAI (Baret et al., 2010; 33 

Demarez et al., 2008) for the whole image. These data were used to assess the model’s accuracy in 34 

reproducing the biomass production and LAI dynamics of the crops. A field crop comparable to the 35 

experimental plot in terms of situation and cropping pattern was selected within the catchment: 36 

hereafter it is called Crop Field (8) (Figure 1). 37 

c. Leaf Area Index Maps derived from Formosat-2 Data 38 

 39 
We used optical remote sensing data from Formosat-2 (F2, (Chern et al., 2006)) to estimate the LAI 40 

for each pixel of the ground coverage area (see Figure 1). F2 is a high spatial (8 m) and temporal 41 
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(daily revisit time) resolution satellite with four spectral bands (488, 555, 650 and 830 nm) and a 1 

swath of 24 km. For a given site, F2 data can be acquired every day with a constant viewing angle. 2 

This characteristic was used to perform accurate atmospheric corrections by estimating the aerosol 3 

optical thickness using a multi-temporal method (Hagolle et al., 2008). All F2 images were first pre-4 

processed for geometric, radiometric and atmospheric corrections as well as cloud and cloud-shadow 5 

filtering (Hagolle et al., 2010). 6 

105 LAI maps at 8m resolution encompassing the whole catchment (ground coverage shown in 7 

Figure 1) were derived from 105 Formosat-2 images over five years (2006-2010) using the BV-NNET 8 

tool (Biophysical Variable Neural NETwork (Baret et al., 2007)). BV-NNET is based on the inversion of 9 

a radiative transfer model (PROSAIL, (Jacquemoud et al., 2009)) using artificial neural networks. The 10 

LAI retrieval method is fully described in (Claverie, 2012; Claverie et al., 2013). A main advantage of 11 

this method is that it does not require any prior calibration against in situ measurements.  12 

The land cover within the experimental catchment was derived from field survey and F2 images by 13 

supervised classification at the crop-field level. These map series were used to explore the spatial 14 

and temporal heterogeneity in terms of crop growth at the pixel and crop-field level. Daily values of 15 

LAI as a function of cumulative daily temperature were obtained by fitting a double logistic equation 16 

against discrete satellite-derived LAI (see equation in Figure 2) at both crop-field and pixel levels. The 17 

results at the pixel level are used to discuss the spatial variability of the crop development observed 18 

within slopes and fields, whereas the results at the crop-field level are used in the optimization 19 

procedure described in Figure 4. 20 

d. TNT2 Agro-hydrological Model 21 

 22 

TNT2 is a process-based, spatially distributed model developed to study N fluxes and water cycles in 23 

small agricultural catchments (< 50 km2). The model combines the crop model STICS (Version 4) and 24 

the hydrological model TNT (Beaujouan et al., 2002).  25 

The TNT2 model has been successfully calibrated on the Auradé experimental catchment for the 26 

water and nitrogen fluxes at the outlet for a long period of time (1985-2001, (Ferrant et al., 2011)). 27 

TNT2 inputs and parameters include four types of spatial information: i) a landscape pattern 28 

delineating the agricultural plots, roads, hydrological network and landscape features (wetlands, 29 

hedgerows, etc.); ii) a soil map; iii) a climate map of climate gradients within the catchment; and iv) 30 

agricultural practices associated with a crop sequence for each agricultural plot during the simulation 31 

period.  32 

The TNT2 agronomical module is based on a STICS modeling approach (Brisson, 1998): it is a generic 33 

model that simulates crop growth at the plot scale using the input of agricultural practices: seeding 34 

date, crop cultivar characteristics, mineral and organic fertilization.  The crop plant is described by its 35 

shoot dry biomass (carbon and N), LAI, and the biomass of harvested crop organs. The cumulative air 36 

temperature is the main input variable driving crop growth: crop temperature is used to calculate the 37 

sum of degree-days by phenological stage. Seeding date and first phenological stage lengths have a 38 

great impact on the crop emergence date and the entire LAI profile. Phenological stages are 39 

calibrated for each cultivar. One cultivar of wheat was selected (Biensur) (Brisson et al., 2002; 40 
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Brisson, 1998). One cultivar of late sunflower was calibrated for STICS (Brisson et al., 2003). Water 1 

and nutrient stress indices are associated with limitations regarding leaf growth and the net 2 

photosynthesis of plants. The soil water and nitrogen contents simulated at a daily time step are 3 

combined with the daily crop requirements to compute the transpiration fluxes and nitrogen 4 

assimilation within crop biomass. 5 

The water and N cycling in the soils is explicitly detailed by simulating evaporation (maximized by 6 

Potential Evapotranspiration derived from a Penman-Monteith methodology) and transpiration, 7 

percolation to deep layers and lateral flows, organic matter mineralization, mineral nitrogen 8 

denitrification (NEMIS model, (Henault and Germon, 2000; Oehler et al., 2009) and leaching into the 9 

hydrological network. The agricultural practices inputs are supplied at the crop-field level: seeding 10 

date, fertilization date and amount, straw management and harvesting date.  11 

The TNT2 hydrological module is a fully-distributed hydrological model, adapted to a topography-12 

based shallow aquifer. It is based on the assumptions of the hydrological model TOPMODEL (Beven, 13 

1997): water fluxes are assumed to follow Darcy’s law, with a constant hydraulic gradient. The 14 

hydraulic transmissivity depends on the soil water deficit of saturation. The main differences 15 

between TNT and TOPMODEL lie in the distribution of the recharge and the deficit of soil water 16 

saturation. TOPMODEL computes water fluxes at the outlet and an average deficit of saturation for 17 

the whole catchment, which can be distributed to each point of the basin according to a topographic 18 

index. In TNT, calculations are performed following an explicit cell-to-cell routing. The catchment is 19 

represented by a cluster of columns. Each top-of-column surface corresponds to a pixel in the Digital 20 

Elevation Model (DEM). Each height of column is divided into two soil layers corresponding to a root 21 

growth zone and a shallow aquifer layer. The soil and aquifer porosity is described as a dual porosity: 22 

the retention (micro) and drainage (macro) porosities. The porosity volume must be set up for each 23 

layer, and for each soil type spatially delineated by the soil raster map. The water’s flow paths follow 24 

a multi-directional scheme (a pixel may flow into several other pixels), which depends directly on the 25 

surface topography calculated from the DEM. Water percolation and nitrogen leaching are computed 26 

using cascading horizontal layers similar to Burns’ model (Burns, 1974), according to soil porosity 27 

characteristics. Both the spatial soil characteristics and the multi-directional scheme derived from 28 

DEM define a spatially explicit distribution of recharge and deficit of soil water saturation. In addition 29 

to that, the cropping pattern and associated agricultural practices add spatial heterogeneity to this 30 

theoretical scheme in terms of water and nutrient transfers.   31 

The model runs on a daily time step. Water balance and N transformations are computed for each 32 

cell of the raster grid of the DEM, from upstream to downstream, by following the cell-to-cell 33 

drainage routing. Daily discharge and nitrogen fluxes are computed at the outlet from the 34 

catchment. 35 

e. Calibration of Model 36 

The model was calibrated for the period 1985-2001 firstly by optimization of the daily discharge, 37 

using both hydrological parameters To and m, which influence the simulated hydrograph 38 

characteristics: To is the lateral transmissivity of the soil column at saturation (in m2.day-1) and m is 39 

the exponential decay factor of the hydraulic conductivity with depth (in meters). The Nash-Sutcliffe 40 

efficiency coefficient (Nash and Sutcliffe, 1970) was used as an optimization criterion to minimize 41 
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mismatching for the daily discharge and nitrogen fluxes; RMSE was also used as a second 1 

performance indicator. 2 

Using the same set of parameters as in Ferrant et al., 2011, 2013, we evaluated the simulations for 3 

the period 2005-2010 in terms of hydrological and nitrogen fluxes, as well as the evapotranspiration 4 

and LAI/biomass data that were measured in the experimental crop field (Figure 1). We used then 5 

the F2 LAI data from 2006 to 2010 to perform the optimization process of the LAI. 6 

f. Procedure for Reassessing Seeding Dates 7 

An algorithm designed to minimize temporal shifts between simulated LAI profiles and interpolated 8 

LAI profiles based on satellite images at the crop-field level was implemented (Figure 2) to reassess 9 

seeding dates at the crop-field level. A first LAI profile is simulated for each crop field. Since the 10 

cumulative air temperature is the main input variable driving crop growth, the temporal shift (Tdiff) 11 

between the simulated and interpolated LAIs is estimated in cumulative temperature (in °C) for a 12 

threshold of LAI during the growth. The threshold is set to 0.7 because it avoids weed growth 13 

detection that could mislead the detection of the crop’s growth phase. Tdiff is used to search for a 14 

second seeding date on the degree day temporal scale by subtracting it to the first seeding date. A 15 

new Tdiff is computed on the simulation using the second seeding date. Ten iterations of this 16 

optimization process described in the figure 2 were then performed. In addition to Tdiff, the RMSE 17 

computed for the whole set of simulated and observed LAIs is used to evaluate the optimization 18 

performance. No range of variation has been predefined, because the next seeding date is computed 19 

by using the cumulative temperature differences. 20 

3. Results 21 

a. Hydrological Fluxes 22 

Drainage and nitrogen fluxes simulated for the whole catchment are compared to the measurements 23 

at the outlet. For this study, the hydrological calibration of input parameters presented in (Ferrant et 24 

al., 2011) is not modified. Similar performances are found for daily discharges (Nash Sutcliffe 25 

coefficient E=0.4). The annual average discharge for the period from May 2006 to December 2010 is 26 

around 71 mm.yr-1, which is drier than the 107 mm.yr-1 estimated from 1985 to 2001. The simulated 27 

discharge is 88 mm.yr1 between May 2006 and December 2010. This overestimation is comparable to 28 

that obtained for the dry years during the period 1985-2001. 29 

Observed in–stream nitrogen fluxes from January 2007 to December 2010 are close to 7 kgN.ha-1.yr-1 30 

while simulated fluxes after LAI optimization are 9.6 kgN.ha-1.yr-1 (Table 1). The simulation 31 

performance is similar to that obtained for the calibration period published by (Ferrant et al., 2011). 32 

The daily simulated nitrogen loads are poorly correlated with observed data (R2=0.4), whereas 33 

correlation of monthly loads is higher (0.6). The RMSE for monthly loads is 0.68 kgN.ha-1. The 34 

hydrological control on daily nitrogen loads is poorly simulated. The comparison between the two 35 

similar agro-hydrological models SWAT and TNT2 suggests that one major reason behind these poor 36 

hydrological simulation performances is the dominant contribution of surface runoff to the 37 

discharge, which strongly impacts the NSE (Ferrant et al., 2011). These infra-daily fast transfers are 38 

strongly influenced by surface soil roughness, itself severely impacted by the argillaceous material 39 

composing the soil (40%). Surface cracking during dry periods and preferential flow paths resulting 40 
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from soil erosion are not taken into account in the daily estimation of runoff from the TNT2 modeling 1 

approach.  2 

b. Leaf Area Index derived from Formosat-2 Images 3 

 4 

Figure 3a shows the maps of maximal LAI for each pixel, each year, and crop. Figure 3b shows the LAI 5 

spatial variability observed for a sunflower crop field as a function of time: the spatial variability 6 

increases concomitantly with crop growth. This variability, expressed as the standard deviation 7 

(sigma), is of the same order of magnitude when considering variability between crop fields and 8 

within crop fields. The processes driving this spatial variability are mainly related to soil patterns, 9 

localization within slope, or aspect of the slope. The absolute value of LAI retrieval is compared with 10 

field measurements. Figure 4 compares two measurements of LAI: (1) RS LAI retrieved from satellite 11 

or hemispherical photographs, and (2) direct measurement by the destructive method. Error bars 12 

represent plus or minus one standard deviation of the median of the samples collected for the 13 

destructive method. The variability of the result is associated with both the spatial variability of LAI 14 

and biomass encountered throughout the crop field, and an imprecision attributed to the 15 

measurement method itself. The LAI estimated from hemispherical photographs is an average 16 

estimate for the whole area covered by the camera lens; error bars represent a fixed uncertainty 17 

related to this measurement method (Demarez et al., 2008). The satellite-derived LAI estimates for 18 

the crop-field level are represented by the median, plus or minus one standard deviation of the LAI 19 

value of each pixel located within the crop field. The error bar represents the spatial variability 20 

detected by remote sensing. 21 

The 44 cloud-free Formosat-2 images acquired in 2006 ensure a fine-grained description of the 22 

winter wheat development. The intra-field LAI spatial variability obtained from the satellite retrievals 23 

is close to 1 m2/m2 during the maturity stage. This spatial variability is estimated to be higher for the 24 

sunflower in the following year (2007) with an LAI of 1.5 (Figure 4). In 2008, the presence of clouds 25 

during the spring prevented observation of winter wheat growth, whereas images taken during the 26 

summer allowed a survey of sunflower growth. These results illustrate the intrinsic accuracy of each 27 

measurement method, and the spatio-temporal variability of the crop growth. The F2 spatial 28 

resolution and high revisit frequency enable us to capture the growth dynamics.  29 

c. Optimizing the LAI Profile 30 

Figure 5 shows the results of optimizing the temporal dynamics of the LAI average over the 101 crop 31 

fields.  Reinitialization of the seeding dates decreases the temporal shift (Tdiff) by a factor of seven on 32 

average. The optimized simulated LAI profiles correspond better with the observed data for each 33 

wheat growing period. The differences for the sunflower are small since the temporal shifts between 34 

interpolated observations and simulated LAI were already small. This indicates that the first-guess 35 

seeding dates for the sunflower were accurate. A slight decrease of RMSE is observed after 36 

optimization, meaning that this estimator is not sensitive to the seeding date reassessment. In fact, 37 

the RMSE value is representative of the whole LAI series, whereas the optimization process takes 38 

only the early phenological stages into account. Furthermore, the senescence stage of the winter 39 

wheat is not correctly simulated: after the maximum is reached, simulated LAI remains stable until 40 
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the harvest. The observed LAIs from satellite data are derived from photosynthetic activity which 1 

decreases early on, when the wheat becomes dry. This portion of the development is better 2 

described in the last release of STICS 6.  3 

The trajectories of seeding date solutions as a function of the iteration number (Figure 6) show a 4 

rapid convergence after five iterations. There are few crop fields for which no realistic solutions were 5 

reached. For the sunflower in 2007, four crop fields converged on an early seeding date in October to 6 

December. This exclusively concerns the sunflower in certain small crop fields (several hectares) for 7 

which average LAI remains low (<1). In these cases, the maximum of observed LAI is too low or the 8 

proportion of mixed pixels (at the crop field border) is too high, thereby leading to unrealistic 9 

interpolations of the LAI profile at the crop-field level. The annual seeding dates estimated by this 10 

method constitute a long period for the winter wheat and a short one for the sunflower. These 11 

ranges are from September to the beginning of November for winter wheat and between January 12 

and April (highly dependent on the climatic year) for the sunflower. In 2007, 2008 and 2010 the 13 

seeding dates for winter wheat and sunflower crop fields were recorded within the experimental 14 

catchment. The average differences between estimated and actual seeding date in 2007 were 20 and 15 

8 days for the wheat and sunflower crops respectively. These figures rise from 1 day to 1 month and 16 

from 1 to 17 days for wheat and sunflower respectively. Three factors are responsible for these 17 

heterogeneous differences: inappropriate cultivar growth parameters; inaccurate detection of 18 

emergence period by biased LAI interpolation from remote sensing; and uncertainties in farmer 19 

statements, which are completed at the end of each year. 20 

 21 

d. Sensitivity of Discharge and Stream Nitrogen Fluxes to 22 

Seeding Date 23 

 24 

Table 1 presents the annual water and nitrogen fluxes computed for the entire simulation period 25 

(2006-2010). The changes in crop development induced by the reinitialization of input parameters 26 

have a small effect on the discharge and AET (around 1 to 2 mm.yr-1). On the other hand, the global 27 

nitrogen uptake by the crop is increased in the case of seeding date reinitialization (+3 kgN.ha-1.yr-1). 28 

This leads to a decrease of in-stream nitrogen fluxes at the outlet to 9.6 kgN.ha-1.yr-1, which is closer 29 

to the annual N fluxes measured at the outlet (7.5 kgN.ha-1.yr-1). The yields of wheat crops are more 30 

strongly impacted by the seeding date reinitialization than are the sunflower’s (Figure 5):  the wheat 31 

yield increases from 5 to 5.8 t.ha-1 whereas it remains stable for the sunflower. This optimization 32 

process increased the Nitrogen Use Efficiency (NUE) of wheat as well. The ratio of nitrogen uptake by 33 

the plant to nitrogen input by fertilizers seeks to measure the efficiency of agricultural practices. It 34 

shows that the N inputs from fertilization are better absorbed by the plants. Nevertheless the N 35 

content in grain ratio is slightly decreased, since it depends both on grain biomass and on the N 36 

content of grain. The sunflower yield is not impacted since the LAI profiles were not really altered by 37 

the reinitializing of the seeding date. 38 
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e. Impact at Crop-Field Level 1 

Figure 7 shows the results of seeding date reinitialization on the LAI and biomass estimates 2 

respectively. We compare two crop fields; one is located within the catchment where TNT2 3 

simulations are performed (Crop Field 8), the other is the experimental crop field where 4 

measurements of turbulent atmospheric fluxes are carried out (see Figure 1). The crop fields are 5 

close to each other and comparable in terms of slopes and crop rotation, except for 2009 when a 6 

rapeseed crop was grown in the experimental field, whereas sunflower was sown in Crop Field 8, 7 

located within the catchment. Remotely-sensed LAI values for both crop fields are compared to 8 

illustrate the differences observed between the crops in term of vegetation dynamics. The 9 

interpolated daily LAI is presented in Figure 7 for the crop within the catchment, and the simulated 10 

LAI profiles before and after the optimization are plotted. The simulated biomasses before and after 11 

optimization in Crop Field 8 are compared to the measured biomass within the experimental crop 12 

field. The spatio-temporal variability of this variable is close to the measurements for the four-year 13 

period, except in 2008 when no optimization could be performed because of heavy cloud cover. The 14 

seeding date modifications have a substantial impact on biomass production and clearly improve the 15 

biomass predictions for 2010.  16 

Figure 8 compares the daily simulated and measured evapotranspiration fluxes at the Crop Field 8 17 

and experimental crop field levels. Each series is strongly correlated in time (R> 0.7) which means 18 

that the climatic control of the AET is conveniently accounted for. In contrast the Nash Sutcliffe 19 

coefficient E, usually employed for hydrological flux evaluation, exhibits high inter-annual  variability, 20 

from a good correspondence between flux measurements and simulations in 2006 (E=0.57) to a 21 

negative value in years 2007, 2008 and 2010. It shows that bias is high: cumulative annual measured 22 

AET tends to be overestimated by the simulations, by 11 and 15 % in 2006 and 2007, and by more 23 

than 30 % in 2008 and 2010. The RMSE of each series is around 1 mm.day-1 except for the year 2006 24 

for which it is half as large. Figure 8 shows the uncertainty associated with the random measurement 25 

errors for semi-hourly fluxes as an envelope around the daily AET, and indicates that it is roughly 26 

proportional to the flux intensity (Béziat et al., 2009). Eddy covariance measurements are 27 

representative of a fluctuating area (called the footprint) of the crop field, which varies mainly with 28 

the crop-cover height as well as wind speed and direction. The footprint, corresponding to the area 29 

which is contributing to the measurements made at the tower location, was computed in a previous 30 

unpublished study using both half-hourly climatic variables measured locally, and a footprint model 31 

(Horst, 1999). Figure 8 (right) shows the average footprint area for the years 2006, 2007 and 2008 32 

estimated by the footprint model, climatic data and crop height measured in the experimental crop 33 

field. It shows the total contributive area and the location of high contributive areas (yellow and red 34 

colors). Two main wind directions explain the footprint’s symmetry on either side of a WNW-ESE axis. 35 

The main contributive area remains close to the flux tower; the footprint in 2006 is more 36 

homogeneous and wider than those in 2007 and 2008. Average footprint areas are close to the flux 37 

tower, which is not representative of the entire experimental crop field; moreover the footprint area 38 

is located in a zone characterized by shallow soil depth associated with low crop productivity. These 39 

AET measurements may therefore represent the low boundary of the AET range within the plot. 40 

TNT2 estimates at the crop-field (8) level are systematically higher than the in-field measurements, 41 

but the spatial variability within the crop field (represented by paired bars of standard deviation 42 

every 10 days) ranges between 0.4 to 1.8 mm.day-1 during the crop-growing season (spring and 43 
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summer). This spatial variability is as high as the RMSE found for both the observed and simulated 1 

series. Unfortunately, comparison between observed and simulated AET cannot be performed for 2 

the footprint area only, since the crop fields are separated by a distance of 800 meters. 3 

4. Discussion 4 

(LAI profile improvement) 5 

Field measurements of LAI or AET are expensive and time-consuming, and are limited to local 6 

evaluations of the crop cover. The satellite observations are thus essential for monitoring the crop-7 

cover dynamics at crop-field scales. In the context of the present study, Leaf Area Index and biomass 8 

are highly variable in space and time and within crop field. The high spatial resolution (around 10 to 9 

20 meters) is sufficient to capture the spatial variability of crop productivity. The large number of 10 

images, provided by the high frequency of satellite revisit, makes it possible to describe the temporal 11 

crop development and productivity at pixel and crop-field levels by describing the LAI profile 12 

retrieved from F2 images by means of a physically-based double logistic descriptive equation (Figure 13 

2). This temporal information has been used at the crop-field level to optimize the simulated LAI of 14 

the process-based model STICS, coupled with a hydrological model that aims to reproduce the 15 

varying local situations created by hydrological conditions within the catchment. The objective of 16 

minimizing the temporal shift between measured and observed LAI by re-initializing the seeding date 17 

in TNT2 is satisfactorily fulfilled: there is a rapid convergence of the optimization process, temporal 18 

shifts being generally minimized with a realistic seeding date solution. The improvement achieved 19 

from the “a priori” situation constructed from the local database would have been made more 20 

evident by constructing a seeding-date scenario based on regional recommendations. This could be 21 

done in future applications at larger scale, e.g., by considering ground coverage of complete 22 

Formosat-2 scenes. 23 

 24 

(Seeding date estimation)  25 

Nevertheless, although seeding-date values are a good numerical solution for phasing simulated and 26 

RS retrieved LAI profiles, final seeding-date values mainly depend on the cultivar parameters, such as 27 

length of the early development and vernalization stages. For instance, the duration of winter wheat 28 

vernalization, corresponding to the low temperature periods required to hasten plant development, 29 

will depend on the number of vernalizing days defined for each wheat cultivar (JVC parameter) and 30 

the crop temperature computed from climate input data. The mild winter conditions in the study 31 

area make the LAI profile insensitive to the seeding date for high values of JVC (>8).We have 32 

therefore set the JVC parameter to six days for the winter wheat cultivar used in this study. This 33 

shows that the variety of wheat sown is crucial information for a better estimation of the true 34 

seeding date, crop growth dynamic, and yield. More generally, crop variety is not recorded in 35 

agricultural data base. In this specific study site, several varieties were recorded which were not pre-36 

calibrated in the STICS model. The estimation of a “true seeding date” at catchment scale is 37 

accordingly not possible at present. 38 

(Optimization process performance) 39 
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(Jégo et al., 2012) used LAI data retrieved from satellite images to better constrain input parameters 1 

for the STICS crop model. By reinitializing the seeding date, they greatly improved the model’s 2 

predictions in terms of biomass and yield. The optimization method is based on the simplex 3 

algorithm to minimize the weighted sum of squared differences between RS-retrieved and simulated 4 

LAI series. A run of the crop model is carried out for one crop and one year, and takes less than a 5 

second. This optimization method is appropriate since it tests several input parameter couples in 6 

order to converge quickly on an optimal solution in terms of the chosen estimator. In the case of 7 

TNT2, simulations are sequentially executed: each pixel calculation depends on the previous and 8 

simulated neighborhood conditions. A single run corresponds to the simulation of water and nutrient 9 

fluxes in 134,013 modeling units, covering 101 crop fields for 5 years. It thus requires much more 10 

computation time (around 2 hours for the Montoussé river catchment). The hydrological interactions 11 

between modeling units in space and time imply that changes in seeding dates are interdependent. 12 

The optimization method described in this paper was chosen because it is based on a quantitative 13 

(rather than a statistical) estimator of the temporal shifts, which is used to quantitatively correct the 14 

input parameter (in this case the seeding date), based on the model’s functioning. The temporal 15 

delay between RS-retrieved and simulated LAI series is evaluated as a physical variable: the 16 

cumulative daily air-temperature difference. The results of this optimization show a rapid 17 

convergence after five to eight iterations.  18 

(Impact of re-initializing on agro-hydrological variables) 19 

The STICS crop model (the agronomical portion of the TNT2 model) is a process-based model, i.e., it 20 

is able to scale up the results of local experiments. It extrapolates the crop growth variables from 21 

analogous situations described by input data (soil, climatic and cropping management), without the 22 

need for new testing. The coupling of this process-based model with a hydrological model seeks to 23 

simulate the varying local situations described by hydrological conditions within the catchment: 24 

saturated zones, soil water content as a function of the situation within a slope. The hydrological 25 

variables - evapotranspiration and discharge - are not heavily impacted by this change in crop-cover 26 

dynamics. The difference obtained for AET, i.e., 2 mm.yr-1, is similar to the impact of systematic catch 27 

crop implementation between wheat and sunflower that was tested in this catchment using TNT2 for 28 

the period 1985-2001 (Ferrant et al., 2013). Nevertheless, an improvement of the AET simulation is 29 

still needed to confirm this result. On the other hand, the improvement of the representation of 30 

crop-cover dynamics obtained by reinitializing the seeding date has a substantial impact on wheat 31 

biomass production (Figure 7) and associated nitrogen uptake: NUE and yield of winter wheat are 32 

mainly increased by the reinitializing process. Thus, simulated nitrogen fluxes into the environment 33 

decrease by 2.7 and 11.9 % for denitrification and stream losses respectively. Being dynamically 34 

controlled by the discharge, in-stream nitrogen fluxes simulated over a long period depend strongly 35 

on the balance between fertilizer applications and crop consumption. In this case, average annual 36 

simulated nitrogen fluxes were lowered from 11 to 9.6 kgN.ha-1.yr-1, which is in better agreement 37 

with the 7.5 kgN.ha-1 annual estimation based on intensive measurements. In general, the 38 

improvement of the spatial and temporal crop cover and nitrogen uptake representation would 39 

improve our understanding of the N cycle by estimating the locations of nitrogen excesses and 40 

associated potential losses into the hydrologic and atmospheric systems. The mapping of the NUE in 41 

2007 is presented in Figure 10. By displaying the ratio between nitrogen fertilizer input (crop-field 42 

level) and plant uptake (at pixel scale), it indicates the areas where plant uptakes exceed N inputs 43 
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(NUE >1), and the areas contributing to N losses, where N inputs exceed plant uptake (NUE<1). These 1 

representations of nitrogen excess in the landscape will definitely benefit from a crop development 2 

optimization at the pixel level using LAI derived from RS image series. 3 

(Other input parameters (soil and hydromorphy) and the spatial representation of hydrological 4 

situations) 5 

Other input parameters than the seeding date should be considered for further optimizations. (Jégo 6 

et al., 2012) have identified a second input parameter known to have a great impact on crop 7 

productivity within the STICS crop model: the soil’s water-retention capacity. In the TNT2 model, the 8 

soil map defines homogeneous zones where 21 soil parameters are defined. The sensitivity of the 9 

spatial pattern of soil input parameters within agro-hydrological models has not yet been deeply 10 

explored. Figure 8 shows the spatial variability of the F2-derived and TNT2-simulated LAI at the pixel 11 

level for two dates. Two covariates seem to drive the spatial variability of the LAI variations simulated 12 

by TNT2: the soil map and the drainage-network’s location. Three main situations are simulated: (1) 13 

systematic saturated conditions, which limit LAI development in the drainage network location; (2) 14 

low soil water deficit, which enhances LAI development; and (3) intermediate or low soil water 15 

content, which limits LAI development. There is an excellent potential for agronomical calibration of 16 

agro-hydrological models by reinitializing soil input parameters and refining local situations at the 17 

pixel scale, using these new LAI map series derived from optical RS with high revisit frequency. 18 

Considering only the hydrological variables, (Moreau et al., 2013) tested the sensitivity of the TNT2 19 

model’s response to spatial soil input parameters for both water and nitrogen related parameters. 20 

They analyzed the output’s sensitivity in terms of in-stream water and nitrogen fluxes at the outlet, 21 

and concluded that sensitivity to the spatial distribution of soil input factors is low. Looking ahead, 22 

we consider that the sensitivity of spatial soil input parameters is high for crop variables and would 23 

impact the spatial representation of the N cycle within slopes. Reinitialization of physical soil 24 

parameters in the TNT2 model will be proposed in a forthcoming study at the pixel level, using the 25 

same F2 dataset. The control of these parameters versus other physical catchment parameters 26 

(aspect, slopes…) on the spatial and temporal variability of the crop growth will be explored. 27 

5. Conclusion 28 

The present study has evaluated the potential of remote sensing data series for the spatial and 29 

temporal calibration of a distributed agro-hydrological model over a five-year period (2006-2010). 30 

The use of a process-based crop model (STICS) coupled with a simplified hydrological model (TNT) 31 

provided the means to simulate the water and nitrogen budgets as well as the yields of a soil-plant 32 

system at the catchment scale, taking climatic and agricultural variables into account. The lack of 33 

spatial and temporal calibration of soil-crop situations is assessed in light of the additional spatio-34 

temporal information derived from RS images. The spatial calibration of model input parameters, 35 

previously confined to a-priori values, by using LAI derived from RS image series opens new 36 

opportunities for constraining spatial and temporal crop development at the catchment scale. In this 37 

example, we satisfactorily constrained the temporal LAI development at the crop-field level by 38 

reinitializing the seeding dates. This calibration step adds value to the conventional calibration 39 

process usually employed in agro-hydrological models. The improved representation of crop cover 40 

growth has no noticeable impact on the water budget at the catchment scale (around 1%), but had 41 

substantial impacts on the nitrogen cycle in terms of crop uptake and biomass, as well as on nitrate 42 
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leaching and in-stream losses. The optimization process using RS derived LAI profiles has enabled an 1 

increase in nitrogen uptake by the crop and in biomass production for winter wheat, leading to a 2 

significant drop in the simulated in-stream nitrogen losses of around 12%. This result indicates that a 3 

spatial calibration of the crops’ biophysical variables such as LAI changes the nitrogen use efficiency 4 

(NUE) at the crop-field level, which impacts the nitrogen cycle at the catchment scale. 5 

This study demonstrates the contribution of high spatial resolution optical satellite images with 6 

frequent systematic observations to the spatial calibration of agro-hydrological models. This type of 7 

spatial calibration greatly improves the capacity of agro-hydrological modeling to explain, reproduce 8 

and predict spatial crop growth by constraining the spatial water and nutrient fluxes within a 9 

hydrological catchment. Massive systematic satellite observations will soon become widely available 10 

thanks to the forthcoming satellite missions Venμs (Dedieu et al., 2007) and Sentinel-2, which will 11 

provide high spatial resolution images with a four-to-five-day revisiting frequency. Further 12 

development will test a similar reinitialization algorithm on the main soil parameters controlling soil 13 

water content, so as to improve the simulated LAI profile at the pixel level. 14 
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 27 

Table   28 

Yearly water and nitrogen balance simulated by the TNT2 model, for a priori and reset seeding 29 
dates. 30 

TNT2 (2006-2010) A priori seeding date After LAI optimization 

Water budget in mm.yr-1   
Actual ET 574 575 
Rainfall 665 665 
Discharge 88.5 86.7 
∆stock aquifer/soil +2.5 +3.3 
Mineral nitrogen budget kgN.ha−1.yr−1 
Mineral fertilizer 91.5 91.5 
Fertilizer volatilization 1.8 1.8 
Mineralization 63 62.5 
Plant uptake 105.6 108 
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Denitrification 32.6 31.7 
Stream losses 10.9 9.6 
∆stock N in the basin +3.6 +2.9 
Winter Wheat   
yield t.ha-1 of wheat 5.0 5.8 
N content in grain g.kg-1 22.5 20.9 
NUE 0.68 0.76 
Sunflower   
yield t.ha-1 of sunflower 1.7 1.7 
N content in grain g.kg-1 38.3 38.2 
NUE 1.07 1.07 
 1 
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 1 

Figure 1: Location of the catchment area studied. The Auradé catchment comprises 101 cultivated 2 

crop fields. The cropping pattern is a rotation of winter wheat and sunflower. The Formosat-2 3 
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series ground coverage is representative of the cropland area characterizing the region around 1 

Toulouse. Atmospheric turbulent fluxes, ground vegetation dynamics, and agro-meteorological 2 

measurements have been performed in the experimental crop field near the study site since 2005. 3 

A detail of the LAI map derived from the Formosat-2 image for July 12, 2009 shows the high 4 

variability of the LAI within the sunflower plots (still active at that period of the year), whereas 5 

other areas are close to zero, corresponding to winter wheat having reached the senescence stage. 6 

 7 

 8 

Figure 2: Process of optimization of the seeding date by matching the early variations of simulated 9 

LAI with the interpolated LAI derived from F2 image series at crop-field scale. The interpolated LAIs 10 

are obtained by fitting a double logistic equation against discrete satellite-derived LAI at the crop-11 

field scale. The equation describing the growth of the LAI depends on the cumulative daily 12 

temperature ΣT. Kn and Kx are respectively the minimum and maximum of the interpolated LAI. Ti 13 

and Tf are respectively the cumulative temperature when the LAI reaches Kx/2 during the growth 14 

and the senescence phases. Parameters a and b correspond to the local slope of the temperatures 15 

Tf and Ti. 16 

 17 

 18 

 19 
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1 
Figure 3: Above (a) - Maps of maximum LAI observed for each year and each crop mask. Maxima of 2 

winter wheat LAI were not observed during spring 2008 owing to heavy cloud cover throughout 3 

the area. Each date of image acquisition constituting the F2 series is indicated by a triangle in the 4 

timeline.  5 

Below (b) - Spatial variability of the LAI as a function of the time between (inter-sigma) and within 6 

(intra-sigma) crop field measurements for sunflower.   7 
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 1 

 2 

Figure 4: Leaf Area Index derived from satellite F2 images, hemispherical photographs (LAI 3 

effective CanEye), and direct field measurement (LAI destructive) in the experimental crop field 4 

located near the Auradé catchment (see location in Figure 1). The standard deviation represents 5 

the spatial variability within the crop field (LAI satellite); spatial variability and associated sampling 6 

error (LAI destructive); and uncertainty concerning the photo interpretation (LAI effective). 7 

 8 
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 1 

Figure 5: (a) - Average LAI computed at the crop-field level for winter wheat (left) and sunflower 2 

(right) for each year of simulation (lines). Simulated LAIs before and after the optimization process 3 

are shown respectively in dashed and full black lines. Average crop-field level LAIs retrieved from 4 

F2 images are represented by black circles and the average interpolations from these images are 5 

shown by full red lines. 6 

(b) – Evolution of Tdiff in degree-days and RMSE found for each crop as a function of the number of 7 

optimization process iterations.  The first and third quartile and the median of Tdiff and RMSE for 8 

each crop field are shown. Red crosses stand for outliers. 9 
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 1 

Figure 6: Seeding date trajectories for each crop field as a function of iteration number. 2 

 3 
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 1 

Figure 7: LAI and biomass simulated for four years in the crop within the catchment that exhibits a 2 

cropping pattern comparable to the experimental crop field (except in 2009) where the ground 3 

measurements are carried out. Rows stand respectively for winter wheat 2006, sunflower 2007, 4 

winter wheat 2008, and winter wheat 2010. LAI in the first column: the red curve is the 5 

interpolated LAI profile from the F2-derived values (red circles) with the spatial variability 6 

represented by the bars. The black diamonds represent the F2-LAI values for the experimental crop 7 

field located outside the catchment. Black solid and dotted lines are the average LAI respectively 8 
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after and before seeding date modification; bars represent the standard deviation of simulated LAI 1 

within the crop field. Biomass in the second column is represented by black diamonds for the 2 

measurements, with the measurement variability associated with the spatial variability and 3 

accuracy of the measurement method. Black solid and dotted lines are the average Biomass 4 

respectively after and before seeding date modification; bars represent the standard deviation of 5 

simulated LAI within the crop field. 6 

 7 

 8 

Figure 8: Left- Measured vs simulated daily Actual Evapotranspiration from the experimental crop 9 

field and Crop Field 8 respectively. Measured AETs are given with the uncertainty envelope 10 

associated with the Eddy covariance measurement precision (Béziat et al., 2009). The Nash 11 

Sutcliffe coefficient, correlation coefficient (without units), and RMSE (mm.day-1) are respectively 12 

0.57, 0.9, and 0.57 for the year 2006; -0.24, 0.7, and 1.18 for 2007; -0.6, 0.87, and 1 for 2008; and -13 

0.68, 0.88, and 1 for 2010. Linear regressions of the form Obs = a* Simulated + b are shown for 14 

each year. 15 

 Right- Average annual footprint of the flux tower within the experimental crop field 16 

computed by the model of (Horst, 1999). Colors stand for the contribution of each pixel to the AET 17 

measured at the tower level (in percentage). Pixel contributions in 2006 are more homogeneously 18 

distributed within the footprint than in 2007 and 2008 (unpublished study by E. Potier). 19 

 20 
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 1 

Animated GIF 2 

Figure 9: Spatial variability of interpolated LAI derived from F2 series and the TNT2 simulation of 3 

LAI. Pixels for which interpolation performances are low are not shown (RMSE >0.2). The winter 4 

wheat LAI has already developed by March, during the sunflower sowing.  The opposite situation is 5 

represented in July, by the high value of LAI for sunflower during the wheat’s senescence. The flow 6 

path network and the soil delineation are the main determinants of the LAI spatial patterns 7 

simulated with TNT2. 8 

 9 

 10 

Figure 10: Soil and crop-field map used in TNT2 (top). Spatial NUEs for the years 2006 and 2007 11 

(bottom left and right respectively). The higher the value, the more efficiently the fertilizer is used 12 

by the plant. A low fertilizer amount with weak biomass production could lead to high NUE. 13 

Mineralization of soil organic matter creates a source of mineral nitrogen that leads to NUEs higher 14 

than unity. 15 
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