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Abstract 9 

Streamflow modeling is an enormously challenging problem, due to the complex and 10 

nonlinear interactions between climate inputs and landscape characteristics over a wide range 11 

of spatial and temporal scales. A basic idea in streamflow studies is to establish connections 12 

that generally exist, but attempts to identify such connections are largely dictated by the 13 

problem at hand and the system components in place. While numerous approaches have been 14 

proposed in the literature, our understanding of these connections remains far from adequate. 15 

The present study introduces the theory of networks, and in particular complex networks, to 16 

examine the connections in streamflow dynamics, with a particular focus on spatial 17 

connections. Monthly streamflow data observed over a period of 52 years from a large 18 

network of 639 monitoring stations in the contiguous United States are studied. The 19 

connections in this streamflow network are examined primarily using the concept of 20 

clustering coefficient, which is a measure of local density and quantifies the network’s 21 

tendency to cluster. The clustering coefficient analysis is performed with several different 22 

threshold levels, which are based on correlations in streamflow data between the stations. The 23 

clustering coefficient values of the 639 stations are used to obtain important information 24 

about the connections in the network and their extent, similarity and differences between 25 

stations/regions, and the influence of thresholds. The relationship of the clustering coefficient 26 

with the number of links/actual links in the network and the number of neighbors is also 27 

addressed. The results clearly indicate the usefulness of the network-based approach for 28 

examining connections in streamflow, with important implications for interpolation and 29 

extrapolation, classification of catchments, and predictions in ungaged basins. 30 
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1 Introduction 1 

Streamflow forms an important input for a wide range of applications in hydrology, water 2 

resources, environment, and ecosystem. However, its estimation or prediction is an 3 

enormously challenging problem, since streamflow arises as a result of complex and 4 

nonlinear interactions between climate inputs (external factors) and landscape characteristics 5 

(internal factors) that occur over a wide range of spatial and temporal scales. For instance, 6 

streamflow is governed not only by the distribution of rainfall (in both space and time) but 7 

also by the nature and state of the catchment (e.g. topography, vegetation, soil, geology); see 8 

Beven (2006) for a compilation of, and stimulating insight into, some early ‘benchmark’ 9 

studies (1933–1984) on streamflow generation processes. Attempts to monitor, model, and 10 

predict streamflow have been a central topic in hydrology during the last century or so; see, 11 

for example, Salas et al. (1995), Grayson and Blöschl (2000), Duan et al. (2003), Mishra and 12 

Coulibaly (2009), and Hrachowitz et al. (2013) for comprehensive accounts on streamflow 13 

monitoring, modeling, and prediction. 14 

Despite their efforts and contributions, studies on streamflow have and continue to encounter 15 

at least two major challenges: (1) determination of the locations, number, and density of 16 

streamflow gaging stations for monitoring data and representation of process variability; and 17 

(2) identification of the appropriate scientific concepts and mathematical techniques/models 18 

for a more solid conceptual understanding of the catchment systems, proper analysis of the 19 

data, and reliable interpretation of the outcomes. It is true that recent developments in 20 

measurement technology, computational power, and mathematical sophistication have 21 

generally played an important role in overcoming these challenges to a certain extent. It can 22 

also not be denied, however, that the same developments have, at times, played an indirect 23 

role in creating imbalance and hindering true progress, as they have contributed to the perhaps 24 

unnecessary complexification in models (rather than simplification), highly specialized 25 

conceptual notions that are often suitable only for specific situations (rather than 26 

generalization frameworks that suit all conditions), difficult-to-bridge gaps between theory 27 

and practice, and lack of communication among researchers as well as between researchers 28 

and practitioners; see, for example, Perrin et al. (2001), Beven (2002), Kirchner (2006), 29 

Sivakumar (2008), and Young and Ratto (2009) for some details. 30 

It is important to recognize that a fundamental idea in streamflow (and other hydrologic) 31 

studies is to establish connections that generally exist between the different elements or items 32 
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(known or assumed) of the underlying system. Depending upon the situation (e.g. catchment, 1 

purpose, problem), these elements include hydroclimatic variables, catchment characteristics, 2 

model parameters, and others (and their combinations), and their connections are often 3 

different with respect to space, time, and space-time. Unraveling the nature and extent of 4 

these connections has always been a great challenge, not to mention the challenge in the 5 

identification of all the relevant elements in the first place. Thus far, a plethora of concepts 6 

and methods has been proposed and applied for studying the connections associated with 7 

streamflow, including those based on time, distance, correlation, variability, scale, patterns, 8 

and many other properties/measures as well as their combinations and variants, in both single-9 

variable and multi-variable perspectives; see, for example, Gupta et al. (1986), Salas et al. 10 

(1995), Grayson and Blöschl (2000), Yang et al. (2004), Archfield and Vogel (2010), and Li 11 

et al. (2012) for some details. Despite the progress made through these concepts and methods, 12 

our understanding of the connections in streamflow is still far from adequate. 13 

In view of this, there is indeed a need to greatly advance our studies on streamflow 14 

connections. Some important current and foreseeable future problems, including our ever-15 

increasing demands for water, the potential impacts of climate change on water security and 16 

hydroclimatic disasters, and the numerous issues associated with the management of our 17 

environment and ecosystems, further reflect the urgency to this need. A greater understanding 18 

of streamflow connections will also enhance our recent and current efforts in the estimation of 19 

data at ungaged locations (e.g. predictions in ungaged basins – PUB) (see Hrachowitz et al., 20 

2013) and development of a generalization framework for hydrologic modeling (e.g. 21 

catchment classification) (see Sivakumar et al., 2014), among others. The question, however, 22 

remains on the identification of a suitable theory that can help bring advancement to studies 23 

on streamflow connections. In this regard, recent developments in the field of complex 24 

systems science can offer some crucial clues. The present study introduces the theory of 25 

complex networks, or simply networks, for studying connections in streamflow. In particular, 26 

the study focuses on spatial connections in streamflow. 27 

The origin of the concept of networks can be traced back to the works of Leonhard Euler, 28 

during the first half of the eighteenth century, on the Seven Bridges of Königsberg (Euler, 29 

1741), which laid the foundations of what would become popularly known as graph theory. 30 

Graph theory witnessed several important theoretical developments in the nineteeth century, 31 

including topology (originally introduced as topologie in German) (Listing, 1848) and trees 32 
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(Cayley, 1857). Further significant advances were made during the twentieth century, 1 

especially with the development of random graph theory by Erdös and Rényi (Erdös and 2 

Rényi, 1960). The concepts of graph theory, and random graph theory in particular, have 3 

found a wide variety of applications in numerous fields, including linguistics, physics, 4 

chemistry, biology, sociology, engineering, economics, and ecology; see, for example, Berge 5 

(1962), Bondy and Murty (1976), and Bollobás (1998) for extensive reviews. 6 

Despite the above-mentioned developments and applications, studies on graph theory, 7 

including random graph theory, had some major deficiencies. First, the studies largely 8 

focused on networks that are regular, simple, small, and static. As a result, they are generally 9 

unsuitable for examining real networks, as such networks are often highly irregular, complex, 10 

large, and dynamically evolving in time. Second, even while examining complex and large-11 

scale networks, they assumed that such networks are wired randomly together (Erdös and 12 

Rényi, 1960). Such an assumption, however, is not necessarily valid for real networks, since 13 

order and determinism are inherent in real systems and networks. Indeed, real networks are 14 

neither completely ordered nor completely random, but generally exhibit important properties 15 

of both. These observations motivated a renewed and fresh look of random graph theory 16 

towards the end of the last century (e.g. Watts and Strogatz, 1998; Barabási and Albert, 1999), 17 

and gave birth to a new movement of interest and research in studying real and complex 18 

networks, under the umbrella of the new science of networks. They also led to new 19 

discoveries about complex networks, including small-world networks (Watts and Strogatz, 20 

1998), scale-free networks (Barabási and Albert, 1999), network motifs (Milo et al., 2002), as 21 

well as other notable advances, such as a new method for identifying community structure 22 

(Girvan and Newman, 2002). Since then, the science of networks has found applications in 23 

many different fields, including natural and physical sciences, social sciences, medical 24 

sciences, economics, and engineering and technology (e.g. Albert et al., 1999; Bouchaud and 25 

Mézard, 2000; Newman, 2001; Liljeros  et al., 2001; Tsonis and Roebber, 2004; Davis et al., 26 

2013). In hydrology, applications of networks are just starting to emerge, and so far include 27 

river networks, virtual water trade, precipitation, and agricultural pollution due to 28 

international trade, among others (Rinaldo et al., 2006; Suweis et al., 2011; Dalin et al., 2012; 29 

Boers et al., 2013; Scarsoglio et al., 2013). In a very recent study, Sivakumar (2014) has 30 

argued that networks can be useful for studying all types of connections in hydrology and, 31 

hence, can provide a generic theory for hydrology. 32 
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With the encouraging results reported by the above studies, the present study explores the 1 

usefulness of the theory of networks for studying connections in streamflow, especially the 2 

spatial connections. To this end, monthly streamflow data observed over a period of 52 years 3 

(1951–2002) from each of 639 gaging stations in the contiguous United States are studied. 4 

The connections are examined primarily using the concept of clustering coefficient. The 5 

clustering coefficient is a measure of local density and, hence, quantifies the tendency of a 6 

network to cluster. The implications of the clustering coefficient results for 7 

interpolation/extrapolation of streamflow data as well as for classification of catchments are 8 

also discussed. To put the clustering coefficient analysis in a proper perspective, traditional 9 

linear correlation analysis (Pearson correlation coefficient) and another simple network-based 10 

analysis (degree centrality) are also performed. 11 

The rest of this paper is organized as follows. Section 2 introduces the concept of networks 12 

and describes the procedure for calculation of degree centrality and clustering coefficient in a 13 

network. Section 3 presents details of the study area and streamflow data considered. Section 14 

4 reports the results, first from the traditional linear correlation analysis and then from the 15 

network-based degree centrality and clustering coefficient analysis. Section 5 highlights the 16 

implications of the results. 17 

2 Network and clustering coefficient 18 

2.1 Network 19 

A network or a graph is a set of points connected together by a set of lines, as shown in 20 

Figure 1. The points are referred to as vertices or nodes and the lines are referred to as edges 21 

or links; here, the term nodes are used for points and the term links are used for lines. 22 

Mathematically, a network can be represented as G = {P,E}, where P is a set of N nodes 23 

(P1,P2,…,PN) and E is a set of n links. The network shown in Figure 1 has N = 7 (nodes) and n 24 

= 8 (links), with P = {1,2,3,4,5,6,7} and E = 25 

{{1,7},{2,3},{2,5},{2,7},{3,7},{4,7},{5,6},{6,7}}. 26 

Figure 1 is perhaps the simplest form of network, i.e. one with a set of identical nodes 27 

connected by identical links. There are, however, many ways in which networks may be more 28 

complex. For instance, a network: (1) may have more than one different type of node and/or 29 

link; (2) may contain nodes and links with a variety of properties, such as different weights 30 

for different nodes and links depending on the strength of nodes and connections; (3) may 31 

have links that can be directed (pointing in only one direction), with either cyclic (i.e. 32 
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containing closed loops of links) or acyclic form; (4) may have multilinks (i.e. repeated links 1 

between the same pair of nodes), self-links (i.e. links connecting a node to itself), and 2 

hyperlinks (i.e. links connecting more than two nodes together); and (5) may be bipartite, i.e. 3 

containing nodes of two distinct types, with links running only between unlike types. 4 

There are many different ways and measures to study the characteristics of networks. In the 5 

context of the modern theory of complex networks (which also include random graphs), 6 

degree centrality, clustering coefficient, small-world networks, and degree distribution are 7 

some of the prominent concepts. As the present study uses the concepts of degree centrality 8 

and clustering coefficient for studying streamflow connections, they are described next. 9 

2.2 Degree centrality 10 

Centrality is one of the most basic and intuitive measures of a network; see Freeman (1979) 11 

for an early comprehensive review. The idea behind the use of centrality as a network 12 

measure is that it identifies whether a given node, say, i in a network is more central or more 13 

influential than another node in the network. The degree centrality of node i in a network of N 14 

nodes is defined as the number of first neighbors (or simply neighbors) of node i divided by 15 

the total number of possible neighbors (N – 1) in the network. 16 

Let us consider a selected node i in a network of N nodes, having ki links which connect it to 17 

ki other nodes. For illustration, Figure 2 presents a network consisting of nine nodes (i.e. N = 18 

9), with the node i having four links (i.e. with four other nodes) (see Figure 2, left). In this 19 

case, the four nodes corresponding to the four links are the neighbors of node i, which are 20 

identified based on some conditions (e.g. correlation between node i and other nodes in the 21 

network), while the total number of possible neighbors for node i is eight (i.e. N – 1).  22 

2.3 Clustering coefficient 23 

The clustering coefficient quantifies the tendency of a network to cluster, which is one of the 24 

most fundamental properties of networks (Watts and Strogatz, 1998). The clustering 25 

coefficient of a network is basically a measure of local density. The concept of clustering has 26 

its origin in sociology, under the name “fraction of transitive triples” (Wasserman and Faust, 27 

1994). The procedure for calculating the clustering coefficient is as follows. 28 

Let us consider first a selected node i in the network, having ki links which connect it to ki 29 

other nodes, as shown in Figure 2 (left). If the neighbors of the original node (i) were part of a 30 

cluster, there would be ki(ki – 1)/2 links between them. As shown in Figure 2 (right), there are 31 
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4(4 – 1)/2 = 6 links in the cluster of node i. The clustering coefficient of node i is then given 1 

by the ratio between the number Ei of links that actually exist between these ki nodes (shown 2 

as solid lines on Figure 2, right) and the total number ki(ki – 1)/2 (i.e. all lines on Figure 2, 3 

right), 4 

𝐶𝐶𝑖𝑖 =  2𝐸𝐸𝑖𝑖
𝑘𝑘𝑖𝑖(𝑘𝑘𝑖𝑖−1)

    (1) 5 

The clustering coefficient of the whole network C is the average of the clustering coefficients 6 

Ci’s of all the individual nodes. 7 

The clustering coefficient of a random graph is C = p (where p is the probability of two nodes 8 

being connected), since the links in a random graph are distributed randomly. However, the 9 

clustering coefficient of real networks is generally much larger than that of a comparable 10 

random network (i.e. having the same number of nodes and links as the real network). 11 

Therefore, the clustering coefficient analysis offers useful information about the nature of the 12 

network and, hence, the appropriate model (e.g. level of complexity), among others. 13 

3 Study area and data 14 

In the present study, streamflow data from the United States are studied to explore the 15 

usefulness of the theory of networks for identifying connections in streamflow, with a focus 16 

on spatial connections. Monthly data from an extensive network of 639 streamflow gaging 17 

stations in the contiguous US are studied. The locations of these 639 stations are shown in 18 

Figure 3. The above streamflow data are obtained from the US Geological Survey database, in 19 

particular from the Hydro-Climatic Data Network (HCDN), originally developed by Slack 20 

and Landwehr (1992) and subsequently updated at different times, with the last update in 21 

2009; see Lins (2012) for details (http://water.usgs.gov/osw/hcdn-2009/). The HCDN is a 22 

subset of all USGS streamgages for which the streamflow primarily reflects prevailing 23 

meteorological conditions for specified years; see Kiang et al. (2013) for the latest and 24 

comprehensive account of USGS streamflow gages across the entire United States. The 25 

HCDN streamgage stations were screened to exclude sites where human activities, such as 26 

artificial diversions, storage, and other activities in the drainage basin or the stream channel, 27 

affect the natural flow of the watercourse. 28 

Streamflow data in the US are commonly expressed in “water years,” which commence in 29 

October. The data used in this study are those observed over a period of 52 years (1951–30 

2002), obtained from an earlier version of HCDN. The data are average monthly values (not 31 
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anomalies). During the past few decades, a large number of studies have investigated the 1 

above streamflow dataset (or a part or variant of it) in many different contexts (e.g. Slack and 2 

Landwehr, 1992; Kahya and Dracup, 1993; Vogel and Sankarasubramanian, 2000; 3 

Sivakumar, 2003; Tootle and Piechota, 2006; Patil and Stieglitz, 2012; Sivakumar and Singh, 4 

2012; Kiang et al., 2013). Some of these studies have explicitly addressed the connections of 5 

streamflow between the stations, including in the context of data correlations, catchment 6 

similarities, and other measures; see, Patil and Stieglitz (2012) and Kiang et al. (2013) for 7 

some recent studies. Many studies have explored the  connections of streamflow with large-8 

scale climatic patterns and relevant indices, including El-Niño, La-Niña, Southern Oscillation 9 

Index (SOI), Pacific North America (PNA) Index, and Pacific Decadal Oscillation (PDO). 10 

However, within the specific context of the network analysis for connections among 11 

streamflow stations presented here, as well as in the broader context of complex systems 12 

science for streamflow analysis, the studies by Sivakumar (2003) and Sivakumar and Singh 13 

(2012) are worth mentioning, as they have addressed the aspects of streamflow variability, 14 

nonlinearity, and dominant governing mechanisms, especially for studies on model 15 

simplification, data interpolation/extrapolation, and catchment classification framework. 16 

The above 639 streamflow stations and the observed streamflow data exhibit tremendous 17 

variations in their characteristics, often by about four orders of magnitude. For instance: (1) 18 

basin drainage area ranges from 10.62 km2 (4.1 mi2) to 35224 km2 (13600 mi2) (2) station 19 

elevation ranges from 0 m to 2996 m (9830 ft); (3) mean flow ranges from 0.0549 m3/s (1.94 20 

ft3/s) to 381.59 m3/s (13476 ft3/s); (4) maximum flow ranges from 0.878 m3/s (31 ft3/s) to 21 

2489 m3/s (87900 ft3/s); and (5) number of zero-flow months ranges from none to 424. Figure 22 

3, for instance, presents the variations in the mean (Figure 3a), standard deviation (Figure 3b), 23 

and coefficient of variation (Figure 3c) of flow values in all the 639 stations. The significant 24 

differences in catchment and flow characteristics can play important roles in the nature and 25 

extent of connections in streamflow between the different stations. While studying their 26 

influences is clearly important, the present study does not specifically attempt to address this. 27 

Rather, the focus of the present study is in identifying the extent of connections among the 28 

stations based on streamflow data alone. 29 

4 Analysis and results 30 

The usefulness of the theory of networks for studying connections in streamflow is examined 31 

primarily through the clustering coefficient analysis on the monthly streamflow data from the 32 
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above 639 stations in the United States. To put the clustering coefficient analysis in a proper 1 

perspective, however, linear correlation and degree centrality analyses are also performed. 2 

4.1 Linear correlation analysis 3 

A common approach to examine connections between streamflow observed at different 4 

stations is through a simple linear cross correlation analysis, where the correlation for any 5 

given station is given by the average of its correlation with all the other stations. Several 6 

variants of this procedure are also usually considered. These include: nearest neighbors – for 7 

example, number of nearby stations based on distance or stations within a pre-defined region 8 

of geographic promixity or neighborhood, with equal or unequal weightage (e.g. inverse 9 

distance); and similar stations – stations with similar properties (e.g. in terms of climate, 10 

rainfall, basin characteristics, land use), which may or may not include nearest stations. These 11 

and many other correlation-based procedures (e.g. spline fitting) are routinely employed for 12 

interpolation and extrapolation of streamflow and other hydrologic data. 13 

In this study, two of the above-mentioned procedures are employed for examining the 14 

monthly streamflow from the 639 stations: (1) for each station, the correlation is the average 15 

of its correlation with all the other 638 stations; and (2) for each station, the correlation is the 16 

average of correlations for a certain number of nearest neighbors – 30, 15, and 5 neighbors. 17 

The neighbors are selected based on the geographical distance from the reference station. For 18 

the three different number of neighbors (i.e. 30, 15, and 5) considered in the latter, the mean 19 

distances are 111, 73, and 41 km, respectively, and the standard deviations are 94, 63, and 37 20 

km, respectively. The correlation considered here is the Pearson correlation coefficient, and 21 

the streamflow values themselves (rather than their logarithms) are used for computation. The 22 

Pearson correlation coefficient can be sensitive to outliers in the data. However, the impact of 23 

this sensitivity is minimal for monthly streamflow (when compared to streamflow at shorter 24 

timescales, e.g. daily), as the monthly data assumes approximately normal distribution from 25 

additive errors at finer timescales through the central limit theorem (Anderson, 2010).  26 

When all the 638 stations are considered, the correlation values are generally very low, as 27 

expected, with only 0.5% of the stations exceeding a value of 0.4 (see Figure 4a). This is 28 

mainly due to the consideration of a very large region, with the stations coming from different 29 

climatic, catchment, land use, and other characteristics. When the number of stations is 30 

reduced, the results get generally better – see Figure 4b (30 neighbors), Figure 4c (15 31 

neighbors), and Figure 4d (5 neighbors). Among the three neighborhood cases, the best 32 
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correlation results are obtained when the neighborhood is the smallest, i.e. 5 neighbors 1 

(Figure 4d), with a large number of stations having correlations above 0.7. 2 

While one can study a large number of combinations in terms of the neighborhood, what is 3 

evident from even the very few cases presented here is that there are obvious regional patterns 4 

in terms of correlations, regardless of the number of neighbors. These regional patterns are 5 

considered to have important implications for a wide range of studies in hydrology and water 6 

resources, as they are commonly used as a basis for interpolation and extrapolation of 7 

streamflow and, subsequently, for water resources assessment, planning, and management. 8 

However, as Sivakumar and Singh (2012) point out, through their nonlinear dynamic study on 9 

streamflow data from the western United States, the use of regional patterns as basis for 10 

streamflow studies may be misleading, as such patterns are not necessarily a true 11 

representation of the actual connections between the stations but may just be spurious. The 12 

obvious question, therefore, is: how to identify if the connections are actual or spurious? This 13 

is where the ideas from the theory of networks can be particularly useful. 14 

4.2 Degree centrality analysis 15 

The degree centrality is calculated for the monthly streamflow data from the network of 639 16 

stations in the United States, according to the procedure described in Section 2.2. The essence 17 

of the procedure for the streamflow data is as follows. For a given streamflow station or node 18 

i, the nearest neighbors ki in the network of 639 stations (more specifically, the remaining 638 19 

stations) are identified based on a (pre-specified) threshold value (T). To define the threshold 20 

value, the correlations in streamflow data between different stations are considered as a 21 

reasonable measure. With this, if, for example, the correlation between station i and any other 22 

station(s) in the entire network of 639 stations exceeds the threshold value, then that station(s) 23 

is considered as a neighbor(s), ki, for station i. The degree centrality of station i is then given 24 

by the ratio of the number of neighbors to the total number of possible neighbors (i.e. 638). 25 

In this study, several different threshold values are considered for calculation of the degree 26 

centrality. Although there are no definitive guidelines for selection of the threshold values for 27 

streamflow (and other hydrologic) data, our experience in streamflow studies, especially 28 

spatial and temporal correlations, offers some useful clues. For instance, streamflow data 29 

generally exhibit high spatial correlations (when compared to rainfall values, for example), 30 

especially at the monthly scale. With this knowledge, and also with the condition that –1 < T 31 
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< 1.0, closer intervals of values are considered at the higher end of correlations and vice-1 

versa. In addition, very low values (say, T < 0.30) and very high values (say, T > 0.85) do not 2 

offer much help in the analysis; for instance, T < 0.30 normally results in a very large number 3 

of neighbors, while T > 0.85 results in a very small number. Considering all these, eight 4 

threshold values are used for analysis: 0.30, 0.40, 0.50, 0.60, 0.70, 0.75, 0.80, and 0.85. 5 

Figure 5a–d, for example, shows the results from the degree centrality analysis for the 639 6 

stations for threshold values of 0.70, 0.75, 0.80, and 0.85. The results offer some interesting 7 

observations. For instance, only a very small number of streamflow stations (blue circles) 8 

have connections with more than 10% of the other stations in the  network of 639 stations, 9 

while a large number of stations (cyan circles) have connections to less than just 1% of the 10 

other stations. Indeed, for thresholds of 0.70, 0.75, 0.80, and 0.85, the number of stations 11 

having connections with more than 10% of the stations is only 39, 0, 0, and 0, respectively, 12 

while the number of stations having connections with less 1% of the stations is 118, 160, 257, 13 

and 429, respectively. This clearly suggests that only a small proportion of stations has 14 

considerable influence in the network, while a large proportion of stations has only very little 15 

or almost no influence. This result has significant implications, for example, in interpolation 16 

and extrapolation, especially from the viewpoint of dominant stations (as is the case of 39 17 

stations for T = 0.70; Figure 5a). It is also important to note, however, that not all of the 18 

stations (i.e. neighbors) that a given station has connection with (see Figure 5a–d) are the 19 

geographic neighbors, and some are over long geographic distances (see Section 4.3 for 20 

further details on this). These observations seem to suggest that the streamflow network of 21 

639 stations is neither a completely ordered network nor a random graph, but some other. 22 

4.3 Clustering coefficient analysis 23 

Following the description in Section 2.3, the procedure for the calculation of the clustering 24 

coefficient for the monthly streamflow data from the network of 639 stations in the United 25 

States is as follows. For a given streamflow station or node i, the nearest neighbors ki in the 26 

network of 639 stations are identified based on a (pre-specified) threshold value (T), as 27 

explained above. The cluster of these ki neighbors then forms the basis for identifying the 28 

actual connections. Therefore, the actual connections are those links in the cluster of stations 29 

(not just nearest stations) having correlations among themselves exceeding the threshold 30 

value. Similar to the degree centrality analysis above, eight threshold values are considered in 31 

the cluster coefficient analysis as well: 0.30, 0.40, 0.50, 0.60, 0.70, 0.75, 0.80, and 0.85. 32 
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Figure 6a–d, for instance, presents the clustering coefficient values for the 639 stations for 1 

threshold values of 0.70, 0.75, 0.80, and 0.85. Table 1 presents the number of stations falling 2 

under different ranges of clustering coefficient values. For better illustration and discussion, 3 

the clustering coefficient values are grouped into six different ranges. In Figure 6 and Table 1, 4 

a clustering coefficient of 0.0 indicates that there are no actual connections, while ‘NA’ 5 

indicates there are no nearest neighbors. From an overall perspective, the clustering 6 

coefficient results indicate certain similarity at some stations/regions but significant 7 

differences at others. They also offer some specific observations: 8 

• Even nearest stations have significantly different characteristics (e.g. connections), as 9 

part of a network. Some stations have very strong connections, while others have 10 

almost no or only very weak connections. For instance, the few geographically closer 11 

stations in Florida in the southeast region are an excellent example. These few stations 12 

have clustering coefficient values varying anywhere from 0 to 1.0, especially for T = 13 

0.7 and 0.75 (Figures 6a and 6b). 14 

• Even distant stations have significantly similar characteristics, i.e. they have very 15 

strong (or very weak or even no) connections as part of a network. The similar (very 16 

high or very low) clustering coefficient values obtained for a number of stations all 17 

across the United States, regardless of their geographic promixity, offer evidence to 18 

this; for example, regardless of the threshold value, the green circles (see Figure 6a–d), 19 

representing the clustering coefficient range 0.76–1.0, are present all over the United 20 

States, northwest to southwest to midwest to northeast to southeast. Similar 21 

observations are made also for other clustering coefficient ranges, for one or more 22 

threshold values; see the deep pink circles (Ci = 0.51–0.75) and blue circles (Ci = NA); 23 

• There are significant changes in characteristics with respect to the threshold values. 24 

For instance, as can be seen from Figure 6 and Table 1, for threshold values of 0.7 and 25 

0.85, the number of stations falling within the clustering coefficient range of 0.51–0.75 26 

is 348 and 197, respectively. Indeed, in some cases, further breakdown in the range of 27 

clustering coefficient values indicate an even wider difference in the (percentage) 28 

number of stations for these thresholds; 29 

• Although there are changes in the number of stations having similar clustering 30 

coefficient values with respect to thresholds, there is no consistency in the trend of 31 

changes (see, for example, the number of stations falling within the clustering 32 

coefficient range of 0.51–0.75). 33 
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While the usefulness of the clustering coefficient values in assessing connections between 1 

streamflow stations and identifying regions having similarity/differences is abundantly  clear, 2 

the actual links in the network would certainly offer more specific details as to where and 3 

how connections exist. To facilitate this, Figure 7 shows the actual links for four selected 4 

streamflow stations (red circles) for threshold values of 0.75 (Figure 7a), 0.80 (Figure 7b), 5 

and 0.85 (Figure 7c); the nodes and links for T = 0.70 are too many, and so do not offer a 6 

good visualization. In each of these plots, for the station of interest (red circle), a green circle 7 

indicates a station that has a correlation coefficient value exceeding the threshold, and a black 8 

circle indicates a station that has a correlation coefficient value smaller than the threshold. 9 

The lines are the actual links among all the links available for the cluster of neighbors (green 10 

circles only). The plots clearly indicate which stations are actually connected to which other. 11 

The plots make it abundantly clear that geographic promixity does not always result in greater 12 

correlation, and the actual links can go for large distances. Among the various observations 13 

that can be made, the ones for the two stations in the northwest are certainly interesting. 14 

Despite being in the same region, the two stations exhibit significantly different connectivity 15 

characteristics, for example, for threshold level 0.85 (Figure 7c), with one showing all the 16 

actual connections within a small neighborhood (see the enlarged plot on the top left) while 17 

the other showing no clear neighborhood for connectivity (see the enlarged plot on the bottom 18 

left). The latter station (see bottom left) is an even more curious case, as most of the 19 

neighbors of this station seem to be beyond its (perceived) circle of geographic influence. The 20 

actual links observed for the other threshold values also support the above observations. 21 

These observations clearly suggest that our usual approach with consideration of geographic 22 

proximity, nearest neighbors, regional patterns, and linear correlation-based techniques for 23 

studying connections in streamflow may have serious limitations. Clustering coefficient, and 24 

other network-based techniques, offers a better means to examine streamflow connections. In 25 

what follows, we explore the clustering coefficient results even further. 26 

As the clustering coefficient of a network is based on the actual links among all links in the 27 

cluster of neighbors of a node (rather than just the links between a node and its neighbors), it 28 

would be interesting to see how it changes with respect to all links and actual links. To this 29 

end, Figure 8a–d shows the clustering coefficient values against the number of all links (red 30 

circles) and the number of actual links (blue circles) for threshold values of 0.70, 0.75, 0.80, 31 
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and 0.85 for the monthly streamflow data from the United States. The results lead to the 1 

following major observations: 2 

• In general, regardless of the threshold value, there is an inverse relationship between 3 

the clustering coefficient and number of links (both for all links and actual links), i.e. 4 

higher clustering coefficient for smaller number of links and vice-versa; 5 

• The inverse relationship between the clustering coefficient and number of links is 6 

generally more evident for lower thresholds (see Figure 8a and b) when compared to 7 

higher thresholds (see Figure 8c and d). When the threshold is very high (T = 0.85), 8 

this relationship seems to cease to exist; 9 

• The clustering coefficient is generally far more sensitive when the number of links is 10 

smaller (see the significant larger spread of circles on the Y-axis), but has only very 11 

little or almost no sensitivity for a larger number of links (see the very narrow spread 12 

followed by a tapering towards a fixed value – especially in Figure 8a and b). Further, 13 

larger numbers of links almost always give lower clustering coefficients; 14 

• For a given number of links, the clustering coefficient for a lower threshold is 15 

generally higher than that for a higher threshold. 16 

Another useful way to look at the clustering coefficient of a network is its relationship with 17 

the number of neighbors (ki), which is defined by the threshold value and dictates the (number 18 

of) links and actual links. Figure 9a–d shows the relationship between the clustering 19 

coefficient values and the number of neighbors for threshold values of 0.70, 0.75, 0.80, and 20 

0.85 for the monthly streamflow data. The results generally indicate an inverse relationship 21 

between the clustering coefficient and number of neighbors, but such a relationship is far 22 

more evident for lower threshold values (see Figure 9a and b) than that for higher threshold 23 

values (see Figure 9c and d). Again, the clustering coefficient is generally far more sensitive 24 

when the number of neighbors is smaller (see the larger spread towards the left), but becomes 25 

less sensitive for a larger number of neighbors (see the narrow spread towards the right). 26 

These observations are somewhat consistent with those made in regard to the number of links 27 

(Figure 8). It is important to recall, however, that the neighbors are not necessarily geographic 28 

but defined by the threshold values (as shown in Figure 7). 29 

While these results and observations are still preliminary in nature, they seem to suggest that 30 

there is a particular threshold value or range beyond which the inverse relationship between 31 

the clustering coefficient and number of neighbors/links/actual links in the streamflow 32 
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network may not hold well for monthly streamflow data from the United States, and 1 

streamflow data in general. 2 

Finally, the question arises as to the type of network. As mentioned previously, the clustering 3 

coefficient of a whole network (C) is the average of the clustering coefficients Ci’s of all the 4 

individual nodes. The clustering coefficient of the eight different networks of the above 639 5 

streamflow stations corresponding to threshold values of 0.30, 0.40, 0.50, 0.60, 0.70, 0.75, 6 

0.80, and 0.85 is 0.79, 0.76, 0.71, 0.68, 0.65, 0.63, 0.58, and 0.51 (see Table 1). These 7 

generally high clustering coefficient values seem to suggest that the streamflow monitoring 8 

network of 639 stations is not a random graph, since a (comparable) random graph, where the 9 

links are distributed randomly, will have a typically very low clustering coefficient, i.e. C = p, 10 

where p is the probability of two nodes being connected. As (natural) streamflow dynamics 11 

are neither completely random (there are inherent deterministic patterns) nor completely 12 

ordered (there are inherent stochastic components) (see Sivakumar, 2011; Sivakumar and 13 

Singh, 2012 for some details), it is also reasonable to assume that streamflow networks are 14 

not random graphs, but networks of some other nature. Whether they are small-world or 15 

scale-free or other types of networks remains to be seen. Studies in this direction are currently 16 

underway, details of which will be reported in the future. 17 

5 Study implications 18 

One of the basic requirements in studying streamflow dynamics is to identify connections in 19 

space or time or space-time, depending upon the purpose. Although a wide variety of 20 

approaches have been developed and applied to identify connections in streamflow dynamics, 21 

there is no question that significant improvements are still needed. In this regard, modern 22 

developments in the field of network theory, especially complex networks, offer new avenues, 23 

both for their generality about systems and for their holistic perspective about connections. 24 

The present study has made an initial attempt to apply the ideas developed in the field of 25 

complex networks to examine connections in streamflow dynamics, with particular focus on 26 

spatial connections. Application of the concepts of clustering coefficient, which is a measure 27 

of local density and quantifies the tendency of a network to cluster to monthly streamflow 28 

data from a large network of 639 monitoring stations in the contiguous United States has 29 

offered some very interesting results. The clustering coefficient values for the 639 stations 30 

suggest that: (1) even nearest stations can have significantly different connections and distant 31 

stations can have significantly similar connections; (2) connections can be significantly 32 
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different for different threshold levels; (3) there is generally an inverse relationship between 1 

the clustering coefficient and number of neighbors, number of all links, and actual links (in 2 

the cluster of neighbors); (4) the clustering coefficient is far more sensitive when the number 3 

of neighbors/number of links is smaller, but has only little or no sensitivity when the latter is 4 

larger; and (5) the high clustering coefficient value obtained for the entire network is not 5 

consistent with the one expected for a random graph, suggesting that the streamflow network 6 

is likely to be small-world or scale-free or some other type. The results from the degree 7 

centrality analysis suggest that a very small number of streamflow stations have more 8 

influence in the network of 639 stations with connections to more than 10% of the other 9 

stations, while a large number of stations have very little influence with connections to just 10 

less than 1% of the other stations. These observations seem to further eliminate the possibility 11 

of random nature of the streamflow monitoring network. 12 

Although the present results are preliminary, they offer important information about the 13 

connections that possibly exist in the streamflow network, and especially their extent. The 14 

clustering coefficient values, and the actual links, are particularly useful in the identification 15 

of the specific regions where interpolation and extrapolation of streamflow data may be more 16 

effective and also of the specific stations whose data can be more reliable for such purposes. 17 

For instance, regions consisting of stations with high clustering coefficient values would 18 

generally provide a more accurate estimation of streamflow when interpolation and 19 

extrapolation schemes are employed. It is also important to emphasize, however, that such a 20 

region is identified based on cluster of actual connections, rather than based on our traditional 21 

way of geographic proximity, nearest neighbors, regional patterns, and linear correlations. 22 

The clustering coefficient values can also offer important clues and guidelines as to the setting 23 

up/removal of streamflow monitoring stations in a region. For instance, if a region consists of 24 

stations with very high clustering coefficients, then installing additional monitoring stations 25 

will not offer any significant benefits. Indeed, one or more monitoring stations from such a 26 

region may be removed and the resources can be used in regions where additional stations 27 

might offer greater benefits (e.g. in regions where the clustering coefficient values are low). 28 

The identification of stations that play more influential roles in the network, as is reflected by 29 

the degree centrality results, can also be useful in identifying stations/regions around which 30 

interpolation/extrapolation might work better. 31 
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Finally, the present study and the results obtained have important implications for a wide 1 

range of issues and associated efforts in streamflow modeling, and hydrologic modeling in 2 

general. Among these are: (1) predictions in ungaged basins (PUB), where approaches based 3 

on nearest neighbors, regionalization, similarity, and other concepts are commonly adopted; 4 

(2) formulation of a catchment classification framework, for simplification and generalization 5 

in our modeling paradigm and better communication among/between researchers and 6 

practitioners; and (3) development of an integrated framework for water planning and 7 

management, including in studies on climate change impacts on water resources, that involves 8 

proper consideration and inclusion of stakeholders and concepts from a vast number of 9 

disciplines, including climate, hydrology, engineering, environment, ecology, social sciences, 10 

political sciences, economics, and psychology. In view of these, ideas gained from the 11 

modern theory of complex networks, and network theory at large, seem to have immense 12 

potential in hydrology and water resources. 13 
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Table 1. Clustering coefficient values for monthly streamflow data from the United States 1 
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Number of stations within each clustering coefficient range for threshold (T) 
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Figure Captions 1 

 2 

Figure 1. Network in its simplest form, i.e. an undirected network with only a single type of 3 

node and a single type of link. 4 

Figure 2. Connections in networks and calculation of clustering coefficient: nearest 5 

neighbors and actual connections. 6 

Figure 3. Characteristics of monthly streamflow observed at 639 stations in the United 7 

States: (a) mean; (b) standard deviation; and (c) coefficient of variation. 8 

Figure 4. Linear correlation for streamflow: average of correlation with (a) all the 638 9 

stations; (b) nearest 30 neighbors; (c) nearest 15 neighbors; and (d) nearest 5 neighbors 10 

Figure 5. Degree centrality for four correlation thresholds: (a) 0.70; (b) 0.75; (c) 0.80; and 11 

(d) 0.85. 12 

Figure 6. Clustering coefficients for four correlation thresholds: (a) 0.70; (b) 0.75; (c) 0.80; 13 

and (d) 0.85. The six ranges are chosen for better visualization of results. 14 

Figure 7a. Links in streamflow network for threshold T = 0.75. Four nodes (stations) are 15 

chosen for better visualization. 16 

Figure 7b. Links in streamflow network for threshold T = 0.80. Four nodes (stations) are 17 

chosen for better visualization. 18 

Figure 7c. Links in streamflow network for threshold T = 0.85. Four nodes (stations) are 19 

chosen for better visualization. 20 

Figure 8. Relationship between clustering coefficient and number of links: (a) T = 0.70; (b) 21 

T = 0.75; (c) T = 0.80; and (d) T = 0.85. Both all links (red circles) and actual links (blue 22 

circles) are presented. 23 

Figure 9. Relationship between clustering coefficient and number of nearest neighbors: (a) T 24 

= 0.70; (b) T = 0.75; (c) T = 0.80; and (d) T = 0.85. 25 
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