
 

 

Dear Prof. Bárdossy, 
 
We would like to thank you again for your time and efforts to help to improve our manuscript. 
 
According to your review letter, we understand that your most serious concern is related to the 
application of the proposed methodology for bias correction of future climate scenarios. Your 
concern is that the method does not allow the reflection of a climate change signal between 
future and recent (control) RCM runs if the dependence between observation and RCM is zero. 
The responses to your comments are given in the following: 
 
Firstly, we would like to clarify that this study does not deal with downscaling or bias correction 
of precipitation for future periods. The major goal and content of this study is to develop a new 
framework for the bias correction of precipitation time series obtained from RCMs, based on the 
concept of Copulas. Our focus is to demonstrate the feasibility of this method to correct past 
precipitation time series. As outlined in line 15-16 on page 22, the approach assumes 
stationarity. 
 
If applied to future climate projections, the method must be extended. One possible approach 
here could be the application of a double Q/Q transformation. Indeed, while we have already 
addressed this issue in our previous response letter (Comment 1, Answer 1: “we are not 
applying it [the proposed method] to climate changes analyses, trend analyses, or climate 
projections here”.), it might still not be clear enough in the manuscript. We now have modified 
our text as follows:  
 
Page 3, lines 6,11, 18 
“climate studies” instead of “climate change impact studies” 
 
Page 5, Line 3. 
“It is important to state that this study focuses on the bias correction of the RCM simulations of 
the past exclusively and does not deal with downscaling or bias correction of precipitation for 
future periods. Application for future climate scenarios requires further extensions.” 

 
Page 23, Line 11. 
“In this study, the Copula-based bias correction is only applied for past precipitation time series. 
The method would need further modifications if applied to future climate scenarios. A suitable 
algorithm must be able to reflect changes in the marginal distributions as well as the joint 
distributions, taking into account possible non-stationarity of precipitation time series.” 
 
Secondly, we would like to highlight the advantages and disadvantages of our method 
compared to the Q/Q transformation as a benchmark. Our method is based on the underlying 
dependence structure between observed and modeled precipitation. The dependence structure, 
captured by a theoretical Copula, is the key information for the bias correction. Based on the 
stochastic sampling, the method is able to produce a full PDF for each time step instead of one 
value only, as obtained by the Q/Q transformation. The stronger the dependence, the lower is 



 

 

the variance of the generated pseudo observation (corrected precipitation) for a given time step. 
The Q/Q method is assuming full dependence, while the Copula-based approach does not have 
this limitation, and additionally provides uncertainty information for the corrected precipitation 
(the variance of the derived stochastic sample). Actually, the Q/Q method is a special case of 
the Copula-based approach assuming full dependence. 
 
In this study the mean of the generated pseudo-observation is only taken as estimator for 
illustration purpose. In case of a strong dependence between observation and RCM, the RCM 
precipitation can adequately be corrected by taking the mean value and a change signal can be 
reproduced accordingly. In contrast, a weak dependence structure will result in a weak 
representation of the RCM signal. In theory, in the case of zero dependence the derived 
pseudo-observations (precipitation values) are uniformly distributed and show a large variance. 
Taking the mean of the sampled distribution, the result will correspond to the climatological 
mean, which is to our opinion still a reasonable value for this “extreme” case of zero 
dependence. In this study a clear picture about the dependence structures is given in the rank 
correlation map (Figure 15 in the manuscript), showing that the rank correlation is always above 
0.3. In our manuscript the Copula-based correction (taking the mean as the estimator) is also 
compared to the traditional Q/Q method. The correction of the derived sequential precipitation 
values by Q/Q transformation shows lower skills compared to the Copula-based method due to 
its assumption of perfect (statistical) dependence (Figure 16, 17, 18 in the manuscript). 
 
In addition to the changes made in the manuscript due to the reviewer’s comments, some minor 
errors are also corrected in the manuscript. 
 
Page 10, Line 17. 
The equation of Mises statistic was not corrected due to a typing error and it is corrected now. 
  
Page 28. 
Some of the equations (e.g. the generator of the Frank Copula, the generator of the Gumbel 
Copula and the parameter range of the Gaussian Copula) in Table 1 were erroneous. They 
have been corrected now. 
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Abstract

Dynamically downscaled precipitation fields from regional climate model (RCM) often can-
not be used directly for regional climate change impact studies. Due to their inherent biases,
i.e. systematic over- or underestimations compared to observations, several correction ap-
proaches have been developed. Most of the bias correction procedures such as the quantile5

mapping approach employ a transfer function that is based on the statistical differences be-
tween RCM output and observations. Apart from such transfer function based statistical
correction algorithms, a stochastic bias correction technique, based on the concept of Cop-
ula theory, is developed here and applied to correct precipitation fields from the Weather
Research and Forecasting (WRF) model. As dynamically downscaled precipitation fields10

we used high resolution (7 km, daily) WRF simulations for Germany driven by ERA40 re-
analysis data for 1971–2000. The REGNIE data set from Germany Weather Service is used
as gridded observation data (1 km, daily) and aggregated to 7km for this application. The
30-year time series are splitted into a calibration (1971–1985) and validation (1986–2000)
period of equal length. Based on the estimated dependence structure (described by the15

Copula function) between WRF and REGNIE data and the identified respective marginal
distributions in the calibration period, separately analyzed for the different seasons, condi-
tional distribution functions are derived for each time step in the validation period. This finally
allows to get additional information about the range of the statistically possible bias cor-
rected values. The results show that the Copula-based approach efficiently corrects most20

of the errors in WRF derived precipitation for all seasons. It is also found that the Copula-
based correction performs better for wet bias correction than for dry bias correction. In
autumn and winter, the correction introduced a small dry bias in the Northwest of Germany.
The average relative bias of daily mean precipitation from WRF for the validation period is
reduced from 10 % (wet bias) to �1 % (slight dry bias) after the application of the Copula-25

based correction. The bias in different seasons is corrected from 32 % (MAM), �15 % (JJA),
4 % (SON) and 28 % (DJF) to 16 % (MAM), �11 % (JJA), �1 % (SON) and �3 % (DJF),
respectively. Finally, the Copula-based approach is compared to the quantile mapping cor-
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rection method. The Root Mean Square Error (RMSE) and the percentage of the corrected
time steps that are closer to the observations are analyzed. The Copula-based correction
derived from the mean of the sampled distribution reduces the RMSE significantly, while
e.g. the quantile mapping method results in an increased RMSE for some regions.

1 Introduction5

Most climate change impact studies operate on regional and local scale. Global climate
models (GCMs), however, provide climatological information only on coarse scales, usually
in a horizontal resolution of 100–300 km. Since they are not able to mimic the regional and
local scale climate variability, further refinement is necessary. As dynamical downscaling,
regional climate models (RCMs) are capable to bridge the gap between large-scale GCM10

data and local-scale information to conduct climate change impact studies. Nevertheless,
the RCM simulations usually do not agree well with observations even if downscaled to
high spatial resolutions (Smiatek et al., 2009; Teutschbein and Seibert, 2010). Thus, they
might not be useful for deriving hydrological impacts on local scales directly (Graham et al.,
2007a, b; Christensen et al., 2008; Bergström et al., 2001). Therefore, further bias correc-15

tion is often required. The impacts of biases on hydrological and agriculture modeling has
been studied extensively (e.g., Kunstmann et al., 2004; Baigorria et al., 2007; Ghosh and
Mujumdar, 2009; Ott et al., 2013). Precipitation is an important parameter in climate change
impact studies (Schmidli et al., 2006). RCMs tend to generate too many wet days with small
precipitation amounts (Schmidli et al., 2006; Ines and Hansen, 2006). In addition, RCMs of-20

ten contain under- and overestimations of rainfall as well as incorrect representations of
the seasonality (Terink et al., 2010). Therefore, several bias correction methods have been
developed. These methods range from simple scaling approaches such as the linear scal-
ing approach (e.g., Lenderink et al., 2007) and local intensity scaling (e.g., Schmidli et al.,
2006) to methods like quantile mapping (e.g., Ines and Hansen, 2006). Bias correction25

techniques usually employ the use of a transfer function that is based on the statistical
differences between observed and modeled climate variables to adjust the modeled data

3
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under the assumption that these functions are stationary. A recent overview of bias correc-
tion methods for hydrological application is provided e.g. by Teutschbein and Seibert (2012)
and Lafon et al. (2013).

In this study, a Copula-based stochastic bias correction method is applied to correct each
individual time step of a RCM simulation. This is different to the traditional transfer function5

based statistical correction approaches. The strategy of this method is the identification
and description of the underlying dependence structures between observed and modeled
climate variables (here: precipitation) and its application for bias correction. It is known that
the traditional measures of dependence (e.g. Pearson’s correlation coefficient) can only
capture the strength of the linear dependence as a single global parameter. Alternatively,10

Copulas are able to describe the complex non-linear dependence structure between vari-
ables (Bárdossy and Pegram, 2009). Based on the identified dependence structure between
observed and modeled precipitation and the identified respective marginal distributions, a
set of realizations is finally obtained through Monte Carlo simulations.

Recently, Copulas are used for various applications in hydrometeorology (e.g., Gao et al.,15

2007; Serinaldi, 2008; van den Berg et al., 2011; Bárdossy and Pegram, 2012). Copula-
based bias correction techniques have been originally introduced by Laux et al. (2011)
and Vogl et al. (2012), and are extended in this study by investigating gridded precipitation
fields instead of individual and unevenly distributed stations. The Copula models are esti-
mated for each single grid cell instead of choosing the most dominant model for the whole20

domain. Bayesian Information Criterion (BIC) is implemented in addition to Kolmogorov–
Smirnov test (K–S test) for marginal distribution Goodness-of-fit test, as the large sample
size makes the K–S test highly sensitive. The performance of the correction method is an-
alyzed for differents seasons to investigate seasonal variability. This study is based on data
for a 30 year time period (1971–2000) of high resolution (7 km) dynamical downscaled pre-25

cipitation fields using the Weather Research and Forecasting Model WRF-ARW (Berg et al.,
2013) are used. REGNIE data from Germany Weather Service were used as the gridded
observation data source. To achieve the same resolution, the REGNIE data are aggregated
to 7 km. In the calibration period, only positive pairs (both REGNIE and WRF data indicate

4
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precipitation) are used to calibrate the model. Therefore, in the validation period only the
days that belong to positive pairs are corrected and the other days are kept the same as the
original WRF data. It is important to state that this study focuses on the bias correction of
the RCM simulations of the past exclusively and does not deal with downscaling or bias cor-
rection of precipitation for future periods. Application for future climate scenarios requires5

further extensions.
The article is structured as follows: in Sect. 2 the data sets for this application are in-

troduced. Section 3 briefly describes the basic theory of Copulas and the procedure of
Copula-based conditional simulations to correct RCM precipitation. Results of application
of the Copula-based approach for Germany are shown in Sect. 4, followed by the summary10

and conclusions (Sect. 5).

2 Data

In this section the data sources which are used for the application of the Copula-based
bias correction method for gridded data sets is described. The newly developed approach
is applied for Germany (Fig. 1) for a 30 year time period from 1971 to 2000. The RCM15

output and the observational data that is used in this application are both gridded data in
7 km spatial resolution and in daily scale. We split the 30 year time series into a calibration
(1971–1985) and validation (1986–2000) period of equal length.

2.1 RCM data

Dynamically downscaled precipitation fields over Germany from a RCM simulation (Berg20

et al., 2013) with the non-hydrostatic WRF-ARW model (Skamarock et al., 2008) are used.
For this data set, the WRF-ARW simulations are forced by ERA40 reanalysis data (Uppala
et al., 2005) from 1971 to 2000 at the boundaries which implies large-scale circulation
close to observations. Due to the coarse resolution of the GCM, a double-nesting approach
is applied in Lambert conformal map projection. The coarse nest extends over all of Europe25

(42 km) and the fine nest covers Germany and the near surroundings (7 km). The model
5
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uses 40 vertical levels for both nests. For further details (e.g. parameterization schemes)
on the applied WRF-ARW setup we refer to Berg et al. (2013) and the references listed
therein.

2.2 Observational data

As observations, we used the 1 km gridded daily data set REGNIE (DWD, 2011) from the5

German Weather Service (DWD). The REGNIE product is available for complete Germany
from 1951 on and the number of underlying stations is approximately 2000 stations. The
statistical gridding approach of station data is based on the spatial interpolation of anoma-
lies compared to long-term mean values. For the background climatological field a multi-
linear regression approach is applied where the geographical position, elevation and wind10

exposure of the stations are taken into account. For the calculation of the daily precipita-
tion fields, station values are first assigned to a grid point and divided by the background
data to calculate anomalies. The anomalies are spatially interpolated using inverse distance
weighted interpolations, and the results are finally multiplied by the background field. For
the grid cell based bias correction the 1 km REGNIE data set is up-scaled and remapped15

to the 7 km WRF grid such that precipitation amounts are conserved. Also, the time period
is kept the same as WRF output (1971–2000).

3 Methodology

In this section the fundamentals of Copula theory are briefly summarized. Details about
Copula theory are given e.g. in Nelsen (1999). The basis of the Copula-based bias cor-20

rection algorithm used in this study is a bivariate Copula model that allows to model the
dependence structure between WRF and REGNIE data. The Copula model consists of two
respective marginal distributions and a bivariate Copula function and is then used to gen-
erate bias corrected WRF data by conditional stochastic sampling. Details about the bias
correction algorithm are described below. In the following section, X and Y refer to REGNIE25

and WRF data set, respectively.
6
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3.1 Copula theory

Let (X,Y ) be a pair of random variates with a realization (x,y) and the bivariate joint distri-
bution FXY (x,y). Following Sklar’s Theorem (Sklar, 1959), there exists an unique function
C (Copula) such that:

F (x,y) = C(FX(x),FY (y)) x,y 2 R5

= C(u,v) u,v 2 [0,1], (1)

with u= FX(x) and v = FY (y).
The Copula functions provide a functional link between the two univariate marginal dis-

tributions FX(x), FY (y). As the Copula function allows to model the pure dependence10

between the two variates X and Y , it is rather flexible to describe their relationship with full
freedom to the choice of the univariate marginal distributions. This is especially advanta-
geous in cases, where the dependence structure between the variates is too complex to be
modelled by a multivariate Gaussian distribution, as it is often the case for hydrometeoro-
logical variables (Salvadori and Michele, 2007; Dupuis, 2007).15

3.2 Copula models

As a consequence of Sklar’s Theorem, each complex and unknown joint distribution
FXY (x,y) can be estimated by assuming specific parametric functions for FX , FY and
C in Eq. (1). The bivariate Copula model of the variates X and Y consists of two univariate
parametric marginal distributions (FX(x) and FY (y)) and a theoretical parametric Copula20

function C✓(u,v) that can be estimated separately based on the realizations x,y. Figure 2
visualizes the process of estimating a Copula model with a bivariate exemplary data set,
i.e. realizations (x,y) of the two random variates X and Y .

A scatter plot of the two realizations (x,y) is shown in Fig. 2 (left). The Copula model for
the data set consists of two marginals and the theoretical Copula. Therefore, the first step25

is to estimate the theoretical univariate distribution functions for the two variates X and Y

(see Fig. 2, middle).
7
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The next step is to estimate the theoretical Copula function C✓ (see Fig. 2, right). Finally,
the unknown joint distribution FXY (x,y) is fully determined by the marginal distributions
and the Copula function, i.e. the dependence structure itself. Figure 2 visualizes the fact
that different marginal distributions and theoretical Copula functions can be combined in-
dependently allowing to model highly complex interdependencies between the variables X5

and Y . This is especially beneficial if these interdependencies are non-linear, asymmetric
or the data show heavy-tail behaviour.

3.3 Marginal distribution estimation

The Copula-based modelling of the dependence between X and Y requires the fitting of
suitable marginal distributions for both data sets (REGNIE and WRF) for each grid cell.10

Generally, both non-parametric and parametric fitting approaches for the local precipita-
tion distribution are found in the literature (Dupuis, 2007; Gao et al., 2007; Bárdossy and
Pegram, 2009; van den Berg et al., 2011). In this study a parametric fitting of the precipita-
tion distribution is applied to allow also an illustration of the spatially distributed differences
(provided as the fitted marginal distribution family maps) between WRF and REGNIE. This15

gives additional valuable information about differences in their statistical properties.
In this study, five different parametric distribution functions are tested (Weibull, Gamma,

Normal, Generalized Pareto and Exponential). For all time series (REGNIE and WRF) the
parameters of the respective distribution functions are estimated by a standard maximum
likelihood estimation (MLE). The Goodness-of-fit is evaluated in a two-stage process. Firstly,20

a Kolmogorov–Smirnov test (K–S test) is applied (Massey, 1951). As the K–S test is highly
sensitive due to the large sample sizes (Serinaldi, 2008), the null hypothesis (the sample
comes from the selected distribution) is rejected in some cases for all of the candidates.
In other cases there might be more than one possible candidate for the best fit. For that
reason, all candidates which are accepted by the K–S test are further inspected by using the25

Bayesian Information Criterion (BIC) (Weakliem, 1999). If all of the candidates are rejected
by the K–S test, only the BIC is relevant for the selection of the best fit.

8
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The Bayesian Information Criterion selects the optimum within a finite set of models. It is
based on the likelihood function and deals with the trade-off between the Goodness-of-fit of
the model and its complexity:

BIC = k ln(n)� 2 ln(L), (2)
5

where k denotes the number of the free parameters of the model, n is the sample size and
L is the maximized value of the likelihood function of the estimated model. The smallest
value of the BIC suggests the best fitting distribution.

3.4 Copula function estimation

The Copulas from different families describe different dependence structures. To increase10

the accuracy of the description of the dependence, different types of Copulas are consid-
ered, since one common Copula might be incapable to capture the dependence structure
for all grid cells over the entire study area and for all seasons.

In this study, four different one-parametric Copulas (see Table 1) are selected: the Gum-
bel Copula is able to describe an upper tail dependence structure, while the Clayton Copula15

allows to express higher probability in the lower tail. The Frank Copula exhibits no tail de-
pendence, and the Gaussian Copula describes a similar dependence as the Frank Copula,
but with slightly higher densities in the lower and upper tails (Venter, 2002; Schmidt, 2007).
For the Clayton Copula, the formulas of positive and negative dependence are different.
The parameter ✓ can take values �1< ✓ < 0 to model negative dependence. In that case20

the formula is

C✓(u,v) = [max(u�✓ + v

�✓ � 1,0)]�
1
✓
. (3)

For the data used in this study, negative dependences could not be found. Therefore it is
✓ 2 [0,1] and the Clayton Copula is defined as described in Table 1.

For the Copula Goodness-of-fit test we closely follow the approach as described in Laux25

et al. (2011) and Vogl et al. (2012). For reason of completeness it is briefly summarized.
9



D
i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|

Since the dependence structure, i.e. the theoretical Copula function, between X and Y

is in general not known in advance, the empirical Copula which can be calculated from the
data is analyzed (Deheuvels, 1979). Let {r1(1), . . ., r1(n)} and {r2(1), . . ., r2(n)} denote the
rank space values that are derived from the fitted theoretical marginal distributions. Then,
the empirical Copula, a rank based estimator of C✓, is defined as:5

Cn(u,v) = 1/n
nX

t=1

1
✓
r1(t)

n

6 u,

r2(t)

n

6 v

◆
(4)

with u= FX(x), v = FY (y) and 1(. . .) is denoting the indicator function and n being the
sample size. A visual inspection of Cn allows to choose promising candidates out of the
set of available theoretical parametric Copula functions. To estimate the unknown parame-10

ter ✓ 2 R for each candidate, a standard maximum likelihood (MLE) approach is used. To
decide which Copula function is able to describe the dependence structure best, different
Goodness-of-fit tests (e.g., Genest and Rémillard, 2008; Genest et al., 2009) are available.
In this study the Goodness-of-fit test is based on the Cramér-von Mises statistic (Genest
and Favre, 2007), where the empirical Copula Cn is compared to the parametric estimate15

C✓:

Sn = n

nX

t=1

{C✓(ut,vt)�Cn(ut,vt)}2 (5)

The specific parametric bootstrap procedure to obtain the approximate P -value is de-
scribed by Genest et al. (2009).20

3.5 Copula-based bias correction

The Copula-based bias correction applied for this study is based on the estimation of a Cop-
ula model for each pair of observed (X) and modelled (Y ) rainfall for each grid cell. As soon
as this Copula model (FX(x),FY (y) and C✓(u,v)) is estimated, conditional random sam-
ples can be generated through Monte Carlo simulations (Gao et al., 2007; Salvadori et al.,25

10
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2007). The procedure follows the algorithm detailed in Laux et al. (2011) and Vogl et al.
(2012) to generate pseudo-observations conditioned on the modelled data. We condition
by purpose on the RCM data as the method is the first step for correcting future climate
projection (where no observations are available). This conditional simulation algorithm is
based on a conditional distribution of the form:5

CU |V=v(u) = P [U  u|V = v] =
@C(u,v)

@v

(6)

The complete Copula-based bias correction algorithm consists of the following steps:

1. estimate the theoretical marginal distributions FX(x) and FY (y) for observation and
RCM data respectively10

2. transform the time series x1, · · · ,xn and y1, · · · ,yn to the rank space by taking u=
FX(x) and v = FY (y)

3. calculate the empirical Copula Cn(u,v) as a rank based estimator for the theoretical
Copula function C✓(u,v)

4. estimate the Copula parameter ✓ and perform Goodness-of-fit tests to identify the best15

theoretical Copula function C✓(u,v)

5. calculate the Copula distribution conditioned on the variate v representing the RCM
time series in the rank space

6. generate the pseudo-observations in the rank space for each time step by using the
conditional Copula distribution20

7. transform back the random samples to the data space by using the integral transfor-
mation.

The Copula-based conditional simulation is the critical step of this bias correction ap-
proach, as it forces a certain variable (observation) to take a value when another variable

11
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(RCM) is given. To assess the uncertainty associated with this prediction, the conditional
prediction process (step 6 and 7) must be repeated for a large number of times This pro-
vides the possibility to obtain a large set of random realizations and additionally gives the
information of a probability density function (PDF) for each corrected time step. From the
PDF the spread of the distribution in form of the interquantile range can e.g. be provided as5

an additional uncertainty criterion for the bias correction.

3.6 Correction strategy for continous time series

The implementation of a bias correction for precipitation (a discrete variable) is more com-
plex than a bias correction of a continuous variable, e.g. temperature. In general four cases
have to be distinguished, namely (0,0), (0,1), (1,0), and (1,1), where 0 denotes a dry day10

and 1 indicates a wet day (see Fig. 3). A threshold of rainfall amount of 0.1mm per day was
used to identify a wet day with respect to the usual precision of rain gauges (Dieterichs,
1956; Moon et al., 1994). Therefore, the four cases are defined as follows:

1. (1,1): REGNIE and WRF precipitation � 0.1 mm

2. (0,1): REGNIE < 0.1 mm, while WRF � 0.1 mm15

3. (1,0): REGNIE � 0.1 mm and WRF < 0.1 mm

4. (0,0): Both REGNIE and WRF < 0.1 mm

Different approaches exist in the literature to account for the intermittent nature of rain-
fall. For example the truncated Copula suggested in Bárdossy and Pegram (2009) and the
Copula-based mixed model described in Serinaldi (2008). Both methods are able to pro-20

duce time series that statistically hold the same proportion of the four different cases (0,0),
(0,1), (1,0), and (1,1). These methods allow for the correction of the total number of dry
days, but do not allow to correct individual events in the (0,1) and (1,0) cases.

In this study, we aim to an event-based correction as described in the following: the
Copula-based concept focuses on the correction of the (1,1) cases, i.e. the positive pairs.25

12
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In order to generate a complete bias corrected time series of WRF output, the events that
are not covered by the (1,1) case are left unchanged. For the (0,0) cases, there is no error.
The errors that come from the (0,1) and (1,0) cases are not corrected by this method.
To justify this strategy, we investigated the proportion of the four cases in the study area
(see Fig. 4): the (1,1) cases take the highest proportion, followed by the (0,0) cases. The5

proportion of both the (0,1) and (1,0) cases are comparatively low. The average proportion
of these cases are 40% for the (1,1) cases, 29% for the (0,0) cases, 19% for the (0,1) cases
and 12% for the (1,0) cases, respectively.

4 Results

In this section, details about the estimated Copula models are presented including infor-10

mation about the fitting of the marginal distributions and the theoretical bivariate Copula
functions from the calibration period (1971–1985). Since the estimated marginal distribu-
tions reflect the statistical characteristics of RCM and observations, their differences are
analyzed spatially. The fitted Copula models are applied for the validation period (1986–
2000) to bias correct the WRF precipitation. It is found that the dependence structures vary15

intra-annually, therefore the performance of the algorithm is analyzed separately for the
different seasons.

4.1 Estimated marginal distributions

For both REGNIE and WRF data five different distribution functions are employed for each
grid cell separately: Generalized Pareto distribution (gp); Gamma distribution (gam); Ex-20

ponential distribution (exp); Weibull distribution (wbl) and Normal distribution (norm). This
guarantees the flexibility in selecting the most appropriate distribution for each grid cell. The
Goodness-of-fit tests (K–S test and the Bayesian information criterion, see Sect. 3.3) reject
the Normal distribution in all cases, while the Generalized Pareto distribution is accepted
most frequently for both REGNIE and WRF (Fig. 5). The result shows a reasonable agree-25

ment of selected marginal distribution between REGNIE and WRF mainly in the Eastern
13
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and Southern parts of Germany. The patterns of the selected types follow the topography
of Germany (see Fig. 1). In the Northwest of Germany, the Weibull distribution function pre-
vails as well as in the low mountain ranges. In general, this effect is stronger for WRF while
the patterns are more patchy for REGNIE.

The coincidence between REGNIE and WRF marginals is shown in the confusion matrix.5

Each row of the matrix represents the distribution types of REGNIE, while each column
represents that of WRF (in %). The major diagonal shows the fraction of concurring marginal
types. The confusion matrix for the calibration period is shown in Table 2. It is found that
for 42% of grid cells, the Generalized Pareto distribution is selected for both data sources
concordantly. For the Weibull distribution this holds true for 16% of the grid cells. Since10

the total number of grid cells where Gamma and Exponential distribution are fitted is very
low, the percentage of hits in the diagonal of the confusion matrix is small. Summing up
the major diagonal gives a measure for the overall agreement. For the complete calibration
series about 59% correspond. The failures of 21% of grid cells, where REGNIE follows the
Generalized Pareto distribution and WRF follows the Weibull distribution, are predominately15

located in the Northwest of Germany (Fig. 5).
In order to assess for the annual variability in the precipitation time series, the marginal

distributions are estimated for the different seasons (spring – MAM, summer – JJA, autumn
– SON, winter – DJF).

For both REGNIE and WRF data, the seasonal representation of the different distribu-20

tion types is shown in Fig. 6. It indicates that the choice of the optimal marginal distribution
clearly depends on the season. In WRF, the winter (summer) season is dominated by Ex-
ponential (Generalized Pareto). The differences for REGNIE are not that obvious since the
dominant distribution type is the Generalized Pareto distribution for all seasons. For WRF
data the effect of the underlying elevation on the identified distribution type is most promi-25

nent during winter and fall. In the low mountain regions the favorite marginal distribution
change from fall (Weibull, Generalized Pareto) to winter (Exponential, Weibull).

14
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The seasonal confusion matrices are shown in Table 3. The results indicate the best
agreement between WRF and REGNIE (approximately 56% of the grid cells) in summer,
while in wintertime only approximately 30% of the types agree.

As mentioned above in Sect. 3.3 the Goodness-of-fit tests follow a two-step process due
to the fact that the K–S test is highly sensitive to large sample sizes. For the annual marginal5

distribution identification, for 99% of the grid cells the K–S test fails and only the BIC is
used for REGNIE, while the number for WRF is 68%. Since the sample size is reduced
in seasonal analysis, the failures of K–S test are decreased dramatically. The results are
shown in Table 4.

4.2 Identified Copula functions10

For each grid cell the theoretical Copula function that characterizes the dependence struc-
ture between REGNIE and WRF data is identified separately. Four Copulas (Clayton, Frank,
Gumbel and Gaussian) are investigated by applying the Goodness-of-fit tests described in
Sect. 3.4. Figure 7 shows the results of the Goodness-of-fit tests for the calibration period
for the complete study area. It is found that for most of the grid cells in the study area, the15

Frank Copula can capture the dependence structure best, while for the Northeast of Ger-
many the Clayton Copula provides the best fit. In total the dependence structure of 72% of
the grid cells is modelled by the Frank, 20% by the Clayton, 7% by the Gaussian and only
0.09% by the Gumbel Copula.

In order to assess for the annual variability of the dependence structures between REG-20

NIE and WRF precipitation time series, the Copula functions are identified for the different
seasons separately. The corresponding results are shown in Fig. 8.

While for spring, autumn and winter the Copulas that have no pronounced tail depen-
dence (the Frank and Gaussian Copula) dominate (spring 49% (Frank) + 22% (Gaussian)
= 71%, autumn 53% + 24% = 77% and winter 63% + 28% = 91%), in summer the Clayton25

Copula provides the best fit for most of the grid cells (62%). For all seasons the Gumbel
Copula is only selected for few grid cells with a maximum number of hits in spring (5% of

15
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the grid cells). In general the differences are most prominent for winter and summer (see
Fig. 8).

4.3 Validation of the Copula-based bias correction

Based on the estimated Copula model (parametric marginal distributions and theoretical
Copula functions) the conditional distribution of REGNIE conditioned on WRF is derived5

for each grid cell separately (see Sect. 3.5). To generate bias-corrected WRF precipitation,
random samples of possible outcomes are drawn from this conditional distribution. We use
a sample size of 100. The result can be interpreted as an empirical predictive distribution
for corrected WRF (pseudo-observations) that is determined for all conditioning WRF pre-
cipitation values for each time step. While this stochastic bias correction method gives a full10

ensemble and the empirical predictive distribution of corrected WRF precipitation, for prac-
tical reasons one can choose e.g., the expectation, median or mode to get single corrected
values. This can be regarded as a Copula-based regression by taking such a “typical” value
as the estimator of the derived empirical predictive distribution of corrected WRF precipita-
tion. It is noted that this “typical” value (e.g. the mean) can also be directly derived from the15

analytical Copula-based conditional CDF (mean regression curve, Nelsen, 1999).
Figure 9 exemplarily shows WRF (red), REGNIE (green) and the bias-corrected WRF

(blue) data for pixel 1 in Fig. 1 during wintertime 1986–1987 (positive pairs only). The box
plot visualizes the spread of the generated random sample (100 members) indicating the
uncertainty of the predicted bias-corrected precipitation, while the blue line shows the me-20

dian of the respective emprical predictive distribution.
It can be seen from Fig. 9 that for most of the time steps the proposed Copula-based

approach can sucessfully correct for biases in the modelled precipitation compared to ob-
served values.

To investigate the spatial performance of the correction algorithm, the relative bias of25

RCM modelled mean daily precipitation (WRF) compared to gridded observations (REG-
NIE) is compared to that of the bias corrected model data (B.C. WRF) for Germany.
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A comparison of corrected WRF data derived by the expectation, median and mode of
the predictive distribution with observations indicates that the correction performs best for
the expectation value (see Fig. 10). Both simulations based on the median and the mode
tend to underestimate the precipitation values, thus causing a dry bias over the domain.
Therefore in the following, the results are shown and analyzed for the mean only.5

Figure 11 (left) shows the bias between REGNIE and WRF, indicating wet biases in most
of the study area. These wet biases are most prominent in high elevation areas following the
topography of Germany. Wet biases are also detected in the Northeast of Germany, where
the elevation is low. Dry biases are found in the alpine and pre-alpine areas in the Southeast
of Germany as well as in the West of Germany. After the application of the Copula-based10

correction algorithm, the wet biases are corrected for most of the domain, except for a very
small region in the Northeast (see Fig. 11, right). It is also found that the dry bias can also
be significantly reduced, but small dry biases are introduced in some areas in the West of
the domain. The average of the bias for the whole study area is reduced from 10 to �1%.

A performance analysis with respect to seasonal variations is shown in Fig. 12. It shows15

that the relative bias is even larger for different seasons. Figure 12 (left) shows the rela-
tive bias between uncorrected WRF mean daily precipitation and the REGNIE data set for
the different seasons (spring – MAM, summer – JJA, autumn – SON, winter – DJF, from
top to bottom). The WRF model tends to generate too much precipitation in spring and
winter for the majority of grid cells in the study area. For summer and autumn, there are20

also regions found, where the model is too dry. These regions are mostly located in the
North and in the South of Germany. This effect is found to be strongest in summer while
in autumn areas with an overestimation of precipitation are still found in the Northeast and
Southwest of Germany. In all cases, the bias is influenced by the underlying terrain show-
ing an overesimation especially in regions with higher altitude. The average of the bias from25

spring to winter are 32, �15, 4 and 28%, respectively. Figure 12 (right) shows the rela-
tive bias between corrected WRF mean daily precipitation and the REGNIE data set for
the different seasons (spring – MAM, summer – JJA, autumn – SON, winter – DJF, from
top to bottom). It can be seen that the Copula-based correction efficiently removes most
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of the biases indicating a comparable performance for all seasons. Figure 12 especially for
spring and winter indicates that the correction is tending to be more suitable to correct for
overestimation of the rainfall. The underestimation of precipitation, that is most prominent in
summer, however, is still significantly reduced. In autumn and winter the Copula-based cor-
rection reduces the rainfall amounts too much for the west of Germany, introducing a small5

dry bias in that region. The average bias are reduced to 16 �11, �1 and �3 respectively
for different seasons from spring to winter.

In the following, it is further analyzed how well the model can reproduce the intra-annual
variability of observed precipitation and how the performance for the different seasons is
influenced by the Copula-based correction algorithm.10

To investigate typical situations in detail, the results are shown for four specific grid cells
in the study area (see Fig. 1): grid cells 1 and 3 are selected as they show the highest wet
bias between WRF and the REGNIE. Grid cell 2 is located in the region where a dry bias
was generated by the WRF in summer and autumn and a wet bias was generated in winter.
Grid cell 4 represents a case where the agreement between uncorrected model data and15

REGNIE observations is already good (see Fig. 12).
Figure 13 shows mean monthly precipitation derived for the validation period (1986–

2000) for the selected grid cells 1–4 (see Fig. 1 for their exact locations). The number of the
respective grid cell is noted in the upper left corner.

The results for grid cell 1 in Fig. 13 confirm the fact that the RCM model results strongly20

overestimate the precipitation amount in that case. The annual variability of the observa-
tions is in general reproduced, except for a strong increase of the mean precipitation in
August that is not found in the observations. This behaviour is found also for grid cell 3
indicating a relatively too dry summer season. For grid cells 1 and 3, the Copula-based cor-
rection is found to be able to correct for the overestimation of precipitation amounts as well25

as for the effect of a too strong decrease of precipitation in August. However, the correction
is introducing a slight underestimation mainly during summer and autumn instead. For grid
cell 2, the correction shows a good performance by decreasing the rainfall amounts when
the RCM is overestimating, and increasing the amounts when the RCM has underestimated
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it. The correction reduced the wet bias efficiently, while the dry bias is corrected less effi-
ciently. The effectiveness of this correction is also highlighted by an analysis of the results
for grid cell 4. Even if the performance of WRF was already satisfactory, the algorithm was
still able to further improve the results.

Finally, in order to investigate the spatial coherence of the bias corrected precipitation5

fields, the sequence of three selected days (from January 9th to 11th, 1986) are exemplar-
ily shown in Figure 14. The left column from top to bottom are the observed precipitation
fields for these three days. In the middle are the uncorrected (original) WRF simulated pre-
cipitation fields and the right column indicates the bias corrected WRF precipitation fields:
while correcting the absolute precipitation values, the spatial coherence of the precipitation10

patterns are retained after the application of the bias correction.

4.4 Comparison of Copula-based bias correction to the quantile mapping method

The quantile mapping method is often used in bias correction of RCM derived precipitation
(Dosio and Paruolo, 2011; Gudmundsson et al., 2012). This method corrects the bias by
rescaling the values of the RCM so that the distribution of the RCM matches that of the15

observations. It corrects all moments of the RCM precipitation distribution under the as-
sumption of a perfect dependence among the ranks. This full dependence assumption is
limited: in our study area, the rank correlation between the datasets varies between 0.3 and
0.6 (see Fig. 15).

The quantile mapping correction has been performed for comparison to the Copula-20

based approach. The RMSE between the observed (REGNIE) and bias corrected modelled
data is calculated for both the Copula-based correction and the quantile mapping method.
The original RMSE (between REGNIE and WRF) is also computed as a reference. For the
Copula-based approach, we calculated the RMSE for all the simulations with respect to the
mean-, median- and mode value. The changes of the RMSE by different corrections over25

the study area are shown in Fig. 16. The Copula-based correction derived from the mean
regression reduces the RMSE significantly with an average of �12% over the domain. The
Copula-based correction derived from the median also reduces the RMSE, but to a less
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degree. The correction derived from Copula-based mode regression reduces the RMSE,
but results in an increase of the RMSE in some regions. The same holds true for the quan-
tile mapping approach. This is in agreement with our previous results (see Fig. 10) that the
Copula-based correction derived from the mean regression performs best. Therefore, in the
following analyses, the results focus on the Copula-based mean regression approach.5

To further assess the performance of the Copula-based method, additional performance
measures are analyzed. The RMSE for different magnitudes of observed precipitation (i.e.
a quantile RMSE analysis) is done for the selected four grid cells (see Fig. 1). The results
from the validation period are shown in Fig. 17. The RMSE in different quantiles are rep-
resented by RMSE0.1, RMSE0.2, . . . , RMSE1.0, while the subscript indicates the magnitude10

level. RMSE0.1 evaluates the errors in the dry part of the observation distribution, implying
the (0,1) errors. From RMSE0.2 to RMSE1.0 the RMSE are calculated for equally spaced
probability intervals of the observed empirical CDF of wet days. For example, RMSE1.0

indicates the errors in the magnitude of the 10% highest events. As it can be seen from
Fig. 17, the Copula-based correction performs equally or even better in terms of the RMSE15

in most of the quantiles.
Furthermore, we also investigated the percentage of the corrected time steps that are

closer to the observations compared to the quantile mapping method. The results are shown
in Fig. 18. The values indicate the percentage of the successful corrections (i.e. closer to
the observations) by the two bias correction methods. It can be seen that the results of the20

quantile mapping correction strongly depends on the rank correlation (see Fig. 15), while the
Copula-based correction provides a stable correction efficiency over the entire domain. The
average percentages of the successful correction are 55% for the Copula-based correction
and 46% for the quantile mapping correction, respectively.

5 Summary and conclusions25

In this study, a Copula-based stochastic bias correction technique for RCM- output is in-
troduced. The strategy of this method is the identification and description of underlying de-
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pendence structures between RCM and observed precipitation and its application for bias
correction. Copulas are able to capture the non-linear dependencies between variables
(here: between RCM and gridded observed precipitation) including a reliable description
of the dependence structure in the tails of the joint distribution. This is not possible e.g.
by using a Gaussian approach or methods based on the Pearson’s correlation coefficient.5

Yet, another albeit more practical advantage of this approach is that the univariate marginal
distributions can be modeled independently from the dependence function, i.e. the Cop-
ula. This provides more flexibility to construct a correction model by combining different
marginal distributions and Copula functions, as many parametric univariate distribution and
theoretical Copulas are available.10

The conditional distribution derived from fitted Copula model forms the basis of the cor-
rection procedure. It provides the possibility to access all the possible outcomes of the
corrected value and additionally gives the information of a PDF for each corrected time
step.

This study is an extension of the two former studies of Laux et al. (2011) and Vogl et al.15

(2012) by applying the Copula-based bias correction technique to high resolution RCM
precipitation output and a gridded observation product. Compared to those two studies,
this study is based on a framework to:

– Work on a grid cell base and to estimate the Copula model (marginal distributions
and Copula function) for each grid cell separately rather than selecting e.g. the most20

dominant model. Therefore, the statistical characteristics of observed (REGNIE) and
modelled data (WRF) and their dependence structure is visualized spatially and ana-
lyzed for the first time.

– Implement the Bayesian Information Criterion in addition to the Kolmogorov–Smirnov
test for the marginal Goodness-of-fit test. From previous studies we found that very25

large sample sizes may bias the result of the K–S test, leading to the rejection of the
null hypothesis (the sample comes from the selected distribution) most of the time.
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– Estimate the Copula model for every season separately. Thus, different precipitation
geneses types are not masked by the same models. This, in general, leads to stronger
dependencies and robuster models.

Positive REGNIE and WRF pairs of fifteen years daily precipitation in calibration period
(1971–1985) are used to establish the Copula models. The results indicate discrepan-5

cies between the fitted marginal distributions of REGNIE and WRF-EAR40. The estimated
marginal distributions for WRF show distinct spatial (strongly related to the orography of
the domain) and seasonal patterns (clear differences between summer and winter, similar
patterns for spring and fall season). The distributions are more scattered for the REGNIE
data.10

For the dependence function it is found that the fitted Copula families vary both in space
and time (seasonally). The fact that different dependence structures exist for the different
seasons indicates that the method corrects for different dominating precipitation types, i.e.
convective and stratiform precipitation.

The assumption of this approach is that the dependence structure between observed15

and modelled precipitation is stationary over the period of interest. For the investigation of
the spatial performance, the Copula correction based on the mean value is applied. The
validation results show that the proposed approach successfully corrected the errors in
RCM derived precipitation. It is also found that the correction method performs better for
overestimation rather than for underestimation. By investigating the spatial coherence, the20

proposed method is found to be able to preserve the spatial structure of the WRF model
output. This is due to the reason that the Copula-based approach is conditioned on the
WRF simulation. The method is adjusting the value of the WRF precipitation according to
the fitted Copula model. Even though the Copula models are estimated for each grid cell,
the spatial coherence is captured by the Copula model as both the Copula families as well25

as the marginal distributions are also spatially clustered.
When comparing to the quantile mapping correction, the Copula-based method has an

improved performance in reducing the RMSE. It is also found that the Copula-based method
allows for a better correction with respect to the percentage of the time steps that are closer
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to the observations after the correction. The Copula-based method is able to provide a
stable correction efficiency over the entire domain, even if the rank correlations between
the RCM- and observed precipitation are low.

Apart from traditional approaches such as the quantile mapping, which is based on a
bijection transfer function, the Copula-based stochastic bias correction technique provides5

the information of the full PDF for each individual time step. This additionally provides a
quality criterion for the bias correction, e.g. expressed as the spread of the PDF in form
of the interquantile range. Subsequent modellers using RCM derived precipitation data are
potentially enabled to make use of the full PDF, especially if they are interested in other
statistical moments or in estimating uncertainties arising from this approach.10

In this study, the Copula-based bias correction is only applied for past precipitation time
series. The method would need further modifications if applied to future climate scenarios.
A suitable algorithm must be able to reflect changes in the marginal distributions as well
as the joint distributions, taking into account possible non-stationarity of precipitation time
series.15
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Table 1. Theoretical Copula functions used in this study.

Copulas C✓(u,v) Generator '✓(t) Parameter ✓ 2

Clayton (u�✓ + v

�✓ � 1)�
1
✓

1
✓ (t

�✓ � 1) ]0,+1[

Frank � 1
✓ ln(1+

(e�✓u�1)(e�✓v�1)
e�✓�1 ) � ln( e

�✓t�1
e�✓�1 ) ]�1,0[ & ]0,+1[

Gumbel e

�((� ln(u)✓)+(� ln(v)✓))
1
✓ (� ln(t))✓ [1,+1[

Gaussian �R(��1(u),��1(v));R=


1 ✓

✓ 1

�
[-1, 1]
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Table 2. Confusion matrix between REGNIE and WRF for the different distribution types.

WRF
gp gam exp wbl

R
E

G
N

IE gp 42.04% 1.27% 1.55% 20.79%
gam 4.92% 0.5% 0.18% 2.44%
exp 0.27% 0% 0% 0.23%
wbl 7.14% 1.94% 0.79% 15.93%
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Table 3. Seasonal confusion matrix of fitted REGNIE and WRF precipitation distribution.

MAM WRF
gp gam exp wbl

R
E

G
N

IE gp 39.57% 0.29% 25.68% 3.89%
gam 2.32% 0.12% 1.32% 0.18%
exp 2.68% 0.02% 3.03% 0.14%
wbl 8.88% 0.56% 7.81% 3.51%

JJA WRF
gp gam exp wbl

R
E

G
N

IE gp 42.3% 0.09% 0.39% 11.58%
gam 0.72% 0.14% 0.04% 0.83%
exp 1.74% 0% 0% 0.81%
wbl 26.4% 0.62% 0.61% 13.73%

SON WRF
gp gam exp wbl

R
E

G
N

IE gp 35.43% 0.08% 6.36% 18.83%
gam 1.55% 0.29% 0.95% 1.14%
exp 0.51% 0% 0.15% 0.41%
wbl 11.23% 0.29% 4.88% 17.9%

DJF WRF
gp gam exp wbl

R
E

G
N

IE gp 8.92% 1.25% 24.66% 7.12%
gam 2.18% 0.27% 7.65% 1.21%
exp 1.44% 0.48% 8.08% 1.12%
wbl 6% 0.89% 16.42% 12.31%

30



D
i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|

Table 4. The proportion of grid cells for both REGNIE and WRF that K–S test failed and only BIC is
used in Goodness-of-fit procedure.

Spring Summer Autumn Winter

REGNIE 25.83% 10.86% 38.38% 56.13%
WRF 0.31% 10.61% 12.26% 3.88%
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1
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4

Figure 1. Terrain elevation of Germany (DEM). The numbers represent the position of the four
specific grid cells for which the performance of the Copula-based algorithm is analyzed in Fig. 13.
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Figure 2. Visualisation of a bivariate Copula model consisting of two marginal distributions and
a theoretical Copula function that describes the pure dependence.
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Figure 3. Illustration of the four cases: (0,0) indicates that both REGNIE and WRF show no rain,
(0,1) stands for an observation with no precipitation but the RCM model shows a rain event, while
(1,0) indicates the opposite of (0,1), (1,1) implies that both are wet.
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(0,0) case (0,1) case

(1,0) case (1,1) case

Figure 4. The proportion of the four cases over the study area for the validation time period (from
1986 to 2000).
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Figure 5. Estimated marginal distributions of precipitation for Germany for both REGNIE (left) and
WRF (right). The results are shown for the calibration period (1971–1985) and positive pairs only.
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Figure 6. Estimated marginal distribution of precipitation for the different seasons for REGNIE (left
column) and WRF (right column) in Germany. The results are shown for the calibration period (1971–
1985) for positive pairs only. Spring (MAM), summer (JJA), autumn (SON) and winter (DJF) are
illustrated from top to bottom.
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Figure 7. Identified Copula functions between REGNIE and WRF precipitation in the calibration
period (1971 to 1985) with positive pairs.
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MAM JJA

SON DJF

Figure 8. itted Copula functions between REGNIE and WRF precipitation (calibration period (1971–
1985), positive pairs only). The Copulas are identified for the different seasons (spring – MAM,
summer – JJA, autumn – SON, winter – DJF).
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Figure 9. Comparison of bias-corrected WRF data (blue) with the original WRF data (red) and
REGNIE (green) in winter 1986–1987 (positive pairs only) for pixel 1 in Fig. 1. For each time step
100 realisations are drawn from the conditional distribution visualized by the box-whiskers (boxes
are defined by the lower Q1 and the upper quartile Q3). The length of the whiskers is determined by
1.5 · (Q3�Q1) and outliers, i.e. data values beyond the whiskers are marked by crosses.
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Figure 10. Relative bias map of mean daily precipitation for Copula-based correction by taking the
expectation (left), median (middle) and the mode (right) as the estimator of the sampled distribution.
The results are based on the validation period 1986-2000.
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Figure 11. Relative bias of mean daily precipitation for uncorrected (left) and corrected WRF pre-
cipitation field (right). The results are based on the validation period 1986-2000.
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Figure 12. Relative bias between uncorrected (left) and corrected (right) WRF mean daily precipi-
tation and the REGNIE data set in Germany for the different seasons (spring–MAM, summer–JJA,
autumn–SON, winter–DJF, from top to bottom). The results are derived for the validation time period
(1986-2000).
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Pixel 1: Wet bias all the year Pixel 2: Large dry bias in summer and fall

Pixel 3: Large wet bias except summer Pixel 4: Small bias all the year

Figure 13. Comparison of bias corrected WRF mean monthly precipitation (blue) with REGNIE
(green) and original WRF data (red) for the selected four pixel 1–4 in the validation period from 1986
to 2000. The number of the respective grid cell is noted in the upper left corner of each plot.
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REGNIE WRF B.C. WRF

Figure 14. Daily precipitation fields over Germany for the three consecutive days from January 9 to
January 11, 1986.
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Figure 15. The rank correlations between RCM and REGNIE precipitation over the domain in the
validation period from 1986 to 2000.
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Figure 16. The changes of the RMSE in the validation period (1986-2000) by different bias correction
methods. The green color indicates a decrease of the RMSE, while the ocher color implies an
increase of the RMSE.
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Figure 17. The root mean square errors (RMSE) and the root mean square errors for specific prob-
ability intervals (RMSE0.1, RMSE0.2, . . . , RMSE1.0) for different methods. The selected four pixels
are the same as in Fig. 13. The black solid line indicates the errors without correction. The results
are derived from the validation period from 1986 to 2000.
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Figure 18. The percentage of the corrections that are closer to the observations. Left: Copula-based
correction (mean regression); Right: quantile mapping correction. The results are derived from the
validation period from 1986 to 2000.
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