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Abstract  9 

One of the main challenges for global hydrological modelling is the limited availability of 10 

observational data for calibration and model verification. This is particularly the case for real time 11 

applications. This problem could potentially be overcome if discharge measurements based on 12 

satellite data were sufficiently accurate to substitute for ground-based measurements. The aim of 13 

this study is to test the potentials and constraints of the remote sensing signal of the Global Flood 14 

Detection System for converting the flood detection signal into river discharge values. 15 

The study uses data for 322 river measurement locations in Africa, Asia, Europe, North America 16 

and South America. Satellite discharge measurements were calibrated for these sites and a 17 

validation analysis with in situ discharge was performed. The locations with very good 18 

performance will be used in a future project where satellite discharge measurements are obtained 19 

on a daily basis to fill the gaps where real time ground observations are not available. These include 20 

several international river locations in Africa: Niger, Volta and Zambezi rivers. 21 

Analysis of the potential factors affecting the satellite signal was based on a classification decision 22 

tree (Random Forest) and showed that mean discharge, climatic region, land cover and upstream 23 

catchment area are the dominant variables which determine good or poor performance of the 24 

measurement sites. In general terms, higher skill scores were obtained for locations with one or 25 

more of the following characteristics: a river width higher than 1km, a large floodplain area and in 26 

flooded forest, with a potential flooded area greater than 40%, sparse vegetation, croplands or 27 

grasslands and closed to open and open forest, Leaf Area Index > 2, tropical climatic area, and 28 



without hydraulic infrastructures. Also, locations where river ice cover is seasonally present 29 

obtained higher skill scores. The work provides guidance on the best locations and limitations for 30 

estimating discharge values from these daily satellite signals.  31 
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 33 

1 Introduction 34 

 35 

Flooding is the most prevalent natural hazard at the global scale, often with dire humanitarian and 36 

economic effects. According to the International Disaster Database (EM-DAT), an average of 175 37 

flood events per year occurred globally between 2002-2011, affecting an average of 116.5 million 38 

people, and causing economic losses of US$25.5 billion. According to MunichRe (2014), the 39 

costliest natural catastrophe worldwide in terms of overall economic losses in 2013 was the 40 

flooding in southern and eastern Germany and neighbouring states in May and June with estimated 41 

damages of $15.2 billion. In June of the same year, flooding in India cost 5000 lives, with a further 42 

2 million affected (MunichRe, 2014; EM-DAT). 43 

The Global Assessment Report (UNISDR, 2011) states that the proportion of world population 44 

living in flood-prone river basins increased by 114 percent over four decades from 1970 to 2010. 45 

Additionally, while economic losses due to river floods have increased over the last 50 years, the 46 

number of casualties has decreased. The reduction in loss of life has been associated with the 47 

integration of early warning systems with emergency preparedness and planning at local and 48 

national levels (Golnaraghi et al., 2009, Kundzewicz et al., 2012).  49 

Global early warning systems are needed to improve international disaster management. These 50 

systems can be used for both early forecasting, for better preparedness, and early detection, and 51 

for an effective response and crisis management. Their necessity was emphasized in 2005, and 52 

since then, it has been a key element of international initiatives such as the “Hyogo Framework 53 

for Action 2005-2015” and, on a continental level, the European Commission Flood Action 54 

Programme. After the 2002 floods on the Elbe and Danube rivers, the Commission supported the 55 

development of the European Flood Awareness System (EFAS) (Bartholmes et al., 2009; Thielen 56 

et al., 2009) by the Joint Research Centre to increase preparedness for riverine floods across 57 

Europe. Currently, a number of organisations are involved in rapid mapping activities after major 58 



(flood) disasters such as UNOSAT (2013), GDACS (2013), “Space and Major Disasters” (Disaster 59 

Charter, 2014), the Committee on Earth Observation Satellites (CEOS) Flood Pilotand the online 60 

Dartmouth Flood Observatory (http://floodobservatory.colorado.edu/). In Europe, Copernicus is 61 

the Earth Observation Programme which actively supports the use of satellite technology in 62 

disaster management and early warning systems for improved emergency management. 63 

Flood warning systems typically rely on forecasts from national meteorological services and in 64 

situ observations from hydrological gauging stations. However, this capacity is not equally 65 

developed across the globe, and is highly limited in flood-prone, developing countries. Ground 66 

based hydro-meteorological observations are often either scarce or, in cases of transboundary 67 

rivers, data sharing among the riparian nations can be limited or absent. Therefore, satellite 68 

monitoring systems and global flood forecasting systems are a needed alternative source of 69 

information for national flood authorities not in the position to build up an adequate measuring 70 

network and early warning system. In recent years, there has been a notable development in the 71 

monitoring of floods using satellite remote sensing and meteorological and hydrological modelling 72 

(Schumann, et al. 2009).  73 

A variety of satellite-based monitoring systems measure characteristics of the Earth’s surface, 74 

including terrestrial surface water, over large areas on a regular basis (van Westen, 2013). Such 75 

remote sensing is based on surface electromagnetic reflectance or radiance in the optical, infrared 76 

and microwave bands. Some key advantages of microwave sensors is that they provide near-daily 77 

basis global coverage and, at selected frequencies, relatively little interference from cloud cover.  78 

Two presently-operating microwave remote sensors with near-global coverage are the Tropical 79 

Rainfall Measuring Mission1 (TRMM) operational from 1998 to present and the Advanced 80 

Microwave Scanning Radiometer for Earth Observation System2 (AMSR-E) which was active 81 

from June 2002 to October 2011, followed by AMSR2 which was launched in May 2012 and is 82 

onboard the Japanese satellite GCOM-W13, and from which, brightness temperature data are being 83 

distributed from January 2013 onwards. For future work, the European Space Agency (ESA) and 84 

NASA have other missions to put similar instruments in orbit, capturing passive microwave energy 85 

                                                           
1 http://trmm.gsfc.nasa.gov 
2 http://aqua.nasa.gov/about/instrument_amsr.php 
3 http://suzaku.eorc.jaxa.jp/GCOM_W/w_amsr2/whats_amsr2.html 



at 36.5 GHz, such as ESA’s Sentinel-3 satellites (planned launch in 2015 and 2016) and NASA’s 86 

Global Precipitation Mission (GPM) (launched in February 2014) to replace TRMM. 87 

Using AMSR-E data initially, De Groeve et al. (2006) implemented a method for detecting major 88 

floods on a global scale, based on the surface water extent measured using passive microwave 89 

sensing. Also, Brakenridge et al. (2005, 2007) demonstrated that orbital remote sensing can be 90 

used to monitor river discharge changes. However, as underlined by Brakenridge et al. (2012, 91 

2013), extracting the microwave signal and converting it into discharge measurements is not 92 

straight-forward and depends on factors such as sensor calibration characteristics and perturbation 93 

of the signal by land surface changes. These changes can be found for example in irrigated 94 

agricultural zones and in areas where rivers flow along forested floodplains (Brakenridge et al., 95 

2013). As rivers discharge increases, river level (stage), river width, and river flow velocity all 96 

increase as well, and the challenge is to measure one or more of these accurately enough to provide 97 

a reliable discharge estimator, and compare against a background of other surface changes that 98 

may affect what is measured from orbit. 99 

There remains also the need to convert such discharge estimators to actual discharge units. Using 100 

ground discharge data or climate-driven runoff models for calibration and validation, methods to 101 

convert the remote sensing signal to river discharge have been previously tested at particular 102 

stations with output from the Global Flood Detection System (GFDS, 103 

http://www.gdacs.org/flooddetection/) and by different investigators (Brakenridge et al. 2007, 104 

Brakenridge et al. 2012, Khan et al. 2012, Kugler and De Groeve, 2007, Moffitt et al. 2011, Hirpa 105 

et al., 2013, Zhang et al. 2013). Yet the results are from different approaches and not easily 106 

comparable, making an assessment of the potential performance on a global scale difficult. 107 

Furthermore, definite conclusions about the influence of various environmental factors on the 108 

signal performance have not been reached. Therefore, in this study, a rigorous broad assessment 109 

of the method is undertaken with a systematic evaluation of the relationship between skills 110 

obtained between ground- and satellite-based discharges, and the local characteristics of the 111 

stations. Specifically this study addresses mean observed discharges, river widths, land cover 112 

types, leaf area indices, climatic regions, and flood hazard maps, and the presence or absence of 113 

large floodplains, wetlands, river ice and hydraulic control infrastructure.   114 



Our goal is to assess the potentials and limitations of the satellite-based surface water extent signal 115 

data for river discharge measurements with a large number of stations. Moreover, the relationship 116 

between ground and satellite sets of discharge measurements and the local surface characteristics 117 

is examined in order to provide guidelines for selection of observation sites.  For this purpose, 118 

river catchments located in a range of different climatic and land cover types were selected in 119 

Africa, Asia, Europe, North America and South America. The remainder of the paper is structured 120 

as follows: section 2 presents the study regions and data, section 3 describes the analysis 121 

methodologies, and the results are discussed in section 4. 122 

 123 

2 Study regions and data 124 

 125 

2.1. Study Regions and in situ discharge data 126 

Figure 1 shows the study basins and in situ discharge locations. The selected stations are all located 127 

near major rivers of the world (Global Runoff Data Centre, 2007). The continental distribution and 128 

the upstream catchment area of the stations are summarized in Table 1. We selected the locations 129 

to be representative of a broad variety of local conditions: they belong to nine different main land 130 

cover classes (aggregated from GlobCover, 2009) and five main types of climate (Peel et al., 2007). 131 

The characteristics are listed in Table 2.  132 

For Africa, Asia, Europe, North America and South America, daily in situ discharge values were 133 

used from the Global Runoff Data Centre (GRDC) database. In addition, for the South African 134 

stations, the discharge data were provided by the South African Water Affairs (DWA, 135 

http://www.dwa.gov.za/). The selected stations for all these continents include daily data between 136 

1998 and 2010, however not all stations have continuous data during this time period. From 1998, 137 

the length of the time series was required to be above six years. The longest time series available 138 

was of 13 years, with a median value of 8.5 years. In situ discharge information may itself be 139 

affected by large and variable uncertainty, mostly on the measurement of the cross-sectional area 140 

of the channel and mean flow velocity at the gauge or control site (Pelletier, 1988). Although 141 

generally unknown, these values are typically between the 5-20% at the 95% confidence levels as 142 

highlighted in studies such as Hirsch and Costa (2004), Di Baldassarre and Montanari, (2009), Le 143 

Coz et al. (2014), and Tominsk (2014). However, the uncertainty of river discharge is even higher 144 



during floods events when the stage-discharge relationship, the so-called rating curve, is used. As 145 

evaluated by Pappenberger et al. (2006), the analysis of rating curve uncertainties leads to an 146 

uncertainty of the input of 18–25% at peak discharge. Di Baldassarre and Montanari (2009) 147 

showed that the total rating curve errors increase, when the river discharge increases and varies 148 

from 1.8% to 38.4% with a mean value of 21.2%. For the purposes here, these data are, however, 149 

regarded as “ground truth”. We acknowledge the possible errors, however, and note that, for some 150 

river reaches, satellite-based methods may actually track discharge changes more accurately than 151 

ground-based measurements using stage; the extent to which this is true needs to be fully 152 

investigates however. 153 

(INSERT FIG 1 HERE) 154 

(INSERT TABLE 1 HERE) 155 

(INSERT TABLE 2 HERE) 156 

2.2. Satellite-derived data 157 

The Global Flood Detection System (GFDS) produces near real time maps and alerts for major 158 

floods using satellite-based passive microwave observations of surface water extent and 159 

floodplains. It is developed and maintained at the European Commission Joint Research Centre 160 

(JRC) in collaboration with the Dartmouth Flood Observatory (DFO). The surface water extent 161 

detection methodology using satellite-based microwave data is explained in Brakenridge et al. 162 

(2007) and Kugler and De Groeve (2007). Here, only the basic principles are recalled.  163 

At each pixel, the method uses the difference in brightness temperature, at a frequency of 36.5 164 

GHz, between water and land surface to detect the proportion of within-pixel water and land. The 165 

retrieved brightness temperature data are first gridded into a product with a pixel size of (near the 166 

equator) 10 x 10 km (0.09 degree x 0.09 degree), and the system provides a daily output.  For our 167 

work, the merged TRMM/AMRS-E product was used 168 

(http://www.gdacs.org/flooddetection/download.aspx); the gridded data are being provided in the 169 

GCS WGS 1984 projection. For our period of study, 1998-2010, the merged data product was 170 

employed for the time period of its availability (June 2002-2010), whereas stand-alone TRMM 171 

data was used for the remaining time period (1998 to June 2002) and available latitudes. Note that 172 



from 2013 the system is providing the merged product TRMM/AMSR2, however this period is 173 

out of our scope.  174 

In the GFDS system, the microwave signal (s) is defined as the ratio between the measurement 175 

over wet pixel (M) and the measurement over a 7 pixel x 7 pixel array of background calibration 176 

(C) pixel, known as the M/C ratio(Brakenridge et al. 2012, De Groeve, 2010). Better discharge 177 

signal values may be achieved when the measurement pixel is centred over a river reach and no 178 

hydraulic structures are present (Moffitt, et al., 2011). However, this is sometimes difficult to 179 

achieve due to the desired co-location with gauging stations (Brakenridge et al. 2012) or because 180 

the potential measurement pixels within the raster are fixed, geographically. 181 

 182 

2.3. Other important datasets and maps 183 

The quality of the microwave signal detected by the satellite sensors can be influenced by local 184 

ground conditions including extreme rainfall, snow/ice, land cover/use and topography 185 

(Brakenridge et al., 2012). For example, forest is a type of land cover which influences the 186 

microwave emission properties due to the biometric features of vegetation such as crown water 187 

content and shape and size of leaves (Chukhlantsev, 2006). In this study, the effects of the local 188 

ground conditions on the performance of the satellite signal were analysed as a function of the 189 

following factors:  190 

- River width: channel width from Yamazaki et al. (2014), estimation based on SRTM 191 

Water Body Database and the HydroSHEDS flow direction map and for which the map 192 

was upscaled from 0.025 to 0.1 degree, taking the mean of the river grid values in the 4 x 193 

4 area. 194 

- Mean observed discharge: For each station, a mean discharge value for the study period 195 

was calculated from daily ground data (mainly from the GRDC dataset). 196 

- Upstream catchment area (GRDC 2007) data: The GRDC river network was used to 197 

visually select those stations located close to the “main rivers” classified by GRDC, and to 198 

use the values of the upstream catchment area for each station. Note that upstream 199 

catchment area values are missing from all South African stations from DWA data 200 

provider.  201 



- Presence of Floodplains, Flooded Forest and Wetlands: This was obtained from the 202 

Global Lakes and Wetlands Database Level 3, a global raster map at 30-second resolution 203 

which comprises lakes, reservoirs, rivers and different wetland types (Lehner and Doll, 204 

2004). 205 

- Flood extent: We used the fractional coverage of potential flooding of 25 km by 25 km 206 

cells for a 100 year return period from the Global Flood Hazard Map derived using a model 207 

grid (HTESSEL+CaMa-Flood) (Pappenberger et al. 2012). 208 

- Land cover: We used land cover data from the Global Land Cover 2009 (GlobCover 2009) 209 

(ESA and UCLouvain 2010). The 19 labels were aggregated into 8 types of land cover 210 

depending on the vegetation type and density to synthesize the outputs (see Appendix Table 211 

A 1).  Further visual category checking was performed using GoogleMaps display for the 212 

sites, and where necessary, land cover classes changed accordingly. An additional category 213 

was added, for sparse vegetation areas where crops are grown along or near the river 214 

channels. 215 

- Leaf Area Index: A global reprocessed Leaf Area Index (LAI) from SPOT-VGT is 216 

available for a period of 1999- 2007 (http://wdc.dlr.de/data_products/SURFACE/LAI/). 217 

This LAI product is a global dataset of 36 ten-day composites at a spatial resolution of the 218 

CYCLOPES products (1 km). For our analysis, a modified version of this product was 219 

used, which was upscaled to a spatial resolution of 10 km.  220 

- Climatic areas: We used the Köppen-Geiger climate map of the world (Peel et al. 2007) 221 

to distinguish the main climate areas: tropical, arid, temperate, cold and polar (see Table 222 

2). 223 

- Presence of river ice: Through the signal, the presence of river ice cover can also be 224 

detected in cold land regions.  The Circum-Arctic Map of Permafrost and Ground-Ice 225 

Conditions (Brown et al., 2002) map was used here. Examples of these rivers are Yukon 226 

and Mackezie in North America and Lena River in Russia. As is the case on the ground, 227 

discharge under ice cover is left largely unmeasured as both water area and stage no longer 228 

are responsive to discharge variation. 229 



- Dam location: Hydraulic structures can disrupt the natural flow of water, and therefore 230 

may alter the expected performance of the satellite signal on that location. For this analysis 231 

the Global Reservoir and Dam (GRanD) (Lehner et al., 2008) dataset was used. 232 

 233 

3 Methodology 234 

 235 

3.1. Satellite signal extraction  236 

In total, 398 locations for satellite-based measurement were selected which overlap spatially and 237 

temporally with available in situ stations providing daily measurements. Since satellites never pass 238 

directly over the same track at exactly the same time, the operational GFDS applies a four day 239 

forward-running mean to systematically calculate the signal; this also commonly fills between any 240 

missing days (Kugler and De Groeve, 2007). Furthermore, for each observation site, on the GFDS 241 

system the signal is calculated as the average signal of all measurement pixels under observation 242 

for each location (which can be one or more pixels) (GDACS, 2014). Thus, in some cases, even a 243 

10 km pixel is not large enough as a measurement site, and would entirely saturate with water 244 

during flooding. An array of measurement pixels is instead used. In this analysis, we used the 245 

signal values from the single pixels which contain the ground station, as well as a multiple pixels 246 

selection. This includes, for each location, the pixel itself and also the three nearest neighbours of 247 

the 10 x 10 km grid. In case of multiple pixels, the signal value was calculated for the spatial 248 

median, average and maxima. Similar results were obtained globally when comparing the 249 

extracted signals (single or multiple pixels) with the in situ discharge observations. Therefore, we 250 

used the temporal and spatial averaging on the multiple pixel array as in the operational GFDS. 251 

For each site, a visual check with Google maps was carried out to assure that the largest river 252 

section was included within the finalized measurement sites (see Figure 2). 253 

(INSERT FIGURE 2 HERE) 254 

 255 

3.2. Satellite signal calibration and validation  256 

For those co-located ground stations and satellite measurement sites where both sets of data (signal 257 

and in situ discharge) were above six years in length, calibration and validation was performed 258 



using the ground information as reference. Several stations, mainly in North America, located 259 

close to man-made infrastructures such as weirs and generating stations were excluded from this 260 

analysis due to the rapidly changing behaviour of the in situ observed discharge. Also, in a satellite-261 

based approach to measure river discharge, the local river characteristics and floodplain channel 262 

geometry control the accuracy of rating curves as is the case for gauging stations on the ground 263 

(Brakenridge et al., 2012, Khan et al., 2012 and Moffitt et al. 2011). Thus we expect some 264 

measurement sites to exhibit a more robust response to discharge changes, and a higher signal to 265 

noise ratio, than others. 266 

It has been acknowledged that for large rivers, using the daily GFDS signal as a floodplain flow 267 

surface area indicator of discharge might result in a few days lag when comparing with ground-268 

based discharge (Brakenridge, 2013). Thus, stage may immediately rise at a gauging station as a 269 

flood wave approaches, but flow expansion out into the floodplain requires some increment of 270 

time. This time lag may introduce error into the scatterplots used to calculate the rating equations, 271 

and therefore lower skill scores obtained when analysing both datasets.  In addition, in previous 272 

studies (Khan et al. 2012, Zhang et al. 2013), it was observed that, in some cases, an overestimation 273 

of satellite measured discharge existed during low flow periods when using a single rating equation 274 

for the full period to calibrate signal into discharge units. For this reason, we decided to use a rating 275 

equation for each month individually, and grouping daily into monthly data. In this case the time 276 

series data for a fixed month can be treated as stationary and the derived daily discharge values 277 

adjusted better also during low flow periods.  278 

To calibrate satellite signal into discharge measurements, the first five years of data were used for 279 

both satellite signal and ground discharge for each location. Regression equations were obtained 280 

using monthly means from daily values and with which GFDS measured discharge was derived.  281 

QGFDSmeasured of X month= amonth + bmonth * signal   (1)  282 

For the sake of simplicity, for this paper, the equations were restrict to linear equations. However, 283 

as the relation is purely empirical, we leave for follow on-work more research on flexible way to 284 

fit these relations. Note that fitting straight lines to curves will reduce goodness of fit and predictive 285 

accuracy. Power law fitting was also tested to calibrate the signal into discharge units yielding 286 

similar results (see Open Discussion Author's Response). 287 



The validation of the satellite derived daily discharge data was carried out with daily in situ data 288 

on a two-year period, and skills scores were calculated to quantify the agreement between both 289 

satellite and ground measured discharge. We are aware of the limited number of years (data) with 290 

available time series for both variables, which might influence the robustness of the calibration.  291 

In some cases there were longer time series available, but to standardised the analysis for all the 292 

stations we used five years (1998-2002 or 2003-2008 for Northern stations with AMSR-E signal) 293 

and the following two years for validation purposes (2003-2004 and 2009-2010 respectively). Note 294 

that for 36 out of the 322 stations available data length was between six years and three months to 295 

almost seven years. Validation was still carried out for the same period, but the data used for 296 

calibration was slightly reduced. As an example, Figure 3a presents the scatterplot for the month 297 

of March for the Senanga Station (Long 23.25, Lat. -16.116) in the Zambezi River (Africa) with 298 

mean values derived from the period 1998 to 2002. For the same location, Figure 3b shows the in 299 

situ observed and the GFDS measured discharge derived from the GFDS signal for the period 300 

2003-2004. 301 

(INSERT FIGURE 3 HERE) 302 

 303 

3.3. Skill scores  304 

The initial analysis of the correlation of the remote sensing signal to in situ discharge was assessed 305 

for each station and site pair through the Pearson correlation coefficient (R). For the validation, 306 

the performance of the satellite-measured discharge was also assessed using the Nash-Sutcliffe 307 

Efficiency (NSE) statistic in addition to the R skill score. Spearman's rank correlation coefficient 308 

(ρ) was also calculated to assess the validation performance.  309 

One of the advantages of the R coefficient is its independence on the units of measurement, which 310 

permits the comparison of dimensionless GFDS signal data.  A small value indicates a weak or 311 

non-linear relationship between the satellite signal and discharge. For this study, we grouped the 312 

computed R values into three ranges as follows: <0.3, [0.3-0.7], and >0.7. While Pearson 313 

benchmarks linear relationship, Spearman benchmarks monotonic relationship. Spearman’s 314 

validation scores just obtained a mean value 6% higher than Pearson mean score (see Open 315 

Discussion Author's Response). On this manuscript, results are analysed based on the scores 316 

obtained using Pearson correlation coefficient. 317 



Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) is typically used to assess the 318 

predictive power of hydrological models and was here calculated to describe the accuracy of 319 

satellite-derived discharge in comparison to gauge-observed discharge values. Higher values of 320 

the Nash-Sutcliffe statistic should indicate more correlated results, without other factors taken into 321 

account, such as autocorrelation (Brakenridge et al., 2012). However, the degree of correlation of 322 

these variables does not verify the discharge magnitudes (Brakenridge et al., 2013). A NSE value 323 

of 1 corresponds to a perfect match of modelled to the observed data whereas NSE = 0 indicates 324 

that the model predictions are as accurate as the mean of the observed data. The resulting scores 325 

will be classified as in Zaraj, et al. (2013): < 0, [0.2-0.5], [0.5-0.75], and > 0.75. 326 

 327 

3.4 Factors affecting the satellite signal 328 

Understanding the influence of local factors on the accuracy of the satellite flood detection is 329 

critical for practical use of the remotely sensed signal. We analysed the accuracy effects of river 330 

width, mean daily discharge, upstream catchment area, presence of large floodplain, flooded forest 331 

and wetlands, the potential flood extent, land cover type, Leaf Area Index (LAI), climatic areas, 332 

presence of river ice and hydraulic structures. To assess their influence, the fractional coverage 333 

over the measurement site was retrieved for variables with spatial coverage.  334 

First, we use the skill scores (R and NSE) obtained from a simple analysis for each individual 335 

factor or variable. Second, we seek to understand which of the surface variables have the greatest 336 

importance in determining sites with a good or poor performance. For this purpose, we use a 337 

decision tree technique called Random Forest (RF). Among other features, this allows ranking of 338 

the relative importance of each variable. The technique is described by Breiman (2001) and 339 

implemented in R by Liaw and Wiener (2002), where the reader is referred for a more detailed 340 

explanation. As a summary of the Random Forest algorithm, ntree bootstrap samples are randomly 341 

selected from the data set, a different subset is used for each bootstrap and for each sample a tree 342 

is grown, obtaining ntree trees. Random Forest is called an ensemble method because it applies 343 

the method for a number of decision trees, in this case 500, in order to improve the classification 344 

rate. Some stations are left out of the sample (out-of-bag) and used to gain an internal unbiased 345 

estimate of the generalisation error (oob errors) and to obtain estimates of the importance of the 346 

variables (Breiman, 2001). These values are averaged over the ntree trees. For the variables 347 



classification, the node impurity is measured by the Gini index. Gini´s mean difference was first 348 

introduced by Corrado Gini in 1912 as an alternative measure of variability and the parameters 349 

derived from it, such as the Gini index, also referred to as the concentration ratio (Yitzhaki and 350 

Schechtman,2013). The Gini index is mostly popular in economics, however it is also used in other 351 

areas, such as building decision trees in statistics to measure the purity of possible child nodes, 352 

and it has been compared with other equality measures (Gonzalez,L., et al. 2010).. The variables 353 

with higher decrease in Gini values (lower Gini) are those with higher importance on the 354 

classification analysis. 355 

Although for “black-box models” such as Random Forest the information is hidden inside the 356 

model structure, the prediction power is high (Palczewska et al., 2013). This method is relatively 357 

robust given outliers and noise because it uses randomly chosen subsets of variables at each split 358 

of each tree (Breiman, 2001; Chan et al., 2008). To further increase robustness, Strobl et al. (2009) 359 

states that results from the random forest and conditional variable importance should always be 360 

tested by doing multiple random forest runs using different seeds and sufficiently large ntree values 361 

to obtain robust and stable results. 362 

The quality index chosen to rank variable importance and classify good or poor locations, in the 363 

Random Forest analysis, was the Nash-Sutcliffe Efficiency (NSE) score. A threshold of NSE=0 364 

splits the data into two groups, obtaining about 50% of the data above (true or good predictive) 365 

and below (false or poor predictive) that value of NSE. The results presented here are the average 366 

of 200 runs. Furthermore, four different training sets were used by a random 70%/75%/80%/90% 367 

of the stations and were validated with the remaining 30%/25%/20%/10% of stations, respectively.  368 

4 Results and discussion 369 

 370 

As a first step we analysed the relationship between the satellite signal and the in situ observed 371 

discharge to have an initial understanding of the performance between the two datasets (Section 372 

4.1). Then we calibrated the satellite signal with in situ discharge data. With the regression 373 

equations obtained, we calculated satellites discharge measurements. A two-year validation period 374 

was carried out for each station using the skill scores as described in Section 3.3 (Section 4.2). 375 

This was followed by an assessment for how different variables contribute in a positive or negative 376 

way to the overall skill (Section 4.3). Variables included in the analysis are daily mean river 377 



discharge, river width, upstream catchment area, potential flood hazard area, land cover, leaf area 378 

index, climatic zones, presence of large floodplains, flooded forest and wetlands, river ice and 379 

hydrologic structure. Finally, the relative importance of all variables in comparison to each other 380 

has been assessed (Section 4.4). 381 

Before analysing the validation results, it is important to highlight two possible different sources 382 

of error which might influence the outputs. Firstly, the signal to noise ratio might be low for a site 383 

or have intermittent instrument noise occasionally producing positive spikes in discharge. 384 

Secondly, the rating curve may be offset, which will result in a consistent bias on the discharge 385 

values for that location even though the time series are strongly correlated. 386 

 387 

4.1. Correlation of raw satellite data vs. gauge observations 388 

The first step was to look at the “raw” correlation between daily ground station-measured water 389 

discharge and the satellite signal and to calculate the empirical linear relation between these two 390 

variables for each site. The full time series, including low flows, were used for the calculation and 391 

executed for 398 stations. Figure 4 shows the R skills obtained. 169 out of 398 sites have an R > 392 

0.3 and 42 of them have R>0.5. Perhaps, correlations might have been higher if regression would 393 

have not been restricted to linear equations (Brakenridge et al., 2007, 2012).  394 

(INSERT FIGURE 4 HERE) 395 

 396 

4.2. Satellite signal calibration, validation and evaluation through skill scores 397 

For the stations with over six years of contemporary data for both in situ discharge and satellite 398 

signal, we obtained regression equations for each month of the year and station using the first five 399 

years of data. Next, using these equations we carry out a calibration of the daily signal into 400 

discharge units.  Afterwards, the validation of the GFDS measured discharge was implemented for 401 

the following two years. In some regions such as Northern Asia, the lack of available recent long 402 

time series (after 2002) meant that the number of stations available for calibrating the satellite into 403 

discharge measurements was reduced.  Stations where the number of years matching observed 404 

discharge and satellite signal was shorter than six years were excluded from the validation exercise 405 



despite performing well. Finally, out of 398 a total of 332 stations remained for calibration and 406 

validation. 407 

Figure 5 shows that for NSE score, 154 out of 332 stations are larger than 0; 13 located in Africa, 408 

77 in North America, 62 in South America, 1 in Asia and 1 in Europe. Nevertheless, it needs to be 409 

noted that in arid regions, results calculated with the skill scores such as NSE are penalised, by 410 

low average discharge compared to high flow conditions. If instead of using all the available time 411 

series, a “dry stream” threshold would have been applied, the scores obtained for these sites could 412 

have been higher when analysing the remaining dataset period where flow is present.   413 

(INSERT FIGURE 5 HERE) 414 

 415 

4.3. Analysis of the factors affecting the satellite signal 416 

 417 

4.3.1. River width and presence of floodplain and wetlands.   418 

As a first step to analyse the potential relationship between the individual local characteristics and 419 

the performance of the locations in global terms, we study the R score of the validation for the 322 420 

stations in relation with the maximum river width value at each location (Figure 6a).  Results 421 

indicate that locations with a river width higher than 1 km are more likely to score an R larger than 422 

0.3. In fact, the mean R score is 0.60. Where 26 out of 64 (~41%) have R> 0.75. However, there 423 

is a number of stations with lower river width that also obtained high scores. As the retrieval of 424 

the satellite signal also depends on the floodplain geometry. As soon as the river floods and water 425 

goes over-bank, the proportion of water in the wet pixel greatly increases. So the score should be 426 

also high for small rivers with a proportionally big floodplain. Figure 6b shows the R scores by 427 

locations where the majority of the area belongs to floodplain, flooded forest and wetlands 428 

category or, their absence. In our study, higher median scores were obtained for those located in 429 

large freshwater marsh and floodplains, followed by those on swamps and flooded forest. These 430 

results give a first indication on the characteristics of the locations with better performance. 431 

(INSERT FIGURE 6 HERE) 432 

4.3.2. River discharge and potential flooding 433 

Flooding is determined by the discharge as well as the potential flood hazard. Figure 7a shows that 434 

84 out of 95 stations with R<0.3, also have mean discharge values lower than 500 m3s-1 (Log10 435 



(500) ≈2.7), of which 55 stations in fact had a mean discharge lower than 200 m3s-1. These stations 436 

are mainly located in South Africa, and in some areas of North America. Therefore, it can be 437 

concluded that the mean discharge can be considered a key variable that determines the 438 

appropriateness of locations for which satellite discharges can be derived: As 77% of the stations 439 

with Q<500 m3/s, have R< 0.3, while 91.5% of the stations with Q>500 m3/s have R >0.3, locations 440 

with discharge of less than 500 m3s-1 might not provide reliable results for a global satellite-based 441 

monitoring system. Alternatively, non-permanent rivers and streams exhibiting only seasonal or 442 

ephemeral flow (typical for dry regions) may require a different monitoring approach, wherein a 443 

“dry” threshold is established for the signal data.  444 

After excluding the global stations with low skill score due to low flows and studying the 445 

remaining stations, we can better understand the performance of the system in relation to other 446 

local characteristics. Figure 7b shows for each location the relationship between the validation R 447 

and the percentage of area in each pixel covered by potential flooding during a 100 year return 448 

period flood event, obtained with the model grid (HTESSEL+CaMa-Flood) (downscaled from a 449 

25 x 25 km pixel, Pappenberger et al., 2012).  100 means totally flooded across its area, 50 means 450 

50 % of the area within the cells is flooded, and 0 means that the area is not flooded.  Although 451 

there is not a clear trend for all the points, result indicate that locations with a percentage of 452 

potential flooding larger than 40%, are expected to score an R larger than 0.3.   453 

(INSERT FIGURE 7 HERE) 454 

4.3.3. Land cover types and climatic areas  455 

Figure 8 presents a global evaluation of the R score obtained during the validation and its 456 

classification by the land cover type of the stations. The bare land cover category was excluded 457 

from this study as only one of the selected locations belong to that class. Looking at the median of 458 

the boxplot (see Figure 8), we found that some of the locations with higher density of vegetation 459 

such as those located on “closed forest” and “mosaic with predominant vegetation” (included 460 

forest, scrublands and grasslands) obtained lower median scores values. In contrast, the locations 461 

with lower vegetation density such as “sparse vegetation”, “mosaics with predominant 462 

cropland/grasslands”, “open forest” and “closed to open forest” land cover types obtained larger 463 

median R scores, around 0.6-0.8. Similar results can be observed when looking at the interquartile 464 

range or spread of the boxplots: “closed to open forest” and “mosaics with predominant 465 



cropland/grasslands” obtained better results. Meanwhile, “closed forest” and “mosaic with 466 

predominant vegetation” had lowers scores. In addition, those sites with a combination of sparse 467 

vegetation and crops growing near the river channel had a lower median value where comparing 468 

with those on sparse or mosaic crops land cover. Note that the sites with “sparse with crops” are 469 

located in arid climatic areas, whereas most of the “sparse” are in cold or polar regions, therefore 470 

run by different processes. In addition, sites with a majority of artificial/urban land cover (not 471 

shown) obtained a low median value of 0.267. 472 

(INSERT FIGURE 8 HERE) 473 

 474 

The relationship between locations by main Köppen-Geiger climatic areas (Peel et al. 2007) and 475 

R score obtained is shown in Figure 9. Globally the tropical regions (Africa and South America) 476 

obtained the highest median scores (R≈0.8), followed by cold regions (R≈0.6). Lower median 477 

score values (R≈0.3) were obtained for arid and temperate regions. It is important to clarify that 478 

these results are not only due to direct climate characteristics but also for example due to the 479 

characteristics of the rivers on those areas.  In the case of the arid regions, it is mainly related with 480 

reduce daily average discharges, a characteristic of many of these stations. Note that polar climate 481 

was excluded from this evaluation as only three locations belong to that class. 482 

(INSERT FIGURE 9 HERE) 483 

4.3.4. Leaf Area Index (LAI) 484 

Leaf Area Index (LAI) values typically range from 0 for bare ground to 6 or above for a dense 485 

forest, however CYCLOPES underestimates over dense vegetation (forest) (Zhu et al., 2013). 486 

Therefore, for this product LAI range is limited to [0-4], as seen in our analysis. Despite this, 487 

CYCLOPES is the most similar product to LAI references map (Ibid.). According to the study 488 

carry out by Zhu et al. (2013) monthly CYCLOPES LAI values for the period 1999 to 2007 by 489 

four main groups of vegetation are predominantly as follows: bare ground [0], forest [0-3.5], other 490 

woody vegetation [0-1.5], herbaceous vegetation [0-2], and cropland/natural vegetation mosaics 491 

[0-3]. The highest annual mean LAI values are obtained by evergreen broadleaf forest (3.16), 492 

included in our “closed to open forest” class.  493 



We decided to study the relationship between the mean Leaf Area Index and the skill obtained in 494 

the validation for each location, also looking at complementary variables such us the land cover 495 

and the geographical region which the stations belong to. Figure 10 shows that locations with a 496 

mean [LAI > 2] predominantly have a “closed to open forest” type in South America (31 stations) 497 

of which 29 have an R score higher than 0.6. For [LAI > 2] there is also 12 North American 498 

locations with “closed forest” land cover but in general with poorer scores for those locations. 499 

Additionally, 18 stations with mosaic vegetation from North and South America obtained [LAI > 500 

2] and 16 out of them, a [R>0.6]. For [LAI < 2], both the land cover and geographical locations 501 

are distributed along the scatterplots, from poor to high correlations.   502 

(INSERT FIGURE 10 HERE) 503 

 504 

4.3.5. River ice 505 

Figure 11a shows the scores obtained for the locations with presence or absence of river ice, 506 

including a range from continuous to sporadic (Brown et al., 2002). It can be seen that stations 507 

located in areas with river ice tend to have a good correlation between in situ and  satellite 508 

measured discharge (based on 33 stations), as the system tends to capture well the annual spring 509 

ice break-up and freezing as indicated in the study by Brakenridge et al.(2007) and Kugler (2012).  510 

At these locations, once ice-covered there is no sensing capability from the system: which may 511 

seems analogous to low flow conditions, and for which sites we obtained lower scores. However, 512 

there is an important difference when analysing time series of signal between ice covered high 513 

latitude river and all-year-around low flow rivers. When on the sites with river ice melting process 514 

takes place, there is an increase of runoff happening and for many places the signal strongly 515 

indicates this increased flow. On the other type of rivers, low flows is generally a characteristic for 516 

most of the year and if the signal to noise is low, the signal retrieved is very noisy: one motivation 517 

for setting a “dry” threshold for such sites. 518 

 519 

4.3.6. Hydraulic structures 520 

The correlation between satellite and discharge data depends on both variables. Typically it is 521 

assumed that observed discharges are “ground truth”, however, when influenced by structures and 522 

dams the ground discharge may not be well-monitored by flow area/flow width variation. For 523 

example, when there is a major increase in river discharge but a flood is avoided by artificial 524 



levees, we cannot expect that the satellite signal will accurately capture the flood hydrograph; as 525 

well, downstream flooding may be attenuated by an upstream flood control dam and reservoir; so 526 

that the gauge location is critical. Figure 11b shows the influence of the presence or absence of a 527 

nearby dam using the Global Reservoir and Dam (GRanD) database (Lehner et al., 2008) or 528 

visually identified hydraulic control infrastructure. Locations where the dam or other element was 529 

present (48 stations) obtained lower median R score. Therefore, ideally, observation sites should 530 

be located in areas without hydraulic control infrastructures.  531 

(INSERT FIGURE 11 HERE) 532 

 533 

4.4. Variable importance 534 

Based on the individual analysis of the signal potential influence factors we found that to 535 

understand the site performances, on some occasions multiple variables need to be analysed in a 536 

simultaneous way. For example, the general low scores obtained on the Eastern USA stations 537 

might be due to a number of factors: ~64% of these stations have a mean discharge value lower 538 

than 500 m3s-1 and ~88% of the stations are located at river width lower than 1km. In addition, 539 

~59% of the stations are located in wetlands areas.  Another example, in this case regarding the 540 

exceptions of the low R and mean observed discharge higher than 500 m3s-1, all the 11 locations 541 

have a potential probability of flooding lower than 21%, the land cover of 10 out of 11 is forest, 5 542 

of them located in wetlands and two of them have a nearby hydraulic structure. Despite exhibiting 543 

a mean discharge greater than 500 m3s-1, these other local characteristics may be the cause of the 544 

poor performance.  Therefore, we decided to use a classification decision tree technique (Random 545 

Forest), which split the dataset at each node according to the value of one variable at a time (the 546 

best split) from a selected set of variables  to understand the importance of each variable. Random 547 

Forest is called an ensemble method because it is performed for a number of decision trees, in this 548 

case 500 trees, in order to improve the classification rate.   549 

The result presented here is the rank of the importance of variables to classify a location with a 550 

good or poor performance. These values are obtained as an output of the Random Forest analysis 551 

and are, in addition, the average of 200 independent runs. As explained in section 3.4 the variable 552 

importance based on the mean decrease in Gini index was calculated for the Nash-Sutcliffe 553 

Efficiency (NSE) score obtained from the validation. We used a NSE=0 to distinguish the sites 554 



with a good (above 0) from poor performance (below 0) and we also tested it with a threshold NSE 555 

of 0.50. 556 

Figure 12 presents the variable importance for the four test groups. Features which produced large 557 

values of the “Mean Decrease in Gini” are ranked as more important than features which produced 558 

small values. For our locations and data available the mean daily observed discharge has the 559 

highest importance, followed by the climatic region, land cover / mean LAI and upstream 560 

catchment area.  Meanwhile, the presence of hydraulic structures (mainly dams) and of river ice 561 

has the lowest importance to classify a location as good or poor performance. However, this does 562 

not mean that it has no influence. Although discharge is correlated with upstream catchment area 563 

and at some degree also leaf area index with land cover type, both were included in this case to 564 

understand which variable might help us most to classify the sites.    565 

Although, the effect of the correlations on these measures has been studied recently (see Archer 566 

and Kimes (2008), Strobl et al. (2008), Nicodemus and Malley (2009), Nicodemus et al. (2010), 567 

Nicodemus (2011), Auret and Aldrich (2011), Tolosi and Lengauer (2011), Grömping, U. (2009) 568 

and Gregorutti et al. (2013)) there is no yet a consensus on the interpretation of the importance 569 

measures when the predictors are correlated and on what is the effect of this correlation on the 570 

importance measure. 571 

In order to test the effect on the results when correlated variables were included in our analysis, an 572 

independent Random Forest analysis was carried out (not shown in the paper) for the same 573 

variables but excluding the river width and the presence of floodplains and wetlands variables. 574 

Results also showed that the mean daily observed discharge had the highest importance and the 575 

presence of hydraulic structures (mainly dams) and of river ice had the lowest importance to 576 

classify a location as good or poor performance. 577 

(INSERT FIGURE 12 HERE) 578 

 579 

5 Conclusions and future research 580 

 581 

In this article we presented an evaluation of the skill of the Global Flood Detection System to 582 

measure river discharge from remote sensing signal. From the 322 stations validated the average 583 



continental R skills are as follow: Africa 0.382, Asia 0.358, Europe 0.508, North America 0.451 584 

and South America 0.694. Approximately 48% of these stations have an NSE score higher than 585 

zero; 13 located in Africa, 77 in North America, 62 in South America, 1 in Asia and 1 in Europe. 586 

Results showed that the majority of the stations that received low skills scores, were due to low 587 

flow conditions. For example, 84 out of 95 stations with R<0.3, have mean discharge values lower 588 

than 500 m3s-1. These are located mainly in South Africa with 25 cases and North America with 589 

53 cases, which penalised their average continental skills. Note that our focus was on factors 590 

affecting the method, globally, and that these skill values do not directly indicate at-a-site 591 

measurement accuracy (which could be improved, for example, by use of non-linear rating 592 

equations and/or accommodation of any phase shift or timing differences in flow area- versus state-593 

based discharge monitoring). 594 

In order to better understand the impact of the local conditions on the performance of the sites, we 595 

looked first at specific factors individually. In general terms, higher skill scores were obtained for 596 

location with one or more than one of the following characteristics: a river width higher than 1km, 597 

a large floodplain area, in flooded forest, with a potential flooded area per pixel greater than 40% 598 

during a 100 year return period flood event, a land cover type of sparse vegetation, croplands or 599 

grasslands and closed to open and open forest, Leaf Area Index above 2, located in a tropical 600 

climatic area, and where no dams or hydraulic infrastructures are present. Also, out of our 601 

locations, high latitude rivers with seasonal ice-cover tend to exhibit good performance.  602 

Secondly, we performed a classification decision tree analysis, based on Random Forest, to obtain 603 

the variable importance when classifying a site as good or poor. The output of this analysis showed 604 

that mean observed discharge, climatic region, land cover and mean leaf area index (LAI) and 605 

upstream catchment area and were the variables with higher importance, whereas river ice and 606 

dam obtained the lowest importance. Both the individual and the combined classification analysis 607 

of these local characteristics give us critical evidence of the relationship between the ground and 608 

satellite discharge measurements and when it is expected to perform well. Furthermore, it provides 609 

a guideline for future selection of measuring sites. 610 

The locations with a very good performance will be selected for a potential future project where 611 

satellite measure discharge could be calculated for longer periods and on a daily basis from the 612 

remote sensing signal, analogous to the Dartmouth Flood Observatory method. This will represent 613 



a major step forward in developing continental and global hydrological monitoring systems as 614 

these data can fill the gaps where real time ground discharge measurements are not available (the 615 

case at many locations globally). We found that some of the sites with good performance are 616 

located within international river basins such as the Niger, Volta and Zambezi in Africa. In 617 

addition, for the studied locations with good signal performance but rather short contemporary 618 

time series with in situ observed discharge (such as the Siberian stations), the calibration of the 619 

signal to obtain discharge measurements could be executed at any point when additional ground 620 

data is available. This will also be beneficial for all stations including those with time series above 621 

seven years long. 622 

Zhang et al. (2013) recently demonstrated the potential of integrating satellite signal provided by 623 

the Global Flood Detection System in improving flood forecasting. This first attempt of data 624 

assimilation was carried out for a single station (Rundu, northern Namibia- included in this study) 625 

with the conceptually simple Hydrological MODel (HyMOD). Hence, a prospective study with 626 

the inclusion of all these stations for post-processing through data assimilation and error correction 627 

of the stream-flow forecast in hydrological models could be done. For instance, for the pre-628 

operational Global Flood Awareness System (GloFAS) (Alfieri et al. 2012) and the African Flood 629 

Forecasting System (AFFS) (Thiemig et al. 2014) in an analogous way as it is already being done 630 

with ground gauge observed streamflow on the European Flood Awareness System (Bartholmes 631 

et al., 2009; Thielen et al., 2009). Hence, work towards the integration of global flood detection 632 

and forecasting systems such as GFDS and GloFAS, respectively, can provide a more 633 

comprehensive information for decision makers. 634 

 635 

Acknowledgements. We acknowledge the Global Runoff Data Centre and South African Water 636 

Affairs for providing historic discharge measurements. Furthermore we would like to acknowledge 637 

the team from the Joint Research Centre Crisis Monitoring and Response Technologies 638 

(CRITECH) for support and access to the Global Flood Detection System signal historical data. 639 

Also, Philippe Roudier, Simone Russo, Angel Udias and Feyera Hirpa are thanked for their 640 

valuable input and methodology advice and Ad de Roo for PhD supervision and the editor and the 641 

two reviewers are gratefully acknowledged for their valuable feedback. G. R. Brakenridge 642 

acknowledges funding support from the NASA Hydrology Program.  643 



References 1 

 2 

Alfieri, L., Burek, P., Dutra, E., Krzeminski, B., Muraro, D., Thielen, J. and Pappenberger, F.: 3 

GloFAS-global ensemble streamflow forecasting and flood early warning, Hydrology and 4 

Earth System Sciences, vol. 17, no. 3, pp. 1161-1175, 2013. 5 

Archer, K. J. and Kimes, R. V. Empirical characterization of random forest variable importance 6 

measures. Computational Statistics and Data Analysis, 52:2249–2260, 2008. doi: 7 

10.1016/j.csda.2007.08.015 8 

Auret, L. and Aldrich, C. Empirical comparison of tree ensemble variable importance measures. 9 

Chemometrics and Intelligent Laboratory Systems, 105:157–170, 2011. 10 

doi: 10.1016/j.chemolab.2010.12.004 11 

Bartholmes, J.C., Thielen, J., Ramos, M.H. and Gentilini, S.: The European flood alert system 12 

EFAS - Part 2: Statistical skill assessment of probabilistic and deterministic operational 13 

forecasts. Hydrology and Earth System Sciences, 13(2): 141-153, 2009. 14 

Brakenridge, G. R., S. V. Nghiem, E. Anderson, and S. Chien, Space-based measurement of river 15 

runoff, Eos Trans. AGU, 86(19), 185–188, 2005, doi:10.1029/2005EO190001. 16 

Brakenridge, G.R., Nghiem, S.V., Anderson, E. & Mic, R.: Orbital microwave measurement of 17 

river discharge and ice status, Water Resources Research, vol. 43, no. 4, 2007, W04405, 18 

doi:10.1029/2006WR005238. 19 

Brakenridge, G.R., Cohen, S., Kettner, A.J., De Groeve, T., Nghiem, S.V., Syvitski, J.P.M. and 20 

Fekete, B.M.: Calibration of satellite measurements of river discharge using a global 21 

hydrology model, Journal of Hydrology, vol. 475, pp. 123-136, 2012. 22 

Brakenridge, G.R., De Groeve, T., Cohen, S., and Nghiem, S. V.: River Watch, Version 2: Satellite 23 

River Discharge and Runoff Measurements: Technical Summary, University of Colorado, 24 

Boulder, CO, USA,  25 

http://floodobservatory.colorado.edu/SatelliteGaugingSites/technical.html, last access: 1 26 

December 2013. 27 

Breiman, L.: Random Forests. Machine Learning, 45, 5–32, 2001. 28 

Brown, J., O.J. Ferrians, Jr., J.A. Heginbottom, and E.S. Melnikov.: Circum-Arctic Map of 29 

Permafrost and Ground-Ice Conditions. Version 2. [Permafrost], Boulder, Colorado USA: 30 

National Snow and Ice Data Center, 2002. 31 



Committee on Earth Observation Satellites (CEOS) Flood Pilot, http://www.ceos.org/, last access: 1 

1 September 2014. 2 

Chan, J.C.-. & Paelinckx, D.: Evaluation of Random Forest and Adaboost tree-based ensemble 3 

classification and spectral band selection for ecotope mapping using airborne hyperspectral 4 

imagery, Remote Sensing of Environment, vol. 112, no. 6, pp. 2999-3011, 2008. 5 

Chukhlantsev, Alexander A.: Modeling of microwave emission from vegetation canopies, 6 

Microwave Radiometry of Vegetation Canopies. Springer Netherlands, Chapter 6. pp. 147–7 

175, 2006. 8 

Di Baldassarre, G. and Montanari, A.: Uncertainty in river discharge observations: a quantitative 9 

analysis, Hydrol. Earth Syst. Sci., 13, 913-921, doi: 10.5194/hess-13-913-2009, 2009. 10 

De Groeve, T., Brakenridge, G. R., and Kugler., Z.: Near Real Time Flood Alerting for the Global 11 

Disaster Alert and Coordination System,  eds B. Van de Walle, P. Burghardt, and C. 12 

Nieuwenhuis Proceedings of the 4th International ISCRAM Conference, 33-40, 2006. 13 

De Groeve, T., and Riva, P.: Global Real-time Detection of Major Floods Using Passive 14 

Microwave Remote Sensing, Proceedings of the 33rd International Symposium on Remote 15 

Sensing of Environment Stresa, Italy, May 2009.  16 

De Groeve, T.: Flood monitoring and mapping using passive microwave remote sensing in 17 

Namibia, Geomatics, Natural Hazards and Risk, 1:1, 19-35, 2010. 18 

Di Baldassarre, G. and Montanari, A.: Uncertainty in river discharge observations: A quantitative 19 

analysis, Hydrology and Earth System Sciences, vol. 13, no. 6, pp. 913-921, 2009. 20 

Disaster Charter, 2013. Space and Major Disasters. http://www.disasterscharter.org/, last accessed 21 

1 September 2014. 22 

EM-DAT, The OFDA/CRED International Disaster Database, Université Catholique de Louvain, 23 

Brussels, Belgium, http://www.emdat.be, last access: 1 December 2013. 24 

Fekete, B.M., Vorosmarty, C.J., Grabs, W., 1999. Global, composite runoff fields based on 25 

observed river discharge and simulated water balances, GRDC Report 22, Global Runoff 26 

Data Center, Koblenz, Germany. 27 

GDACS, Global Disaster Alert and Coordination System, Global Floods Detection System. 28 

http://www.gdacs.org/, last accessed 1 December 2013. 29 

Global Runoff Data Centre: Major River Basins of the World, 2007. 56068 Koblenz, Germany: 30 

Federal Institute of Hydrology (BfG). http://grdc.bafg.de/, last accessed 20 January, 2013 31 

http://www.disasterscharter.org/
http://www.emdat.be/


Global Runoff Data Centre, The. River Discharge Time Series. 56068 Koblenz, Germany: Federal 1 

Institute of Hydrology (BfG). http://grdc.bafg.de/, last accessed 20 January, 2013 2 

Golnaraghi M., J. Douris, J.-B. Migraine: Saving Lives Through Early Warning Systems and 3 

Emergency Preparedness, Risk Wise, Tudor Rose, pp 137–141, 2009. 4 

Gonzalez, L., Velasco Morente, F., Gavilan Ruiz, J.M., Sanchez-Reyes Fernandez, J.M. The 5 

Similarity between the Square of the Coefficient of Variation and the Gini Index of a 6 

General Random Variable. Journal of Quantitative Methods for Economics and Business 7 

Administration 10: 5–18.2010, ISSN 1886-516X. 8 

Gregorutti,B., Michel, B., Saint-Pierre, P.  Correlation and variable importance in random forests. 9 

Cornell University Library, 2013. arXiv: 1310.5726 [stat] 10 

Grömping, U. Variable Importance Assessment in Regression: Linear Regression versus Random 11 

Forest. The American Statistician. 11/2009; 63:308-319, 2009. doi: 10.1198/tast.2009.08199 12 

Hirpa FA, Hopson TM, De Groeve T, Brakenridge GR, Gebremichael M, Restrepo PJ. Upstream 13 

satellite remote sensing for river discharge forecasting: Application to major rivers in South 14 

Asia. Remote Sens Environ, 131:140-51, 2013. 15 

Hirsch R. M, Costa J. E.:U.S. Stream Flow Measurement and Data Dissemination Improve EOS, 16 

Transactions, American Geophysical Union. Vol. 85, No. 20, 18 May 2004, 197-203 pp, 17 

2004. 18 

Khan, S.I., Hong, Y., Vergara, H.J., Gourley, J.J., Robert Brakenridge, G., De Groeve, T., Flamig, 19 

Z.L., Policelli, F. & Yong, B.: Microwave satellite data for hydrologic modeling in ungauged 20 

basins, IEEE Geoscience and Remote Sensing Letters, vol. 9, no. 4, pp. 663-667, 2012. 21 

Kugler, Z., and De Groeve, T.: The Global Flood Detection System, Office for Official 22 

Publications of the European Communities, Luxembourg, 2007. 23 

Kugler, Z.: Remote sensing for natural hazard mitigation and climate change impact assessment, 24 

Quaterly Journal of the Hungarian Meteorological Service. Vol.116, No.1, January-March 25 

2012, pp.21-38, 2012. 26 

Kundzewicz, Z. W: Changes in Flood Risk in Europe, Wallingford: IAHS Press. 516 p. IAHS 27 

special publication; 10, 2012.  United Nations: Report of the United Nations Conference on 28 

Sustainable, Development Rio de Janeiro, Brazil. 20–22 June 2012, A/CONF.216/16, 2012. 29 



Le Coz, J., Renard, B., Bonnifait, L., Branger, F. & Le Boursicaud, R.: Combining hydraulic 1 

knowledge and uncertain gaugings in the estimation of hydrometric rating curves: A 2 

Bayesian approach, Journal of Hydrology, vol. 509, pp. 573-587, 2014. 3 

Lehner, B., and Döll, P.: Development and validation of a global database of lakes, reservoirs and 4 

wetlands. Journal of Hydrology 296/1-4: 1-22, 2004. doi: 10.1016/j.jhydrol.2004.03.028 5 

Lehner, B., Reidy Liermann, C., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Döll, P., 6 

Endejan, M., Frenken, K., Magome, J., Nilsson, C., Robertson, J., Rödel, R., Sindorf, N., 7 

Wisser, D.: High resolution mapping of the world’s reservoirs and dams for sustainable river 8 

flow management, Frontiers in Ecology and the Environment. Source: GWSP Digital Water 9 

Atlas. Map 81: GRanD Database (V1.0), 2008. Last access: 11/03/2014. 10 

http://atlas.gwsp.org/index.php?option=com_content&task=view&id=209&Itemid=1 11 

Liaw, A. and Wiener, M. Classification and Regression by randomForest. R News 2(3), 18—22, 12 

2002. 13 

Moffitt, C.B., F. Hossain, R.F. Adler, K.K. Yilmaz, and H.F. Pierce. Validation of a TRMM-Based 14 

Global Flood Detection System in Bangladesh. International Journal of Applied Earth 15 

Observation and Geoinformation Volume 13, Issue 2, April 2011, Pages 165-177, DOI: 16 

10.1016/j.jag.2010.11.003.  17 

MunichRe, Munich Reinsurance: January 2014 press release, 2014.Münchener 18 

Rückversicherungs-Gesellschaft, Geo Risks Research, NatCatSERVICE 19 

 http://www.munichre.com/en/media_relations/press_releases/2014/2014_01_07_press_rele20 

ase.aspx, last access 20 January 2014 21 

Nash, J.E. & Sutcliffe, J.V.: River flow forecasting through conceptual models part I - A discussion 22 

of principles Journal of Hydrology, vol. 10, no. 3, pp. 282-290, 1970. 23 

Nicodemus, K. K. Letter to the editor: On the stability and ranking of predictors from random 24 

forest variable importance measures. Briefings in Bioinformatics, 12:369–373, 2011. doi: 25 

10.1093/bib/bbr016 26 

Nicodemus, K. K., Malley, J. D., Strobl, C., and Ziegler, A. The behavior of random forest 27 

permutation-based variable importance measures under predictor correlation. BMC 28 

Bioinformatics, 11:110, 2010. doi: 10.1186/1471-2105-11-110 29 



Palczewska, A., Palczewski, J., Robinson, R.M. and Neagu, D.: Interpreting random forest models 1 

using a feature contribution method, Proceedings of the 2013 IEEE 14th International 2 

Conference on Information Reuse and Integration, IEEE IRI 2013, pp. 112, 2013. 3 

Pappenberger, F., Matgen, P., Beven, K.J., Henry, J.B., Pfister, L., de Fraipont, P. Influence of 4 

uncertain boundary conditions and model structure on flood inundation predictions. Adv. 5 

Water Resour. 29, 1430–1449, 2006. doi: 10.1016/j.advwatres.2005.11.012 6 

Pappenberger, F., Dutra, E., Wetterhall, F. & Cloke, H.L.: Deriving global flood hazard maps of 7 

fluvial floods through a physical model cascade, Hydrology and Earth System Sciences, vol. 8 

16, no. 11, pp. 4143-4156, 2012.  9 

Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger 10 

climate classification, Hydrol. Earth Syst. Sci., 11, 1633-1644, doi: 10.5194/hess-11-1633-11 

2007, 2007. 12 

Pelletier, P.M.: Uncertainties in the single determination of river discharge: a literature review. 13 

Canadian Journal of Civil Engineering, 15:834–850, 1988.  14 

Rosso, R. A linear approach to the influence of discharge measurement error on flood estimates. 15 

Hydrol. Sci. J. 30 (1), 137–149, 1998. doi: 10.1080/02626668509490975 16 

Sandri, M. and Zuccolotto, P.. A bias correlation algorithm for the Gini variable importance 17 

measure in classification trees. Journal of Computational and Graphical Statistics, 17:611-18 

628, 2008. [184], doi: 10.1198/106186008X344522 19 

Schumann, Guy, Paul D. Bates, Matthew S. Horritt, Patrick Matgen, and Florian Pappenberger.: 20 

Progress in Integration of Remote Sensing–derived Flood Extent and Stage Data and 21 

Hydraulic Models. Reviews of Geophysics 47, RG4001, no. 4, 2009. doi: 22 

10.1029/2008RG000274. 23 

South African Water Affairs (DWA) database, http://www.dwa.gov.za/Hydrology/, last access: 10 24 

July 2013.  25 

Strobl, C., Malley, J. & Tutz, G.: An Introduction to Recursive Partitioning: Rationale, 26 

Application, and Characteristics of Classification and Regression Trees, Bagging, and 27 

Random Forests, Psychological methods, vol. 14, no. 4, pp. 323-348, 2009. doi: 28 

10.1186/1471-2105-9-307 29 



Thielen, J., Bartholmes, J., Ramos, M.-H., and de Roo, A.: The European Flood Alert System. Part 1 

1: Concept and development, Hydrol. Earth Syst. Sci., 13, 125–140, doi: 10.5194/hess-13-2 

125-2009, 9278, 2009. 3 

Thiemig, V., Bisselink, B., Pappenberger, F., and Thielen, J.: A pan-African Flood Forecasting 4 

System, Hydrol. Earth Syst. Sci. Discuss., 11, 5559-5597, doi: 10.5194/hessd-11-5559-2014, 5 

2014.  6 

Tolosi, L. and Lengauer, T. Classification with correlated features: unreliability of feature ranking 7 

and solutions. Bioinformatics, 27:1986–1994, 2011. doi: 10.1093/bioinformatics/btr300 8 

Tomkins, K.M.: Uncertainty in streamflow rating curves: Methods, controls and consequences. 9 

Hydrological Processes, 28(3), pp. 464-481, 2014. 10 

UNISDR: Global Assessment Report: Revealing Risk, Redefining Development, Chapter 2.2. 11 

Global disaster risk trends, United Nations, printed in the UK, ISBN 978-92-1-132030-5, 12 

page 22-27, 2011. 13 

UNOSAT, UNITAR Operational Satellite Applications Programme 14 

http://www.unitar.org/unosat/maps, last accessed 1 December 2013 15 

Van Westen, C.J.: Remote sensing and GIS for natural hazards assessment and disaster risk 16 

management. In: Shroder, J. (Editor in Chief), Bishop, M.P. (Ed.), Treatise on 17 

Geomorphology. Academic Press, San Diego, CA, vol. 3, Remote Sensing and GIScience in 18 

Geomorphology, pp. 259–298, 2013. 19 

Yamazaki, D., O'Loughlin, F., Trigg, M.A., Miller, Z.F., Pavelsky, T.M. & Bates, P.D. 2014, 20 

"Development of the global width database for large rivers", Water Resour. Res., 50, 3467–21 

3480, doi: 10.1002/2013WR014664, 2014. 22 

Yitzhaki, S., Schechtman, E. The Gini Methodology. A Primer on a Statistical Methodology. 2013. 23 

Springer Series in Statistics. Volume 272, 2013, ISBN: 978-1-4614-4720-7. 24 

Zaraj, Z., Zambrano-Bigiarini, M., Salamon, P. Burek, P., Gentile, A., and Bianchi, A.: Calibration 25 

of the LISFLOOD hydrological model for Europe. Calibration Round 2013JRC Technical 26 

Report, European Commission, Joint Research Centre. Ispra, Italy, 2013. 27 

Zhang, Y., Hong, Y., Wang, X., Gourley, J.J., Gao, J., Vergara, H.J. and Yong, B.: Assimilation 28 

of passive microwave streamflow signals for improving flood forecasting: A first study in 29 

Cubango River Basin, Africa. IEEE Journal of Selected Topics in Applied Earth 30 

Observations and Remote Sensing, 6(6), pp. 2375-2390, 2013.  31 



Zhu, Z., Bi, J., Pan, Y., Ganguly, S., Anav, A., Xu, L., Samanta, A., Piao, S., Nemani, R.R. & 1 

Myneni, R.B.: Global data sets of vegetation leaf area index (LAI)3g and fraction of 2 

photosynthetically active radiation (FPAR)3g derived from global inventory modeling and 3 

mapping studies (GIMMS) normalized difference vegetation index (NDVI3G) for the period 4 

1981 to 2011, Remote Sensing, vol. 5, no. 2, pp. 927-948, 2013.   5 



Table 1. Number of catchments by continent and range of upstream areas for the located 1 

stations.1Stations used for calibration and validation.2 South African upstream catchment areas are 2 

not available. 3 

Continent Number of 

satellite locations 

for extraction 

(n=398) 

Number of 

stations for 

calibration 

(n=322) 

Number of 

Catchment1 

Upstream catchment 

areas (km2) Approx. 

range 

Africa 75 51 21 46990 – 8505002 

Asia 23 3 4 7150 - 11000 

Europe 13 7 3 9000 - 132000 

North 

America 

207 183 86 5300 - 1850000 

South 

America 

80 78 38 1400 - 4680000 

  4 



Table 2. Climate and land cover type of the 322 sites selected for the calibration and validation, 1 

aggregated by continent, climate, and land cover. 1 Vegetation means a combination of grassland, 2 

shrubland and forest. 2Types of land cover and climate where the number of locations in each type 3 

was very low (e.g. 3) were excluded for their respective variables analysis as they will not be 4 

representative on a global scale. 5 

Climate Africa Asia Europe North 

America 

South 

America 

Total 

Arid 30   25  55 

Tropical 10    75 85 

Temperate 11  3 51 3 68 

Cold  3 4 104  111 

Polar2    3  3 

Total 51 3 7 183 78 322 

Land cover Africa Asia Europe North 

America 

South 

America 

Total 

Open Forest 4   23  27 

Closed to Open Forest 16 1 1 16 41 75 

Closed Forest    33  33 

Mosaic Vegetation 

predominant 1 

19 2  47 24 92 

Mosaic cropland or 

grassland 

predominant 

5  1 26 9 41 

Rainfed crop   4 5 4 13 

Sparse vegetation 2   14  16 

Sparse 

vegetation+crops 

5   8  13 

Urban   1 10  11 

Bare areas2    1  1 

Total 51 3 7 183 78 322 

  6 



Table A 1. Studied land cover types from GlobCover (2009) aggregated into broader categorical 1 

classes by type and vegetation density. 2 

Label Aggregated classes 

Rainfed croplands  Rainfed croplands 

Sparse (<15%) vegetation Sparse vegetation 

Closed to open (>15%) broadleaved evergreen or semi-deciduous forest 

(>5m) 
Closed to open forest 

Closed to open (>15%) mixed broadleaved and needleleaved forest (>5m) Closed to open forest 

Closed to open (>15%) (broadleaved or needleleaved, evergreen or 

deciduous) shrubland (<5m) 
Closed to open forest 

Closed to open (>15%) herbaceous vegetation (grassland, savannahs or 

lichens/mosses) 
Closed to open forest 

Closed to open (>15%) broadleaved forest regularly flooded (semi-

permanently or temporarily) - Fresh or brackish water 
Closed to open forest 

Closed to open (>15%) grassland or woody vegetation on regularly 

flooded or waterlogged soil - Fresh, brackish or saline water 
Closed to open forest 

Open (15-40%) broadleaved deciduous forest/woodland (>5m) Open forest 

Open (15-40%) needleleaved deciduous or evergreen forest (>5m) Open forest 

Mosaic cropland (50-70%) / vegetation (grassland/shrubland/forest) (20-

50%) 

Mosaic cropland or 

grassland 

Mosaic grassland (50-70%) / forest or shrubland (20-50%)  
Mosaic cropland or 

grassland 

Mosaic vegetation (grassland/shrubland/forest) (50-70%) / cropland (20-

50%)  

Mosaic vegetation  

predominant 

Mosaic forest or shrubland (50-70%) / grassland (20-50%) 
Mosaic vegetation  

predominant 

Closed (>40%) broadleaved deciduous forest (>5m) Closed forest 

Closed (>40%) needleleaved evergreen forest (>5m) 
Closed forest 

 

Closed (>40%) broadleaved forest or shrubland permanently flooded - 

Saline or brackish water 
Closed forest 

Artificial surfaces and associated areas (Urban areas >50%) Urban 

 3 



 1 

Figure 1. Location of selected stations (398) and corresponding river basins (109). TRMM and 2 

AMSR-E brightness temperature product extents are also provided.  3 



 1 

Figure 2. Example of a measurement site: Caracarai station (Rio Branco Catchment, Brazil). The 2 

blue rectangles outline the measurement pixels and background image is from 2014 Google 3 

(Landsat, DigitalGlobe).   4 



 1 

Figure 3. a) scatterplot for the Senanga station (Long 23.25, Lat. -16.116) in the Zambezi River 2 

(Africa). Monthly mean for March from 1998 up to 2002. b) Validation hydrograph for 2003-2004 3 

and skill scores for Senanga. The (monthly) rating equations were used to calibrate the signal into 4 

discharge units. Different rating equations were used for different months.  5 



 1 

Figure 4.  Location of stations and R skill score between in situ observed discharge and satellite 2 

signal (4 days and 4 pixels average). Globally, 169 sites have R>0.3, of which 42 have R>0.5.  3 



 1 

Figure 5. Nash-Sutcliffe efficiency of the validation (n= 332 stations). Globally, 154 stations have 2 

NSE>0 of which 80 stations have NSE> 0.50.  3 



 1 

Figure 6. a) relationship between R obtained from the validation of satellite measured discharge 2 

and the maximum river width for each location; b) relationship between the same R score and the 3 

presence of significant floodplains, flooded forest and wetlands Horizontal dotted line shows the 4 

R=0.3 and R=0.7 threshold, the vertical line is the river width equal to 1km.  5 



 1 

Figure 7. a) relationship between R obtained from the validation of satellite measured discharge 2 

and the mean in situ observed discharge (log10 displayed) for each station; b) relationship between 3 

the same R score and the potential percentage of flooded area per pixel for a 100 year return period 4 

flood event (Pappenberger et al., 2012). Horizontal dotted line shows the R=0.3 threshold, the 5 

vertical line is the 40% potential flooding threshold.  6 



 1 

Figure 8. Global evaluation of the R score obtained during the validation and its classification by 2 

the land cover type of the stations. Land cover type were aggregated from the GlobCover (2009) 3 

and modified by visual check with Google maps. Note that artificial and bare land cover were 4 

excluded on this figure.   5 



 1 

Figure 9. Global evaluation of the R score obtained during the validation and its classification –2 

only main types-by the Köppen-Geiger climate area (Peel et al. 2007). Note that polar climate was 3 

excluded from this analysis as only three stations felt into this category.   4 



 1 

Figure 10. Evaluation of the R score obtained during the validation and its classification by Leaf 2 

Area Index (LAI), also a factor of land cover and geographical regions.  3 



 1 

Figure 11. Evaluation of the R score obtained during the validation and its classification by a) 2 

presence or not of a river ice (Brown et al., 2002), b) presence or absence of a nearby dam or 3 

hydraulic control infrastructure using the Global Reservoir and Dam (GRanD) (Lehner et al., 4 

2008)and visual check from Google maps.. To note that for the validated locations, all stations with 5 

river ice and most of them with dams and are located in North America.  6 



 1 

Figure 12. Average variable importance of 200 runs using the Random Forest methodology. Nash-2 

Sutcliffe score was chosen as a quality index to categorised the stations as true (good predictive) or 3 

the stations as false (poor predictive). With a threshold of NSE=0, we have about 50% of the stations 4 

above and below that value. Results are shown for the different training and test groups. For all the 5 

test groups and runs, the average highest variable importance was obtained for mean observed 6 

discharge, climatic region, land cover/ mean LAI and upstream cacthment area,  and the lowest for 7 

dam/hydraulic structure presence and river ice. 8 


