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Author Comments #1: 

We would like to thank Reviewer#1 for their careful consideration of this manuscript (hess-2014-

240) and for their helpful and insightful comments. We have carefully considered the reviewer’s 

comments and worked to include them in the revised version of the manuscript according to the 

proposed suggestions. 

Please find below the responses to the reviewer’s comments. 

 

General comments 

This paper is an interesting evaluation of the skill of the Global Flood Detection System to measure 

river discharge from satellite passive microwave signals, and is certainly worthy of publication 

after some correction. The correlation between the daily ground station-measured water discharge 

and the satellite signal is measured for a range of rivers with different widths, floodplain areas, 

land cover types, climatic regions and other factors. For African, Asian and North American rivers, 

the mean R values are less than 0.5, and the correlation is only medium. Only European and South 

American rivers give high correlation (>0.5). It might be argued that a judicious set of ranges of R 

has been employed (R < 0.3, 0.3 – 0.7, >0.7), in which many rivers lie in the middle range, but 

still may have R values < 0.5, so that the correlation is only medium. The authors should comment 

on this. The relatively low R values show the difficulty of obtaining a reasonable signal-to-noise 

ratio from a 10km pixel when the flood width is often substantially less than the pixel width. As a 

result, it is obviously a sensible idea to identify sites where the method will work because of the 

associated site variables, and use these for future studies, rather than trying to make the method 

work for all sites. The method would also appear to work best for detecting floods rather than 

forecasting them, since a 4-day average signal is used, partly to cope with the time lag between 

changes in stage at a gauging station and associated changes in flood extent. 

 

 



Specific comments 

 

7333/14: Make it clear that you are talking about river floods (or does this include deaths in the 

tsunami of 2001?).   

Author’s reply: Modified in the manuscript as suggested by the Reviewer. 

 

7337/6 In a flood situation, is the error on the observed discharge not higher than the 5–20% 

quoted?  

Author’s reply: Explanation added on the manuscript as suggested.  

The uncertainty of river discharge is higher during floods events when the stage-discharge 

relationship, the so-called rating curve, is used. As evaluated by Pappenberger et al. (2006), the 

analysis of rating curve uncertainties leads to an uncertainty of the input of 18–25% at peak 

discharge. Di Baldassarre and Montanari (2009) showed that the total rating curve errors increase, 

when the river discharge increases and varies from 1.8% to 38.4% with a mean value of 21.2%.  

 

7342/13 What was the spread of the R2 values for the fits?   

Author’s reply: answered below. 

 

 

r2 scores [validation] 

 

[0-0.3] = 163 

[0.3-0.5] = 54 

[0.5-0.75] = 68 

[>0.75] = 37 

 

Figure 1. r2 scores obtained on the validation.  

 

In Fig. 3b, please make it clearer that different rating equations are being used for different months, 

not simply that in fig. 3a.  

Author’s reply: Clarified in the figure caption as suggested by the reviewer. 



In fig. 3a, why aren’t there 15 points on the graph, one for each March between 1998-2002?  

Author’s reply: The calibration was done for 5 years (1998-2002), therefore the five points 

represent the five mean values for March in this case. 

 

7344/20 A little more description of the Gini index might help the reader. 

Author’s reply: explanation added on the manuscript. 

 

Gini´s mean difference was first introduced by Corrado Gini in 1912 as an alternative measure of 

variability and the parameters derived from it, such as the Gini index, also referred to as the 

concentration ratio (Yitzhaki and Schechtman, 2013). The Gini index is mostly popular in 

economics, however it is also used in other areas, such as building decision trees in statistics to 

measure the purity of possible child nodes, and it has been compared with other equality measures 

(Gonzales,L., et al. 2010).  

 

How does the Random Forest method cope if the variables are correlated (as e.g. discharge and 

river width probably are)? Is the correlation between variables output from the method as they 

would be from a principal component analysis? If so, it would be useful in the subsequent analysis 

to know the correlations between variables to know which were most significant.  

Author’s reply: explanation added on the manuscript. 

 

The random forests algorithm, introduced by Breiman (2001), is a modification of bagging that 

aggregates a large collection of tree-based estimators and has better estimation performances than 

a single random tree: each tree estimator has low bias but high variance whereas the aggregation 

achieve a bias-variance trade-off.  This algorithm has good predictive performances in practice, 

they work well for high dimensional problems and they can be used with multi-class output, 

categorical predictors and imbalanced problems. Moreover, the random forests provide some 

measures of the importance of the variables with respect to the prediction of the outcome variable. 

The random forest algorithm was selected instead of the Principal Component Analysis as we had 

mixed data types because some of the variables to be study were categorical instead of continuous.  

 



Although, the effect of the correlations on these measures has been studied recently (see Archer 

and Kimes (2008), Strobl et al. (2008), Nicodemus et al. (2010), Nicodemus (2011), Auret and 

Aldrich (2011), Tolosi and Lengauer (2011), Grömping, U. (2009) and Gregorutti et al. (2013)) 

there is no yet a consensus on the interpretation of the importance measures when the predictors 

are correlated and on what is the effect of this correlation on the importance measure. 

 

In order to test the effect on the results when correlated variables were included in the analysis, an 

independent Random Forest analysis was carried out during the analysis (not shown in the paper) 

for the same variables but excluding the river width and the presence of floodplains and wetlands 

variables. Results also showed that the mean daily observed discharge had the highest importance 

and the presence of hydraulic structures (mainly dams) and of river ice had the lowest importance 

to classify a location as good or poor performance. 

 

7345/25 Do you really mean that the signal may have a large natural variation, or that the noise is 

instrument noise?  

Author’s reply: answered and edited on the manuscript as follows. 

We meant that the signal to noise ratio might be low for a site or have intermittent instrument noise 

occasionally producing intermittent positive spikes in discharge. We have edit this in the 

manuscript. 

 

73446/8 R = 0.3 is chosen as a threshold in fig. 4, yet this is only a medium correlation. What 

happens if you chose R = 0.5 as the threshold, are there too few sites satisfying this criterion then? 

Author’s reply: For this study, 42 sites have R>0.5 

 

7346/23 In fig. 5, in the eastern USA, many stations had R > 0.3 in the calibration (fig. 4), but have 

NSE < 0 in validation. Why is this? The rivers are presumably often wide and on floodplains near 

the sea at these observation points?  

Author’s reply: explanation added on the manuscript. Not the map below as it is complementary 

to figures already shown in the manuscript. 

Figure 5 doesn’t shows the calibration score. It shows the initial correlation between GFDS signal 

vs. in situ observed discharge.  



The figure below (Fig. 2 of the Author’s comments) shows the R score obtained during the 

validation for stations located in Easter USA (no. of stations=66). In addition, it shows the pixels 

values when the river width is higher than 1km (Yamakazi et al., 2014) and the Global Lake and 

Wetland Database layers (Lehner and Doll, 2014).  

 

Figure 2. R score of the validation (n=66 station) for Eastern USA.  

 

As shown in the manuscript for the whole of the stations, we conclude that most of the stations in 

this region obtained poor scores due to a number of factors: ~64% of these stations have a mean 

discharge value lower than 500 m3s-1 and ~88% of the stations are located at river width lower 

than 1km. In addition, ~59% of the stations are located in wetlands areas. Sites with these 

characteristics might not provide useful outputs when aiming to measure river discharge through 

the use of satellite flood signal, as it is the case of some of this stations.  

 

7347/10 It is probably true that locations with a river width higher than 1 km are more likely to 

score an R larger than 0.3, but it would be worth quantifying R for widths > 1km and showing that 

it’s significantly larger than 0.3. Author’s reply: Quantification added on the manuscript. The mean 

R score is 0.60. Where 26 out of 64 (~41%) have R> 0.75.   



A related point is, in fig. 6a, could you explain why some rivers of 100m or less width have R 

values as high as the widest rivers? Intuitively you would have thought the brightness temperature 

for a pixel containing water would depend on the river width (perhaps I’m confusing the river 

width with the flood width here?).  

Author’s reply: explanation added to the manuscript. 

 

The retrieval of the satellite signal also depends on the floodplain geometry. As soon as the river 

floods and water goes over-bank, the proportion of water in the wet pixel greatly increases. So the 

score should be also high for small rivers with a proportionally big floodplain.  

 

7347/24 might not provide reliable results: : It would be better to quantify this rather than just 

stating it. You could use a statistical test to compare the rivers with Q < 500m3/s that have R < 0.3 

with rivers with Q > 500 that have R > 0.3, and show that they were significantly different. 

Author’s reply: Quantification added to the manuscript. 

 

As 77% of the stations with Q<500 m3/s, have R< 0.3, while 91.5% of the stations with Q>500 

m3/s have R >0.3, locations with discharge of less than 500 m3s-1 might not provide reliable results 

for a global satellite-based monitoring system. 

 

Technical corrections 

All comments were adapted according to the Reviewer’s suggestion. 

 

7333/16 Golnaraghi 2009 and Kundzewicz 2012 refs missing /28 UNOSAT 2013 ref missing.  

Modified 

7335/20 climate-drive -> climate-driven /27 global -> a global 7337/9 us -> as  

Modified 

7340/4 Example -> Examples /17 define M/C signals /22 split sentence at ‘an array’ 

Modified 

7345/8 as validated -> were validated /13 calibrate -> calibrated /14 discharge satellites -> satellite 

discharge  

Modified 



7346/16 two-years -> two years /20 shorted -> shorter  

Modified 

7348/8 25x 25 pixel -> 25 x 25 km pixel /28 To note -> Note  

Modified 

7349/22 Where highest -> The highest  

Modified 

7350/8 presence or not -> presence or absence /20 for - the most of – the -> for most of the  

Modified 

7351/12 in some -> on some  

Modified 

7352/2 test -> tested  

Modified 

7354/ fig 12 caption: was chose -> was chosen; of the stations -> or the stations; station -> stations  

Modified 

7353/2 replace the semicolons with commas in this long sentence /20 satellite measured -> 

satellite-measured  

Modified 

7354/10 no verb in sentence /15 a more -> more 

Modified 

 

  



Author Comments #2: 

We would like to thank Dr Guy Schumann for his very useful and constructive comments on the 

paper (hess-2014-240). We have carefully considered the reviewer’s comments and worked to 

include them, when considered appropriate, in the revised version of the manuscript according to 

the proposed suggestions. Please find below the responses to the reviewer’s comments. 

 

Review of the paper ’Evaluation of GFDS’ by B. Revilla-Romero et al.. This is an interesting paper 

reviewing the factors influencing the accuracy of discharge measurement as provided by GFDS. 

Papers of this type (i.e. evaluation of global Earth monitoring systems and identification/discussion 

of influencing factors) are highly valuable and absolutely necessary to add both scientific 

credibility and reliability to a global measurement or/and model system, which will ultimately lead 

to an increased fidelity and ’trust’ in that system by the end-user/decision. 

 

In my opinion, this paper should be published in HESS after addressing some minor to moderate 

comments: 

- Introduction (7334, top of page): Please mention also the International Disaster Charter and 

efforts such as CEOS etc. in view of space-based support of relief services during disasters. 

Author’s reply: citation completed on the manuscript as suggested by reviewer. 

 

- 7335 (L 26): Replace ’compared’ with ’comparable’. 

Author’s reply: modified on the manuscript. 

 

- 7337 (L 14): I agree with this statement but would appreciate if the authors added a sentence to 

this along the lines of: ’; the extent to which this is true needs to be fully investigated however.’ 

Author’s reply: added to the manuscript as suggested by reviewer 

 

- 7342: I understand that you want to use linear equations for simplicity but would a simple power-

law function not yield similar or better result. Have the authors tried that? 

Author’s reply: 

To test the results using this suggested alternative approach, we used a power-law function: 

y= k * xn      (1) 



where y is the in situ observed discharge and x the satellite signal. Then, taking the logarithm of 

both sides of the Eq.1 yields the linear equation: 

log10 y = log10 k + n* log10 x     (2) 

where log10 k is the intercept and n the slope. After the calculation of both constants k and n, the 

power law function can be used to calibrate the GFDS signal into discharge units (m3s-1) as done 

when using the linear regression approach. An example is shown in Figure 3c of this document for 

the same station shown on Figure 3 of the manuscript (Senanga: Long 23.25, Lat. -16.116; 

Zambezi River). 

 

Applying the different power law functions obtained for each month to the GFDS signal for the 

same two-year period as on the manuscript, alike GFDS measured discharge values were obtained. 

The skill scores achieved for the validation using the power law (e.g. Fig. 3d) are similar to those 

obtained using linear regression. In view of the results and although this approach also produce 

valid results, we prefer to leave the methodology as it is on the manuscript. 

 

Added to the manuscript: (section 3.2) Power law fitting was also tested to calibrate the signal into 

discharge units yielding similar results (see Open Discussion Author's Response). 



 

Figure 3 (a) Scatterplot for the Senanga station (Long 23.25, Lat. −16.116) in the Zambezi River 

(Africa). (b) Validation hydrograph for 2003–2004 and skill scores for Senanga. The (monthly) 

linear rating equation was used to calibrate the signal into discharge units. Different rating 

equations were used for different months. (c) Scatterplot for the Senanga station. (d) Validation 

hydrograph for 2003–2004 and skill scores for Senanga. The (monthly) power-law function was 

used to calibrate the signal into discharge units. Different equations were used for different months. 

Note that Figure 3a of the manuscript was amended due to a typo mistake on the linear equation 

values. (Fig. 3 (a,b) of this document correspond to Fig. 3(a,b) on the manuscript) 



- 7343: Since there may be a non-linearity between the station Q and the satellite Q as argued on 

the previous pages (time lag, etc.), why not employ a Spearman correlation? The Pearson assumes 

linearity. 

Author’s reply:  

By using a rating equation for each month individually, instead of a single rating equation for the 

full period, to calibrate the signal into discharge units the derived daily discharge values adjusted 

better on the timing and also during low flow periods. 

 

As suggested by reviewer, Spearman correlations were calculated for all the stations. Table 1 

shows the continental average Pearson and Spearman skill scores. For all continents, average 

higher values (~106%) were obtained using Spearman correlation in comparison with Pearson 

score. However, we argue that changing the skill score used on this part of the analysis and for 

illustration on figures 6-12, will not impact the main findings presented on this manuscript.    

 

Table 1. Mean continental Pearson and Spearman skill scores, obtained on the validation. 

*4 stations were excluded on the calculation due to accidental data loss, therefore score varies 

from manuscript.  

Continent Mean Pearson  Mean Spearman  

Africa 0.382 0.403 

Asia 0.358 0.438 

Europe 0.508 0.537 

North America 0.502* 0.538 

South America 0.694 0.720 

Total 0.527 0.560 

 

Added to the manuscript: (section 3.3) Spearman's rank correlation coefficient was also calculated 

to assess the validation performance. While Pearson benchmarks linear relationship, Spearman 

benchmarks monotonic relationship. Spearman’s validation scores just obtained a mean value 6% 

higher than Pearson mean score (see Open Discussion Author's Response). On this manuscript, 

results are analysed based on the scores obtained using Pearson correlation coefficient. 

 



- 7343: The NSE as argued is showing skill in some data or model when NSE > 0 since NSE = 0 

means as good as mean in observed data, so why not consider the fact that when NSE > 0, then the 

use of satellite discharge should be preferred to long term observed mean, which means 

’satisfactory’ but not ’good’ performance. 

Author’s reply: Sentence edited on the manuscript. Results and figures were already showed 

number of stations with NSE> 0 and NSE>0.50 

- Of course the completeness or incompleteness of each discussion section about the factors 

influencing the validation / calibration results can be argued forever but I think as a first step 

analysis and discussing the main factors these sections give a very good appreciation. For that 

reason maybe the title could be changed to: ’.... : a first analysis of the influence of local factors’, 

but I leave that decision to the authors and editor(s). 

Author’s reply: We acknowledge this suggestion, but would prefer not to make the manuscript’s 

title longer. 

 

- It is great that there is a lot of future work planned on this topic by the team – looking forward to 

it. 

Author’s reply: Thank you for your encouragement. 
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- Text: all modifications where it was affirmed “added/edited/modified on the manuscript” 

on the present author’s replies section. 

- Tables: additional tables were not added.  

- Figures: Fig.3a due to a typo mistake on the original figure. 

- References: added all new references from the below list. 

 

Please find below a marked-up manuscript version with the modifications made on the manuscript 

(highlighted in both red and blue)  
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Abstract  9 

One of the main challenges for global hydrological modelling is the limited availability of 10 

observational data for calibration and model verification. This is particularly the case for real time 11 

applications. This problem could potentially be overcome if discharge measurements based on 12 

satellite data were sufficiently accurate to substitute for ground-based measurements. The aim of 13 

this study is to test the potentials and constraints of the remote sensing signal of the Global Flood 14 

Detection System for converting the flood detection signal into river discharge values. 15 

The study uses data for 322 river measurement locations in Africa, Asia, Europe, North America 16 

and South America. Satellite discharge measurements were calibrated for these sites and a 17 

validation analysis with in situ discharge was performed. The locations with very good 18 

performance will be used in a future project where satellite discharge measurements are obtained 19 

on a daily basis to fill the gaps where real time ground observations are not available. These include 20 

several international river locations in Africa: Niger, Volta and Zambezi rivers. 21 

Analysis of the potential factors affecting the satellite signal was based on a classification decision 22 

tree (Random Forest) and showed that mean discharge, climatic region, land cover and upstream 23 

catchment area are the dominant variables which determine good or poor performance of the 24 

measurement sites. In general terms, higher skill scores were obtained for locations with one or 25 

more of the following characteristics: a river width higher than 1km;, a large floodplain area and 26 

in flooded forest;, with a potential flooded area greater than 40%;, sparse vegetation, croplands or 27 

grasslands and closed to open and open forest;, Leaf Area Index > 2;, tropical climatic area;, and 28 



without hydraulic infrastructures. Also, locations where river ice cover is seasonally present 29 

obtained higher skill scores. The work provides guidance on the best locations and limitations for 30 

estimating discharge values from these daily satellite signals.  31 

Keywords: Floods; Passive microwave sensing; Discharge measurement; global evaluation; local 32 

 33 

1 Introduction 34 

 35 

Flooding is the most prevalent natural hazard at the global scale, often with dire humanitarian and 36 

economic effects. According to the International Disaster Database (EM-DAT), an average of 175 37 

flood events per year occurred globally between 2002-2011, affecting an average of 116.5 million 38 

people, and causing economic losses of US$25.5 billion. According to MunichRe (2014), the 39 

costliest natural catastrophe worldwide in terms of overall economic losses in 2013 was the 40 

flooding in southern and eastern Germany and neighbouring states in May and June with estimated 41 

damages of $15.2 billion. In June of the same year, flooding in India cost 5000 lives, with a further 42 

2 million affected (MunichRe, 2014; EM-DAT). 43 

The Global Assessment Report (UNISDR, 2011) states that the proportion of world population 44 

living in flood-prone river basins increased by 114 percent over four decades from 1970 to 2010. 45 

Additionally, while economic losses due to river floods have increased over the last 50 years, the 46 

number of casualties has decreased. The reduction in loss of life has been associated with the 47 

integration of early warning systems with emergency preparedness and planning at local and 48 

national levels (Golnaraghi et al., 2009, Kundzewicz et al., 2012).  49 

Global early warning systems are needed to improve international disaster management. These 50 

systems can be used for both early forecasting, for better preparedness, and early detection, and 51 

for an effective response and crisis management. Their necessity was emphasized in 2005, and 52 

since then, it has been a key element of international initiatives such as the “Hyogo Framework 53 

for Action 2005-2015” and, on a continental level, the European Commission Flood Action 54 

Programme. After the 2002 floods on the Elbe and Danube rivers, the Commission supported the 55 

development of the European Flood Awareness System (EFAS) (Bartholmes et al., 2009; Thielen 56 

et al., 2009) by the Joint Research Centre to increase preparedness for riverine floods across 57 

Europe. Currently, a number of organisations are involved in rapid mapping activities after major 58 



(flood) disasters such as UNOSAT (2013), GDACS (2013), “Space and Major Disasters” (Disaster 59 

Charter, 2014), the Committee on Earth Observation Satellites (CEOS) Flood Pilot and the online 60 

Dartmouth Flood Observatory (http://floodobservatory.colorado.edu/). In Europe, Copernicus is 61 

the Earth Observation Programme which actively supports the use of satellite technology in 62 

disaster management and early warning systems for improved emergency management. 63 

Flood warning systems typically rely on forecasts from national meteorological services and in 64 

situ observations from hydrological gauging stations. However, this capacity is not equally 65 

developed across the globe, and is highly limited in flood-prone, developing countries. Ground 66 

based hydro-meteorological observations are often either scarce or, in cases of transboundary 67 

rivers, data sharing among the riparian nations can be limited or absent. Therefore, satellite 68 

monitoring systems and global flood forecasting systems are a needed alternative source of 69 

information for national flood authorities not in the position to build up an adequate measuring 70 

network and early warning system. In recent years, there has been a notable development in the 71 

monitoring of floods using satellite remote sensing and meteorological and hydrological modelling 72 

(Schumann, et al. 2009).  73 

A variety of satellite-based monitoring systems measure characteristics of the Earth’s surface, 74 

including terrestrial surface water, over large areas on a regular basis (van Westen, 2013). Such 75 

remote sensing is based on surface electromagnetic reflectance or radiance in the optical, infrared 76 

and microwave bands. Some key advantages of microwave sensors is that they provide near-daily 77 

basis global coverage and, at selected frequencies, relatively little interference from cloud cover.  78 

Two presently-operating microwave remote sensors with near-global coverage are the Tropical 79 

Rainfall Measuring Mission1 (TRMM) operational from 1998 to present and the Advanced 80 

Microwave Scanning Radiometer for Earth Observation System2 (AMSR-E) which was active 81 

from June 2002 to October 2011, followed by AMSR2 which was launched in May 2012 and is 82 

onboard the Japanese satellite GCOM-W13, and from which, brightness temperature data are being 83 

distributed from January 2013 onwards. For future work, the European Space Agency (ESA) and 84 

NASA have other missions to put similar instruments in orbit, capturing passive microwave energy 85 

                                                           
1 http://trmm.gsfc.nasa.gov 
2 http://aqua.nasa.gov/about/instrument_amsr.php 
3 http://suzaku.eorc.jaxa.jp/GCOM_W/w_amsr2/whats_amsr2.html 



at 36.5 GHz, such as ESA’s Sentinel-3 satellites (planned launch in 2015 and 2016) and NASA’s 86 

Global Precipitation Mission (GPM) (launched in February 2014) to replace TRMM. 87 

Using AMSR-E data initially, De Groeve et al. (2006) implemented a method for detecting major 88 

floods on a global scale, based on the surface water extent measured using passive microwave 89 

sensing. Also, Brakenridge et al. (2005, 2007) demonstrated that orbital remote sensing can be 90 

used to monitor river discharge changes. However, as underlined by Brakenridge et al. (2012, 91 

2013), extracting the microwave signal and converting it into discharge measurements is not 92 

straight-forward and depends on factors such as sensor calibration characteristics and perturbation 93 

of the signal by land surface changes. These changes can be found for example in irrigated 94 

agricultural zones and in areas where rivers flow along forested floodplains (Brakenridge et al., 95 

2013). As rivers discharge increases, river level (stage), river width, and river flow velocity all 96 

increase as well, and the challenge is to measure one or more of these accurately enough to provide 97 

a reliable discharge estimator, and compare against a background of other surface changes that 98 

may affect what is measured from orbit. 99 

There remains also the need to convert such discharge estimators to actual discharge units. Using 100 

ground discharge data or climate-driven runoff models for calibration and validation, methods to 101 

convert the remote sensing signal to river discharge have been previously tested at particular 102 

stations with output from the Global Flood Detection System (GFDS, 103 

http://www.gdacs.org/flooddetection/) and by different investigators (Brakenridge et al. 2007, 104 

Brakenridge et al. 2012, Khan et al. 2012, Kugler and De Groeve, 2007, Moffitt et al. 2011, Hirpa 105 

et al., 2013, Zhang et al. 2013). Yet the results are from different approaches and not easily 106 

comparableed, making an assessment of the potential performance on a global scale difficult. 107 

Furthermore, definite conclusions about the influence of various environmental factors on the 108 

signal performance have not been reached. Therefore, in this study, a rigorous broad assessment 109 

of the method is undertaken with a systematic evaluation of the relationship between skills 110 

obtained between ground- and satellite-based discharges, and the local characteristics of the 111 

stations. Specifically this study addresses mean observed discharges, river widths, land cover 112 

types, leaf area indices, climatic regions, and flood hazard maps, and the presence or absence of 113 

large floodplains, wetlands, river ice and hydraulic control infrastructure.   114 



Our goal is to assess the potentials and limitations of the satellite-based surface water extent signal 115 

data for river discharge measurements with a large number of stations. Moreover, the relationship 116 

between ground and satellite sets of discharge measurements and the local surface characteristics 117 

is examined in order to provide guidelines for selection of observation sites.  For this purpose, 118 

river catchments located in a range of different climatic and land cover types were selected in 119 

Africa, Asia, Europe, North America and South America. The remainder of the paper is structured 120 

as follows: section 2 presents the study regions and data, section 3 describes the analysis 121 

methodologies, and the results are discussed in section 4. 122 

 123 

2 Study regions and data 124 

 125 

2.1. Study Regions and in situ discharge data 126 

Figure 1 shows the study basins and in situ discharge locations. The selected stations are all located 127 

near major rivers of the world (Global Runoff Data Centre, 2007). The continental distribution and 128 

the upstream catchment area of the stations are summarized in Table 1. We selected the locations 129 

to be representative of a broad variety of local conditions: they belong to nine different main land 130 

cover classes (aggregated from GlobCover, 2009) and five main types of climate (Peel et al., 2007). 131 

The characteristics are listed in Table 2.  132 

For Africa, Asia, Europe, North America and South America, daily in situ discharge values were 133 

used from the Global Runoff Data Centre (GRDC) database. In addition, for the South African 134 

stations, the discharge data were provided by the South African Water Affairs (DWA, 135 

http://www.dwa.gov.za/). The selected stations for all these continents include daily data between 136 

1998 and 2010, however not all stations have continuous data during this time period. From 1998, 137 

the length of the time series was required to be above six years. The longest time series available 138 

was of 13 years, with a median value of 8.5 years. In situ discharge information may itself be 139 

affected by large and variable uncertainty, mostly on the measurement of the cross-sectional area 140 

of the channel and mean flow velocity at the gauge or control site (Pelletier, 1988). Although 141 

generally unknown, these values are typically between the 5-20% at the 95% confidence levels as 142 

highlighted in studies such aus Hirsch and Costa (2004), Di Baldassarre and Montanari, (2009), 143 

Le Coz et al. (2014), and Tominsk (2014). However, the erroruncertainty of river discharge is even 144 



higher during floods events when the stage-discharge relationship, the so-called rating curve, is 145 

used. As evaluated by Pappenberger et al. (2006), the analysis of rating curve uncertainties leads 146 

to an uncertainty of the input of 18–25% at peak discharge. Di Baldassarre and Montanari (2009) 147 

showed that the total rating curve errors increase, when the river discharge increases and varies 148 

from 1.8% to 38.4% with a mean value of 21.2%. For the purposes here, these data are, however, 149 

regarded as “ground truth”. We acknowledge the possible errors, however, and note that, for some 150 

river reaches, satellite-based methods may actually track discharge changes more accurately than 151 

ground-based measurements using stage; the extent to which this is true needs to be fully 152 

investigates however. 153 

(INSERT FIG 1 HERE) 154 

(INSERT TABLE 1 HERE) 155 

(INSERT TABLE 2 HERE) 156 

2.2. Satellite-derived data 157 

The Global Flood Detection System (GFDS) produces near real time maps and alerts for major 158 

floods using satellite-based passive microwave observations of surface water extent and 159 

floodplains. It is developed and maintained at the European Commission Joint Research Centre 160 

(JRC) in collaboration with the Dartmouth Flood Observatory (DFO). The surface water extent 161 

detection methodology using satellite-based microwave data is explained in Brakenridge et al. 162 

(2007) and Kugler and De Groeve (2007). Here, only the basic principles are recalled.  163 

At each pixel, the method uses the difference in brightness temperature, at a frequency of 36.5 164 

GHz, between water and land surface to detect the proportion of within-pixel water and land. The 165 

retrieved brightness temperature data are first gridded into a product with a pixel size of (near the 166 

equator) 10 x 10 km (0.09 degree x 0.09 degree), and the system provides a daily output.  For our 167 

work, the merged TRMM/AMRS-E product was used 168 

(http://www.gdacs.org/flooddetection/download.aspx); the gridded data are being provided in the 169 

GCS WGS 1984 projection. For our period of study, 1998-2010, the merged data product was 170 

employed for the time period of its availability (June 2002-2010), whereas stand-alone TRMM 171 

data was used for the remaining time period (1998 to June 2002) and available latitudes. Note that 172 



from 2013 the system is providing the merged product TRMM/AMSR2, however this period is 173 

out of our scope.  174 

In the GFDS system, the microwave signal (s) is defined as the ratio between the measurement 175 

over wet pixel (M) and the measurement over a 7 pixel x 7 pixel array of background calibration 176 

(C) pixel, known as the M/C ratio (Brakenridge et al. 2012, De Groeve, 2010). Better discharge 177 

signal values may be achieved when the measurement pixel is centred over a river reach and no 178 

hydraulic structures are present (Moffitt, et al., 2011). However, this is sometimes difficult to 179 

achieve due to the desired co-location with gauging stations (Brakenridge et al. 2012) or because 180 

the potential measurement pixels within the raster are fixed, geographically. 181 

 182 

2.3. Other important datasets and maps 183 

The quality of the microwave signal detected by the satellite sensors can be influenced by local 184 

ground conditions including extreme rainfall, snow/ice, land cover/use and topography 185 

(Brakenridge et al., 2012). For example, forest is a type of land cover which influences the 186 

microwave emission properties due to the biometric features of vegetation such as crown water 187 

content and shape and size of leaves (Chukhlantsev, 2006). In this study, the effects of the local 188 

ground conditions on the performance of the satellite signal were analysed as a function of the 189 

following factors:  190 

- River width: channel width from Yamazaki et al. (2014), estimation based on SRTM 191 

Water Body Database and the HydroSHEDS flow direction map and for which the map 192 

was upscaled from 0.025 to 0.1 degree, taking the mean of the river grid values in the 4 x 193 

4 area. 194 

- Mean observed discharge: For each station, a mean discharge value for the study period 195 

was calculated from daily ground data (mainly from the GRDC dataset). 196 

- Upstream catchment area (GRDC 2007) data: The GRDC river network was used to 197 

visually select those stations located close to the “main rivers” classified by GRDC, and to 198 

use the values of the upstream catchment area for each station. Note that upstream 199 

catchment area values are missing from all South African stations from DWA data 200 

provider.  201 



- Presence of Floodplains, Flooded Forest and Wetlands: This was obtained from the 202 

Global Lakes and Wetlands Database Level 3, a global raster map at 30-second resolution 203 

which comprises lakes, reservoirs, rivers and different wetland types (Lehner and Doll, 204 

2004). 205 

- Flood extent: We used the fractional coverage of potential flooding of 25 km by 25 km 206 

cells for a 100 year return period from the Global Flood Hazard Map derived using a model 207 

grid (HTESSEL+CaMa-Flood) (Pappenberger et al. 2012). 208 

- Land cover: We used land cover data from the Global Land Cover 2009 (GlobCover 2009) 209 

(ESA and UCLouvain 2010). The 19 labels were aggregated into 8 types of land cover 210 

depending on the vegetation type and density to synthesize the outputs (see Appendix Table 211 

A 1).  Further visual category checking was performed using GoogleMaps display for the 212 

sites, and where necessary, land cover classes changed accordingly. An additional category 213 

was added, for sparse vegetation areas where crops are grown along or near the river 214 

channels. 215 

- Leaf Area Index: A global reprocessed Leaf Area Index (LAI) from SPOT-VGT is 216 

available for a period of 1999- 2007 (http://wdc.dlr.de/data_products/SURFACE/LAI/). 217 

This LAI product is a global dataset of 36 ten-day composites at a spatial resolution of the 218 

CYCLOPES products (1 km). For our analysis, a modified version of this product was 219 

used, which was upscaled to a spatial resolution of 10 km.  220 

- Climatic areas: We used the Köppen-Geiger climate map of the world (Peel et al. 2007) 221 

to distinguish the main climate areas: tropical, arid, temperate, cold and polar (see Table 222 

2). 223 

- Presence of river ice: Through the signal, the presence of river ice cover can also be 224 

detected in cold land regions.  The Circum-Arctic Map of Permafrost and Ground-Ice 225 

Conditions (Brown et al., 2002) map was used here. Examples of these rivers are Yukon 226 

and Mackezie in North America and Lena River in Russia. As is the case on the ground, 227 

discharge under ice cover is left largely unmeasured as both water area and stage no longer 228 

are responsive to discharge variation. 229 



- Dam location: Hydraulic structures can disrupt the natural flow of water, and therefore 230 

may alter the expected performance of the satellite signal on that location. For this analysis 231 

the Global Reservoir and Dam (GRanD) (Lehner et al., 2008) dataset was used. 232 

 233 

3 Methodology 234 

 235 

3.1. Satellite signal extraction  236 

In total, 398 locations for satellite-based measurement were selected which overlap spatially and 237 

temporally with available in situ stations providing daily measurements. Since satellites never pass 238 

directly over the same track at exactly the same time, the operational GFDS applies a four day 239 

forward-running mean to systematically calculate the M/C signals; this also commonly fills 240 

between any missing days (Kugler and De Groeve, 2007). Furthermore, for each observation site, 241 

on the GFDS system the signal is calculated as the average signal of all measurement pixels under 242 

observation for each location (which can be one or more pixels) (GDACS, 2014). Thus, in some 243 

cases, even a 10 km pixel is not large enough as a measurement site, and would entirely saturate 244 

with water during flooding. A, an array of measurement pixels is instead used. In this analysis, we 245 

used the signal values from the single pixels which contain the ground station, as well as a multiple 246 

pixels selection. This includes, for each location, the pixel itself and also the three nearest 247 

neighbours of the 10 x 10 km grid. In case of multiple pixels, the signal value was calculated for 248 

the spatial median, average and maxima. Similar results were obtained globally when comparing 249 

the extracted signals (single or multiple pixels) with the in situ discharge observations. Therefore, 250 

we used the temporal and spatial averaging on the multiple pixel array as in the operational GFDS. 251 

For each site, a visual check with Google maps was carried out to assure that the largest river 252 

section was included within the finalized measurement sites (see Figure 2). 253 

(INSERT FIGURE 2 HERE) 254 

 255 

3.2. Satellite signal calibration and validation  256 

For those co-located ground stations and satellite measurement sites where both sets of data (signal 257 

and in situ discharge) were above six years in length, calibration and validation was performed 258 



using the ground information as reference. Several stations, mainly in North America, located 259 

close to man-made infrastructures such as weirs and generating stations were excluded from this 260 

analysis due to the rapidly changing behaviour of the in situ observed discharge. Also, in a satellite-261 

based approach to measure river discharge, the local river characteristics and floodplain channel 262 

geometry control the accuracy of rating curves as is the case for gauging stations on the ground 263 

(Brakenridge et al., 2012, Khan et al., 2012 and Moffitt et al. 2011). Thus we expect some 264 

measurement sites to exhibit a more robust response to discharge changes, and a higher signal to 265 

noise ratio, than others. 266 

It has been acknowledged that for large rivers, using the daily GFDS signal as a floodplain flow 267 

surface area indicator of discharge might result in a few days lag when comparing with ground-268 

based discharge (Brakenridge, 2013). Thus, stage may immediately rise at a gauging station as a 269 

flood wave approaches, but flow expansion out into the floodplain requires some increment of 270 

time. This time lag may introduce error into the scatterplots used to calculate the rating equations, 271 

and therefore lower skill scores obtained when analysing both datasets.  In addition, in previous 272 

studies (Khan et al. 2012, Zhang et al. 2013), it was observed that, in some cases, an overestimation 273 

of satellite measured discharge existed during low flow periods when using a single rating equation 274 

for the full period to calibrate signal into discharge units. For this reason, we decided to use a rating 275 

equation for each month individually, and grouping daily into monthly data. In this case the time 276 

series data for a fixed month can be treated as stationary and the derived daily discharge values 277 

adjusted better also during low flow periods.  278 

To calibrate satellite signal into discharge measurements, the first five years of data were used for 279 

both satellite signal and ground discharge for each location. Regression equations were obtained 280 

using monthly means from daily values and with which GFDS measured discharge was derived.  281 

QGFDSmeasured of X month= amonth + bmonth * signal   (1)  282 

For the sake of simplicity, for this paper, the equations were restrict to linear equations. However, 283 

as the relation is purely empirical, we leave for follow on-work more research on flexible way to 284 

fit these relations. Note that fitting straight lines to curves will reduce goodness of fit and predictive 285 

accuracy.  286 



The validation of the satellite derived daily discharge data was carried out with daily in situ data 287 

on a two-year period, and skills scores were calculated to quantify the agreement between both 288 

satellite and ground measured discharge. We are aware of the limited number of years (data) with 289 

available time series for both variables, which might influence the robustness of the calibration.  290 

In some cases there were longer time series available, but to standardised the analysis for all the 291 

stations we used five years (1998-2002 or 2003-2008 for Northern stations with AMSR-E signal) 292 

and the following two years for validation purposes (2003-2004 and 2009-2010 respectively). Note 293 

that for 36 out of the 322 stations available data length was between six years and three months to 294 

almost seven years. Validation was still carried out for the same period, but the data used for 295 

calibration was slightly reduced. As an example, Figure 3a presents the scatterplot for the month 296 

of March for the Senanga Station (Long 23.25, Lat. -16.116) in the Zambezi River (Africa) with 297 

mean values derived from the period 1998 to 2002. For the same location, Figure 3b shows the in 298 

situ observed and the GFDS measured discharge derived from the GFDS signal for the period 299 

2003-2004. 300 

(INSERT FIGURE 3 HERE) 301 

 302 

3.3. Skill scores  303 

The initial analysis of the correlation of the remote sensing signal to in situ discharge was assessed 304 

for each station and site pair through the Pearson correlation coefficient (R). For the validation, 305 

the performance of the satellite-measured discharge was also assessed using the Nash-Sutcliffe 306 

Efficiency (NSE) statistic in addition to the R skill score.  307 

One of the advantages of the R coefficient is its independence on the units of measurement, which 308 

permits the comparison of dimensionless GFDS signal data.  A small value indicates a weak or 309 

non-linear relationship between the satellite signal and discharge. For this study, we grouped the 310 

computed R values into three ranges as follows: <0.3, [0.3-0.7], and >0.7.  311 

Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) is typically used to assess the 312 

predictive power of hydrological models and was here calculated to describe the accuracy of 313 

satellite-derived discharge in comparison to gauge-observed discharge values. Higher values of 314 

the Nash-Sutcliffe statistic should indicate more correlated results, without other factors taken into 315 

account, such as autocorrelation (Brakenridge et al., 2012). However, the degree of correlation of 316 



these variables does not verify the discharge magnitudes (Brakenridge et al., 2013). A NSE value 317 

of 1 corresponds to a perfect match of modelled to the observed data whereas NSE = 0 indicates 318 

that the model predictions are as accurate as the mean of the observed data. Thus here model 319 

simulations are judged as “satisfactory” if NSE > 0.50 (Moriasi et al., 2007). The resulting scores 320 

will be classified as in Zaraj, et al. (2013): < 0, [0.2-0.5], [0.5-0.75], and > 0.75. 321 

 322 

3.4 Factors affecting the satellite signal 323 

Understanding the influence of local factors on the accuracy of the satellite flood detection is 324 

critical for practical use of the remotely sensed signal. We analysed the accuracy effects of river 325 

width, mean daily discharge, upstream catchment area, presence of large floodplain, flooded forest 326 

and wetlands, the potential flood extent, land cover type, Leaf Area Index (LAI), climatic areas, 327 

presence of river ice and hydraulic structures. To assess their influence, the fractional coverage 328 

over the measurement site was retrieved for variables with spatial coverage.  329 

First, we use the skill scores (R and NSE) obtained from a simple analysis for each individual 330 

factor or variable. Second, we seek to understand which of the surface variables have the greatest 331 

importance in determining sites with a good or poor performance. For this purpose, we use a 332 

decision tree technique called Random Forest (RF). Among other features, this allows ranking of 333 

the relative importance of each variable. The technique is described by Breiman (2001) and 334 

implemented in R by Liaw and Wiener (2002), where the reader is referred for a more detailed 335 

explanation. As a summary of the Random Forest algorithm, ntree bootstrap samples are randomly 336 

selected from the data set, a different subset is used for each bootstrap and for each sample a tree 337 

is grown, obtaining ntree trees. Random Forest is called an ensemble method because it applies 338 

the method for a number of decision trees, in this case 500, in order to improve the classification 339 

rate. Some stations are left out of the sample (out-of-bag) and used to gain an internal unbiased 340 

estimate of the generalisation error (oob errors) and to obtain estimates of the importance of the 341 

variables (Breiman, 2001). These values are averaged over the ntree trees. For the variables 342 

classification, the node impurity is measured by the Gini index. Gini´s mean difference was first 343 

introduced by Corrado Gini in 1912 as an alternative measure of variability and the parameters 344 

derived from it, such as the Gini index, also referred to as the concentration ratio (Yitzhaki and 345 

Schechtman,2013). The Gini index is mostly popular in economics, however it is also used in other 346 



areas, such as building decision trees in statistics to measure the purity of possible child nodes, 347 

and it has been compared with other equality measures (Gonzalez,L., et al. 2010).This index is one 348 

of the most frequently used measures of heterogeneity for selecting the best splitting variable 349 

(Sandri and Zuccolotto, 2008). The variables with higher decrease in Gini values (lower Gini) are 350 

those with higher importance on the classification analysis. 351 

Although for “black-box models” such as Random Forest the information is hidden inside the 352 

model structure, the prediction power is high (Palczewska et al., 2013). This method is relatively 353 

robust given outliers and noise because it uses randomly chosen subsets of variables at each split 354 

of each tree (Breiman, 2001; Chan et al., 2008). To further increase robustness, Strobl et al. (2009) 355 

states that results from the random forest and conditional variable importance should always be 356 

tested by doing multiple random forest runs using different seeds and sufficiently large ntree values 357 

to obtain robust and stable results. 358 

The quality index chosen to rank variable importance and classify good or poor locations, in the 359 

Random Forest analysis, was the Nash-Sutcliffe Efficiency (NSE) score. A threshold of NSE=0 360 

splits the data into two groups, obtaining about 50% of the data above (true or good predictive) 361 

and below (false or poor predictive) that value of NSE. The results presented here are the average 362 

of 200 runs. Furthermore, four different training sets were used by a random 70%/75%/80%/90% 363 

of the stations and wereas validated with the remaining 30%/25%/20%/10% of stations, 364 

respectively.  365 

 366 

4 Results and discussion 367 

 368 

As a first step we analysed the relationship between the satellite signal and the in situ observed 369 

discharge to have an initial understanding of the performance between the two datasets (Section 370 

4.1). Then we calibrated the satellite signal with in situ discharge data. With the regression 371 

equations obtained, we calculated satellites discharge satellites measurements. A two-year 372 

validation period was carried out for each station using the skill scores as described in Section 3.3 373 

(Section 4.2). This was followed by an assessment for how different variables contribute in a 374 

positive or negative way to the overall skill (Section 4.3). Variables included in the analysis are 375 



daily mean river discharge, river width, upstream catchment area, potential flood hazard area, land 376 

cover, leaf area index, climatic zones, presence of large floodplains, flooded forest and wetlands, 377 

river ice and hydrologic structure. Finally, the relative importance of all variables in comparison 378 

to each other has been assessed (Section 4.4). 379 

Before analysing the validation results, it is important to highlight two possible different sources 380 

of error which might influence the outputs. Firstly, the signal may beto noise ratio noisy in general 381 

might be low for a site or have intermittent instrument noise occasionally producing intermittent 382 

positive spikes in discharge. large noise values (instrument noise) coming from the raw signal data. 383 

Secondly, the rating curve may be offset, which will result in a consistent bias on the discharge 384 

values for that location even though the time series are strongly correlated. 385 

 386 

4.1. Correlation of raw satellite data vs. gauge observations 387 

The first step was to look at the “raw” correlation between daily ground station-measured water 388 

discharge and the satellite signal and to calculate the empirical linear relation between these two 389 

variables for each site. The full time series, including low flows, were used for the calculation and 390 

executed for 398 stations. Figure 4 shows the R skills obtained. 169 stations out of 398 sites have 391 

an R > 0.3 and 42 of them have R>0.5. Perhaps, correlations might have been higher if regression 392 

would have not been restricted to linear equations (Brakenridge et al., 2007, 2012).  393 

(INSERT FIGURE 4 HERE) 394 

 395 

4.2. Satellite signal calibration, validation and evaluation through skill scores 396 

For the stations with over six years of contemporary data for both in situ discharge and satellite 397 

signal, we obtained regression equations for each month of the year and station using the first five 398 

years of data. Next, using these equations we carry out a calibration of the daily signal into 399 

discharge units.  Afterwards, the validation of the GFDS measured discharge was implemented for 400 

the following two -years. In some regions such as Northern Asia, the lack of available recent long 401 

time series (after 2002) meant that the number of stations available for calibrating the satellite into 402 

discharge measurements was reduced.  Stations where the number of years matching observed 403 

discharge and satellite signal was shorterd than six years were excluded from the validation 404 



exercise despite performing well. Finally, out of 398 a total of 332 stations remained for calibration 405 

and validation. 406 

Figure 5 shows that for NSE score, 154 out of 332 stations are larger than 0; 13 located  in Africa, 407 

77 in North America, 62 in South America, 1 in Asia and 1 in Europe. Nevertheless, it needs to be 408 

noted that in arid regions, results calculated with the skill scores such as NSE are penalised, by 409 

low average discharge compared to high flow conditions. If instead of using all the available time 410 

series, a “dry stream” threshold would have been applied, the scores obtained for these sites could 411 

have been higher when analysing the remaining dataset period where flow is present.   412 

(INSERT FIGURE 5 HERE) 413 

 414 

4.3. Analysis of the factors affecting the satellite signal 415 

 416 

4.3.1. River width and presence of floodplain and wetlands.   417 

As a first step to analyse the potential relationship between the individual local characteristics and 418 

the performance of the locations in global terms, we study the R score of the validation for the 322 419 

stations in relation with the maximum river width value at each location (Figure 6a).  Results 420 

indicate that locations with a river width higher than 1 km are more likely to score an R larger than 421 

0.3. In fact, the mean R score is 0.60. Where 26 out of 64 (~41%) have R> 0.75. However, there 422 

is a number of stations with lower river width that also obtained high scores. As the retrieval of 423 

the satellite signal also depends on the floodplain geometry. As soon as the river floods and water 424 

goes over-bank, the proportion of water in the wet pixel greatly increases. So the score should be 425 

also high for small rivers with a proportionally big floodplain. Figure 6b shows the R scores by 426 

locations where the majority of the area belongs to floodplain, flooded forest and wetlands 427 

category or, their absence. In our study, higher median scores were obtained for those located in 428 

large freshwater marsh and floodplains, followed by those on swamps and flooded forest. These 429 

results give a first indication on the characteristics of the locations with better performance. 430 

(INSERT FIGURE 6 HERE) 431 

4.3.2. River discharge and potential flooding 432 

Flooding is determined by the discharge as well as the potential flood hazard. Figure 7a shows that 433 

84 out of 95 stations with R<0.3, also have mean discharge values lower than 500 m3s-1 (Log10 434 



(500) ≈2.7), of which 55 stations in fact had a mean discharge lower than 200 m3s-1. These stations 435 

are mainly located in South Africa, and in some areas of North America. Therefore,  Iit can be 436 

concluded that the mean discharge can be considered a key variable that determines the 437 

appropriateness of locations for which satellite discharges can be derived: As 77% of the stations 438 

with Q<500 m3/s, have R< 0.3, while 91.5% of the stations with Q>500 m3/s have R >0.3, locations 439 

with discharge of less than 500 m3s-1 might not provide reliable results for a global satellite-based 440 

monitoring system. Alternatively, non-permanent rivers and streams exhibiting only seasonal or 441 

ephemeral flow (typical for dry regions) may require a different monitoring approach, wherein a 442 

“dry” threshold is established for the signal data.  443 

After excluding the global stations with low skill score due to low flows and studying the 444 

remaining stations, we can better understand the performance of the system in relation to other 445 

local characteristics. Figure 7b shows for each location the relationship between the validation R 446 

and the percentage of area in each pixel covered by potential flooding during a 100 year return 447 

period flood event, obtained with the model grid (HTESSEL+CaMa-Flood) (downscaled from a 448 

25 x 25 km pixel, Pappenberger et al., 2012).  100 means totally flooded across its area, 50 means 449 

50 % of the area within the cells is flooded, and 0 means that the area is not flooded.  Although 450 

there is not a clear trend for all the points, result indicate that locations with a percentage of 451 

potential flooding larger than 40%, are expected to score an R larger than 0.3.   452 

(INSERT FIGURE 7 HERE) 453 

4.3.3. Land cover types and climatic areas  454 

Figure 8 presents a global evaluation of the R score obtained during the validation and its 455 

classification by the land cover type of the stations. The bare land cover category was excluded 456 

from this study as only one of the selected locations belong to that class. Looking at the median of 457 

the boxplot (see Figure 8), we found that some of the locations with higher density of vegetation 458 

such as those located on “closed forest” and “mosaic with predominant vegetation” (included 459 

forest, scrublands and grasslands) obtained lower median scores values. In contrast, the locations 460 

with lower vegetation density such as “sparse vegetation”, “mosaics with predominant 461 

cropland/grasslands”, “open forest” and “closed to open forest” land cover types obtained larger 462 

median R scores, around 0.6-0.8. Similar results can be observed when looking at the interquartile 463 

range or spread of the boxplots: “closed to open forest” and “mosaics with predominant 464 



cropland/grasslands” obtained better results. Meanwhile, “closed forest” and “mosaic with 465 

predominant vegetation” had lowers scores. In addition, those sites with a combination of sparse 466 

vegetation and crops growing near the river channel had a lower median value where comparing 467 

with those on sparse or mosaic crops land cover.  ToN note that the sites with “sparse with crops” 468 

are located in arid climatic areas, whereas most of the “sparse” are in cold or polar regions, 469 

therefore run by different processes. In addition, sites with a majority of artificial/urban land cover 470 

(not shown) obtained a low median value of 0.267. 471 

(INSERT FIGURE 8 HERE) 472 

 473 

The relationship between locations by main Köppen-Geiger climatic areas (Peel et al. 2007) and 474 

R score obtained is shown in Figure 9. Globally the tropical regions (Africa and South America) 475 

obtained the highest median scores (R≈0.8), followed by cold regions (R≈0.6). Lower median 476 

score values (R≈0.3) were obtained for arid and temperate regions. It is important to clarify that 477 

these results are not only due to direct climate characteristics but also for example due to the 478 

characteristics of the rivers on those areas.  In the case of the arid regions, it is mainly related with 479 

reduce daily average discharges, a characteristic of many of these stations. Note that polar climate 480 

was excluded from this evaluation as only three locations belong to that class. 481 

(INSERT FIGURE 9 HERE) 482 

4.3.4. Leaf Area Index (LAI) 483 

Leaf Area Index (LAI) values typically range from 0 for bare ground to 6 or above for a dense 484 

forest, however CYCLOPES underestimates over dense vegetation (forest) (Zhu et al., 2013). 485 

Therefore, for this product LAI range is limited to [0-4], as seen in our analysis. Despite this, 486 

CYCLOPES is the most similar product to LAI references map (Ibid.). According to the study 487 

carry out by Zhu et al. (2013) monthly CYCLOPES LAI values for the period 1999 to 2007 by 488 

four main groups of vegetation are predominantly as follows: bare ground [0], forest [0-3.5], other 489 

woody vegetation [0-1.5], herbaceous vegetation [0-2], and cropland/natural vegetation mosaics 490 

[0-3]. Where The highest annual mean LAI values are obtained by evergreen broadleaf forest 491 

(3.16), included in our “closed to open forest” class.  492 



We decided to study the relationship between the mean Leaf Area Index and the skill obtained in 493 

the validation for each location, also looking at complementary variables such us the land cover 494 

and the geographical region which the stations belong to. Figure 10 shows that locations with a 495 

mean [LAI > 2] predominantly have a “closed to open forest” type in South America (31 stations) 496 

of which 29 have an R score higher than 0.6. For [LAI > 2] there is also 12 North American 497 

locations with “closed forest” land cover but in general with poorer scores for those locations. 498 

Additionally, 18 stations with mosaic vegetation from North and South America obtained [LAI > 499 

2] and 16 out of them, a [R>0.6]. For [LAI < 2], both the land cover and geographical locations 500 

are distributed along the scatterplots, from poor to high correlations.   501 

(INSERT FIGURE 10 HERE) 502 

 503 

4.3.5. River ice 504 

Figure 11a shows the scores obtained for the locations with presence or not absence of river ice, 505 

including a range from continuous to sporadic (Brown et al., 2002). It can be seen that stations 506 

located in areas with river ice tend to have a good correlation between in situ and  satellite 507 

measured discharge (based on 33 stations), as the system tends to capture well the annual spring 508 

ice break-up and freezing as indicated in the study by Brakenridge et al.(2007) and Kugler (2012).  509 

At these locations, once ice-covered there is no sensing capability from the system: which may 510 

seems analogous to low flow conditions, and for which sites we obtained lower scores. However, 511 

there is an important difference when analysing time series of signal between ice covered high 512 

latitude river and all-year-around low flow rivers. When on the sites with river ice melting process 513 

takes place, there is an increase of runoff happening and for many places the signal strongly 514 

indicates this increased flow. On the other type of rivers, low flows is generally a characteristic for 515 

-the most of- the year and if the signal to noise is low, the signal retrieved is very noisy: one 516 

motivation for setting a “dry” threshold for such sites. 517 

 518 

4.3.6. Hydraulic structures 519 

The correlation between satellite and discharge data depends on both variables. Typically it is 520 

assumed that observed discharges are “ground truth”, however, when influenced by structures and 521 

dams the ground discharge may not be well-monitored by flow area/flow width variation. For 522 

example, when there is a major increase in river discharge but a flood is avoided by artificial 523 



levees, we cannot expect that the satellite signal will accurately capture the flood hydrograph; as 524 

well, downstream flooding may be attenuated by an upstream flood control dam and reservoir; so 525 

that the gauge location is critical. Figure 11b shows the influence of the presence or absence of a 526 

nearby dam using the Global Reservoir and Dam (GRanD) database (Lehner et al., 2008) or 527 

visually identified hydraulic control infrastructure. Locations where the dam or other element was 528 

present (48 stations) obtained lower median R score. Therefore, ideally, observation sites should 529 

be located in areas without hydraulic control infrastructures.  530 

(INSERT FIGURE 11 HERE) 531 

 532 

4.4. Variable importance 533 

Based on the individual analysis of the signal potential influence factors we found that to 534 

understand the site performances, oin some occasions multiple variables need to be analysed in a 535 

simultaneous way. For example, the general low scores obtained on the Eastern USA stations 536 

might be due to a number of factors: ~64% of these stations have a mean discharge value lower 537 

than 500 m3s-1 and ~88% of the stations are located at river width lower than 1km. In addition, 538 

~59% of the stations are located in wetlands areas.  Another example, in this case regarding the 539 

exceptions of the low R and mean observed discharge higher than 500 m3s-1, all the 11 locations 540 

have a potential probability of flooding lower than 21%, the land cover of 10 out of 11 is forest, 5 541 

of them located in wetlands and two of them have a nearby hydraulic structure. Despite exhibiting 542 

a mean discharge greater than 500 m3s-1, these other local characteristics may be the cause of the 543 

poor performance.  Therefore, we decided to use a classification decision tree technique (Random 544 

Forest), which split the dataset at each node according to the value of one variable at a time (the 545 

best split) from a selected set of variables  to understand the importance of each variable. Random 546 

Forest is called an ensemble method because it is performed for a number of decision trees, in this 547 

case 500 trees, in order to improve the classification rate.   548 

The result presented here is the rank of the importance of variables to classify a location with a 549 

good or poor performance. These values are obtained as an output of the Random Forest analysis 550 

and are, in addition, the average of 200 independent runs. As explained in section 3.4 the variable 551 

importance based on the mean decrease in Gini index was calculated for the Nash-Sutcliffe 552 

Efficiency (NSE) score obtained from the validation. We used a NSE=0 to distinguish the sites 553 



with a good (above 0) from poor performance (below 0) and we also tested it with a threshold NSE 554 

of 0.50. 555 

Figure 12 presents the variable importance for the four test groups. Features which produced large 556 

values of the “Mean Decrease in Gini” are ranked as more important than features which produced 557 

small values. For our locations and data available the mean daily observed discharge has the 558 

highest importance, followed by the climatic region, land cover / mean LAI and upstream 559 

catchment area.  Meanwhile, the presence of hydraulic structures (mainly dams) and of river ice 560 

has the lowest importance to classify a location as good or poor performance. However, this does 561 

not mean that it has no influence. Although discharge is correlated with upstream catchment area 562 

and at some degree also leaf area index with land cover type, both were included in this case to 563 

understand which variable might help us most to classify the sites.    564 

Although, the effect of the correlations on these measures has been studied recently (see Archer 565 

and Kimes (2008), Strobl et al. (2008), Nicodemus and Malley (2009), Nicodemus et al. (2010), 566 

Nicodemus (2011), Auret and Aldrich (2011), Tolosi and Lengauer (2011), Grömping, U. (2009) 567 

and Gregorutti et al. (2013)) there is no yet a consensus on the interpretation of the importance 568 

measures when the predictors are correlated and on what is the effect of this correlation on the 569 

importance measure. 570 

In order to test the effect on the results when correlated variables were included in our analysis, an 571 

independent Random Forest analysis was carried out (not shown in the paper) for the same 572 

variables but excluding the river width and the presence of floodplains and wetlands variables. 573 

Results also showed that the mean daily observed discharge had the highest importance and the 574 

presence of hydraulic structures (mainly dams) and of river ice had the lowest importance to 575 

classify a location as good or poor performance. 576 

(INSERT FIGURE 12 HERE) 577 

 578 

5 Conclusions and future research 579 

 580 

In this article we presented an evaluation of the skill of the Global Flood Detection System to 581 

measure river discharge from remote sensing signal. From the 322 stations validated the average 582 



continental R skills are as follow: Africa 0.382, Asia 0.358, Europe 0.508, North America 0.451 583 

and South America 0.694. Approximately 48% of these stations have an NSE score higher than 584 

zero; 13 located in Africa, 77 in North America, 62 in South America, 1 in Asia and 1 in Europe. 585 

Results showed that the majority of the stations that received low skills scores, were due to low 586 

flow conditions. For example, 84 out of 95 stations with R<0.3, have mean discharge values lower 587 

than 500 m3s-1. These are located mainly in South Africa with 25 cases and North America with 588 

53 cases, which penalised their average continental skills. Note that our focus was on factors 589 

affecting the method, globally, and that these skill values do not directly indicate at-a-site 590 

measurement accuracy (which could be improved, for example, by use of non-linear rating 591 

equations and/or accommodation of any phase shift or timing differences in flow area- versus state-592 

based discharge monitoring). 593 

In order to better understand the impact of the local conditions on the performance of the sites, we 594 

looked first at specific factors individually. In general terms, higher skill scores were obtained for 595 

location with one or more than one of the following characteristics: a river width higher than 1km, 596 

a large floodplain area, in flooded forest, with a potential flooded area per pixel greater than 40% 597 

during a 100 year return period flood event, a land cover type of sparse vegetation;, croplands or 598 

grasslands and closed to open and open forest;, Leaf Area Index above 2;, located in a tropical 599 

climatic area;, and where no dams or hydraulic infrastructures are present. Also, out of our 600 

locations, high latitude rivers with seasonal ice-cover tend to exhibit good performance.  601 

Secondly, we performed a classification decision tree analysis, based on Random Forest, to obtain 602 

the variable importance when classifying a site as good or poor. The output of this analysis showed 603 

that mean observed discharge, climatic region, land cover and mean leaf area index (LAI) and 604 

upstream catchment area and were the variables with higher importance, whereas river ice and 605 

dam obtained the lowest importance. Both the individual and the combined classification analysis 606 

of these local characteristics give us critical evidence of the relationship between the ground and 607 

satellite discharge measurements and when it is expected to perform well. Furthermore, it provides 608 

a guideline for future selection of measuring sites. 609 

The locations with a very good performance will be selected for a potential future project where 610 

satellite measure discharge could be calculated for longer periods and on a daily basis from the 611 

remote sensing signal, analogous to the Dartmouth Flood Observatory method. This will represent 612 



a major step forward in developing continental and global hydrological monitoring systems as 613 

these data can fill the gaps where real time ground discharge measurements are not available (the 614 

case at many locations globally). We found that some of the sites with good performance are 615 

located within international river basins such as the Niger, Volta and Zambezi in Africa. In 616 

addition, for the studied locations with good signal performance but rather short contemporary 617 

time series with in situ observed discharge (such as the Siberian stations), the calibration of the 618 

signal to obtain discharge measurements could be executed at any point when additional ground 619 

data is available. This will also be beneficial for all stations including those with time series above 620 

seven years long. 621 

Zhang et al. (2013) recently demonstrated the potential of integrating satellite signal provided by 622 

the Global Flood Detection System in improving flood forecasting. This first attempt of data 623 

assimilation was carried out for a single station (Rundu, northern Namibia- included in this study) 624 

with the conceptually simple Hydrological MODel (HyMOD). Hence, a prospective study with 625 

the inclusion of all these stations for post-processing through data assimilation and error correction 626 

of the stream-flow forecast in hydrological models could be done. For instance, for the pre-627 

operational Global Flood Awareness System (GloFAS) (Alfieri et al. 2012) and the African Flood 628 

Forecasting System (AFFS) (Thiemig et al. 2014) in an analogous way as it is already being done 629 

with ground gauge observed streamflow on the European Flood Awareness System (Bartholmes 630 

et al., 2009; Thielen et al., 2009). Hence, work towards the integration of global flood detection 631 

and forecasting systems such as GFDS and GloFAS, respectively, can provide a more 632 

comprehensive information for decision makers. 633 
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Table 1 Number of catchments by continent and range of upstream areas for the located 1 

stations.1Stations used for calibration and validation.2 South African upstream catchment areas are 2 

not available. 3 

Continent Number of satellite 

locations for extraction 

(n=398) 

Number of stations 

for calibration(n=322) 

Number of 

Catchment1 

Upstream catchment areas 

(km2) Approx. range 

Africa 75 51 21 46990 – 8505002 

Asia 23 3 4 7150 - 11000 

Europe 13 7 3 9000 - 132000 

North America 207 183 86 5300 - 1850000 

South America 80 78 38 1400 - 4680000 
  4 



Table 2 Climate and land cover type of the 322 sites selected for the calibration and validation, 1 

aggregated by continent, climate, and land cover. 1 Vegetation means a combination of grassland, 2 

shrubland and forest. 2Types of land cover and climate where the number of locations in each type 3 

was very low (e.g. 3) were excluded for their respective variables analysis as they will not be 4 

representative on a global scale. 5 

Climate Africa Asia Europe North 

America 

South 

America 

Total 

Arid 30   25  55 

Tropical 10    75 85 

Temperate 11  3 51 3 68 

Cold  3 4 104  111 

Polar2    3  3 

Total 51 3 7 183 78 322 

Land cover Africa Asia Europe North 

America 

South 

America 

Total 

Open Forest 4   23  27 

Closed to Open Forest 16 1 1 16 41 75 

Closed Forest    33  33 

Mosaic Vegetation 

predominant 1 

19 2  47 24 92 

Mosaic cropland or 

grassland 

predominant 

5  1 26 9 41 

Rainfed crop   4 5 4 13 

Sparse vegetation 2   14  16 

Sparse 

vegetation+crops 

5   8  13 

Urban   1 10  11 

Bare areas2    1  1 

Total 51 3 7 183 78 322 

 6 



 1 

Figure 1 Location of selected stations (398) and corresponding river basins (109). TRMM and 2 

AMSR-E brightness temperature product extents are also provided.  3 



 1 

Figure 2 Example of a measurement site: Caracarai station (Rio Branco Catchment, Brazil). The 2 

blue rectangles outline the measurement pixels and background image is from 2014 Google 3 

(Landsat, DigitalGlobe).   4 



      1 

 2 

Figure 3 a) scatterplot for the Senanga station (Long 23.25, Lat. -16.116) in the Zambezi River 3 

(Africa). Monthly mean for March from 1998 up to 2002. b) Validation hydrograph for 2003-2004 4 

and skill scores for Senanga. The (monthly) rating equations were used to calibrate the signal into 5 

discharge units. Different rating equations were used for different months.  6 



 1 

Figure 4  Location of stations and R skill score between in situ observed discharge and satellite 2 

signal (4 days and 4 pixels average). Globally, 169 stations have R>0.3.  3 



 1 

Figure 5 Nash-Sutcliffe efficiency of the validation (n= 332 stations). Globally, 154 stations have 2 

NSE>0 of which 80 stations have NSE> 0.50.  3 



 1 

Figure 6 a) relationship between R obtained from the validation of satellite measured discharge and 2 

the maximum river width for each location; b) relationship between the same R score and the 3 

presence of significant floodplains, flooded forest and wetlands Horizontal dotted line shows the 4 

R=0.3 and R=0.7 threshold, the vertical line is the river width equal to 1km.  5 



 1 

Figure 7a) relationship between R obtained from the validation of satellite measured discharge and 2 

the mean in situ observed discharge (log10 displayed) for each station; b) relationship between the 3 

same R score and the potential percentage of flooded area per pixel for a 100 year return period 4 

flood event (Pappenberger et al., 2012). Horizontal dotted line shows the R=0.3 threshold, the 5 

vertical line is the 40% potential flooding threshold.  6 



 1 

Figure 8 Global evaluation of the R score obtained during the validation and its classification by 2 

the land cover type of the stations. Land cover type were aggregated from the GlobCover (2009) 3 

and modified by visual check with Google maps. Note that artificial and bare land cover were 4 

excluded on this figure.   5 



 1 

Figure 9 Global evaluation of the R score obtained during the validation and its classification –only 2 

main types-by the Köppen-Geiger climate area (Peel et al. 2007). Note that polar climate was 3 

excluded from this analysis as only three stations felt into this category.   4 



 1 

Figure 10 Evaluation of the R score obtained during the validation and its classification by Leaf 2 

Area Index (LAI), also a factor of land cover and geographical regions.  3 



 1 

Figure 11 Evaluation of the R score obtained during the validation and its classification by a) 2 

presence or not of a river ice (Brown et al., 2002), b) presence or absence of a nearby dam or 3 

hydraulic control infrastructure using the Global Reservoir and Dam (GRanD) (Lehner et al., 4 

2008)and visual check from Google maps.. To note that for the validated locations, all stations with 5 

river ice and most of them with dams and are located in North America.  6 



 1 

Figure 12 Average variable importance of 200 runs using the Random Forest methodology. Nash-2 

Sutcliffe score was chosen as a quality index to categorised the stations as true (good predictive) 3 

orf the stations as false (poor predictive). With a threshold of NSE=0, we have about 50% of the 4 

stations above and below that value. Results are shown for the different training and test groups. 5 

For all the test groups and runs, the average highest variable importance was obtained for mean 6 

observed discharge, climatic region, land cover/ mean LAI and upstream cacthment area,  and the 7 

lowest for dam/hydraulic structure presence and river ice.  8 



Appendix A: Land cover types  1 

Table A 1 Studied land cover types from GlobCover (2009) aggregated into broader categorical 2 

classes by type and vegetation density. 3 

Label Aggregated classes 

Rainfed croplands  Rainfed croplands 

Sparse (<15%) vegetation Sparse vegetation 

Closed to open (>15%) broadleaved evergreen or semi-deciduous forest 

(>5m) 

Closed to open forest 

Closed to open (>15%) mixed broadleaved and needleleaved forest (>5m) 

Closed to open (>15%) (broadleaved or needleleaved, evergreen or 

deciduous) shrubland (<5m) 

Closed to open (>15%) herbaceous vegetation (grassland, savannas or 

lichens/mosses) 

Closed to open (>15%) broadleaved forest regularly flooded (semi-

permanently or temporarily) - Fresh or brackish water 

Closed to open (>15%) grassland or woody vegetation on regularly 

flooded or waterlogged soil - Fresh, brackish or saline water 

Open (15-40%) broadleaved deciduous forest/woodland (>5m) 
Open forest 

Open (15-40%) needleleaved deciduous or evergreen forest (>5m) 

Mosaic cropland (50-70%) / vegetation (grassland/shrubland/forest) (20-

50%) 

Mosaic cropland or 

grassland 

 Mosaic grassland (50-70%) / forest or shrubland (20-50%)  

Mosaic vegetation (grassland/shrubland/forest) (50-70%) / cropland (20-

50%)  

Mosaic vegetation  

predominant 

 Mosaic forest or shrubland (50-70%) / grassland (20-50%) 

Closed (>40%) broadleaved deciduous forest (>5m) 

Closed forest 
Closed (>40%) needleleaved evergreen forest (>5m) 

Closed (>40%) broadleaved forest or shrubland permanently flooded - 

Saline or brackish water 

Artificial surfaces and associated areas (Urban areas >50%) Urban 



 1 


