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Abstract

Topographic data, such as digital elevation models (DEMs), are essential input
in flood inundation modelling. DEMs can be derived from several sources either
through remote sensing techniques (space-borne or air-borne imagery) or from
traditional methods (ground survey). The Advanced Spaceborne Thermal Emission5

and Reflection Radiometer (ASTER), the Shuttle Radar Topography Mission (SRTM),
the Light Detection and Ranging (LiDAR), and topographic contour maps are some of
the most commonly used sources of data for DEMs. These DEMs are characterized
by different precision and accuracy. On the one hand, the spatial resolution of low-cost
DEMs from satellite imagery, such as ASTER and SRTM, is rather coarse (around 30–10

90 m). On the other hand, LiDAR technique is able to produce a high resolution DEMs
(around 1 m), but at a much higher cost. Lastly, contour mapping based on ground
survey is time consuming, particularly for higher scales, and may not be possible
for some remote areas. The use of these different sources of DEM obviously affects
the results of flood inundation models. This paper shows and compares a number of15

hydraulic models developed using HEC-RAS as model code and the aforementioned
sources of DEM as geometric input. The study was carried out on a reach of the
Johor River, in Malaysia. The effect of the different sources of DEMs (and different
resolutions) was investigated by considering the performance of the hydraulic models
in simulating flood water levels as well as inundation maps. The outcomes of our study20

show that the use of different DEMs has serious implications to the results of hydraulic
models. The outcomes also indicates the loss of model accuracy due to re-sampling the
highest resolution DEM (i.e. LiDAR 1 m) to lower resolution are much less compared
to the loss of model accuracy due to the use of low-cost DEM that have not only a
lower resolution, but also a lower quality. Lastly, to better explore the sensitivity of the25

hydraulic models to different DEMs, we performed an uncertainty analysis based on
the GLUE methodology.
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1 Introduction

In hydraulic modelling of floods, one of the most fundamental input data is the
geometric description of the floodplains and river channels often provided in the form of
digital elevation models (DEM). During the past decades, there has been a significant
change in data collection for topographic mapping technique, from conventional ground5

survey to remote sensing techniques (i.e. radar wave and laser altimetry; e.g. Mark and
Bates, 2000; Castellarin et al., 2009). This shift has a number of advantages in terms
of processing efficiency, cost effectiveness and accuracy (Bates, 2012; Di Baldassarre
and Uhlenbrook, 2012).

DEMs can be acquired from many sources of topographic information ranging from10

the high resolution and accurate, but costly, LiDAR (Light Detection and Ranging)
obtained from lower altitude to low-cost, and coarse resolution, space-borne data, such
as ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer),
and SRTM (Shuttle Radar Topography Mission). DEMs can also be developed from
traditional ground surveying (e.g. topographic contour maps) by interpolating a number15

of elevation points.
DEM horizontal resolution, vertical precision and accuracy varies considerably.

These differences are attributed from different types of equipment and methods used
in obtaining the topographic data. When used as an input to hydraulic modelling, the
differences in the quality of each DEM subsequently result in differences in model20

output performance. In addition, re-sampling processes of raster data via Geographic
Information System (GIS) may also deteriorate the accuracy of the DEMs. The
usefulness of diverse topographic data in supporting hydraulic modelling of floods is
subject to the availability of DEMs, economic factors and geographical conditions of
survey area (Cobby and Mason, 1999; Casas et al., 2006; Schumann et al., 2008).25

To date, a number of studies have been carried out with the aim of evaluating the
impact of accuracy and precision of the topographic data on the results of hydraulic
models.
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Werner (2001) investigated the effect of varying grid element size on flood extent
estimation from a 1-D model approach based on a LIDAR DEM. The study found that
the flood extent estimation increased as the resolution of the DEM becomes coarser.

Horrit and Bates (2001) demonstrated the effects of spatial resolution on a raster
based flood model simulation. Simulation tests were performed at resolution sizes5

of 10, 20, 50, 100, 250, 500, and 1000 m and the predictions were compared with
satellite observations of inundated area and ground measurements of floodwave travel
times. They found that the model reached a maximum performance at resolution of
100 m when calibrated against the observed inundated area. The resolution of 500 m
proved to be adequate for the prediction of water levels. They also highlighted that the10

predicted floodwave travel times are strongly dependent on the model resolution used.
Wilson and Atkinson (2005) set up a two-dimensional (2-D) model, LISFLOOD-FP,

using three different DEMs (contour dataset, synthetic-aperture radar (SAR) dataset,
and differential global positioning system (DGPS)) used to predict flood inundation for
1998 flood event in the UK. The results showed that the contour datasets resulted in15

a substantial difference in the timing and the extent of flood inundation when compared
to the DGPS dataset. Although the SAR dataset also showed differences in the timing
and the extent, it was not as massive as the contour dataset. Nevertheless, the
authors also highlighted a potential problem with the use of satellite remotely sensed
topographic data in flood hazard assessment over small areas.20

Casas et al. (2006) investigated the effects of the topographic data sources and
resolution on one-dimensional (1-D) hydraulic modelling of floods. They found out
that the contour-based digital terrain model (DTM) was the least accurate in the
determination of the water level and inundated area of the floodplain, however the
global positioning system (GPS)-based DTM lead to a more realistic estimate of the25

water surface elevation and of the flooded area. The LiDAR-based model produced the
most acceptable results in terms of water surface elevation and inundated flooded area
compared to the reference data. The authors also pointed out that the different grid
sizes used in LiDAR data has no significant effect on the determination of the water
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surface elevation. In addition, from an analysis of the time-cost ratio for each DEMs
used, they concluded that the most cost effective technique for developing a DEM by
means of an acceptable accuracy is from laser altimetry survey (LIDAR), especially for
large areas.

Schumann et al. (2008) demonstrated the effects of DEMs on deriving the water5

stage and inundation area. Three DEMs at three different resolutions from three
sources (LiDAR, contour and SRTM DEM) were used for a study area in Luxembourg.
By using the HEC RAS 1-D hydraulic model to simulate the flood propagation, the result
shows that, the LiDAR DEM derived water stages by displaying the lowest RMSE,
followed by the contour DEM and lastly the SRTM. Considering the performance of10

the SRTM (it was relatively good with RMSE of 1.07 m), they suggested that the
SRTM DEM is a valuable source for initial vital flood information extraction in large,
homogeneous floodplains.

For the large flood prone area, the availability of DEM from public domain (e.g.
ASTER, SRTM) makes it easier to conduct a study. Patro et al. (2009) selected a study15

area in India and demonstrated the usefulness of using SRTM DEM to derive river
cross section for the use in hydraulic modelling. They found that the calibration and
validation results from the hydraulic model performed quite satisfactory in simulating
the river flow. Furthermore, the model performed quite well in simulating the peak flow
which is important in flood modelling. The study by Tarekegn et al. (2010) carried out20

on a study area in Ethiopia used a DEM which was generated from ASTER image.
Integration between remote sensing and GIS technique were needed to construct the
floodplain terrain and channel bathymetry. From the results obtained, they concluded
that the ASTER DEM is able to simulate the observed flooding pattern and inundated
area extends with reasonable accuracy. Nevertheless, they also highlighted the need25

of advanced GIS processing knowledge when developing a digital representation of
the floodplain and channel terrain.

Schumann et al. (2010) demonstrates that near real-time coarse resolution radar
imagery of a particular flood event on the River Po (Italy) combined with SRTM terrain
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height data leads to a water slope remarkably similar to that derived by combining
the radar image with highly accurate airborne laser altimetry. Moreover, it showed that
this spaceborne flood wave approximation compares well to a hydraulic model thus
allowing the performance of the latter, calibrated on a previous event, to be assessed
when applied to an event of different magnitude in near real time.5

Paiva et al. (2011) demonstrated the use of SRTM DEM in a large-scale hydrologic
model with a full one-dimensional hydrodynamic module to calculate flow propagation
on a complex river network. The study was conducted on one of the major tributaries of
the Amazon, the Purus River basin. They found that a model validation using discharge
and water level data is capable of reproducing the main hydrological features of the10

Purus River basin. Furthermore, realistic floodplain inundation maps were derived
from the results of the model. The authors concluded that it is possible to employ full
hydrodynamic models within large-scale hydrological models even when using limited
data for river geometry and floodplain characterization.

Moya Quiroga et al. (2013) used Monte Carlo simulation sampling SRTM DEM15

elevation, and found a considerable influence of the SRTM uncertainty on the
inundation area (the HEC-RAS hydraulic model of the Timis-Bega basin in Romania
was employed).

Most recently, a study by Yan et al. (2013) made a comparison between a hydraulic
model based on LiDAR and SRTM DEM. Besides the DEM inaccuracy, they also20

introduced the uncertainty analysis by considering parameter and inflow uncertainty.
The results of this study showed that the differences between the LiDAR-based model
and the SRTM-based model are significant, but within the accuracy that is typically
associated with large-scale flood studies.

This paper continues the presented line of research and deals with the assessment25

of the effect of using different DEM data source and resolution in a 1-D hydraulic
modelling of floods. The novelty of this study is that both accuracy (quality) and
precision (resolution) of the DEM are considered and their impact on hydraulic model
results is evaluated in terms of both water surface elevation and inundation area.

7380

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/7375/2014/hessd-11-7375-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/7375/2014/hessd-11-7375-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 7375–7408, 2014

Impact of different
topographic data on

1-D hydraulic
modelling

A. Md Ali et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Furthermore, we compare model results via independent calibration and validation and
by explicitly considering parameter uncertainty.

The goal of our paper is not to validate a specific approach for producing flood
inundation maps, but rather to contribute with an original approach to the existing
literature exploring the impact of topographic input on hydraulic modelling of floods.5

2 Study area and available data

2.1 Study area

The study area is located within the Johor River Basin in the State of Johor, Malaysia.
The river basin has a total area of 2690 km2. The test site is a 30 km reach of the
Johor River. The Johor River channel has a bankfull depth between 5 and 8 m and10

average slope around 0.03 %. The river reach under study is characterised by a stable
main channel from 50 to 250 m wide. The study area consists of agricultural land,
residential and commercial areas (see Fig. 1). As reported by Department of Irrigation
and Drainage, Malaysia (DID, 2009), this test site has been experiencing some major
historical flood events since 1948. The most recent ones happened in December 200615

and January 2007 when more than 3000 families were evacuated.

2.2 Hydraulic modelling

In this study, hydraulic modelling of floods was performed by using the HEC-RAS
modelling system. To simulate unsteady open channel flow, HEC-RAS solves the full
1-D Saint-Venant equations. The observed flow hydrograph at an hourly time step was20

used as upstream boundary condition, while the friction slope was used as downstream
boundary condition. The next section reports the different sources of topographic data
used to define the geometric input.
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2.3 Digital Elevation Model

The required input data for the HEC RAS include the geometry of the floodplain and the
river, which is provided by a number of cross sections. We identified several sources of
DEM data for our study area (details are given below) with different spatial resolution
and accuracy (Fig. 2):5

1. DEMs derived from an original 1 m LiDAR dataset (obtained from DID).

2. 20 m resolution DEM generated from the vectorial 1 : 25000 cartography map
obtained from DID with a permission of the Department of Survey and Mapping,
Malaysia (DSMP).

3. 30 m resolution DEM derived from the globally and freely available ASTER data10

retrieved from the United States Geological Survey (USGS, http://earthexplorer.
usgs.gov)

4. 90 m resolution DEM derived from the globally and freely available SRTM data
retrieved from a Consortium for Spatial Information (CGIAR-CSI, http://cgiar-csi.
org).15

To analyse the influence of spatial resolution and separate it out from the impact of
different accuracy, four additional DEMs were obtained by rescaling the original LiDAR
DEM (1 m resolution) to the spatial resolutions of the DEMs derived from vectorial
cartography (20 m), ASTER (30 m) and SRTM (90 m). Hence, a total of eight DEMs
were used (see Table 1) to explore the impact of different topographic information on20

the hydraulic modelling of floods.
Given that the laser/radar waves used in the remote sensing techniques are not

capable of penetrating the water surface and capture the river bed elevations, all the
DEMs were integrated with river cross section data derived from traditional ground
survey. The ground survey of the river cross sections within the study area was25

systematically carried out at about 1000 m intervals. Then, the flood simulation results
7382
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across different data sets were compared to evaluate the effects of data spatial
resolutions and data source differences.

3 Methodology

3.1 Evaluating the DEMs quality

At first, the vertical error of each DEM was evaluated through comparison between5

the topographic data and 164 Global Positioning System (GPS) ground points taken at
random positions within the study area. The value of each reference elevation points
were extracted from the study area using GPS survey equipment. The quality of each
DEM is referred by the Root Mean Square Error (RMSEDEM). The equation is as
follows:10

RMSEDEM =

√∑n
i=1 (ElevGPS −ElevDEM)2

n
(1)

where ElevGPS is the reference elevation (m) derived from GPS, ElevDEM is the
corresponding value derived from each DEM, and n corresponds to the total numbers
of points.

3.2 Model calibration and validation15

Then, data from two recent major flood events that occurred along the Johor River in
2006 and 2007 were used for independent calibration and validation of the models. The
estimated peak flow of the 2006 event is approximately 375 m3 s−1, while the one of the
2007 event is around 595 m3 s−1. Both discharge data were measured and recorded at
Rantau Panjang hydrological station. The 2006 flood data were used for the calibration20

exercise, while the 2007 flood data were used for model validation.
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To assess the sensitivity of the different models to the model parameters, the
Manning’s n roughness coefficients for all the models were sampled uniformly from

0.02 to 0.08 m−1/3 s for the river channel, and between 0.03 and 0.10 m−1/3 s for the
floodplain, by steps of 0.0025 m−1/3 s. The performance of the hydraulic models in
producing the observed water levels was assessed by means of the Mean Absolute5

Error (MAE):

MAE =
1
T

T∑
t=1

|Ot −St | (2)

where T is the number of steps in time series, Ot is the observed water level at time t,
and St is the simulated water level at time t.

3.3 Quantifying the effect of the topographic data source on the water surface10

elevation and inundation area (sensitivity analysis)

The effects of DEM source and spatial resolution were further investigated by
examining the sensitivity of model results in terms of maximum water surface elevation
(WSE), inundation area and floodplain boundaries. For this additional analysis, the
model results obtained with the most accurate and precise DEM source (LiDAR at 1 m15

resolution) was used as a reference. For WSE analysis, each model was compared to
the reference model (Jhr L1, see Table 1) by means of the following measures:

MADWSE =
1
x

x∑
x=1

|WSERef −WSEDEM| (3)

where WSERef denotes the WSE simulated by the reference model (Jhr L1), WSEDEM
the WSE estimated by the models based on DEMs of lower resolution or different20

source (Table 1), and x corresponds to the total number of cross sections where models
results where compared.
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To analyse the sensitivity to different topographic input in terms of simulated flood
extent, we used the following measure of fit:

F (%) =
M1 ∩M2

M1 ∪M2
·100 (4)

where M1 and M2 are the simulated and observed (i.e. simulated by the reference
model) inundation areas, and ∪ and ∩ are the union and intersection GIS operations5

respectively. F equal to 100 % indicates that the two areas are completely coincidental
(Bates and De Roo, 2000).

3.4 Uncertainty estimation – GLUE analysis

In hydraulic modelling, multiple sources of uncertainty can emerge from several
factors, such as model structure, topography, and friction coefficients (Aronica et al.,10

2002; Trigg et al., 2009; Brandimarte and Baldassarre, 2012; Dottori et al., 2013).
A methodological approach to estimate the uncertainty is the generalised likelihood
uncertainty estimation (GLUE) methodology (Beven and Binley, 1992), a variant of
Monte Carlo simulation. Although some aspects of this methodology are criticized in
several papers (e.g. Hunter et al., 2005; Mantovan and Todini, 2006; Montanari, 2005;15

Stedinger et al., 2008), it is still widely used in hydrological modelling because of its
easiness in implementation and a common-sense approach to use only a set of the
“best” models for uncertainty analysis (e.g. Hunter et al., 2005; Shrestha et al., 2009;
Vázquez et al., 2009; Krueger et al., 2010; Jung and Merwade, 2012; Brandimarte and
Woldeyes, 2013).20

According to the GLUE framework (Beven and Binley, 1992), each simulation, i , is
associated to the (generalized) likelihood weight, Wi , ranging from 0 to 1. The weight,
Wi is expressed as a function of the measure fit, εi , of the behavioural models.

Wi =
εmax −εi

εmax −εmin
(5)
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where, εmax and εmin are the maximum and minimum value of MAE of behavioural
models. To identify the behavioural of the models, a threshold value (rejection criteria)
has been set as follows:

1. simulations associated with MAE larger than 1.0 m; and

2. Manning’s n roughness coefficient of the floodplain smaller than the Manning’s n5

roughness coefficient of the channel.

Then, the likelihood weights are the cumulative sum of 1 and the weighted 5th, 50th
and 95th percentiles. The likelihood weights were calculated as follow:

Li =
Wi∑n
i=1Wi

(6)

For this study, the applications of uncertainty analysis considered only the parameter10

uncertainty and implemented for all DEMs based model.

4 Results and discussion

4.1 Quality of DEMs compared with the reference points

Table 2 shows the calculated statistical vertical errors for each different DEM for the
same study area. As anticipated, LiDAR is not only the most precise DEM because of15

its highest resolution, but also the most accurate. The RMSE of each LiDAR DEMs
increased from 0.58 m (Jhr L1) to 1.27 m (Jhr L90) as the resolution of the DEMs
reduced from 1 m (original resolution) to 90 m.

Overall, the terrain is considered well defined under the LiDAR DEMs even though
the calculated errors are higher compared to the vertical accuracy reported in product20

specification (around 0.15 m). Figure 3 show the distribution of each DEMs compared
to the GPS ground elevation.
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Although LiDAR DEM gives the lowest error, it is useful to note that this type of DEM
has a number of limitations as highlighted in the several papers (see Sun et al., 2003;
Casas et al., 2006; Schumann et al., 2008):

1. it provides only discrete surface height samples and not continuous coverage,

2. its availability is very much limited by economic constraint,5

3. its inability to capture the river bed elevations due to the fact the laser does not
penetrate the water surface, and

4. its incapability to penetrate the ground surface in densely vegetated areas
especially for the tropical region.

The RMSE value of the other DEMs is 4.66 m for contour maps, 7.01 m for ASTER and10

6.47 m for SRTM. It’s also noticeably that the RMSE of the SRTM DEM for this particular
study area is within the average height accuracy found in other SRTM literature either
global or at particular continent (see Table 3). Nevertheless, it is proven that this type
of DEM gives an acceptable result when used in large scale flood modelling (e.g. Patro
et al., 2009; Paiva et al., 2012; Yan et al., 2013).15

Despite having the lowest vertical accuracies, the ASTER and contour DEMs are
still widely used in the field of hydraulic flood research as they are globally available
and free (e.g. Tarekegn et al., 2010; Wang et al., 2011; Gichamo et al., 2012). The
differences in the vertical accuracies may partly due to the lack of information in
topographical flats areas such as floodplains. However, the further use of each DEM20

in this study is subject to its performance in the hydraulic flood modelling during the
calibration and validation stages, which are described in the following sub-section.

4.2 Model calibration and validation

Figure 4 shows the model response in terms of MAE provided by the eight models
(Table 1) in simulating the 2006 flood event. In general, all models showed to be more25
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sensitivity to the changing of Manning’s n roughness coefficient of main channel than
the Manning’s n roughness coefficient of floodplain areas. The results of the calibration
showed that the best-fit models based on LiDAR DEM with different resolutions (Jhr
L2, Jhr L20, Jhr L30 and Jhr L90) generally gave good performances with only slight
variations in the MAE value from 0.38 to 0.41 m. Nevertheless, the optimum channel5

and floodplain Manning’s n roughness coefficient are centred on similar values at
nchannel = 0.0425 to 0.0500 and nfloodplain = 0.0575 for Jhr L1, Jhr L2, Jhr L20, Jhr
L30 and Jhr L90. While, the best-fit models based on topographic map and SRTM
also performed well with MAE of 0.31 and 0.50 m. On the other hand, ASTER-based
model completely failed (exceptionally high value of MAE in Fig. 4g are due to model10

instabilities) and was therefore eliminated from further analysis.
The best-fit models, using the optimum Manning’s n roughness coefficients (Table 4),

were then used to simulate the January 2007 flood event for model validation. This was
carried out for all models except ASTER based model due to its poor performance (see
Fig. 4g). Table 4 summarises the MAE of each model obtained during model validation.15

It is noted that the MAE values for all LiDAR based models (first five rows) with different
resolutions remained almost the same with the difference within +0.02 m. The MAE
values for the models based on topographic contour maps and SRTM DEM provides
a MAE of 0.60 m.

The results of this first analysis suggest that the reduction in the resolution of20

LiDAR DEMs (from 1 to 90 m) does not significantly affect the model performance.
However, the use of topographic contour maps (Jhr T20) and SRTM (Jhr S90) DEMs
as geometric input to the hydraulic model produces a slight increase of model errors.
For instance, Jhr L90 and Jhr S90 have the same resolution (90 m), but the different
accuracy results into increased (tough not remarkably) errors in model validation (from25

0.39 to 0.60 m). This limited degradation of model performance (Table 4), in spite of
the much lower accuracy of topographic input (Table 2) can be attributed to the fact
that models are compared to water levels observed in two cross-sections. A spatially
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distributed analysis (comparing the simulated flood extent and flood water profile along
the river) might show more significant differences (see Sect. 4.3).

4.3 Quantifying the effect of the topographic data source on the water surface
elevation and inundation area

4.3.1 Inundation area (sensitivity analysis)5

This section reports an additional analysis aiming to better explore the sensitivity
of model results to different topographic data (see Sect. 3.3). Figure 5 shows the
simulated flood extent maps obtained from the seven different topographic input data.
The floodplain areas simulated by the five LiDAR-based models (Jhr L1, Jhr L2, Jhr
L20, Jhr L30 and Jhr L90) are very similar. In contrast, the floodplain areas simulated10

by the models based on topographic contour maps (Jhr T20) and SRTM DEM (Jhr
S90) are substantially different (see Fig. 5 and Table 5).

Table 5 shows the comparison between the different models in terms of simulating
flood extent. The aforementioned measure of fit F was found to decrease for both
decreasing resolution and lowering accuracy. This sensitivity analysis also shows that15

the results of flood inundation models are more affected by the accuracy of the DEM
used as topographic input than its resolution.

4.3.2 Water surface elevation

Figure 6 compares the flood water profiles simulated by the reference model (Jhr L1)
with the flood water profiles (WSE) obtained from the other six models (Jhr L2, Jhr L20,20

Jhr L30, Jhr L90, Jhr T20 and Jhr S90). All these flood water profiles were obtained
by simulating the 2007 flood event. Despite having different resolutions, the flood water
profiles simulated from all LiDAR-based models portray a similar flood water profiles
to the reference model (see Fig. 6a–d). This is consistent with the findings about the
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inundation area (Fig. 5). Whereas, flood water profiles simulated by the models based
on topographic contour maps and SRTM DEMs (see Fig. 6e and f) are rather different.

The discrepancies between the reference model (Jhr L1) and the other models
visualized in Fig. 6 are quantified in terms of Mean Absolute Difference (MAD). This
shows that the re-sampled LiDAR data (Jhr L2, Jhr L20, Jhr L30 and Jhr L90) have all5

a low MAD: between 0.05 to 0.08 m. Higher discrepancies are found with the models
based on SRTM DEM (0.76 m) and contour maps (1.12 m). The great differences
obtained using the topographic contour maps may be partly due to the way that the
DEM height is sampled. For instance, contour DEM in this study were based on
topographic contours at 20 m intervals and required interpolation technique to generate10

a DEM. Table 6 shows the summary of MAD in terms of water surface elevation
simulated by the models.

4.3.3 Uncertainty in flood profiles obtained from different DEMs model by
considering parameter uncertainty

To better interpret the differences that have emerged in comparing the results of models15

based on different topographic data, we carried out a set of numerical experiments to
explore the uncertainty in model parameters. As mentioned, we varied the Manning’s

n roughness coefficient between 0.02 and 0.08 m−1/3 s, for the river channel, and from

0.03 to 0.10 m−1/3 s, for the floodplain, with steps 0.0025 m−1/3 s. Then, a number
of simulations are reject as described in Sect. 3.4. Figure 7 shows the uncertainty20

bounds for the different models. The width of these uncertainty bounds was found to
be between 1.5 and 1.6 m for all models (only parameter uncertainty is considered
here). Nevertheless, the model based on contour maps lead to significant differences
from the LiDAR based model, even when the uncertainty induced by model parameters
is expletively accounted for (see Fig. 7e).25
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5 Conclusions

This study assessed how different DEMs (derived by various sources of topographic
information or diverse resolutions) affect the output of hydraulic modelling. A reach of
the Johor River, Malaysia, was used as the test site. The sources of DEMs were LiDAR
at 1 m resolution, topographic contour maps at 20 m resolution, ASTER data at 30 m5

resolution, and SRTM data at 90 m resolution. The LiDAR DEM was also re-sampled
from its original resolution dataset to 2, 20, 30, and 90 m cell size. Different models
were built by using them as geometric input data.

The performance of the five LiDAR-based models (characterised by different
resolutions ranging from 1 to 90 m; see Table 4) did not show significant differences.10

Neither in the exercise of independent calibration and validation based on water level
observations in an internal cross section, nor in the sensitivity analysis of simulated
flood profiles and inundation areas. Another striking result of our study is that the model
based on ASTER data completely failed because of major inaccuracies of the DEM.

In contrast, the models based on SRTM data and topographic contour maps did15

relatively well in the validation exercise as they provided a mean absolute error of
0.6 m, which is only slightly higher the ones obtained with LiDAR-based models (all
around 0.4 m). However, this outcome could be attributed to the fact that validation
could only be performed by using the water level observed in a two internal cross-
sections. As a matter of fact, higher discrepancies emerged when LiDAR-based models20

are compared to the models based on SRTM data or topographic contour maps in
terms of inundation areas or flood water profiles. These differences were found to be
relevant even when parameter uncertainty is accounted for.

The study also showed that, to support flood inundation models, the quality and
accuracy of the DEM is more relevant than the resolution and precision of the DEM.25

For instance, the model based on the 90 m DEM obtained by re-sampling the LiDAR
data performed better than model based on the 90 m DEM obtained from SRTM
data. These outcomes are unavoidably associated to the specific test site, but the
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methodology proposed here can allow a comprehensive assessment of the impact
of diverse topographic data on hydraulic modelling of floods for different rivers around
the world.
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Table 1. Information about the eight digital elevation models used as topographical input.

Model name DEM type Resolution (m)

Jhr L1 LiDAR 1 m
Jhr L2 (re-scaled from LiDAR) 2 m
Jhr L20 (re-scaled from LiDAR) 20 m
Jhr L30 (re-scaled from LiDAR) 30 m
Jhr L90 (re-scaled from LiDAR) 90 m
Jhr T20 Contours maps 20 m
Jhr A30 ASTER 30 m
Jhr S90 SRTM 90 m
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Table 2. Statistics of errors (m) of each DEMs with respect to the GPS control points.

Model name Min. error (m) Max. error (m) RMSE (m)

Jhr L1 −0.59 1.00 0.58
Jhr L2 −0.64 1.38 0.58
Jhr L20 −0.83 1.83 0.68
Jhr L30 −0.93 3.98 0.79
Jhr L90 −5.46 3.73 1.27
Jhr T20 −15.38 10.55 4.66
Jhr A30 −33.37 7.58 7.01
Jhr S90 −3.59 4.32 6.47
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Table 3. Reported vertical accuracies of SRTM data.

Reference Average height Continent
accuracy (m)

Rabus et al. (2003) 6.00 European
Sun et al. (2003) 11.20 European
SRTM mission specification 16.00 Global
(Rodriguez et al., 2005)
Berry et al. (2007) 2.54 Eurasia

3.60 Global
Farr et al. (2007) 6.20 Eurasia
Wang et al. (2011) 13.80 Eurasia
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Table 4. Model validation results.

Model Calibrated Manning’s n MAE (m)
name roughness coefficient (validation)

channel floodplain

Jhr L1 0.0500 0.0575 0.40
Jhr L2 0.0450 0.0575 0.38
Jhr L20 0.0425 0.0575 0.37
Jhr L30 0.0450 0.0575 0.38
Jhr L90 0.0450 0.0550 0.39
Jhr T20 0.0500 0.0750 0.60
Jhr S90 0.0375 0.0500 0.60
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Table 5. Effects of DEMs (source and resolution) on HEC-RAS simulations.

Model name Inundation area Area difference F F ∗

(km2) (%) (%) (%)

Jhr L1 25.86 – – –
Jhr L2 25.78 −0.3 96.6 –
Jhr L20 25.96 0.4 92.9 –
Jhr L30 26.18 1.2 92.2 –
Jhr L90 25.84 −0.1 89.4 –
Jhr T20 29.23 13.0 73.7 74.2
Jhr S90 16.58 −35.9 48.9 49.6

∗ Overlap-fit percentage F (%) of the floodplain inundated area with those from
LiDAR DEMs of the same resolutions (Jhr L20, Jhr L90).
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Table 6. Summary of Mean Absolute Difference (MAD) in terms of water surface elevation
simulated by the models.

Model name MADWSE (m)

Jhr L1 –
Jhr L2 0.06
Jhr L20 0.05
Jhr L30 0.05
Jhr L90 0.08
Jhr T20 1.12
Jhr S90 0.76
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Fig. 1. Layout map of study area: Johor River, Malaysia 4 
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Fig. 2. Original DEMs used in this study, based on: a) LiDAR data; b) Contour map; c) 6 

ASTER data; and d) SRTM data. 7 
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Fig. 3. Comparison between GPS point elevations and elevations derived by the different 9 

DEMs: a) LiDAR DEM at different resolution; and b) different sources of DEMs 10 

Figure 1. Layout map of study area: Johor River, Malaysia.
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ASTER data; and d) SRTM data. 7 

 8 

Fig. 3. Comparison between GPS point elevations and elevations derived by the different 9 

DEMs: a) LiDAR DEM at different resolution; and b) different sources of DEMs 10 

Figure 2. Original DEMs used in this study, based on: (a) LiDAR data; (b) Contour map;
(c) ASTER data; and (d) SRTM data.
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Figure 3. Comparison between GPS point elevations and elevations derived by the different
DEMs: (a) LiDAR DEM at different resolution; and (b) different sources of DEMs.
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Figure 4. Contour map of MAE across the parameter space for eight different models (see
Table 1): (a) Jhr L1, (b) Jhr L2, (c) Jhr L20, (d) Jhr L30, (e) Jhr L90, (f) Jhr T20, (g) Jhr A30,
and (h) Jhr S90.
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 1 

Fig. 5. Effect of DEMs on Johor River. Inundation map resulting from (a) Jhr L1; (b) Jhr L2; 2 

(c) Jhr L20; (d) Jhr L30; (e) Jhr L90; (f) Jhr T20and (g) Jhr S90 3 

Figure 5. Effect of DEMs on Johor River. Inundation map resulting from (a) Jhr L1; (b) Jhr L2;
(c) Jhr L20; (d) Jhr L30; (e) Jhr L90; (f) Jhr T20, and (g) Jhr S90.
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 1 

Fig. 6. Maximum water surface elevation along the Johor River for the six hydraulic models 2 

compared to that simulated by the reference model. 3 

Figure 6. Maximum water surface elevation along the Johor River for the six hydraulic models
compared to that simulated by the reference model.
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 1 

Fig. 7. Comparison of uncertainty bounds (5
th

, 50
th

 and 95
th

 percentiles by considering 2 

parameter uncertainty only) between the reference model and the other models. The reference 3 

model uncertainty bound are shown in gray areas, while the uncertainty bound of the other six 4 

models are shown in dashed line.  5 

 6 

 7 

Figure 7. Comparison of uncertainty bounds (5th, 50th and 95th percentiles by considering
parameter uncertainty only) between the reference model and the other models. The reference
model uncertainty bound are shown in gray areas, while the uncertainty bound of the other six
models are shown in dashed line.
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